MAX16058ATA26+T [MAXIM]

Power Supply Management Circuit, Adjustable, 1 Channel, BICMOS, TDFN-8;
MAX16058ATA26+T
型号: MAX16058ATA26+T
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Power Supply Management Circuit, Adjustable, 1 Channel, BICMOS, TDFN-8

PC 输入元件 信息通信管理
文件: 总17页 (文件大小:621K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MAX16056–MAX16059  
125nA nanoPower Supervisory Circuits  
with Capacitor-Adjustable Reset  
and Watchdog Timeouts  
General Description  
The MAX16056–MAX16059 are ultra-low-current 125nA  
(typ) microprocessor (μP) supervisory circuits that moni-  
tor a single system supply voltage. These devices assert  
Benefits and Features  
● Reduced Power Requirements  
• Ultra-Low 125nA (typ) Supply Current  
1.1V to 5.5V Operating Supply Range  
an active-low reset signal whenever the V  
supply  
CC  
● Configurable Circuit Enables Flexible Designs  
Factory-Set Reset Threshold Options from 1.575V  
to 4.625V in Approximately 100mV Increments  
Capacitor-Adjustable Reset Timeout  
Capacitor-Adjustable Watchdog Timeout  
(MAX16056/MAX16058)  
voltage drops below the factory-trimmed reset threshold,  
manual reset is pulled low, or the watchdog timer runs  
out (MAX16056/MAX16058). The reset output remains  
asserted for an adjustable reset timeout period after V  
CC  
rises above the reset threshold. Factory-trimmed reset  
threshold voltages are offered from 1.575V to 4.625V in  
approximately 100mV increments (see Table 1).  
Watchdog Timer Capacitor Open Detect Function  
Optional Watchdog Disable Function (MAX16056/  
MAX16058)  
Manual-Reset Input  
Push-Pull or Open-Drain RESET Output Options  
These devices feature adjustable reset and watchdog  
timeout using external capacitors. The MAX16056/  
MAX16058 contain a watchdog timer with a watchdog  
select input (WDS) that multiplies the watchdog timeout  
period by 128. The MAX16057/MAX16059 do not have  
the watchdog feature.  
● Integrated Features Increases System Robustness  
Power-Supply Transient Immunity  
Guaranteed RESET Valid for V  
≥ 1.1V  
CC  
The MAX16056–MAX16059 are available in either push-  
pull or open-drain output-type configurations (see the  
Ordering Information). These devices are fully specified  
over the -40°C to +125°C automotive temperature range.  
The MAX16056/MAX16058 are available in an 8-pin  
TDFN package, and the MAX16057/MAX16059 are avail-  
able in a 6-pin TDFN package.  
● Saves Board Space  
3mm x 3mm TDFN Package  
Applications  
● Portable/Battery-Powered Equipment  
● PDAs/Cell Phones  
● MP3 Players/Pagers  
● Glucose Monitors/Patient Monitors  
● Metering/HVAC  
Typical Operating Circuit and Ordering Information appear  
at end of data sheet.  
Pin Configurations  
V
WDS WDI SRT  
V
N.C.  
5
SRT  
4
CC  
CC  
TOP VIEW  
6
8
7
6
5
MAX16056  
MAX16058  
MAX16057  
MAX16059  
EP  
4
EP  
1
2
3
1
2
3
RESET GND SWT MR  
RESET GND  
MR  
TDFN  
TDFN  
*CONNECT EXPOSED PAD TO GND.  
19-4686; Rev 5; 3/17  
MAX16056–MAX16059  
125nA nanoPower Supervisory Circuits  
with Capacitor-Adjustable Reset  
and Watchdog Timeouts  
Absolute Maximum Ratings  
V
to GND ............................................................-0.3V to +6V  
Operating Temperature Range......................... -40°C to +125°C  
Storage Temperature Range............................ -65°C to +150°C  
Junction Temperature......................................................+150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
Soldering Temperature (reflow).......................................+260°C  
CC  
SRT, SWT, WDS, MR, WDI, to GND........ -0.3V to (V  
RESET (Push-Pull) to GND ..................... -0.3V to (V  
+ 0.3V)  
+ 0.3V)  
CC  
CC  
RESET (Open-Drain) to GND .................................-0.3V to +6V  
Input Current (all pins)......................................................±20mA  
Output Current (RESET)..................................................±20mA  
Continuous Power Dissipation (T = +70°C)  
A
6-Pin TDFN (derate 23.8mW/°C above +70°C) ........1905mW  
8-Pin TDFN (derate 24.4mW/°C above +70°C) ........1951mW  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these  
or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect  
device reliability.  
Package Thermal Characteristics (Note 1)  
6 TDFN  
8 TDFN  
Junction-to-Ambient Thermal Resistance (θ ) ..........41°C/W  
