MAX1631AEAI+T [MAXIM]

暂无描述;
MAX1631AEAI+T
型号: MAX1631AEAI+T
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

暂无描述

电脑 控制器
文件: 总28页 (文件大小:240K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-0480; Rev 3; 4/97  
Mu lt i-Ou t p u t , Lo w -No is e P o w e r-S u p p ly  
Co n t ro lle rs fo r No t e b o o k Co m p u t e rs  
0–MAX1635  
________________Ge n e ra l De s c rip t io n  
____________________________Fe a t u re s  
96% Efficiency  
+4.2V to +30V Input Range  
The MAX1630–MAX1635 are buck-topology, step-down,  
switch-mode, power-supply controllers that generate  
logic-supply voltages in battery-powered systems. These  
high-performance, dual/triple-output devices include on-  
board power-up sequencing, power-good signaling with  
delay, digital soft-start, secondary winding control, low-  
dropout circuitry, internal frequency-compensation net-  
works, and automatic bootstrapping.  
2.5V to 5.5V Dual Adjustable Outputs  
Selectable 3.3V and 5V Fixed or Adjustable  
Outputs (Dual Mode™)  
12V Linear Regulator  
Adjustable Secondary Feedback  
(MAX1631/MAX1634)  
Up to 96% efficiency is achieved through synchronous  
rectification and Maxims proprietary Idle Mode™ control  
scheme. Efficiency is greater than 80% over a 1000:1  
load-current range, which extends battery life in system-  
suspend or standby mode. Excellent dynamic response  
corrects output load transients caused by the latest  
dynamic-clock CPUs within five 300kHz clock cycles.  
Strong 1A on-board gate drivers ensure fast external  
N-channel MOSFET switching.  
5V/50mA Linear Regulator Output  
Precision 2.5V Reference Output  
Programmable Power-Up Sequencing  
Power-Good (RESET) Output  
Output Overvoltage Protection  
(MAX1630/MAX1631/MAX1632)  
Output Undervoltage Shutdown  
(MAX1630/MAX1631/MAX1632)  
These devices feature a logic-controlled and synchroniz-  
able, fixed-frequency, pulse-width-modulation (PWM)  
operating mode. This reduces noise and RF interference  
in sensitive mobile communications and pen-entry appli-  
cations. Asserting the SKIP pin enables fixed-frequency  
mode, for lowest noise under all load conditions.  
200kHz/300kHz Low-Noise, Fixed-Frequency  
Operation  
Low-Dropout, 99% Duty-Factor Operation  
2.5mW Typical Quiescent Power (+12V input, both  
SMPSs on)  
4µA Typical Shutdown Current  
28-Pin SSOP Package  
The MAX1630–MAX1635 include two PWM regulators,  
adjustable from 2.5V to 5.5V with fixed 5.0V and 3.3V  
modes. All these devices include secondary feedback  
re g ula tion, a nd the MAX1630/MAX1632/MAX1633/  
MAX1635 each contain 12V/120mA linear regulators. The  
MAX1631/MAX1634 include a secondary feedback input  
(SECFB), plus a control pin (STEER) that selects which  
PWM (3.3V or 5V) receives the secondary feedback sig-  
nal. SECFB provides a method for adjusting the sec -  
ondary winding voltage regulation point with an external  
resistor divider, and is intended to aid in creating auxiliary  
voltages other than fixed 12V.  
_______________Ord e rin g In fo rm a t io n  
PART  
TEMP. RANGE  
0°C to +70°C  
PIN-PACKAGE  
28 SSOP  
MAX1630CAI  
MAX1630EAI  
-40°C to +85°C  
28 SSOP  
Ordering Information continued on last page.  
________________Fu n c t io n a l Dia g ra m  
The MAX1630/MAX1631/MAX1632 contain internal out-  
put overvoltage and undervoltage protection features.  
INPUT  
+12V  
+5V  
+5V (RTC)  
________________________Ap p lic a t io n s  
Notebook and Subnotebook Computers  
PDAs and Mobile Communicators  
5V  
LINEAR  
12V  
LINEAR  
Desktop CPU Local DC-DC Converters  
+3.3V  
3.3V  
5V  
SMPS  
SMPS  
Pin Configurations and Selector Guide appear at end of data  
sheet.  
POWER-UP POWER-  
SEQUENCE GOOD  
ON/OFF  
RESET  
Idle Mode and Dual Mode are trademarks of Maxim Integrated  
Products.  
________________________________________________________________ Maxim Integrated Products  
1
For free samples & the latest literature: http://www.maxim-ic.com, or phone 1-800-998-8800.  
For small orders, phone 408-737-7600 ext. 3468.  
Mu lt i-Ou t p u t , Lo w -No is e P o w e r-S u p p ly  
Co n t ro lle rs fo r No t e b o o k Co m p u t e rs  
ABSOLUTE MAXIMUM RATINGS  
V+ to GND..............................................................-0.3V to +36V  
PGND to GND.....................................................................±0.3V  
VL to GND ................................................................-0.3V to +6V  
BST3, BST5 to GND ...............................................-0.3V to +36V  
LX3 to BST3..............................................................-6V to +0.3V  
LX5 to BST5..............................................................-6V to +0.3V  
REF, SYNC, SEQ, STEER, SKIP, TIME/ON5,  
VL, REF Short to GND ................................................Momentary  
12OUT Short to GND..................................................Continuous  
REF Current...........................................................+5mA to -1mA  
VL Current.........................................................................+50mA  
12OUT Current ...............................................................+200mA  
V
DD  
Shunt Current............................................................+15mA  
Operating Temperature Ranges  
SECFB, RESET to GND ............................................-0.3V to +6V  
MAX163_CAI.......................................................0°C to +70°C  
MAX163_EAI....................................................-40°C to +85°C  
Storage Temperature Range .............................-65°C to +160°C  
V
DD  
to GND............................................................-0.3V to +20V  
RUN/ON3, SHDN to GND.............................-0.3V to (V+ + 0.3V)  
12OUT to GND ...........................................-0.3V to (V + 0.3V)  
Continuous Power Dissipation (T = +70°C)  
DD  
A
DL3, DL5 to PGND........................................-0.3V to (VL + 0.3V)  
DH3 to LX3 ...............................................-0.3V to (BST3 + 0.3V)  
DH5 to LX5 ...............................................-0.3V to (BST5 + 0.3V)  
SSOP (derate 9.52mW/°C above +70°C) ....................762mW  
Lead Temperature (soldering, 10sec) .............................+300°C  
Stresses beyond those listed under Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
0–MAX1635  
ELECTRICAL CHARACTERISTICS  
(V+ = 15V, both PWMs on, SYNC = VL, VL load = 0mA, REF load = 0mA, SKIP = 0V, T = T  
to T , unless otherwise noted.  
MAX  
A
MIN  
Typical values are at T = +25°C.)  
A
PARAMETER  
MAIN SMPS CONTROLLERS  
Input Voltage Range  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
4.2  
30.0  
2.58  
V
V
3V Output Voltage in  
Adjustable Mode  
V+ = 4.2V to 30V, CSH3–CSL3 = 0V,  
CSL3 tied to FB3  
2.42  
2.5  
3.39  
2.5  
V+ = 4.2V to 30V, 0mV < CSH3–CSL3 < 80mV,  
FB3 = 0V  
3V Output Voltage in Fixed Mode  
3.20  
2.42  
4.85  
3.47  
2.58  
5.25  
V
V
V
5V Output Voltage in  
Adjustable Mode  
V+ = 4.2V to 30V, CSH5–CSL5 = 0V,  
CSL5 tied to FB5  
V+ = 5.2V to 30V, 0mV < CSH–CSL5 < 80mV,  
FB5 = 0V  
5V Output Voltage in Fixed Mode  
5.13  
Output Voltage Adjust Range  
Adjustable-Mode Threshold Voltage  
Load Regulation  
Either SMPS  
REF  
0.5  
5.5  
1.1  
V
V
Dual Mode comparator  
Either SMPS, 0V < CSH_–CSL_ < 80mV  
Either SMPS, 5.2V < V+ < 30V  
CSH3–CSL3 or CSH5–CSL5  
-2  
%
Line Regulation  
0.03  
100  
-100  
%/V  
80  
-50  
10  
120  
-150  
40  
Current-Limit Threshold  
Idle Mode Threshold  
Soft-Start Ramp Time  
mV  
mV  
clks  
SKIP = VL or V < 13V or SECFB < 2.44V  
DD  
25  
SKIP = 0V, not tested  
From enable to 95% full current limit with respect to  
512  
f
(Note 1)  
OSC  
SYNC = VL  
270  
170  
97  
300  
200  
98  
330  
230  
Oscillator Frequency  
Maximum Duty Factor  
kHz  
%
SYNC = 0V  
SYNC = VL  
SYNC = 0V (Note 2)  
98  
99  
2
_______________________________________________________________________________________  
Mu lt i-Ou t p u t , Lo w -No is e P o w e r-S u p p ly  
Co n t ro lle rs fo r No t e b o o k Co m p u t e rs  
0–MAX1635  
ELECTRICAL CHARACTERISTICS (continued)  
(V+ = 15V, both PWMs on, SYNC = VL, VL load = 0mA, REF load = 0mA, SKIP = 0V, T = T  
to T , unless otherwise noted.  
MAX  
A
MIN  
Typical values are at T = +25°C.)  
A
PARAMETER  
SYNC Input High Pulse Width  
SYNC Input Low Pulse Width  
SYNC Rise/Fall Time  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
ns  
Not tested  
Not tested  
Not tested  
200  
200  
ns  
200  
350  
ns  
SYNC Input Frequency Range  
240  
kHz  
V+ = VL = 0V,  
CSL3 = CSH3 = CSL5 = CSH5 = 5.5V  
Current-Sense Input Leakage Current  
0.01  
10  
µA  
FLYBACK CONTROLLER  
V
Regulation Threshold  
Falling edge (Note 3)  
13  
14  
V
V
DD  
SECFB Regulation Threshold  
DL Pulse Width  
Falling edge (MAX1631/MAX1634)  
2.44  
2.60  
V
DD  
< 13V or SECFB < 2.44V  
1
µs  
V
Shunt Threshold  
Shunt Sink Current  
Leakage Current  
Rising edge, hysteresis = 1% (Note 3)  
18  
10  
20  
30  
V
DD  
V
DD  
V
DD  
= 20V (Note 3)  
mA  
µA  
V
DD  
V
DD  
= 5V, off mode (Notes 3, 4)  
12V LINEAR REGULATOR (Note 3)  
12OUT Output Voltage  
13V < V < 18V, 0mA < I  
< 120mA  
11.65  
12.1  
150  
50  
12.50  
100  
V
DD  
LOAD  
12OUT Current Limit  
12OUT forced to 11V, V = 13V  
mA  
µA  
DD  
Quiescent V Current  
V
DD  
= 18V, run mode, no 12OUT load  
DD  
INTERNAL REGULATOR AND REFERENCE  
SHDN = V+, RUN/ON3 = TIME/ON5 = 0V,  
5.3V < V+ < 30V, 0mA < I < 50mA  
VL Output Voltage  
4.7  
3.5  
5.1  
3.7  
V
V
LOAD  
VL Undervoltage Lockout  
Fault Threshold  
Falling edge, hysteresis = 1%  
3.6  
VL Switchover Threshold  
REF Output Voltage  
Rising edge of CSL5, hysteresis = 1%  
No external load (Note 5)  
4.2  
4.5  
2.5  
4.7  
2.55  
12.5  
100.0  
V
V
2.45  
0µA < I  
< 50µA  
< 5mA  
LOAD  
REF Load Regulation  
mV  
0mA < I  
LOAD  
REF Sink Current  
10  
µA  
V
REF Fault Lockout Voltage  
V+ Operating Supply Current  
Falling edge  
1.8  
2.4  
50  
VL switched over to CSL5, 5V SMPS on  
5
µA  
V+ = 5.5V to 30V, both SMPSs off,  
includes current into SHDN  
V+ Standby Supply Current  
30  
60  
µA  
V+ Standby Supply Current  
in Dropout  
V+ = 4.2V to 5.5V, both SMPSs off,  
includes current into SHDN  
50  
200  
µA  
µA  
V+ Shutdown Supply Current  
4
10  
4
V+ = 4V to 24V, SHDN = 0V  
(Note 3)  
2.5  
Both SMPSs enabled, FB3 = FB5 = 0V,  
CSL3 = CSH3 = 3.5V,  
CSL5 = CSH5 = 5.3V  
Quiescent Power Consumption  
mW  
MAX1631/  
MAX1634  
1.5  
4
_______________________________________________________________________________________  
3
Mu lt i-Ou t p u t , Lo w -No is e P o w e r-S u p p ly  
Co n t ro lle rs fo r No t e b o o k Co m p u t e rs  
ELECTRICAL CHARACTERISTICS (continued)  
(V+ = 15V, both PWMs on, SYNC = VL, VL load = 0mA, REF load = 0mA, SKIP = 0V, T = T  
to T , unless otherwise noted.  
MAX  
A
MIN  
Typical values are at T = +25°C.)  
A
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
FAULT DETECTION (MAX1630/MAX1631/MAX1632)  
Overvoltage Trip Threshold  
Overvoltage-Fault Propagation Delay  
Output Undervoltage Threshold  
Output Undervoltage Lockout Time  
Thermal Shutdown Threshold  
RESET  
With respect to unloaded output voltage  
CSL_ driven 2% above overvoltage trip threshold  
With respect to unloaded output voltage  
4
7
10  
%
µs  
1.5  
60  
70  
80  
%
From each SMPS enabled, with respect to f  
Typical hysteresis = +10°C  
5000  
6144  
150  
7000  
clks  
°C  
OSC  
With respect to unloaded output voltage,  
falling edge; typical hysteresis = 1%  
-7  
-5.5  
1.5  
-4  
%
RESET Trip Threshold  
Falling edge, CSL_ driven 2%  
below RESET trip threshold  
µs  
RESET Propagation Delay  
With respect to f  
OSC  
27,000 32,000 37,000  
clks  
RESET Delay Time  
0–MAX1635  
INPUTS AND OUTPUTS  
Feedback Input Leakage Current  
FB3, FB5; SECFB = 2.6V  
1
50  
nA  
V
RUN/ON3, SKIP, TIME/ON5 (SEQ = REF),  
SHDN, STEER, SYNC  
Logic Input Low Voltage  
Logic Input High Voltage  
0.6  
RUN/ON3, SKIP, TIME/ON5 (SEQ = REF),  
SHDN, STEER, SYNC  
2.4  
V
RUN/ON3, SKIP, TIME/ON5 (SEQ = REF),  
Input Leakage Current  
±1  
µA  
V
SHDN, STEER, SYNC, SEQ; V  
= 0V or 3.3V  
PIN  
Logic Output Low Voltage  
0.4  
RESET, I  
= 4mA  
SINK  
Logic Output High Current  
TIME/ON5 Input Trip Level  
TIME/ON5 Source Current  
TIME/ON5 On-Resistance  
Gate Driver Sink/Source Current  
Gate Driver On-Resistance  
1
mA  
V
RESET = 3.5V  
SEQ = 0V or VL  
2.4  
2.5  
2.6  
3.5  
80  
TIME/ON5 = 0V, SEQ = 0V or VL  
3
15  
1
µA  
TIME/ON5; RUN/ON3 = 0V, SEQ = 0V or VL  
DL3, DH3, DL5, DH5; forced to 2V  
High or low  
A
1.5  
7
Note 1: Each of the four digital soft-start levels is tested for functionality; the steps are typically in 20mV increments.  
Note 2: High duty-factor operation supports low input-to-output differential voltages, and is achieved at a lowered operating  
frequency (see Overload and Dropout Operation section).  
Note 3: MAX1630/MAX1632/MAX1633/MAX1635 only.  
Note 4: Off mode for the 12V linear regulator occurs when the SMPS that has flyback feedback (V ) steered to it is disabled. In  
DD  
situations where the main outputs are being held up by external keep-alive supplies, turning off the 12OUT regulator pre-  
vents a leakage path from the output-referred flyback winding, through the rectifier, and into V  
.
DD  
Note 5: Since the reference uses VL as its supply, the references V+ line-regulation error is insignificant.  
4
_______________________________________________________________________________________  
Mu lt i-Ou t p u t , Lo w -No is e P o w e r-S u p p ly  
Co n t ro lle rs fo r No t e b o o k Co m p u t e rs  
0–MAX1635  
__________________________________________Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s  
(Circuit of Figure 1, 3A Table 1 components, T = +25°C, unless otherwise noted.)  
A
MAX1632/MAX1635  
MAXIMUM 15V V OUTPUT  
DD  
EFFICIENCY vs. 3.3V OUTPUT CURRENT  
EFFICIENCY vs. 5V OUTPUT CURRENT  
CURRENT vs. SUPPLY VOLTAGE  
800  
100  
100  
V+ = 6V  
V
DD  
> 13V  
V+ = 6V  
5V REGULATING  
90  
80  
70  
60  
90  
80  
70  
60  
600  
400  
200  
0
5V LOAD = 0A  
V+ = 15V  
V+ = 15V  
5V LOAD = 3A  
ON5 = 5V  
ON3 = 0V  
f = 300kHz  
MAX1631/MAX1634  
ON3 = ON5 = 5V  
f = 300kHz  
MAX1631/MAX1634  
50  
50  
0
5
10  
15  
20  
0.001  
0.01  
0.1  
1
10  
0.001  
0.01  
0.1  
1
10  
SUPPLY VOLTAGE (V)  
3.3V OUTPUT CURRENT (A)  
5V OUTPUT CURRENT (A)  
MAX1630/MAX1633  
MAXIMUM 15V V OUTPUT  
DD  
CURRENT vs. SUPPLY VOLTAGE  
PWM MODE INPUT CURRENT  
vs. INPUT VOLTAGE  
IDLE MODE INPUT CURRENT  
vs. INPUT VOLTAGE  
30  
10  
1
500  
400  
300  
200  
100  
ON3 = ON5 = 5V  
SKIP = 0V  
NO LOAD  
ON3 = ON5 = 5V  
SKIP = VL  
NO LOAD  
V
> 13V  
DD  
3.3V REGULATING  
25  
20  
15  
10  
3.3V LOAD = 0A  
0.1  
0.01  
3.3V LOAD = 3A  
5
0
0
0
5
10  
15  
20  
25  
30  
0
5
10  
15  
20  
25  
30  
0
5
10  
SUPPLY VOLTAGE (V)  
15  
20  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
SHUTDOWN INPUT CURRENT  
vs. INPUT VOLTAGE  
STANDBY INPUT CURRENT  
vs. INPUT VOLTAGE  
MINIMUM V TO V DIFFERENTIAL  
IN  
OUT  
vs. 5V OUTPUT CURRENT  
10  
8
10,000  
1000  
100  
10  
1000  
ON3 = ON5 = 0V  
NO LOAD  
SHDN = 0V  
100  
10  
6
4
2
5V, 3A CIRCUIT  
> 4.8V  
V
OUT  
f = 300kHz  
0
1
1
0
5
10  
15  
20  
25  
30  
0
5
10  
15  
20  
25  
30  
0.001  
0.01  
0.1  
1
10  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
5V OUTPUT CURRENT (A)  
_______________________________________________________________________________________  
5
Mu lt i-Ou t p u t , Lo w -No is e P o w e r-S u p p ly  
Co n t ro lle rs fo r No t e b o o k Co m p u t e rs  
____________________________________Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s (c o n t in u e d )  
(Circuit of Figure 1, 3A Table 1 components, T = +25°C, unless otherwise noted.)  
A
VL REGULATOR OUTPUT VOLTAGE  
vs. OUTPUT CURRENT  
SWITCHING FREQUENCY  
vs. LOAD CURRENT  
5.00  
4.98  
4.96  
4.94  
4.92  
1000  
100  
+5V, V = 15V  
IN  
10  
1
+3.3V, V = 15V  
IN  
+3.3V, V = 6V  
IN  
V
= 15V  
+5V, V = 6V  
IN  
IN  
ON3 = ON5 = 0V  
4.90  
0.1  
0
10  
20  
30  
40  
50  
60  
0.1  
1
10  
100  
1000  
OUTPUT CURRENT (mA)  
LOAD CURRENT (mA)  
0–MAX1635  
REF OUTPUT VOLTAGE  
vs. OUTPUT CURRENT  
START-UP WAVEFORMS  
2.510  
2.505  
RUN  
5V/div  
2.500  
2.495  
2.490  
3.3V OUTPUT  
2V/div  
TIME  
5V/div  
5V OUTPUT  
5V/div  
2.485  
2.480  
V
= 15V  
IN  
ON3 = ON5 = 0V  
2ms/div  
0
1
2
3
4
5
6
SEQ = VL, 0.015µF CAPACITOR ON-TIME  
OUTPUT CURRENT (mA)  
__________________________________________________________________________P in De s c rip t io n  
PIN  
1
NAME  
CSH3  
CSL3  
FUNCTION  
Current-Sense Input for the 3.3V SMPS. Current-limit level is 100mV referred to CSL3.  
Current-Sense Input. Also serves as the feedback input in fixed-output mode.  
2
Feedback Input for the 3.3V SMPS; regulates at FB3 = REF (approx. 2.5V) in adjustable mode. FB3 is a  
Dual Mode input that also selects the 3.3V fixed output voltage setting when tied to GND. Connect FB3  
to a resistor divider for adjustable-output mode.  
3
4
FB3  
12OUT  
(MAX1630/  
32/33/35)  
12V/120mA Linear Regulator Output. Input supply comes from V . Bypass 12OUT to GND with  
DD  
1µF minimum.  
Logic-Control Input for secondary feedback. Selects the PWM that uses a transformer and secondary  
feedback signal (SECFB):  
STEER  
(MAX1631/  
MAX1634)  
STEER = GND: 3.3V SMPS uses transformer  
STEER = VL: 5V SMPS uses transformer  
6
_______________________________________________________________________________________  
Mu lt i-Ou t p u t , Lo w -No is e P o w e r-S u p p ly  
Co n t ro lle rs fo r No t e b o o k Co m p u t e rs  
0–MAX1635  
_________________________________________________P in De s c rip t io n (c o n t in u e d )  
PIN  
NAME  
FUNCTION  
V
DD  
Supply Voltage Input for the 12OUT Linear Regulator. Also connects to an internal resistor divider for  
secondary winding feedback, and to an 18V overvoltage shunt regulator clamp.  
(MAX1630/  
32/33/35)  
5
SECFB  
Secondary Winding Feedback Input. Normally connected to a resistor divider from an auxiliary output.  
(MAX1631/  
MAX1634)  
SECFB regulates at V  
used.  
= 2.5V (see Secondary Feedback Regulation Loop section). Tie to VL if not  
SECFB  
Oscillator Synchronization and Frequency Select. Tie to VL for 300kHz operation; tie to GND for 200kHz  
operation. Can be driven at 240kHz to 350kHz for external synchronization.  
6
7
SYNC  
Dual-Purpose Timing Capacitor Pin and ON/OFF Control Input. See Power-Up Sequencing and  
ON/OFF Controls section.  
TIME/ON5  
8
9
GND  
REF  
Low-Noise Analog Ground and Feedback Reference Point  
2.5V Reference Voltage Output. Bypass to GND with 1µF minimum.  
Logic-Control Input that disables Idle Mode when high. Connect to GND for normal use.  
10  
SKIP  
Active-Low Timed Reset Output. RESET swings GND to VL. Goes high after a fixed 32,000 clock-cycle  
delay following power-up.  
11  
RESET  
Feedback Input for the 5V SMPS; regulates at FB5 = REF (approx. 2.5V) in adjustable mode. FB5 is a  
Dual Mode input that also selects the 5V fixed output voltage setting when tied to GND. Connect FB5 to  
a resistor divider for adjustable-output mode.  
12  
FB5  
Current-Sense Input for the 5V SMPS. Also serves as the feedback input in fixed-output mode, and as  
the bootstrap supply input when the voltage on CSL5/VL is > 4.5V.  
13  
14  
CSL5  
CSH5  
Current-Sense Input for the 5V SMPS. Current-limit level is 100mV referred to CSL5.  