Junction-to-Ambient Thermal Resistance (θ ) ..........42°C/W  
JA  
JA  
Junction-to-Case Thermal Resistance (θ ).................9°C/W  
Junction-to-Case Thermal Resistance (θ ).................8°C/W  
JC  
JC  
Note 1: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer  
board. For detailed information on package thermal considerations, refer to www.maximintegrated.com/thermal-tutorial.  
Electrical Characteristics  
(V  
= 1.2V to 5.5V, T = T  
to T  
, unless otherwise noted. Typical values are at V  
= 3.3V, T = +25°C.) (Note 2)  
CC A  
CC  
A
MIN  
MAX  
PARAMETER  
SYMBOL  
CONDITIONS  
= 0°C to +125°C  
MIN  
1.1  
TYP  
MAX  
5.5  
UNITS  
T
T
A
Supply Voltage  
V
V
CC  
= -40°C to 0°C  
1.2  
5.5  
A
V
= 5.0V, T =  
A
CC  
142  
132  
125  
142  
132  
210  
185  
175  
430  
415  
-40°C to +85°C  
V
= 3.3V, T  
=
=
=
CC  
A
-40°C to +85°C  
V
= 1.8V, T  
CC  
A
V
> V + 150mV,  
TH  
CC  
-40°C to +85°C  
no load, reset output  
deasserted (Note 3)  
nA  
Supply Current  
I
CC  
V
= 5.0V, T  
CC  
A
-40°C to +125°C  
V
= 3.3V, T =  
A
CC  
-40°C to +125°C  
V
= 1.8V, T  
=
A
CC  
125  
400  
-40°C to +125°C  
V
CC  
V
CC  
V
CC  
< V , no load, reset output asserted  
7
15  
µA  
V
TH  
V
1.5%  
-
V
+
TH  
1.5%  
TH  
T
= +25°C  
A
V
Reset Threshold  
V
falling (see Table 1)  
CC  
TH  
T
= -40°C to  
V
-
V
+
TH  
2.5%  
A
TH  
+125°C  
2.5%  
Hysteresis  
V
HYST  
rising  
0.5  
%
Maxim Integrated  
2  
www.maximintegrated.com  
MAX16056–MAX16059  
125nA nanoPower Supervisory Circuits  
with Capacitor-Adjustable Reset  
and Watchdog Timeouts  
Electrical Characteristics (continued)  
(V  
= 1.2V to 5.5V, T = T  
to T  
, unless otherwise noted. Typical values are at V  
= 3.3V, T = +25°C.) (Note 2)  
CC A  
CC  
A
MIN  
MAX  
PARAMETER  
SYMBOL  
CONDITIONS  
falling from (V + 100mV) to  
MIN  
TYP  
MAX  
UNITS  
µs  
V
CC  
TH  
V
CC  
to Reset Delay  
t
80  
RD  
(V - 100mV) at 10mV/µs  
TH  
Reset Timeout Period  
t
C
= 2700pF (Note 4)  
10.5  
197  
14.18  
240  
17.0  
ms  
RP  
SRT  
T
= -40°C to  
A
282  
+125°C  
V
V
= 0V to V  
,
SRT  
RAMP1  
I
nA  
SRT Ramp Current  
RAMP1  
= 1.6V to 5V  
CC  
T
= +25°C  
210  
240  
270  
A
SRT Ramp Threshold  
V
V
= 1.6V to 5V (V  
rising)  
1.173  
5
1.235  
6.4  
1.297  
8
V
RAMP1  
CC  
RAMP  
T
T
= +25°C  
A
Watchdog Timeout Clock Period  
t
ms  
WDPER  
= -40°C to +125°C  
3.5  
6.4  
9.5  
A
T
= -40°C to  
A
197  
240  
282  
V
V
= 0V to V  
= 1.6V to 5V  
,
RAMP2  
+125°C  
SWT  
SWT Ramp Current  
I
nA  
RAMP2  
CC  
T
A
= +25°C  
210  
240  
270  
SWT Ramp Threshold  
V
V
V
V
V
= 1.6V to 5V (V rising)  
RAMP2  
1.173  
1.235  
1.297  
0.3  
V
RAMP2  
CC  
CC  
CC  
CC  
≥ 1.0V, I  
≥ 2.7V, I  
≥ 4.5V, I  
= 50µA  
SINK  
SINK  
SINK  
V
= 1.2mA  
= 3.2mA  
0.3  
OL  
0.4  
V
CC  
≥ 1.8V,  
0.8 x  
V
RESET Output Voltage  
I
= 200µA  
V
CC  
SOURCE  
V
≥ 2.25V,  
0.8 x  
V
CC  
CC  
V
MAX16056/MAX16057  
OH  
I
= 500µA  
SOURCE  
V
≥ 4.5V,  
0.8 x  
CC  
I
= 800µA  
V
CC  
SOURCE  
V
> V , reset not asserted, V  
TH RESET  
=
RESET Output-Leakage Current,  
Open Drain  
CC  
I
1.0  
µA  
LKG  
5.5V (MAX16058/MAX16059)  
0.7 x  
V
IH  
V
CC  
Input-Logic Levels  
V
0.3 x  
V
IL  
V
CC  
t
1
µs  
ns  
ns  
ns  
nA  
MR Minimum Pulse Width  
MR Glitch Rejection  
MPW  
200  
250  
t
MR-to-RESET Delay  
MRD  
WDI Minimum Pulse Width  
(Note 5)  
MR, WDI, WDS is connected to GND or V  
150  
Input Leakage Current  
-100  
+100  
CC  
Note 2: Devices are production tested at T = +25°C. Specifications over temperature limits are guaranteed by design.  
A
and t  
Note 3: WDI input period is 1s with t  
< 50ns.  
RISE  
FALL  
Note 4: Worst case of SRT ramp current and voltage is used to guarantee minimum and maximum limits.  
Note 5: Guaranteed by design, not production tested.  
Maxim Integrated  
3  
www.maximintegrated.com  
MAX16056–MAX16059  
125nA nanoPower Supervisory Circuits  
with Capacitor-Adjustable Reset  
and Watchdog Timeouts  
Typical Operating Characteristics  
(V  
= 2.5V, T = +25°C, unless otherwise noted.)  
CC  
A
RESET TIMEOUT PERIOD  
SUPPLY CURRENT  
vs. C  
vs. SUPPLY VOLTAGE  
SUPPLY CURRENT vs. TEMPERATURE  
SRT  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
10.0  
350  
300  
250  
200  
150  
100  
50  
V
= 2.23V  
TH  
RESET IS NOT ASSERTED  
V
TH  
= 1.575V  
V
CC  
= 5.5V  
V
= 3.3V  
= 2.5V  
CC  
1.0  