Pin-Strap Input that selects the SMPS power-up sequence:  
SEQ = GND: 5V before 3.3V, RESET output determined by both outputs  
SEQ = REF: Separate ON3/ON5 controls, RESET output determined by 3.3V output  
SEQ = VL: 3.3V before 5V, RESET output determined by both outputs  
15  
SEQ  
Gate-Drive Output for the 5V, high-side N-channel switch. DH5 is a floating driver output that swings  
from LX5 to BST5, riding on the LX5 switching node voltage.  
16  
DH5  
17  
18  
19  
20  
LX5  
BST5  
DL5  
Switching Node (inductor) Connection. Can swing 2V below ground without hazard.  
Boost capacitor connection for high-side gate drive (0.1µF)  
Gate-Drive Output for the low-side synchronous-rectifier MOSFET. Swings 0V to VL.  
Power Ground  
PGND  
5V Internal Linear-Regulator Output. VL is also the supply voltage rail for the chip. After the 5V SMPS  
output has reached +4.5V (typical), VL automatically switches to the output voltage via CSL5 for boot-  
strapping. Bypass to GND with 4.7µF. VL supplies up to 25mA for external loads.  
21  
VL  
Battery Voltage Input, +4.2V to +30V. Bypass V+ to PGND close to the IC with a 0.22µF capacitor.  
Connects to a linear regulator that powers VL.  
22  
23  
V+  
Shutdown Control Input, active low. Logic threshold is set at approximately 1V. For automatic start-up,  
connect SHDN to V+ through a 220kresistor and bypass SHDN to GND with a 0.01µF capacitor.  
SHDN  
24  
25  
26  
DL3  
BST3  
LX3  
Gate-Drive Output for the low-side synchronous-rectifier MOSFET. Swings 0V to VL.  
Boost Capacitor Connection for high-side gate drive (0.1µF)  
Switching Node (inductor) Connection. Can swing 2V below ground without hazard.  
Gate-Drive Output for the 3.3V, high-side N-channel switch. DH3 is a floating driver output that swings  
from LX3 to BST3, riding on the LX3 switching node voltage.  
27  
28  
DH3  
RUN/ON3  
ON/OFF Control Input. See Power-Up Sequencing and ON/OFF Controls section.  
_______________________________________________________________________________________  
7
Mu lt i-Ou t p u t , Lo w -No is e P o w e r-S u p p ly  
Co n t ro lle rs fo r No t e b o o k Co m p u t e rs  
ON/OFF  
INPUT  
C3  
+5V ALWAYS ON  
4.7µF  
10Ω  
0.1µF  
V+ SHDN SECFB VL  
0.1µF  
SYNC  
BST3  
4.7µF  
0.1µF  
BST5  
DH5  
Q3  
Q4  
Q1  
Q2  
DH3  
LX3  
DL3  
0.1µF  
L1  
0.1µF  
0.1µF  
L2  
R1  
+5V OUTPUT  
C1  
R2  
+3.3V OUTPUT  
LX5  
DL5  
MAX1631  
MAX1634  
C2  
*
*
PGND  
6
CSH3  
CSL3  
FB3  
CSH5  
CSL5  
FB5  
RESET OUTPUT  
RESET  
TIME/ON5  
RUN/ON3  
5V ON/OFF  
SKIP  
3.3V ON/OFF  
STEER  
GND  
REF  
SEQ  
+2.5V ALWAYS ON  
1µF  
*1A SCHOTTKY DIODE REQUIRED  
FOR THE MAX1631 (SEE OUTPUT  
OVERVOLTAGE PROTECTION SECTION).  
Figure 1. Standard 3.3V/5V Application Circuit (MAX1631/MAX1634)  
of these circuits without first recalculating component  
values (particularly inductance value at maximum bat-  
tery voltage). Adding a Schottky rectifier across each  
synchronous rectifier improves the efficiency of these  
circuits by approximately 1%, but this rectifier is other-  
wise not needed because the MOSFETs required for  
these circuits typically incorporate a high-speed silicon  
diode from drain to source. Use a Schottky rectifier  
rated at a DC current equal to at least one-third of the  
load current.  
_______S t a n d a rd Ap p lic a t io n Circ u it  
The b a s ic MAX1631/MAX1634 d ua l-outp ut 3.3V/5V  
buck converter (Figure 1) is easily adapted to meet a  
wide range of applications with inputs up to 28V by  
substituting components from Table 1. These circuits  
represent a good set of tradeoffs between cost, size,  
a nd e ffic ie nc y, while s ta ying within the wors t-c a s e  
specification limits for stress-related parameters, such  
as capacitor ripple current. Dont change the frequency  
8
_______________________________________________________________________________________  
Mu lt i-Ou t p u t , Lo w -No is e P o w e r-S u p p ly  
Co n t ro lle rs fo r No t e b o o k Co m p u t e rs  
0–MAX1635  
Table 1. Component Selection for Standard 3.3V/5V Application  
LOAD CURRENT  
3A  
COMPONENT  
2A  
4A  
Input Range  
4.75V to 18V  
PDA  
4.75V to 28V  
4.75V to 24V  
Workstation  
200kHz  
Application  
Frequency  
Notebook  
300kHz  
300kHz  
1/2 IR IRF7301;  
IR IRF7403 or IRF7401 (18V  
max); Siliconix Si4412DY; or  
Motorola MMSF5N03HD or  
MMSF5N02HD (18V max)  
IR IRF7413 or  
Siliconix Si4410DY  
Q1, Q3 High-Side  
MOSFETs  
1/2 Siliconix Si9925DQ; or  
1/2 Motorola MMDF3N03HD or  
MMDF4N01HD (10V max)  
1/2 IR IRF7301;  
IR IRF7403 or IRF7401 (18V  
max); Siliconix Si4412DY; or  
Motorola MMSF5N03HD or  
MMSF5N02HD (18V max)  
IR IRF7413 or  
Siliconix Si4410DY  
Q2, Q4 Low-Side  
MOSFETs  
1/2 Siliconix Si9925DQ; or  
1/2 Motorola MMDF3N03HD or  
MMDF4N01HD (10V max)  
10µF, 30V Sanyo OS-CON;  
22µF, 35V AVX TPS; or  
Sprague 594D  
2 x 10µF, 30V Sanyo OS-CON;  
2 x 22µF, 35V AVX TPS; or  
Sprague 594D  
3 x 10µF, 30V Sanyo OS-CON;  
4 x 22µF, 35V AVX TPS; or  
Sprague 595D  
C3 Input Capacitor  
C1, C2 Output Capacitors  
R1, R2 Resistors  
220µF, 10V AVX TPS or  
Sprague 595D  
2 x 220µF, 10V AVX TPS or  
Sprague 595D  
4 x 220µF, 10V AVX TPS or  
Sprague 595D  
0.033IRC LR2010-01-R033 or  
Dale WSL2010-R033-F  
0.02IRC LR2010-01-R020 or  
Dale WSL2010-R020-F  
0.012Dale WSL2512-R012-F  
15µH, 2.4A Ferrite  
10µH, 4A Ferrite  
4.7µH, 5.5A Ferrite  
Coilcraft DO3316P-153 or  
Sumida CDRH125-150  
Coilcraft DO3316P-103 or  
Sumida CDRH125-100  
Coilcraft DO3316-472 or  
5.2µH, 6.5A Ferrite Sumida  
CDRH127-5R2MC  
L1, L2 Inductors  
Table 2. Component Suppliers  
FACTORY FAX  
COMPANY  
FACTORY FAX  
(COUNTRY CODE)  
USA PHONE  
COMPANY  
USA PHONE  
(COUNTRY CODE)  
AVX  
(1) 803-626-3123  
(1) 516-435-1824  
(803) 946-0690  
(516) 435-1110  
Motorola  
Murata-Erie  
NIEC  
(1) 602-994-6430  
(1) 814-238-0490  
(81) 3-3494-7414  
(81) 7-2070-1174  
(1) 408-970-3950  
(1) 603-224-1430  
(81) 3-3607-5144  
(1) 847-390-4428  
(602) 303-5454  
(814) 237-1431  
(805) 867-2555*  
(619) 661-6835  
(408) 988-8000  
(603) 224-1961  
(847) 956-0666  
(847) 390-4373  
Central  
Semiconductor  
Coilcraft  
Coiltronics  
Dale  
(1) 847-639-1469  
(1) 561-241-9339  
(1) 605-665-1627  
(847) 639-6400  
(561) 241-7876  
(605) 668-4131  
Sanyo  
Siliconix  
Sprague  
Sumida  
TDK  
International  
Rectifier (IR)  
(1) 310-322-3332  
(310) 322-3331  
IRC  
(1) 512-992-3377  
(1) 714-960-6492  
(512) 992-7900  
(714) 969-2491  
Transpower  
Technologies  
(1) 702-831-3521  
(702) 831-0140  
Matsuo  
*Distributor  
_______________________________________________________________________________________  
9
Mu lt i-Ou t p u t , Lo w -No is e P o w e r-S u p p ly  
Co n t ro lle rs fo r No t e b o o k Co m p u t e rs  
INPUT  
SHDN  
V+ SYNC  
CSL5  
-
MAX1632  
+
4.5V  
ON/OFF  
5V  
LINEAR  
REG  
12OUT  
+12V  
12V  
LINEAR  
REG  
+5V ALWAYS ON  
VL  
IN  
V
DD  
REF  
SECFB  
+
-
2.5V  
REF  
13V  
RAW +15V  
BST3  
BST5  
DH3  
LX3  
DH5  
LX5  
0–MAX1635  
3.3V  
PWM  
LOGIC  
5V  
PWM  
LOGIC  
200kHz  
+5V  
+3.3V  
TO  
300kHz  
OSC  
VL  
VL  
DL3  
DL5  
PGND  
OV/UV  
FAULT  
CSH3  
CSL3  
+
-
CSH5  
CSL5  
REF  
REF  
-
+
LPF  
60kHz  
LPF  
60kHz  
1.75V  
2.68V  
2.388V  
-
R1  
R2  
-
R3  
FB3  
FB5  
OUTPUTS  
UP  
-
-
R4  
+
+
0.6V  
0.6V  
RESET  
SEQ  
VL  
TIMER  
2.6V  
-
TIME/ON5  
+
+
POWER-ON  
SEQUENCE  
LOGIC  
REF  
-
+
1V  
-
RUN/ON3  
GND  
Figure 2. MAX1632 Block Diagram  
10 ______________________________________________________________________________________  
Mu lt i-Ou t p u t , Lo w -No is e P o w e r-S u p p ly  
Co n t ro lle rs fo r No t e b o o k Co m p u t e rs  
0–MAX1635  
P WM Co n t ro lle r Blo c k  
_______________De t a ile d De s c rip t io n  
The two PWM controllers are nearly identical. The only  
differences are fixed output settings (3.3V vs. 5V), the  
VL/CSL5 bootstrap switch connected to the +5V PWM,  
and SECFB. The heart of each current-mode PWM con-  
troller is a multi-input, open-loop comparator that sums  
thre e s ig na ls : the outp ut volta g e e rror s ig na l with  
respect to the reference voltage, the current-sense sig-  
nal, and the slope compensation ramp (Figure 3). The  
PWM controller is a direct-summing type, lacking a tra-  
ditional error amplifier and the phase shift associated  
with it. This direct-summing configuration approaches  
ideal cycle-by-cycle control over the output voltage.  
The MAX1630 is a dual, BiCMOS, switch-mode power-  
supply controller designed primarily for buck-topology  
regulators in battery-powered applications where high effi-  
ciency and low quiescent supply current are critical. Light-  
load efficiency is enhanced by automatic Idle Mode™  
operation, a variable-frequency pulse-skipping mode that  
reduces transition and gate-charge losses. Each step-  
down, power-switching circuit consists of two N-channel  
MOSFETs, a rectifier, and an LC output filter. The output  
voltage is the average AC voltage at the switching node,  
which is regulated by changing the duty cycle of the  
MOSFET switches. The gate-drive signal to the N-channel  
high-side MOSFET must exceed the battery voltage, and  
is provided by a flying-capacitor boost circuit that uses a  
100nF capacitor connected to BST_.  
When SKIP = low, Idle Mode circuitry automatically  
optimizes efficiency throughout the load current range.  
Idle Mode dramatically improves light-load efficiency  
by reducing the effective frequency, which reduces  
switching losses. It keeps the peak inductor current  
above 25% of the full current limit in an active cycle,  
allowing subsequent cycles to be skipped. Idle Mode  
transitions seamlessly to fixed-frequency PWM opera-  
tion as load current increases.  