T
= -40°C  
A
T
= +125°C  
A
T
A
= +85°C  
T
= +25°C  
A
V
CC  
5
V
CC  
= 1.8V  
0.1  
0
0
50  
100  
150  
200  
250  
300  
1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
(V)  
-40 -25 -10  
20 35 50 65 80 95 110 125  
TEMPERATURE (°C)  
C
SRT  
(nF)  
V
CC  
NORMALIZED RESET TIMEOUT PERIOD  
vs. TEMPERATURE  
NORMALIZED WATCHDOG  
TIMEOUT PERIOD vs. TEMPERATURE  
MAXIMUM V TRANSIENT DURATION  
CC  
vs. RESET THRESHOLD OVERDRIVE  
1.10  
1.08  
1.06  
1.04  
1.02  
1.00  
0.98  
0.96  
0.94  
0.92  
0.90  
1.05  
1.04  
1.03  
1.02  
1.01  
1.00  
0.99  
0.98  
0.97  
0.96  
0.95  
1000  
100  
10  
RESET OCCURS ABOVE THIS LINE  
V
CC  
FALLING FROM V + 100mV  
TH  
1
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
10  
100  
1000  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
RESET THRESHOLD OVERDRIVE (mV)  
NORMALIZED RESET THRESHOLD  
VOLTAGE vs. TEMPERATURE  
V
TO RESET DELAY  
vs. TEMPERATURE  
CC  
1.020  
120  
110  
100  
90  
V
CC  
= V + 100mV TO V - 100mV  
TH TH  
1.015  
1.010  
1.005  
1.000  
0.995  
0.990  
0.985  
0.980  
80  
70  
60  
50  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Maxim Integrated  
4  
www.maximintegrated.com  
MAX16056–MAX16059  
125nA nanoPower Supervisory Circuits  
with Capacitor-Adjustable Reset  
and Watchdog Timeouts  
Typical Operating Characteristics (continued)  
(V  
= 2.5V, T = +25°C, unless otherwise noted.)  
CC  
A
RESET OUTPUT-HIGH VOLTAGE  
vs. SOURCE CURRENT  
RESET OUTPUT-LOW VOLTAGE  
SUPPLY CURRENT vs. WATCHDOG  
SWITCHING FREQUENCY  
vs. SINK CURRENT  
0.50  
0.45  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0
0.30  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0.25  
0.20  
0.15  
0.10  
0.05  
0
V
= 2.5V  
CC  
V
= 1.8V  
V
CC  
= 1.8V  
CC  
V
= 3.3V  
CC  
V
CC  
= 3.3V  
V
CC  
= 2.5V  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0  
(mA)  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
(mA)  
0.01  
0.1  
1
10  
100 1000 10,000  
I
I
SOURCE  
WATCHDOG SWITCHING FREQUENCY (kHz)  
SINK  
MANUAL-RESET DELAY  
vs. TEMPERATURE  
MANUAL-RESET DELAY  
MAX16056 toc13  
270  
268  
266  
264  
262  
260  
258  
256  
254  
252  
250  
MR  
1V/div  
RESET  
1V/div  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
200ns/div  
TEMPERATURE (°C)  
RESET SINK CAPABILITY  
vs. SUPPLY VOLTAGE  
RESET SOURCE CAPABILITY  
vs. SUPPLY VOLTAGE  
10  
9
8
7
6
5
4
3
2
1
0
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
V
= 0.8 x V  
CC  
RESET  
V
= 0.3V  
RESET  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0  
(V)  
2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
(V)  
V
CC  
V
CC  
Maxim Integrated  
5  
www.maximintegrated.com  
MAX16056–MAX16059  
125nA nanoPower Supervisory Circuits  
with Capacitor-Adjustable Reset  
and Watchdog Timeouts  
Pin Description  
PIN  
NAME  
FUNCTION  
MAX16056/ MAX16057/  
MAX16058  
MAX16059  
Push-Pull or Open-Drain Reset Output. RESET asserts whenever V  
drops below the  
CC  
selected reset threshold voltage (V ) or manual reset is pulled low. RESET remains  
RESET low for the reset timeout period after all reset conditions are deasserted, and then goes  
TH  
1
2
1
2
high. The watchdog timer triggers a reset pulse (t ) whenever a watchdog fault occurs  
RP  
(MAX16056/MAX16058).  
GND  
Ground  
Watchdog Timeout Input. Connect a capacitor between SWT and GND to set the basic  
watchdog timeout period (t ). Determine the period by the formula t  
= Floor[C  
x
WD  
WD  
SWT  
6
5.15 x 10 /6.4ms] x 6.4ms + 3.2ms (Note 6) with t  
in seconds and C  
in Farads, or  
WD  
SWT  
3
SWT  
use Table 2. Extend the basic watchdog timeout period by using the WDS input. Connect  
SWT to ground to disable the watchdog timer function. The value of the capacitor must be  
between 2275pF and 0.54µF to have a valid watchdog timeout period.  
Manual-Reset Input. Drive MR low to manually reset the device. RESET remains asserted  
for the reset timeout period after MR is released. There is no internal pullup on MR. MR  
4
3
4
MR  
must not be left unconnected. Connect MR to V  
if not used.  
CC  
Reset Timeout Input. Connect a capacitor from SRT to GND to select the reset timeout  
6
period. Determine the period as follows: t  
= 5.15 x 10 x C  
with t  
in seconds and  
RP  
SRT  
RP  
5
SRT  
C
in Farads, or use Table 2. The value of the capacitor must be between 39pF and  
SRT  
4.7µF.  
Watchdog Input. A falling transition must occur on WDI within the selected watchdog  
timeout period or a reset pulse occurs. The watchdog timer clears when a falling transition  
occurs on WDI or whenever RESET is asserted. Connect SWT to ground to disable the  
watchdog timer function.  
6
WDI  
Watchdog Select Input. WDS selects the watchdog timeout mode. Connect WDS to ground  
to select normal mode. The watchdog timeout period is t . Connect WDS to V  
to  
WD  
CC  
7
6
WDS  
select extended mode, multiplying the basic timeout period (t ) by a factor of 128. A  
WD  
change in the state of WDS clears the watchdog timer.  
Supply Voltage. V  
is the power-supply input and the input for fixed-threshold V  
CC  
CC  
8
V
CC  
monitor. For noisy systems, bypass V  
with a 0.1µF capacitor to GND.  
CC  
5
N.C.  
EP  
No Connection. Not internally connected.  
Exposed Pad. Connect EP to GND or leave unconnected.  
Note 6: Floor: take the integral value.  
Maxim Integrated  
6  
www.maximintegrated.com  
MAX16056–MAX16059  
125nA nanoPower Supervisory Circuits  
with Capacitor-Adjustable Reset  
and Watchdog Timeouts  
Watchdog Timer  
Detailed Description  
The MAX16056/MAX16058’s watchdog timer circuitry  
monitors the μP’s activity. If the μP does not tog-  
gle (high to low) the watchdog input (WDI) within the  
The MAX16056–MAX16059 are ultra-low-current 125nA  
(typ) μP supervisory circuits that monitor a single system  
supply voltage. These devices assert an active-low reset  
capacitor-adjustable watchdog timeout period (t  
),  
signal whenever the V  
supply voltage drops below  
WD  
CC  
RESET asserts for the reset timeout period (t ). The  
the factory-trimmed reset threshold, manual reset is  
pulled low, or the watchdog timer runs out (MAX16056/  
MAX16058). The reset output remains asserted for an  
adjustable reset timeout period after V  
reset threshold. The reset and watchdog delay periods  
RP  
internal watchdog timer is cleared by: 1) any event that  
asserts RESET, 2) a falling transition at WDI (that can  
detect pulses as short as 150ns), or 3) a transition (high to  
low or low to high) at WDS. While RESET is asserted, the  
watchdog timer remains cleared and does not count. As  
soon as RESET deasserts, the watchdog timer resumes  
counting.  
rises above the  
CC  
are adjustable using external capacitors.  
RESET Output  
The MAX16056–MAX16059 μP supervisory circuits assert  
a reset to prevent code-execution errors during power-up,  
power-down, and brownout conditions. The reset output is  
There are two modes of watchdog operation, normal  
mode and extended mode. In normal mode (Figure 2),  
the watchdog timeout period is determined by the value  
of the capacitor connected between SWT and ground. In  
extended mode (Figure 3), the watchdog timeout period  
is multiplied by 128. For example, in extended mode, a  
0.33μF capacitor gives a watchdog timeout period of 217s  
(Table 2). To disable the watchdog timer function, connect  
SWT to ground.  
guaranteed to be valid for V  
down to 1.1V.  
CC  
When V  
output asserts low. Once V  
falls below the reset threshold, the RESET  
CC  
exceeds the reset thresh-  
CC  
old plus the hysteresis, an internal timer keeps the  
RESET output asserted for the capacitor-adjusted reset  
timeout period (t ), then after this interval the RESET  
RP  
output deasserts (Figure 1). The reset function features  
When V  
ramps above V  
+ V  
, the value of the  
CC  
TH  
HYST  
immunity to power-supply voltage transients.  
external SWT capacitor is sampled after RESET goes  
high. When sampling is finished, the capacitor value is  
stored in the device and is used to set watchdog timeout.  
If RESET goes low before sampling is finished, the device  
interrupts sampling, and sampling is restarted when  
RESET goes high again.  
Manual-Reset Input (MR)  
Many μP-based products require manual-reset capability,  
allowing the operator, a test technician, or external logic  
circuitry to initiate a reset. The MAX16056–MAX16059  
feature an MR input. A logic-low on MR asserts a reset.  
RESET remains asserted while MR is low and for the  
If the external SWT capacitor is less than 470pF, the  
sampling result sets the watchdog timeout to zero. This  
causes the watchdog to assert RESET continuously  