Devices in the MAX1630 family contain ten major circuit  
blocks (Figure 2).  
The two pulse-width modulation (PWM) controllers each  
consist of a Dual Mode™ feedback network and multi-  
plexer, a multi-input PWM comparator, high-side and  
low-side gate drivers, and logic. MAX1630/MAX1631/  
MAX1632 contain fault-protection circuits that monitor  
the main PWM outputs for undervoltage and overvolt-  
age. A power-on sequence block controls the power-  
up timing of the main PWMs and determines whether  
one or both of the outputs are monitored for undervolt-  
a g e fa ults . The MAX1630/MAX1632/MAX1633/  
MAX1635 include a secondary feedback network and  
12V linear regulator to generate a 12V output from a  
c oup le d -ind uc tor flyb a c k wind ing . The MAX1631/  
MAX1634 have a secondary feedback input (SECFB)  
instead, which allows a quasi-regulated, adjustable-  
output, coupled-inductor flyback winding to be attached  
to either the 3.3V or the 5V main inductor. Bias genera-  
tor blocks include the 5V IC internal rail (VL) linear regu-  
lator, 2.5V precision reference, and automatic bootstrap  
s witc hove r c irc uit. The PWMs s ha re a c ommon  
200kHz/300kHz synchronizable oscillator.  
With SKIP = high, the controller always operates in  
fixe d -fre q ue nc y PWM mod e for lowe s t nois e . Ea c h  
pulse from the oscillator sets the main PWM latch that  
turns on the high-side switch for a period determined  
by the duty factor (approximately V /V ). As the  
OUT IN  
high-side switch turns off, the synchronous rectifier  
latch sets; 60ns later, the low-side switch turns on. The  
low-side switch stays on until the beginning of the next  
clock cycle.  
Table 3. SKIP PWM Table  
LOAD  
CURRENT  
SKIP  
MODE  
DESCRIPTION  
Pulse-skipping, supply cur-  
rent = 250µA at V = 12V,  
IN  
discontinuous inductor  
current  
Low  
Light  
Idle  
These internal IC blocks arent powered directly from  
the battery. Instead, the 5V VL linear regulator steps  
down the battery voltage to supply both VL and the  
gate drivers. The synchronous-switch gate drivers are  
directly powered from VL, while the high-side switch  
gate drivers are indirectly powered from VL via an  
external diode-capacitor boost circuit. An automatic  
bootstrap circuit turns off the +5V linear regulator and  
powers the IC from the 5V PWM output voltage if the  
output is above 4.5V.  
Constant-frequency PWM,  
continuous inductor current  
Low  
High  
High  
Heavy  
Light  
PWM  
PWM  
PWM  
Constant-frequency PWM,  
continuous inductor current  
Constant-frequency PWM,  
continuous inductor current  
Heavy  
______________________________________________________________________________________ 11  
Mu lt i-Ou t p u t , Lo w -No is e P o w e r-S u p p ly  
Co n t ro lle rs fo r No t e b o o k Co m p u t e rs  
CSH_  
CSL_  
1X  
REF  
FROM  
FEEDBACK  
DIVIDER  
MAIN PWM  
COMPARATOR  
BST_  
DH_  
LX_  
R
Q
S
LEVEL  
SHIFT  
SLOPE COMP  
OSC  
0–MAX1635  
30mV  
SKIP  
CURRENT  
LIMIT  
DAC  
SHOOT-  
THROUGH  
CONTROL  
CK  
COUNTER  
SHDN  
SOFT-START  
SYNCHRONOUS  
RECTIFIER CONTROL  
VL  
R
S
Q
LEVEL  
SHIFT  
DL_  
-100mV  
PGND  
REF  
1µs  
SINGLE-SHOT  
SECFB  
Figure 3. PWM Controller Detailed Block Diagram  
12 ______________________________________________________________________________________  
Mu lt i-Ou t p u t , Lo w -No is e P o w e r-S u p p ly  
Co n t ro lle rs fo r No t e b o o k Co m p u t e rs  
0–MAX1635  
In PWM mod e , the c ontrolle r op e ra te s a s a fixe d -  
The output filter capacitors (Figure 1, C1 and C2) set a  
dominant pole in the feedback loop that must roll off the  
loop gain to unity before encountering the zero intro-  
duced by the output capacitors parasitic resistance  
(ESR) (see Design Procedure section). A 60kHz pole-  
zero cancellation filter provides additional rolloff above  
the unity-gain crossover. This internal 60kHz lowpass  
compensation filter cancels the zero due to filter capaci-  
tor ESR. The 60kHz filter is included in the loop in both  
fixed-output and adjustable-output modes.  
frequency current-mode controller where the duty ratio  
is set by the input/output voltage ratio. The current-  
mode feedback system regulates the peak inductor  
current value as a function of the output-voltage error  
signal. In continuous-conduction mode, the average  
inductor current is nearly the same as the peak current,  
so the circuit acts as a switch-mode transconductance  
amplifier. This pushes the second output LC filter pole,  
normally found in a duty-factor-controlled (voltage-  
mode) PWM, to a higher frequency. To preserve inner-  
loop s ta b ility a nd e limina te re g e ne ra tive ind uc tor  
current staircasing,” a slope compensation ramp is  
summed into the main PWM comparator to make the  
apparent duty factor less than 50%.  
S yn c h ro n o u s Re c t ifie r Drive r (DL)  
Synchronous rectification reduces conduction losses in  
the rectifier by shunting the normal Schottky catch diode  
with a low-resistance MOSFET switch. Also, the synchro-  
nous rectifier ensures proper start-up of the boost gate-  
driver circuit. If the synchronous power MOSFETs are  
omitted for cost or other reasons, replace them with a  
small-signal MOSFET, such as a 2N7002.  
The MAX1630 family uses a relatively low loop gain,  
allowing the use of lower-cost output capacitors. The  
relative gains of the voltage-sense and current-sense  
inputs are weighted by the values of current sources  
that bias three differential input stages in the main PWM  
comparator (Figure 4). The relative gain of the voltage  
comparator to the current comparator is internally fixed  
at K = 2:1. The low loop gain results in the 2% typical  
load-regulation error. The low value of loop gain helps  
reduce output filter capacitor size and cost by shifting  
the unity-gain crossover frequency to a lower level.  
If the c irc uit is ope ra ting in c ontinuous-c onduc tion  
mode, the DL drive waveform is simply the complement  
of the DH high-side drive waveform (with controlled  
d e a d time to p re ve nt c ros s -c ond uc tion or “s hoot-  
through). In discontinuous (light-load) mode, the syn-  
chronous switch is turned off as the inductor current  
falls through zero. The synchronous rectifier works  
VL  
R1  
R2  
TO PWM  
LOGIC  
UNCOMPENSATED  
HIGH-SPEED  
FB_  
LEVEL TRANSLATOR  
AND BUFFER  
OUTPUT DRIVER  
I1  
I2  
I3  
V
BIAS  
REF  
CSH_  
CSL_  
SLOPE COMPENSATION  
Figure 4. Main PWM Comparator Block Diagram  
______________________________________________________________________________________ 13  
Mu lt i-Ou t p u t , Lo w -No is e P o w e r-S u p p ly  
Co n t ro lle rs fo r No t e b o o k Co m p u t e rs  
under all operating conditions, including Idle Mode.  
The SECFB signal further controls the synchronous  
switch timing in order to improve multiple-output cross-  
regulation (see Secondary Feedback Regulation Loop  
section).  
turns on the high-side MOSFET by closing an internal  
switch between BST_ and DH_. This provides the nec-  
essary enhancement voltage to turn on the high-side  
switch, an action that boosts” the 5V gate-drive signal  
above the battery voltage.  
Ringing at the high-side MOSFET gate (DH3 and DH5)  
in discontinuous-conduction mode (light loads) is a nat-  
ural operating condition. It is caused by residual ener-  
gy in the tank circuit, formed by the inductor and stray  
capacitance at the switching node, LX. The gate-drive  
negative rail is referred to LX, so any ringing there is  
directly coupled to the gate-drive output.  
In t e rn a l VL a n d REF S u p p lie s  
An internal regulator produces the +5V supply (VL) that  
powers the PWM controller, logic, reference, and other  
blocks within the IC. This 5V low-dropout linear regula-  
tor s up p lie s up to 25mA for e xte rna l loa d s , with a  
re s e rve of 25mA for s up p lying g a te -d rive p owe r.  
Bypass VL to GND with 4.7µF.  
Important: Ens ure tha t VL d oe s not e xc e e d 6V.  
Measure VL with the main output fully loaded. If it is  
p ump e d a b ove 5.5V, e ithe r e xc e s s ive b oos t d iod e  
capacitance or excessive ripple at V+ is the probable  
cause. Use only small-signal diodes for the boost cir-  
c uit (10mA to 100mA Sc hottky or 1N4148 a re p re-  
ferred), and bypass V+ to PGND with 4.7µF directly at  
the package pins.  
Cu rre n t -Lim it in g a n d Cu rre n t -S e n s e  
In p u t s (CS H a n d CS L)  
The current-limit circuit resets the main PWM latch and  
turns off the high-side MOSFET switch whenever the  
voltage difference between CSH and CSL exceeds  
100mV. This limiting is effective for both current flow  
directions, putting the threshold limit at ±100mV. The  
tolerance on the positive current limit is ±20%, so the  
external low-value sense resistor (R1) must be sized for  
0–MAX1635  
The 2.5V reference (REF) is accurate to ±2% over tem-  
perature, making REF useful as a precision system ref-  
erence. Bypass REF to GND with 1µF minimum. REF  
can supply up to 5mA for external loads. (Bypass REF  
with a minimum 1µF/mA re fe re nc e loa d c urre nt.)  
However, if extremely accurate specifications for both  
the main output voltages and REF are essential, avoid  
loading REF more than 100µA. Loading REF reduces  
the main output voltage slightly, because of the refer-  
ence load-regulation error.  
80mV/I  
, where I  
is the required peak inductor  
PEAK  
PEAK  
current to support the full load current, while compo-  
nents must be designed to withstand continuous cur-  
rent stresses of 120mV/R1.  
For breadboarding or for very-high-current applications,  
it may be useful to wire the current-sense inputs with a  
twisted pair, rather than PC traces. (This twisted pair  
neednt be anything special; two pieces of wire-wrap  
wire twisted together are sufficient.) This reduces the  
possible noise picked up at CSH_ and CSL_, which can  
cause unstable switching and reduced output current.  
When the 5V main output voltage is above 4.5V, an  
internal P-channel MOSFET switch connects CSL5 to  
VL, while simultaneously shutting down the VL linear  
regulator. This action bootstraps the IC, powering the  
internal circuitry from the output voltage, rather than  
The CSL5 input also serves as the ICs bootstrap sup-  
ply input. Whenever V  
> 4.5V, an internal switch  
CSL5  
connects CSL5 to VL.  
throug h  
a line a r re g ula tor from the b a tte ry.  
Os c illa t o r Fre q u e n c y a n d  
S yn c h ro n iza t io n (S YNC)  
Bootstrapping reduces power dissipation due to gate  
charge and quiescent losses by providing that power  
from a 90%-efficient switch-mode source, rather than  
from a much less efficient linear regulator.  
The SYNC input controls the oscillator frequency. Low  
selects 200kHz; high selects 300kHz. SYNC can also  
be used to synchronize with an external 5V CMOS or  
TTL clock generator. SYNC has a guaranteed 240kHz  
to 350kHz capture range. A high-to-low transition on  
SYNC initiates a new cycle.  
Bo o s t Hig h -S id e Ga t e -Drive S u p p ly  
(BS T3 a n d BS T5 )  
Gate-drive voltage for the high-side N-channel switches  
is g e ne ra te d b y a flying -c a p a c itor b oos t c irc uit  
(Figure 2). The capacitor between BST_ and LX_ is  
alternately charged from the VL supply and placed par-  
allel to the high-side MOSFETs gate-source terminals.  
300kHz operation optimizes the application circuit for  
component size and cost. 200kHz operation provides  
inc re a s e d e ffic ie nc y, lowe r d rop out, a nd imp rove d  
load-transient response at low input-output voltage dif-  
ferences (see Low-Voltage Operation section).  