after sampling is finished. If a PCB manufacturing defect  
timeout period (t )after MR returns high. Connect MR to  
RP  
V
if unused. MR can be driven with CMOS logic levels  
CC  
or with open-drain/collector outputs (with a pullup resis-  
caused the connection to C  
to be broken, the  
tor). Connect a normally open momentary switch from  
SWT  
capacitance is very low and RESET is continuously  
asserted. If the external SWT capacitor is greater than  
0.47μF, the sampling result sets the watchdog timeout to  
be infinite, disabling the watchdog function.  
MR to GND and a resistor from MR to V  
to implement  
CC  
a manual-reset function; external debounce circuitry is not  
required. If MR is driven by long cables or the device is  
used in a noisy environment, connect a 0.1μF capacitor  
from MR to GND to provide additional noise immunity.  
Maxim Integrated  
7  
www.maximintegrated.com  
MAX16056–MAX16059  
125nA nanoPower Supervisory Circuits  
with Capacitor-Adjustable Reset  
and Watchdog Timeouts  
V
TH  
+ V  
HYST  
V
TH  
V
CC  
t
t
RP  
RP  
t
t
RD  
MRD  
RESET  
t
MPW  
MR  
Figure 1. RESET Timing Relationship  
V
CC  
t
t
WDI  
RP  
WD  
0V  
V
CC  
RESET  
0V  
NORMAL MODE (WDS = GND)  
Figure 2. Watchdog Timing Diagram, Normal Mode (WDS = GND)  
V
CC  
t
x 128  
WDI  
WD  
0V  
V
CC  
t
RP  
RESET  
0V  
EXTENDED MODE (WDS = V  
)
CC  
Figure 3. Watchdog Timing Diagram, Extended Mode (WDS = V  
)
CC  
Maxim Integrated  
8  
www.maximintegrated.com  
MAX16056–MAX16059  
125nA nanoPower Supervisory Circuits  
with Capacitor-Adjustable Reset  
and Watchdog Timeouts  
by substituting the minimum, typical, and maximum values  
into the equation.  
Applications Information  
Selecting the Reset Timeout Capacitor  
The reset timeout period is adjustable to accommodate  
a variety of μP applications. To adjust the reset timeout  
For example, if C  
= 100nF:  
SWT  
-9  
-9  
t
= Floor[100 x 10 x 1.173/(282 x 10 )/9.5ms] x  
WDMIN  
3.5ms + 0.5 x 3.2ms = 141.7ms  
period (t ), connect a capacitor (C  
) between SRT  
RP  
SRT  
-9  
-9  
and ground. The reset timeout capacitor is calculated as  
follows:  
t
= Floor[100 x 10 x 1.235/(240 x 10 )/6.4ms] x  
WDNOM  
6.4ms + 0.5 x 6.4ms = 515.2ms  
6
-9  
-9  
C
= t /(5.15 x 10 )  
t
= Floor[100 x 10 x 1.297/(197 x 10 )/3.5ms] x  
SRT  
RP  
WDMAX  
9.5ms + 0.5 x 9.5ms = 1790.75ms  
with t  
in seconds and C  
in Farads.  
SRT  
RP  
C
must be a low-leakage (< 10nA) type capacitor.  
Transient Immunity  
For applications with higher slew rates on V  
power-up, additional bypass capacitance may be required.  
SRT  
A ceramic capacitor with low temperature coefficient  
dielectric (i.e., X7R) is recommended.  
during  
CC  
The MAX16056–MAX16059 are relatively immune to  
short-duration supply voltage transients, or glitches on  
Selecting Watchdog Timeout Capacitor  
The watchdog timeout period is adjustable to  
accommodate a variety of μP applications. With this  
feature, the watchdog timeout can be optimized for  
software execution. The programmer can determine how  
often the watchdog timer should be serviced. Adjust the  
V
. The Maximum V  
Transient Duration vs. Reset  
CC  
CC  
Threshold Overdrive graph in the Typical Operating  
Characteristics shows this transient immunity. The area  
below the curve of the graph is the region where these  
devices typically do not generate a reset pulse. This  
graph was generated using a falling pulse applied to  
watchdog timeout period (t ) by connecting a capacitor  
WD  
(C  
) between SWT and GND. For normal mode  
SWT  
V
, starting 100mV above the actual reset threshold  
CC  
operation, calculate the watchdog timeout as follows:  
(V ), and ending below this threshold (reset threshold  
TH  
6
t
= Floor[C  
x 5.15 x 10 /6.4ms] x 6.4ms + 3.2ms  
WD  
SWT  
overdrive). As the magnitude of the transient increases,  
the maximum allowable pulse width decreases. Typically,  
with t  
in seconds and C  
in Farads.  
SWT  
WD  
a 100mV V  
transient duration of 40μs or less does not  
(Floor: take the integral value) (Figures 2 and 3)  
CC  
cause a reset.  
The maximum t is 296s. If the capacitor sets t  
WD  
WD  
greater than the 296s, t  
timer is disabled.  
= infinite and the watchdog  
WD  
Using the MAX16056–MAX16059 for  
Reducing System Power Consumption  
C
must be a low-leakage (< 10nA) type capacitor.  