On s ta rt-up , the s ync hronous re c tifie r (low-s id e  
MOSFET) forc e s LX_ to 0V a nd c ha rg e s the b oos t  
capacitors to 5V. On the second half-cycle, the SMPS  
14 ______________________________________________________________________________________  
Mu lt i-Ou t p u t , Lo w -No is e P o w e r-S u p p ly  
Co n t ro lle rs fo r No t e b o o k Co m p u t e rs  
0–MAX1635  
S h u t d o w n Mo d e  
Holding SHDN low puts the IC into its 4µA shutdown  
mode. SHDN is logic input with a threshold of about 1V  
Ou t p u t Un d e rvo lt a g e S h u t d o w n P ro t e c t io n  
(MAX1 6 3 0 /MAX1 6 3 1 /MAX1 6 3 2 )  
The output undervoltage lockout circuit is similar to  
foldback current limiting, but employs a timer rather  
than a variable current limit. Each SMPS has an under-  
voltage protection circuit that is activated 6144 clock  
cycles after the SMPS is enabled. If either SMPS output  
is under 70% of the nominal value, both SMPSs are  
latched off and their outputs are clamped to ground by  
the s ync hronous re c tifie r MOSFETs (s e e Outp ut  
Overvoltage Protection section). They wont restart until  
SHDN or RUN/ON3 is toggled, or until V+ power is  
cycled below 1V. Note that undervoltage protection can  
make prototype troubleshooting difficult, since you  
have only 20ms or 30ms to figure out what might be  
wrong with the circuit before both SMPSs are latched  
off. In extreme cases, it may be useful to substitute the  
MAX1633/MAX1634/MAX1635 into the p rototyp e  
breadboard until the prototype is working properly.  
(the V of an internal N-channel MOSFET). For auto-  
TH  
matic start-up, bypass SHDN to GND with a 0.01µF  
capacitor and connect it to V+ through a 220kresistor.  
P o w e r-Up S e q u e n c in g  
a n d ON/OFF Co n t ro ls  
Start-up is controlled by RUN/ON3 and TIME/ON5 in  
conjunction with SEQ. With SEQ tied to REF, the two  
control inputs act as separate ON/OFF controls for  
each supply. With SEQ tied to VL or GND, RUN/ON3  
b e c ome s the ma s te r ON/OFF c ontrol inp ut a nd  
TIME/ON5 b e c ome s a timing p in, with the d e la y  
between the two supplies determined by an external  
capacitor. The delay is approximately 800µs/nF. The  
+3.3V supply powers-up first if SEQ is tied to VL, and  
the +5V supply is first if SEQ is tied to GND. When driv-  
ing TIME/ON5 as a control input with external logic,  
always place a resistor (>1k) in series with the input.  
This prevents possible crowbar current due to the inter-  
nal discharge pull-down transistor, which turns on in  
standby mode and momentarily at the first power-up or  
in shutdown mode.  
Ou t p u t Ove rvo lt a g e P ro t e c t io n  
(MAX1 6 3 0 /MAX1 6 3 1 /MAX1 6 3 2 )  
Both SMPS outputs are monitored for overvoltage. If  
either output is more than 7% above the nominal regu-  
la tion p oint, b oth low-s id e g a te d rive rs (DL_) a re  
latched high until SHDN or RUN/ON3 is toggled, or until  
V+ power is cycled below 1V. This action turns on the  
synchronous rectifiers with 100% duty, in turn rapidly  
discharging the output capacitors and forcing both  
SMPS outputs to ground. The DL outputs are also kept  
high whenever the corresponding SMPS is disabled,  
and in shutdown if VL is sustained.  
RESET P o w e r-Go o d Vo lt a g e Mo n it o r  
The power-good monitor generates a system RESET sig-  
nal. At first power-up, RESET is held low until both the  
3.3V and 5V SMPS outputs are in regulation. At this point,  
an internal timer begins counting oscillator pulses, and  
RESET continues to be held low until 32,000 cycles have  
elapsed. After this timeout period (107ms at 300kHz or  
160ms at 200kHz), RESET is actively pulled up to VL. If  
SEQ is tied to REF (for separate ON3/ON5 controls), only  
the 3.3V SMPS is monitoredthe 5V SMPS is ignored.  
Table 4. Operating Modes  
SEQ  
X
RUN/ON3  
X
TIME/ON5  
X
MODE  
DESCRIPTION  
SHDN  
Low  
Shutdown  
Standby  
Run  
All circuit blocks turned off. Supply current = 4µA.  
Both SMPSs off. Supply current = 30µA.  
3.3V SMPS enabled/5V off  
High  
High  
High  
High  
High  
High  
High  
High  
Ref  
Ref  
Ref  
Ref  
GND  
GND  
VL  
Low  
Low  
High  
Low  
Low  
High  
Run  
5V SMPS enabled/3.3V off  
High  
Low  
High  
Run  
Both SMPSs enabled  
Timing capacitor  
Timing capacitor  
Timing capacitor  
Timing capacitor  
Standby  
Run  
Both SMPSs off. Supply current = 30µA.  
Both SMPSs enabled. 5V enabled before 3.3V.  
Both SMPSs off. Supply current = 30µA.  
Both SMPSs enabled. 3.3V enabled before 5V.  
High  
Low  
Standby  
Run  
VL  
High  
X = Dont Care  
______________________________________________________________________________________ 15  
Mu lt i-Ou t p u t , Lo w -No is e P o w e r-S u p p ly  
Co n t ro lle rs fo r No t e b o o k Co m p u t e rs  
Discharging the output capacitor through the main  
inductor causes the output to momentarily go below  
GND. Clamp this negative pulse with a back-biased 1A  
Schottky diode across the output capacitor (Figure 1).  
In t e rn a l Dig it a l S o ft -S t a rt Circ u it  
Soft-start allows a gradual increase of the internal cur-  
rent-limit level at start-up to reduce input surge currents.  
Both SMPSs contain internal digital soft-start circuits,  
each controlled by a counter, a digital-to-analog con-  
verter (DAC), and a current-limit comparator. In shut-  
down or standby mode, the soft-start counter is reset to  
ze ro. Whe n a n SMPS is e na b le d , its c ounte r s ta rts  
counting oscillator pulses, and the DAC begins incre-  
menting the comparison voltage applied to the current-  
limit comparator. The DAC output increases from 0mV to  
100mV in five equal steps as the count increases to 512  
clocks. As a result, the main output capacitor charges  
up relatively slowly. The exact time of the output rise  
depends on output capacitance and load current, and  
is typically 1ms with a 300kHz oscillator.  
To ensure overvoltage protection on initial power-up,  
connect signal diodes from both output voltages to VL  
(cathodes to VL) to eliminate the VL power-up delay.  
This circuitry protects the load from accidental overvolt-  
age caused by a short-circuit across the high-side  
power MOSFETs. This scheme relies on the presence  
of a fuse, in series with the battery, which is blown by  
the resulting crowbar current. Note that the overvoltage  
circuitry will interfere with external keep-alive supplies  
that hold up the outputs (such as lithium backup or hot-  
swap power supplies); in such cases, the MAX1633,  
MAX1634, or MAX1635 should be used.  
Dro p o u t Op e ra t io n  
Drop out (low inp ut-outp ut d iffe re ntia l op e ra tion) is  
e nha nc e d b y s tre tc hing the c loc k p uls e wid th to  
increase the maximum duty factor. The algorithm fol-  
Lo w -No is e Op e ra t io n (P WM Mo d e )  
PWM mod e (SKIP = hig h) minimize s RF a nd a udio  
interference in noise-sensitive applications (such as hi-  
fi multimedia-equipped systems), cellular phones, RF  
communicating computers, and electromagnetic pen-  
entry systems. See the summary of operating modes in  
Table 2. SKIP can be driven from an external logic  
signal.  
0–MAX1635  
lows: If the output voltage (V ) drops out of regula-  
OUT  
tion without the current limit having been reached, the  
SMPS skips an off-time period (extending the on-time).  
At the end of the cycle, if the output is still out of regula-  
tion, the SMPS s kip s a nothe r off-time p e riod . This  
action can continue until three off-time periods are  
skipped, effectively dividing the clock frequency by as  
much as four.  
Interference due to switching noise is reduced in PWM  
mode by ensuring a constant switching frequency, thus  
concentrating the emissions at a known frequency out-  
side the system audio or IF bands. Choose an oscillator  
frequency for which switching frequency harmonics  
dont overlap a sensitive frequency band. If necessary,  
synchronize the oscillator to a tight-tolerance external  
clock generator. To extend the output-voltage-regula-  
tion range, constant operating frequency is not main-  
ta ine d und e r ove rloa d or d rop out c ond itions (s e e  
Overload and Dropout Operation section.)  
The typical PWM minimum off-time is 300ns, regardless  
of the operating frequency. Lowering the operating fre-  
quency raises the maximum duty factor above 98%.  
Ad ju s t a b le -Ou t p u t Fe e d b a c k  
(Du a l Mo d e FB)  
Fixed, preset output voltages are selected when FB_ is  
connected to ground. Adjusting the main output volt-  
a g e with e xte rna l re s is tors is s imp le for a ny of the  
MAX1630 family ICs, through resistor dividers connect-  
ed to FB3 and FB5 (Figure 2). Calculate the output volt-  
age with the following formula:  
PWM mode (SKIP = high) forces two changes upon the  
PWM controllers. First, it disables the minimum-current  
c omp a ra tor, e ns uring fixe d -fre q ue nc y op e ra tion.  
Second, it changes the detection threshold for reverse-  
current limit from 0mV to -100mV, allowing the inductor  
current to reverse at light loads. This results in fixed-  
frequency operation and continuous inductor-current  
flow. This eliminates discontinuous-mode inductor ring-  
ing a nd imp rove s c ros s re g ula tion of tra ns forme r-  
coupled multiple-output supplies, particularly in circuits  
tha t d ont us e a d d itiona l s e c ond a ry re g ula tion via  
V
OUT  
= V  
(1 + R1 / R2)  
REF  
where V  
= 2.5V nominal.  
REF  
The nominal output should be set approximately 1% or  
2% high to make up for the MAX1630s -2% typical  
load-regulation error. For example, if designing for a  
3.0V output, use a resistor ratio that results in a nominal  
output voltage of 3.05V. This slight offsetting gives the  
best possible accuracy. Recommended normal values  
for R2 range from 5kto 100k. To achieve a 2.5V  
nominal output, simply connect FB_ directly to CSL_.  
SECFB or V  
.
DD  
In most applications, tie SKIP to GND to minimize qui-  
escent supply current. VL supply current with SKIP high  
is typically 20mA, depending on external MOSFET gate  
capacitance and switching losses.  
16 ______________________________________________________________________________________  
Mu lt i-Ou t p u t , Lo w -No is e P o w e r-S u p p ly  
Co n t ro lle rs fo r No t e b o o k Co m p u t e rs  
0–MAX1635  
Remote output-voltage sensing, while not possible in  
fixed-output mode due to the combined nature of the  
voltage-sense and current-sense inputs (CSL3 and  
CSL5), is easy to do in adjustable mode by using the top  
of the external resistor divider as the remote sense point.  
R2  
SECFB  
1-SHOT  
TRIG  
R1  
Whe n us ing a d jus ta b le mod e , it is a g ood id e a to  
always set the “3.3V output” to a lower voltage than the  
5V output.” The 3.3V output must always be less than  
VL, so that the voltage on CSH3 and CSL3 is within the  
common-mode range of the current-sense inputs. While  
VL is nominally 5V, it can be as low as 4.7V when lin-  
early regulating, and as low as 4.2V when automatically  
bootstrapped to CSH5.  