Using the RESET output to control an external p-channel  
MOSFET to control the on-time of a power supply can  
result in lower system power consumption in systems  
that can be regularly put to sleep. By tying the WDI input  
to ground, the RESET output becomes a low-frequency  
clock output. When RESET is low, the MOSFET is turned  
on and power is applied to the system. When RESET  
is high, the MOSFET is turned off and no power is con-  
sumed by the system. This effectively reduces the shut-  
down current of the system to zero (Figure 4).  
SWT  
A ceramic capacitor with low temperature coefficient  
dielectric (i.e., X7R) is recommended.  
Watchdog Timeout Accuracy  
The watchdog timeout period is affected by the SWT  
ramp current (I  
old (V  
) accuracy, the SWT ramp thresh-  
RAMP2  
), and the watchdog timeout clock period  
). In the equation above, the constant 5.15 x 10  
RAMP2  
6
(t  
WDPER  
is equal to V  
/I , and 6.4ms equals the watch-  
RAMP2 RAMP2  
dog timeout clock period. Calculate the timeout accuracy  
Maxim Integrated  
9  
www.maximintegrated.com  
MAX16056–MAX16059  
125nA nanoPower Supervisory Circuits  
with Capacitor-Adjustable Reset  
and Watchdog Timeouts  
BAT  
0.1µF  
0.1µF  
1M  
V
CC  
V
CC1  
RESET  
MAX16056  
MR  
µP  
WDI  
MANUAL  
POWER-ON  
SRT  
GND  
WDS  
SWT  
C
SWT  
C
SRT  
V
CC  
RESET  
V
CC1  
t
t
t
RP  
RP  
WD  
Figure 4. Using MAX16056–MAX16059 to Reduce System Power Consumption  
Maxim Integrated  
10  
www.maximintegrated.com  
MAX16056–MAX16059  
125nA nanoPower Supervisory Circuits  
with Capacitor-Adjustable Reset  
and Watchdog Timeouts  
Interfacing to Other Voltages  
for Logic Compatibility  
The open-drain RESET output can be used to interface  
to a μP with other logic levels. The open-drain output is  
connected to a voltage from 0 to 5.5V, as shown in Figure  
5. Generally, the pullup resistor connected to RESET  
connects to the supply voltage that is being monitored  
Ensuring a Valid RESET Down to V  
= 0V  
CC  
(Push-Pull RESET)  
When V  
falls below 1.1V, the current-sinking capabil-  
CC  
ity of RESET decreases drastically. The high-impedance  
CMOS logic inputs connected to RESET can drift to  
undetermined voltages. This presents no problems in most  
applications, since most μPs and other circuitry do not  
at the device’s V  
input. However, some systems use  
operate with V  
below 1.1V. In those applications where  
CC  
CC  
the open-drain output to level-shift from the supervisor’s  
monitored supply to another supply voltage. As the super-  
RESET must be valid down to 0V, add a pulldown resis-  
tor between the MAX16056/MAX16057 push-pull RESET  
output and GND. The resistor sinks any stray leakage cur-  
rents, holding RESET low (Figure 6). Choose a pulldown  
resistor that accommodates leakages, such that RESET is  
not significantly loaded and is capable of pulling to GND.  
The external pulldown cannot be used with the open-drain  
RESET output of the MAX16058/MAX16059.  
visor’s V  
decreases, so does the device’s ability to sink  
CC  
current at RESET.  
3.3V  
5V  
V
CC  
V
CC  
V
CC  
V
CC  
MAX16058  
MAX16059  
100k  
MAX16056  
MAX16057  
µP  
RESET  
RESET  
RESET  
2M  
GND  
GND  
GND  
Figure 5. Interfacing with Other Voltage Levels  
Figure 6. Ensuring RESET Valid to V  
= GND  
CC  
Maxim Integrated  
11  
www.maximintegrated.com  
MAX16056–MAX16059  
125nA nanoPower Supervisory Circuits  
with Capacitor-Adjustable Reset  
and Watchdog Timeouts  
Table 1. Threshold Suffix Guide  
V
THRESHOLD FALLING (V)  
CC  
SUFFIX  
MIN  
TYP  
MAX  
4.741  
4.613  
4.484  
4.408  
4.305  
4.203  
4.100  
3.998  
3.895  
3.793  
3.690  
3.588  
3.485  
3.383  
3.280  
3.152  
3.075  
2.998  
2.870  
2.768  
2.691  
2.563  
2.460  
2.371  
2.290  
2.243  
2.153  
2.050  
1.948  
1.845  
1.707  
1.614  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
225  
22  
21  
20  
19  
18  
17  
16  
4.509  
4.388  
4.266  
4.193  
4.095  
3.998  
3.900  
3.802  
3.705  
3.608  
3.510  
3.413  
3.315  
3.218  
3.120  
2.998  
2.925  
2.852  
2.730  
2.633  
2.559  
2.438  
2.340  
2.255  
2.180  
2.133  
2.048  
1.950  
1.853  
1.755  
1.623  
1.536  
4.625  
4.500  
4.375  
4.300  
4.200  
4.100  
4.000  
3.900  
3.800  
3.700  
3.600  
3.500  
3.400  
3.300  
3.200  
3.075  
3.000  
2.925  
2.800  