POSITIVE  
SECONDARY  
OUTPUT  
V+  
2.5V REF  
DH_  
MAIN  
OUTPUT  
MAX1631  
MAX1634  
S e c o n d a ry Fe e d b a c k Re g u la t io n Lo o p  
DL_  
(S ECFB o r V  
)
DD  
A flyback-winding control loop regulates a secondary  
winding output, improving cross-regulation when the  
primary output is lightly loaded or when there is a low  
R1  
+V = V (1 + –––)  
WHERE V (NOMINAL) = 2.5V  
TRIP  
REF  
REF  
R2  
input-output differential voltage. If V  
or SECFB falls  
DD  
Figure 5. Adjusting the Secondary Output Voltage with SECFB  
below its regulation threshold, the low-side switch is  
turned on for an extra 1µs. This reverses the inductor  
(primary) current, pulling current from the output filter  
capacitor and causing the flyback transformer to oper-  
ate in forward mode. The low impedance presented by  
the transformer secondary in forward mode dumps cur-  
rent into the secondary output, charging up the sec-  
+12V OUTPUT  
200mA  
12OUT  
0.1µF  
10µF  
V
DD  
2N3906  
ondary capacitor and bringing V or SECFB back into  
DD  
0.1µF  
10Ω  
regulation. The secondary feedback loop does not  
improve secondary output accuracy in normal flyback  
mod e , whe re the ma in (p rima ry) outp ut is he a vily  
loaded. In this condition, secondary output accuracy is  
determined by the secondary rectifier drop, transformer  
turns ratio, and accuracy of the main output voltage. A  
linear post-regulator may still be needed to meet strict  
output-accuracy specifications.  
0.1µF  
MAX1630  
MAX1632  
MAX1633  
MAX1635  
V+  
V
OUTPUT  
DD  
2.2µF  
DH_  
DL_  
Devices with a 12OUT linear regulator have a V  
pin  
DD  
MAIN  
OUTPUT  
that regulates at a fixed 13.5V, set by an internal resis-  
tor divider. The MAX1631/MAX1634 have an adjustable  
secondary output voltage set by an external resistor  
divider on SECFB (Figure 5). Ordinarily, the secondary  
regulation point is set 5% to 10% below the voltage nor-  
mally produced by the flyback effect. For example, if  
the output voltage as determined by turns ratio is 15V,  
s e t the fe e d b a c k re s is tor ra tio to p rod uc e 13.5V.  
Otherwise, the SECFB one-shot might be triggered  
unintentionally, unnecessarily increasing supply current  
and output noise.  
Figure 6. Increased 12V Linear Regulator Output Current  
1 2 V Lin e a r Re g u la t o r Ou t p u t  
(MAX1 6 3 0 /MAX1 6 3 2 /MAX1 6 3 3 /MAX1 6 3 5 )  
The MAX1630/MAX1632/MAX1633/MAX1635 include a  
12V linear regulator output capable of delivering 120mA  
of output current. Typically, greater current is available  
at the expense of output accuracy. If an accurate output  
of more than 120mA is needed, an external pass tran-  
______________________________________________________________________________________ 17  
Mu lt i-Ou t p u t , Lo w -No is e P o w e r-S u p p ly  
Co n t ro lle rs fo r No t e b o o k Co m p u t e rs  
sistor can be added. Figure 6s circuit delivers more  
than 200mA. Total output current is constrained by the  
V+ input voltage and the transformer primary load (see  
for high-efficiency, battery-powered applications. See  
Appendix A in Maxims Battery Management and DC-  
DC Converter Circuit Collection for crossover-point and  
discontinuous-mode equations. Discontinuous conduc-  
tion doesnt affect normal Idle Mode operation.  
Maximum 15V V  
Output Current vs. Supply Voltage  
DD  
graphs in the Typical Operating Characteristics).  
Thre e ke y ind uc tor p a ra me te rs mus t b e s p e c ifie d :  
__________________De s ig n P ro c e d u re  
inductance value (L), peak current (I ), and DC  
PEAK  
The three predesigned 3V/5V standard application cir-  
cuits (Figure 1 and Table 1) contain ready-to-use solu-  
tions for common application needs. Also, two standard  
flyback transformer circuits support the 12OUT linear  
regulator in the Applications Information section. Use  
the following design procedure to optimize these basic  
schematics for different voltage or current require -  
ments. But before beginning a design, firmly establish  
the following:  
resistance (R ). The following equation includes a  
DC  
constant, LIR, which is the ratio of inductor peak-to-  
peak AC current to DC load current. A higher LIR value  
allows smaller inductance, but results in higher losses  
and higher ripple. A good compromise between size  
and losses is found at a 30% ripple-current to load-  
current ratio (LIR = 0.3), which corresponds to a peak  
inductor current 1.15 times higher than the DC load  
current.  
Maximum input (battery) voltage, V  
. This  
IN(MAX)  
V
(V  
- V  
)
OUT IN(MAX)  
x f x I  
OUT  
value should include the worst-case conditions, such  
as no-load operation when a battery charger or AC  
a d a p te r is c onne c te d b ut no b a tte ry is ins ta lle d .  
L =  
V
x LIR  
OUT  
IN(MAX)  
0–MAX1635  
where: f = switching frequency, normally 200kHz or  
300kHz  
V
must not exceed 30V.  
IN(MAX)  
Minimum input (battery) voltage, V  
. This  
IN(MIN)  
I
= maximum DC load current  
OUT  
should be taken at full load under the lowest battery  
conditions. If V is less than 4.2V, use an external  
IN(MIN)  
LIR = ratio of AC to DC inductor current, typi-  
cally 0.3; should be selected for >0.15  
circuit to externally hold VL above the VL undervoltage  
lockout threshold. If the minimum input-output differ-  
ence is less than 1.5V, the filter capacitance required to  
maintain good AC load regulation increases (see Low-  
Voltage Operation section).  
The nominal peak inductor current at full load is 1.15 x  
if the above equation is used; otherwise, the peak  
current can be calculated by:  
I
OUT  
V
(V  
- V  
)
OUT IN(MAX)  
OUT  
I
= I  
+
In d u c t o r Va lu e  
The exact inductor value isnt critical and can be freely  
adjusted to make trade-offs between size, cost, and  
efficiency. Lower inductor values minimize size and  
cost, but reduce efficiency due to higher peak-current  
levels. The smallest inductor is achieved by lowering  
the inductance until the circuit operates at the border  
between continuous and discontinuous mode. Further  
reducing the inductor value below this crossover point  
results in discontinuous-conduction operation even at  
full load. This helps lower output filter capacitance  
requirements, but efficiency suffers due to high I2R  
losses. On the other hand, higher inductor values mean  
greater efficiency, but resistive losses due to extra wire  
turns will eventually exceed the benefit gained from  
lower peak-current levels. Also, high inductor values  
PEAK  
LOAD  
2 x f x L x V  
IN(MAX)  
The inductors DC resistance should be low enough that  
R
x I < 100mV, as it is a key parameter for effi-  
ciency performance. If a standard off-the-shelf inductor  
is not available, choose a core with an LI2 rating greater  
2 and wind it with the largest-diameter  
wire that fits the winding area. For 300kHz applications,  
ferrite core material is strongly preferred; for 200kHz  
DC  
PEAK  
than L x I  
PEAK  
®
applications, Kool-Mu (aluminum alloy) or even pow-  
dered iron is acceptable. If light-load efficiency is unim-  
portant (in desktop PC applications, for example), then  
low-p e rme a b ility iron-p owd e r c ore s , s uc h a s the  
Micrometals type found in Pulse Engineerings 2.1µH  
PE-53680, may be acceptable even at 300kHz. For  
high-current applications, shielded-core geometries,  
such as toroidal or pot core, help keep noise, EMI, and  
switching-waveform jitter low.  
can affect load-transient response (see the V  
equa-  
SAG  
tion in the Low-Voltage Operation section). The equa-  
tions tha t follow a re for c ontinuous -c ond uc tion  
operation, since the MAX1630 family is intended mainly  
Kool-Mu is a registered trademark of Magnetics Div., Spang & Co.  
18 ______________________________________________________________________________________  
Mu lt i-Ou t p u t , Lo w -No is e P o w e r-S u p p ly  
Co n t ro lle rs fo r No t e b o o k Co m p u t e rs  
0–MAX1635  
Cu rre n t -S e n s e Re s is t o r Va lu e  
The current-sense resistor value is calculated according  
to the worst-case-low current-limit threshold voltage  
(from the Electrical Characteristics table) and the peak  
inductor current:  
Byp a s s in g VL  
Bypass the VL output with a 4.7µF tantalum capacitor  
paralleled with a 0.1µF ceramic capacitor, close to the  
device.  
Ou t p u t Filt e r Ca p a c it o r Va lu e  
The output filter capacitor values are generally deter-  
mined by the ESR and voltage rating requirements, rather  
than actual capacitance requirements for loop stability. In  
other words, the low-ESR electrolytic capacitor that meets  
the ESR requirement usually has more output capaci-  
tance than is required for AC stability. Use only special-  
ized low-ESR capacitors intended for switching-regulator  
applications, such as AVX TPS, Sprague 595D, Sanyo  
OS-CON, or Nichicon PL series. To ensure stability, the  
capacitor must meet both minimum capacitance and  
maximum ESR values as given in the following equations:  
80mV  
R
=
SENSE  
I
PEAK  
Use I  
from the second equation in the Inductor  
PEAK  
Value section  
Use the calculated value of R  
to size the MOSFET  
SENSE  
switches and specify inductor saturation-current ratings  
according to the worst-case high-current-limit threshold  
voltage:  
120mV  
I
=
PEAK(MAX)  
R
V
(1 + V  
/ V  
)
SENSE  
REF  
OUT  
IN(MIN)  
C
R
>
OUT  
ESR  
V
x R  
x f  
SENSE  
Low-ind uc ta nc e re s is tors , s uc h a s s urfa c e -mount  
metal-film, are recommended.  
OUT  
R
x V  
OUT  
SENSE  
V
<
In p u t Ca p a c it o r Va lu e  
Connect low-ESR bulk capacitors and small ceramic  
capacitors (0.1µF) directly to the drains on the high-  
side MOSFETs. The bulk input filter capacitor is usually  
selected according to input ripple current requirements  
a nd volta g e ra ting , ra the r tha n c a p a c itor va lue .  
Electrolytic capacitors with low enough effective series  
resistance (ESR) to meet the ripple current requirement  
inva ria b ly ha ve s uffic ie nt c a p a c ita nc e va lue s .  
Aluminum e le c trolytic c a p a c itors , s uc h a s Sa nyo  
OS-CON or Nic hic on PL, a re s up e rior to ta nta lum  
types, which carry the risk of power-up surge-current  
fa ilure , e s p e c ia lly whe n c onne c ting to rob us t AC  
adapters or low-impedance batteries. RMS input ripple  
REF  
(can be multiplied by 1.5; see text below)  
These equations are worst case, with 45 degrees of  
p ha s e ma rg in to e ns ure jitte r-fre e , fixe d -fre q ue nc y  
op e ra tion a nd p rovid e a nic e ly d a mp e d outp ut  
response for zero to full-load step changes. Some cost-  
conscious designers may wish to bend these rules with  
less-expensive capacitors, particularly if the load lacks  
large step changes. This practice is tolerable if some  
b e nc h te s ting ove r te mp e ra ture is d one to ve rify  
acceptable noise and transient response.  
No well-defined boundary exists between stable and  
unstable operation. As phase margin is reduced, the  
first symptom is a bit of timing jitter, which shows up as  
blurred edges in the switching waveforms where the  
scope wont quite sync up. Technically speaking, this  
jitter (usually harmless) is unstable operation, since the  
duty factor varies slightly. As capacitors with higher  
ESRs are used, the jitter becomes more pronounced,  
and the load-transient output voltage waveform starts  
looking ragged at the edges. Eventually, the load-tran-  
sient waveform has enough ringing on it that the peak  
noise levels exceed the allowable output voltage toler-  
ance. Note that even with zero phase margin and gross  
instability present, the output voltage noise never gets  
current (I  
) is determined by the input voltage and  
RMS  
load current, with the worst case occurring at V = 2 x  
IN  
V
:
OUT  
V
(V - V  
)
OUT IN OUT  
I
= I  
x
RMS  
LOAD  
V
IN  
Therefore, when V is 2 x V  
:
IN  
OUT  
I
LOAD  
2
I
=
RMS  
Byp a s s in g V+  
Bypass the V+ input with a 4.7µF tantalum capacitor  
paralleled with a 0.1µF ceramic capacitor, close to the  
much worse than I  
x R  
(under constant loads).  
PEAK  
ESR  
Designers of RF communicators or other noise-sensi-  
tive analog equipment should be conservative and stay  
within the guidelines. Designers of notebook computers  
a nd s imila r c omme rc ia l-te mp e ra ture -ra ng e d ig ita l  
IC. A 10series resistor to V is also recommended.  
IN  
______________________________________________________________________________________ 19  
Mu lt i-Ou t p u t , Lo w -No is e P o w e r-S u p p ly  
Co n t ro lle rs fo r No t e b o o k Co m p u t e rs  
systems can multiply the R  
without hurting stability or transient response.  
value by a factor of 1.5  
where: V  
= the minimum required rectified sec-  
ondary output voltage  
ESR  
SEC  
The output voltage ripple is usually dominated by the  
filter capacitors ESR, and can be approximated as  
V
FWD  
= the forward drop across the secondary  
rectifier  
I
x R  
. There is also a capacitive term, so the  
RIPPLE  
ESR  
V
= the minimum value of the main  
output voltage (from the Electrical  
Characteristics)  
OUT(MIN)  
full equation for ripple in continuous-conduction mode  
is V = I x [R + 1/(2 x π x f x  
C
discontinuous, with high peaks and widely spaced  
pulses, so the noise can actually be higher at light load  
(compared to full load). In Idle Mode, calculate the out-  
put ripple as follows:  
NOISE (p -p )  
RIPPLE  
ESR  
)]. In Idle Mode, the inductor current becomes  
OUT  
V
RECT  
= the on-state voltage drop across the  
synchronous rectifier MOSFET  
V
SENSE  
= the voltage drop across the sense  
resistor  
In positive-output applications, the transformer sec-  
ondary return is often referred to the main output volt-  
age, rather than to ground, to reduce the needed turns  
ratio. In this case, the main output voltage must first be  
0.02 x R  
ESR  
V
=
+
NOISE(p -p)  
R
SENSE  
0.0003 x Lx 1 / V  
+1 / (V - V  
)
]
[
OUT  
IN OUT  
) x C  
OUT  
subtracted from the secondary voltage to obtain V  
.
SEC  
2
(R  
SENSE  
S e le c t in g Ot h e r Co m p o n e n t s  
0–MAX1635  
MOSFET Switches  
The high-current N-channel MOSFETs must be logic-level  
types with guaranteed on-resistance specifications at  
Tra n s fo rm e r De s ig n  
(fo r Au x ilia ry Ou t p u t s On ly)  
Buck-plus-flyback applications, sometimes called cou-  
pled-inductor” topologies, need a transformer to gener-  
a te multip le outp ut volta g e s . Pe rforming the b a s ic  
electrical design is a simple task of calculating turns  
ratios and adding the power delivered to the secondary  
to calculate the current-sense resistor and primary  
inductance. However, extremes of low input-output dif-  
ferentials, widely different output loading levels, and  
high turns ratios can complicate the design due to par-  
asitic transformer parameters such as interwinding  
c a p a c ita nc e , s e c ond a ry re s is ta nc e , a nd le a ka g e  
inductance. For examples of what is possible with real-  
world tra ns forme rs , s e e the Ma ximum Se c ond a ry  
Curre nt vs . Inp ut Volta g e g ra p h in the Typ ic a l  
Operating Characteristics section.  
V
GS  
= 4.5V. Lower gate threshold specifications are bet-  
ter (i.e., 2V max rather than 3V max). Drain-source break-  
down voltage ratings must at least equal the maximum  
input voltage, preferably with a 20% derating factor. The  
best MOSFETs will have the lowest on-resistance per  
nanocoulomb of gate charge. Multiplying R  
x Q  
DS(ON)  
G
provides a good figure for comparing various MOSFETs.  
Newer MOSFET process technologies with dense cell  
structures generally perform best. The internal gate  
drivers tolerate >100nC total gate charge, but 70nC is a  
more practical upper limit to maintain best switching  
times.  
In high-current applications, MOSFET package power  
dissipation often becomes a dominant design factor.  
I2R power losses are the greatest heat contributor for  
both high-side and low-side MOSFETs. I2R losses are  
distributed between Q1 and Q2 according to duty fac-  
tor (see the following equations). Generally, switching  
los s e s a ffe c t only the up p e r MOSFET, s inc e the  
Schottky rectifier clamps the switching node in most  
cases before the synchronous rectifier turns on. Gate-  
charge losses are dissipated by the driver and dont  
he a t the MOSFET. Ca lc ula te the te mp e ra ture ris e  
according to package thermal-resistance specifications  
to ensure that both MOSFETs are within their maximum  
junction temperature at high ambient temperature. The  
wors t-c a s e d is s ip a tion for the hig h-s id e MOSFET  
oc c urs a t b oth e xtre me s of inp ut volta g e , a nd the  
worst-case dissipation for the low-side MOSFET occurs  
at maximum input voltage.  
Power from the main and secondary outputs is com-  
bined to get an equivalent current referred to the main  
output voltage (see the Inductor Value section for para-  
meter definitions). Set the current-sense resistor resis-  
tor value at 80mV / I  
.
TOTAL  
P
= The sum of the output power from all outputs  
TOTAL  
I
= P  
/ V  
= The equivalent output cur-  
TOTAL  
TOTAL  
OUT  
rent referred to V  
OUT  
V
(V  
- V  
)
OUT IN(MAX)  
OUT  
L(primary) =  
V
x f x I  
x LIR  
IN(MAX)  
TOTAL  
V
+ V  
FWD  
SEC  
Turns Ratio N =  
V
+ V  
+ V  
OUT(MIN)  
RECT SENSE  
20 ______________________________________________________________________________________  
Mu lt i-Ou t p u t , Lo w -No is e P o w e r-S u p p ly  
Co n t ro lle rs fo r No t e b o o k Co m p u t e rs  
0–MAX1635  
Rectifier Diode D3  
2
PD(upper FET)= (I  
)
x R  
x DUTY  
DS(ON)  
LOAD  
(Transformer Secondary Diode)  
The secondary diode in coupled-inductor applications  
mus t withs ta nd flyb a c k volta g e s g re a te r tha n 60V,  
whic h us ua lly rule s out mos t Sc hottky re c tifie rs .  
Common silicon rectifiers, such as the 1N4001, are also  
prohibited because they are too slow. This often makes  
fast silicon rectifiers such as the MURS120 the only  
choice. The flyback voltage across the rectifier is relat-  
V
x C  
RSS  
IN  
+ V x I  
x f x  
+ 20ns  
IN  
LOAD  
I
GATE  
2
PD(lower FET) = (I  
)
x R  
x (1 - DUTY)  
DS(ON)  
LOAD  
DUTY = (V  
+ V ) / (V - V )  
Q2 IN Q1  
OUT  
where: on-state voltage drop V = I  
x R  
DS(ON)  
ed to the V - V  
difference, according to the trans-  
Q_  
LOAD  
IN  
OUT  
former turns ratio:  
C
= MOSFET reverse transfer capacitance  
RSS  
I
= DH driver peak output current capabil-  
ity (1A typical)  
V
= V  
+ (V - V  
) x N  
GATE  
FLYBACK  
SEC  
IN OUT  
20ns = DH driver inherent rise/fall time  
where: N = the transformer turns ratio SEC/PRI  
V
= the ma ximum s e c ond a ry DC outp ut  
voltage  
Under output short-circuit, the MAX1633/MAX1634/  
MAX1635s synchronous rectifier MOSFET suffers extra  
stress because its duty factor can increase to greater  
than 0.9. It may need to be oversized to tolerate a con-  
tinuous DC s hort c irc uit. During s hort c irc uit, the  
MAX1630/MAX1631/MAX1632s output undervoltage  
shutdown protects the synchronous rectifier under out-  
put short-circuit conditions.  
SEC  
V
OUT  
= the primary (main) output voltage  
Subtract the main output voltage (V  
in this equation if the secondary winding is returned to  
and not to ground. The diode reverse breakdown  
rating must also accommodate any ringing due to leak-  
age inductance. D3s current rating should be at least  
twice the DC load current on the secondary output.  
) from V  
OUT FLYBACK  
V
OUT  
To reduce EMI, add a 0.1µF ceramic capacitor from the  
high-side switch drain to the low-side switch source.  
Lo w -Vo lt a g e Op e ra t io n  
Low input voltages and low input-output differential  
voltages each require extra care in their design. Low  
absolute input voltages can cause the VL linear regula-  
tor to enter dropout and eventually shut itself off. Low  
input voltages relative to the output (low V -V  
ferential) can cause bad load regulation in multi-output  
flyback applications (see the design equations in the  
Rectifier Clamp Diode  
The rectifier is a clamp across the low-side MOSFET  
that catches the negative inductor swing during the  
60ns dead time between turning one MOSFET off and  
each low-side MOSFET on. The latest generations of  
MOSFETs incorporate a high-speed silicon body diode,  
which serves as an adequate clamp diode if efficiency  
is not of primary importance. A Schottky diode can be  
placed in parallel with the body diode to reduce the for-  
ward voltage drop, typically improving efficiency 1% to  
2%. Use a diode with a DC current rating equal to one-  
third of the load current; for example, use an MBR0530  
(500mA-rated) type for loads up to 1.5A, a 1N5819 type  
for loads up to 3A, or a 1N5822 type for loads up to  
10A. The rectifiers rated reverse breakdown voltage  
must be at least equal to the maximum input voltage,  
preferably with a 20% derating factor.  
dif-  
IN OUT  
Transformer Design section). Also, low V -V  
differ-  
IN OUT  
entials can also cause the output voltage to sag when  
the load current changes abruptly. The amplitude of the  
sag is a function of inductor value and maximum duty  
factor (an Electrical Characteristics parameter, 98%  
guaranteed over temperature at f = 200kHz), as follows:  
2
(I  
)
x L  
x D  
STEP  
V
=
SAG  
2 x C  
x (V  
- V  
)
OUT  
IN(MAX)  
MAX OUT  
Boost-Supply Diode D2  
A signal diode such as a 1N4148 works well in most  
applications. If the input voltage can go below +6V, use  
a small (20mA) Schottky diode for slightly improved  
efficiency and dropout characteristics. Dont use large  
power diodes, such as 1N5817 or 1N4001, since high  
junction capacitance can pump up VL to excessive  
voltages.  
The cure for low-voltage sag is to increase the output  
capacitors value. For example, at V = +5.5V, V  
=
OUT  
IN  
+5V, L = 10µH, f = 200kHz, I  
= 3A, a total capaci-  
STEP  
tance of 660µF keeps the sag less than 200mV. Note  
that only the capacitance requirement increases, and  
the ESR requirements dont change. Therefore, the  
added capacitance can be supplied by a low-cost bulk  
capacitor in parallel with the normal low-ESR capacitor.  
______________________________________________________________________________________ 21  
Mu lt i-Ou t p u t , Lo w -No is e P o w e r-S u p p ly  
Co n t ro lle rs fo r No t e b o o k Co m p u t e rs  
Table 5. Low-Voltage Troubleshooting Chart  
SYMPTOM  
CONDITION  
ROOT CAUSE  
SOLUTION  
Increase bulk output capacitance  
per formula (see Low-Voltage  
Operation section). Reduce inductor  
value.  
Sag or droop in V  
step-load change  
under  
Low V -V  
differential, <1.5V  
Limited inductor-current  
slew rate per cycle.  
OUT  
IN OUT  
Dropout voltage is too high  
(V follows V as V  
decreases)  
Reduce operation to 200kHz.  
Reduce MOSFET on-resistance and  
coil DCR.  
Low V -V  
differential, <1V  
Maximum duty-cycle limits  
exceeded.  
IN OUT  
OUT  
IN  
IN  
Unstablejitters between  
different duty factors and  
frequencies  
Low V -V  
differential, <0.5V  
Normal function of internal  
low-dropout circuitry.  
Increase the minimum input voltage  
or ignore.  
IN OUT  
Not enough duty cycle left  
to initiate forward-mode  
operation. Small AC current  
in primary cant store ener-  
gy for flyback operation.  
Reduce operation to 200kHz.  
Reduce secondary impedances;  
use a Schottky diode, if possible.  
Stack secondary winding on the  
main output.  
Low V -V  
IN OUT  
Secondary output wont  
support a load  
differential,  
< 1.3 x V  
V
(main)  
OUT  
IN  
0–MAX1635  
VL linear regulator is going  
into dropout and isnt provid-  
ing good gate-drive levels.  
Use a small 20mA Schottky diode  
for boost diode D2. Supply VL from  
an external source.  