2.700  
2.625  
2.500  
2.400  
2.313  
2.235  
2.188  
2.100  
2.000  
1.900  
1.800  
1.665  
1.575  
Maxim Integrated  
12  
www.maximintegrated.com  
MAX16056–MAX16059  
125nA nanoPower Supervisory Circuits  
with Capacitor-Adjustable Reset  
and Watchdog Timeouts  
Table 2. Capacitor Selection Guide  
CAPACITANCE (pF)  
39  
t
(ms)  
t
(ms)  
t x 128 (ms)  
WD  
RP  
WD  
47  
56  
68  
82  
100  
120  
0
(no capacitor is connected)  
150  
180  
220  
270  
Not recommended  
330  
390  
470  
560  
680  
820  
1000  
1200  
1500  
1800  
2200  
2700  
3300  
3900  
4700  
5600  
6800  
8200  
10,000  
12,000  
15,000  
18,000  
Indeterminate  
(0, 9.6, or 16)  
Indeterminate  
(0, 1228.8, or 1636)  
14.18  
16.99  
20.1  
16  
1641  
1641  
2460  
2460  
3280  
4099  
4918  
6556  
7376  
9833  
11,472  
16  
22.4  
22.4  
28.8  
35.2  
41.6  
54.4  
60.8  
80  
24.21  
28.84  
35.00  
42.23  
51.5  
61.8  
77.25  
92.7  
92.8  
Maxim Integrated  
13  
www.maximintegrated.com  
MAX16056–MAX16059  
125nA nanoPower Supervisory Circuits  
with Capacitor-Adjustable Reset  
and Watchdog Timeouts  
Table 2. Capacitor Selection Guide (continued)  
CAPACITANCE (pF)  
22,000  
t
(ms)  
t
(ms)  
t
WD  
x 128 (ms)  
13,929  
17,206  
21,302  
25,398  
30,313  
36,867  
44,240  
53,251  
65,539  
78,646  
98,307  
RP  
WD  
113.3  
112  
27,000  
139.05  
169.95  
200.85  
242.05  
288.4  
350.2  
422.3  
515  
137.6  
169.6  
201.6  
240  
33,000  
39,000  
47,000  
56,000  
291.2  
348.8  
419.2  
515.2  
617.6  
771.2  
924.8  
1129.6  
1392  
68,000  
82,000  
100,000  
120,000  
150,000  
180,000  
220,000  
270,000  
330,000  
390,000  
470,000  
680,000  
820,000  
1,000,000  
1,500,000  
2,200,000  
3,300,000  
4,700,000  
618  
772.5  
927  
117,968  
144,182  
177,769  
217,091  
256,412  
308,841  
1133  
1390.5  
1699.5  
2008.5  
2420.5  
3502  
1699.2  
2006.4  
2416  
4223  
Indeterminate  
5150  
(may be infinite and watchdog is disabled)  
7725  
11,330  
16,995  
24,205  
Infinite  
(watchdog is disabled)  
Maxim Integrated  
14  
www.maximintegrated.com  
MAX16056–MAX16059  
125nA nanoPower Supervisory Circuits  
with Capacitor-Adjustable Reset  
and Watchdog Timeouts  
Table 3. Standard Versions  
PART  
TOP MARK  
BKZ  
BLA  
BLB  
BLC  
BLD  
BLE  
ATQ  
ATR  
ATS  
ATT  
MAX16056ATA17+  
MAX16056ATA23+  
MAX16056ATA26+  
MAX16056ATA29+  
MAX16056ATA31+  
MAX16056ATA46+  
MAX16057ATT17+  
MAX16057ATT23+  
MAX16057ATT26+  
MAX16057ATT29+  
MAX16057ATT31+  
MAX16057ATT46+  
MAX16058ATA16+  
MAX16058ATA22+  
MAX16058ATA26+  
MAX16058ATA29+  
MAX16058ATA31+  
MAX16058ATA44+  
MAX16059ATT16+  
MAX16059ATT22+  
MAX16059ATT26+  
MAX16059ATT29+  
MAX16059ATT31+  
MAX16059ATT44+  
ATU  
ATV  
BLF  
BLG  
BLH  
BLI  
BLJ  
BLK  
ATW  
ATX  
ATY  
ATZ  
AUA  
AUB  
Maxim Integrated  
15  
www.maximintegrated.com  
MAX16056–MAX16059  
125nA nanoPower Supervisory Circuits  
with Capacitor-Adjustable Reset  
and Watchdog Timeouts  
Typical Operating Circuit  
BAT  
0.1µF  
1M  
V
CC  
V
CC  
RESET  
MAX16056  
MR  
µP  
WDI  
MANUAL  
RESET  
SRT  
GND  
WDS  
SWT  
C
C
SRT  
SWT  
Chip Information  
Package Information  
For the latest package outline information and land patterns  
(footprints), go to www.maximintegrated.com/packages. Note  
that a “+”, “#”, or “-” in the package code indicates RoHS status  
only. Package drawings may show a different suffix character, but  
the drawing pertains to the package regardless of RoHS status.  
PROCESS: BiCMOS  
Ordering Information  
PIN-  
PACKAGE  
RESET  
OUTPUT DOG TIMER  
WATCH-  
PART  
PACKAGE  
TYPE  
PACKAGE  
CODE  
OUTLINE  
NO.  
LAND  
PATTERN NO.  
MAX16056ATA_ _+T 8 TDFN-EP* Push-Pull  
MAX16057ATT_ _+T 6 TDFN-EP* Push-Pull  
MAX16058ATA_ _+T 8 TDFN-EP* Open-Drain  
MAX16059ATT_ _+T 6 TDFN-EP* Open-Drain  
Yes  
No  
6 TDFN-EP  
8 TDFN-EP  
T633-2  
T833-2  
21-0137  
21-0137  
90-0058  
90-0059  
Yes  
No  
Note: All devices are specified over the -40°C to +125°C oper-  
ating temperature range.  
+Denotes a lead(Pb)-free/RoHS-compliant package.  
T = Tape and reel.  
*EP = Exposed pad.  
“_ _” represents the two number suffix needed when ordering  
the reset threshold voltage value (see Table 1).  
Standard versions and their package top marks are shown in  
Table 3 at the end of data sheet.  
Maxim Integrated  
16  
www.maximintegrated.com  
 
 
MAX16056–MAX16059  
125nA nanoPower Supervisory Circuits  
with Capacitor-Adjustable Reset  
and Watchdog Timeouts  
Revision History  
REVISION  
NUMBER  
REVISION  
DATE  
PAGES  
CHANGED  
DESCRIPTION  
0
1
2
3
4
5
6/09  
6/10  
4/13  
5/14  
4/15  
3/17  
Initial release  
2, 3, 15  
1
Updated Absolute Maximum Ratings, Electrical Characteristics, and Table 3.  
Removed Automotive Infotainment from Applications sections  
Changed top mark in Table 3 for MAX16057ATT31+ and MAX16057ATT46+  
Revised Benefits and Features section  
15  
1
Updated title to include “nanoPower”  
1–17  
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim Integrated’s website at www.maximintegrated.com.  
Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses  
are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits)  
shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.  
©
Maxim Integrated and the Maxim Integrated logo are trademarks of Maxim Integrated Products, Inc.  
2017 Maxim Integrated Products, Inc.  
17  

相关型号:

MAX16058ATA27+T

Power Supply Management Circuit, Fixed, 1 Channel, BICMOS, TDFN-8
MAXIM

MAX16058ATA29+

Power Supply Management Circuit, Fixed, 1 Channel, BICMOS, TDFN-8
MAXIM

MAX16058ATA29+T

Power Supply Management Circuit, Adjustable, 1 Channel, BICMOS, TDFN-8
MAXIM

MAX16058ATA31+

Power Supply Management Circuit, Fixed, 1 Channel, BICMOS, TDFN-8
MAXIM

MAX16058ATA31+T

Power Supply Management Circuit, Adjustable, 1 Channel, BICMOS, TDFN-8
MAXIM

MAX16058ATA34+T

Power Supply Management Circuit, Fixed, 1 Channel, BICMOS, TDFN-8
MAXIM

MAX16058ATA44+

Power Supply Management Circuit, Fixed, 1 Channel, BICMOS, TDFN-8
MAXIM

MAX16058ATA__+T

125nA Supervisory Circuits with Capacitor- Adjustable Reset and Watchdog Timeouts
MAXIM

MAX16059

125nA Supervisory Circuits with Capacitor- Adjustable Reset and Watchdog Timeouts
MAXIM

MAX16059ATT18+

Volt Supervisor Monitor 6-Pin TDFN EP
MAXIM

MAX16059ATT18+T

Power Supply Support Circuit, Fixed, 1 Channel, +1.8VV, BICMOS, 3 X 3 MM, ROHS COMPLIANT, TDFN-6
MAXIM

MAX16059ATT19+

Power Management Circuit, Fixed, +1.9VV, BICMOS, PDSO6,
MAXIM