Poor efficiency  
Low input voltage, <5V  
Low input voltage, <4.5V  
Wont start under load or  
quits before battery is  
completely dead  
Supply VL from an external source  
other than V , such as the system  
IN  
+5V supply.  
VL output is so low that it  
hits the VL UVLO threshold.  
where R  
is the DC resistance of the coil, R  
is  
DC  
DS(ON)  
________________Ap p lic a t io n s In fo rm a t io n  
the MOSFET on-resistance, and R  
is the current-  
SENSE  
He a vy-Lo a d Effic ie n c y Co n s id e ra t io n s  
The major efficiency-loss mechanisms under loads are,  
in the usual order of importance:  
sense resistor value. The R  
term assumes identi-  
DS(ON)  
cal MOSFETs for the high-side and low-side switches,  
because they time-share the inductor current. If the  
MOSFETs arent identical, their losses can be estimat-  
ed by averaging the losses according to duty factor.  
P(I2R) = I2R losses  
P(tran) = transition losses  
P(gate) = gate-charge losses  
P(diode) = diode-conduction losses  
P(cap) = capacitor ESR losses  
3
PD(tran) = transition loss = V x I  
x f x  
x
IN LOAD  
2
(V x C  
/ I  
) + 20ns  
[
]
IN  
RSS GATE  
where C  
is the reverse transfer capacitance of the  
RSS  
P(IC) = losses due to the ICs operating supply  
high-side MOSFET (a data-sheet parameter), I  
DH gate-driver peak output current (1.5A typical), and  
20ns is the rise/fall time of the DH driver (20ns typical).  
is the  
GATE  
supply current  
Ind uc tor c ore los s e s a re fa irly low a t he a vy loa d s  
because the inductors AC current component is small.  
Therefore, they arent accounted for in this analysis.  
Ferrite cores are preferred, especially at 300kHz, but  
powdered cores, such as Kool-Mu, can work well.  
P(gate) = qG x f x VL  
where VL is the internal-logic-supply voltage (+5V), and qG  
is the sum of the gate-charge values for low-side and high-  
side switches. For matched MOSFETs, qG is twice the  
Efficiency = P  
/ P x 100%  
IN  
data-sheet value of an individual MOSFET. If V  
is set to  
OUT  
OUT  
less than 4.5V, replace VL in this equation with V  
this case, efficiency can be improved by connecting VL to  
an efficient 5V source, such as the system +5V supply.  
. In  
BATT  
= P  
/ (P  
+ P  
) x 100%  
OUT  
OUT  
TOTAL  
2
P
= P(I R) + P(tran) + P(gate) +  
TOTAL  
P(diode) + P(cap) + P(IC)  
P(diode) = diode - conduction losses  
2
2
P = (I R) = (I  
) x (R  
+ R  
+ R  
)
= I  
x V  
x t x f  
LOAD  
DC  
DS(ON)  
SENSE  
LOAD  
FWD D  
22 ______________________________________________________________________________________  
Mu lt i-Ou t p u t , Lo w -No is e P o w e r-S u p p ly  
Co n t ro lle rs fo r No t e b o o k Co m p u t e rs  
0–MAX1635  
where t is the diode-conduction time (120ns typical)  
Re c tifie r d iod e c a thod e to low-s id e  
MOSFET: 5mm max length  
D
and V  
is the forward voltage of the diode.  
FWD  
LX nod e (MOSFETs , re c tifie r c a thod e ,  
inductor): 15mm max length  
This power is dissipated in the MOSFET body diode if  
no external Schottky diode is used.  
Ideally, surface-mount power components are butted  
up to one another with their ground terminals almost  
touching. These high-current grounds are then con-  
nected to each other with a wide filled zone of top-layer  
copper so they dont go through vias. The resulting top-  
layer sub-ground-plane” is connected to the normal  
inner-layer ground plane at the output ground termi-  
nals, which ensures that the ICs analog ground is  
sensing at the supply’s output terminals without interfer-  
ence from IR drops and ground noise. Other high-  
current paths should also be minimized, but focusing  
primarily on short ground and current-sense con-  
nections eliminates about 90% of all PC board lay-  
out problems (s e e the PC b oa rd la youts in the  
MAX1630 Evaluation Kit manual for examples).  
2
P(cap) = input capacitor ESR loss = (I  
)
x R  
ESR  
RMS  
where I  
is the input ripple current as calculated in the  
Design Procedure and Input Capacitor Value sections.  
RMS  
Lig h t -Lo a d Effic ie n c y Co n s id e ra t io n s  
Under light loads, the PWM operates in discontinuous  
mode, where the inductor current discharges to zero at  
some point during the switching cycle. This makes the  
inductor currents AC component high compared to the  
load current, which increases core losses and I2R loss-  
es in the output filter capacitors. For best light-load effi-  
c ie nc y, us e MOSFETs with mod e ra te g a te -c ha rg e  
levels, and use ferrite, MPP, or other low-loss core  
material. Avoid powdered-iron cores; even Kool-Mu  
(aluminum alloy) is not as good as ferrite.  
2) Place the IC and signal components. Keep the main  
switching nodes (LX nodes) away from sensitive  
analog components (current-sense traces and REF  
capacitor). Place the IC and analog components on  
the op p os ite s id e of the b oa rd from the p owe r-  
switching node. Important: the IC must be no far-  
ther than 10mm from the current-sense resistors.  
Keep the gate-drive traces (DH_, DL_, and BST_)  
shorter than 20mm and route them away from CSH_,  
CSL_, and REF.  
P C Bo a rd La yo u t Co n s id e ra t io n s  
Good PC board layout is required in order to achieve  
specified noise, efficiency, and stability performance.  
The PC b oa rd la yout a rtis t mus t b e g ive n e xp lic it  
instructions, preferably a pencil sketch showing the  
placement of power-switching components and high-  
c urre nt routing . Se e the PC b oa rd la yout in the  
MAX1630 Eva lua tion Kit ma nua l for e xa mp le s . A  
ground plane is essential for optimum performance. In  
most applications, the circuit will be located on a multi-  
layer board, and full use of the four or more copper lay-  
ers is recommended. Use the top layer for high-current  
connections, the bottom layer for quiet connections  
(REF, SS, GND), and the inner layers for an uninterrupt-  
ed ground plane. Use the following step-by-step guide:  
3) Us e a s ing le -p oint s ta r g round whe re the inp ut  
ground trace, power ground (sub-ground-plane),  
and normal ground plane meet at the supply’s out-  
put ground terminal. Connect both IC ground pins  
and all IC bypass capacitors to the normal ground  
plane.  
1) Place the high-power components (Figure1, C1, C3,  
Q1, Q2, D1, L1, and R1) first, with any grounded  
connections adjacent.  
HIGH CURRENT PATH  
Priority 1: Minimize current-sense resistor trace  
lengths a nd e ns ure a c c ura te c urre nt  
sensing with Kelvin connections (Figure 7).  
SENSE RESISTOR  
Priority 2: Minimize ground trace lengths in the  
high-current paths (discussed below).  
Priority 3: Minimize other trace lengths in the high-  
current paths.  
Use >5mm-wide traces  
C
to high-side MOSFET drain: 10mm  
MAX1630  
IN  
max length  
Figure 7. Kelvin Connections for the Current-Sense Resistors  
______________________________________________________________________________________ 23  
Mu lt i-Ou t p u t , Lo w -No is e P o w e r-S u p p ly  
Co n t ro lle rs fo r No t e b o o k Co m p u t e rs  
_______________________________________________________________________________Ap p lic a t io n Circ u it s  
*
*
TO +3.3V OUTPUT  
TO +5V OUTPUT  
C4  
INPUT  
+5.2V TO +24V  
C3  
10Ω  
0.1µF  
4.7µF  
+5V  
ALWAYS ON  
ON/OFF  
4.7µF  
0.1µF  
0.1µF  
23 22  
6
21  
VL  
V+  
SHDN  
SYNC  
5
4
+12V  
AT 120mA  
12OUT  
V
DD  
2.2µF  
25  
27  
18  
16  
2.7µF  
BST3  
DH3  
BST5  
DH5  
Q3  
Q1  
C1  
L2  
R2  
+5V OUTPUT (3A)  
C2  
+3.3V  
OUTPUT  
(3A)  
0–MAX1635  
0.1µF  
0.1µF  
Q4  
26  
24  
17  
19  
T1  
1:4  
LX5  
DL5  
R1  
LX3  
DL3  
MAX1630  
MAX1633  
0.1µF  
*
*
Q2  
20  
14  
PGND  
1N5819  
1N5819  
1
CSH3  
CSL3  
FB3  
CSH5  
CSL5  
FB5  
13  
12  
2
3
15  
9
28  
7
3V ON/OFF  
SEQ  
REF  
RUN/ON3  
TIME/ON5  
+2.5V REF  
5V ON/OFF  
1µF  
11  
RESET  
POWER-GOOD  
SKIP  
10  
GND  
8
R1 = R2 = 20mΩ  
L2 = 10µH SUMIDA CDRH125-100  
T1 = 10µH 1:4 TRANSFORMER  
TRANSPOWER TECHNOLOGIES TTI-5902  
Q1Q4 = Si4410DY or IRF7413  
C1 = 3 x 220µF 10V SPRAGUE 594D227X0010D2T  
C2 = 2 x 220µF 10V SPRAGUE 594D227X0010D2T  
C3 = C4 = 2 x 10µF 30V SANYO OS-CON 30SC10M  
*VL DIODES AND OUTPUT SCHOTTKY DIODES REQUIRED  
FOR THE MAX1630 ONLY (SEE OUTPUT OVERVOLTAGE PROTECTION  
AND OUTPUT UNDERVOLTAGE SHUTDOWN PROTECTION SECTIONS).  
Figure 8. Triple-Output Application for Low-Voltage Batteries (MAX1630/MAX1633)  
24 ______________________________________________________________________________________  
Mu lt i-Ou t p u t , Lo w -No is e P o w e r-S u p p ly  
Co n t ro lle rs fo r No t e b o o k Co m p u t e rs  
0–MAX1635  
_____________________________________________________________Ap p lic a t io n Circ u it s (c o n t in u e d )  
*
*
TO +3.3V OUTPUT  
TO +5V OUTPUT  
C4  
INPUT  
+6.5V TO +28V  
C3  
10Ω  
0.1µF  
4.7µF  
+5V ALWAYS ON  
ON/OFF  
0.1µF  
4.7µF  
23  
22  
V+  
6
21  
VL  
SHDN  
SYNC  
+12V AT 120mA  
4
5
12OUT  
2.2µF  
V
DD  
D2  
D1  
2.2µF  
D5  
25  
18  
16  
BST3  
DH3  
BST5  
DH5  
Q1  
Q3  
27  
L1  
0.1µF  
+3.3V OUTPUT (3A)  
C1  
R2  
+5V OUTPUT (3A)  
C2  
*
0.1µF  
0.1µF  
26  
24  
17  
19  
20  
T2  
1:2.2  
LX5  
R1  
LX3  
DL3  
MAX1632  
MAX1635  
0.1µF  
*
DL5  
Q2  
Q4  
PGND  
1N5819  
1N5819  
1
14  
13  
12  
CSH3  
CSL3  
FB3  
CSH5  
CSL5  
FB5  
2
3
15  
9
28  
7
3V ON/OFF  
SEQ  
REF  
RUN/ON3  
TIME/ON5  
+2.5V REF  
5V ON/OFF  
1µF  
11  
RESET  
POWER-GOOD  
SKIP  
10  
GND  
8
R1 = R2 = 20mΩ  
L1 = 10µH SUMIDA CDRH125-100  
T2 = 10µH 1:2.2 TRANSFORMER  
TRANSPOWER TECHNOLOGIES TTI-5870  
Q1Q4 = Si4410DY or IRF7413  
C1 = 3 x 220µF 10V SPRAGUE 594D227X0010D2T  
C2 = 2 x 220µF 10V SPRAGUE 594D227X0010D2T  
C3 = C4 = 2 x 10µF 30V SANYO OS-CON 30SC10M  
*VL DIODES AND OUTPUT SCHOTTKY DIODES REQUIRED  
FOR THE MAX1632 ONLY (SEE OUTPUT OVERVOLTAGE PROTECTION  
AND OUTPUT UNDERVOLTAGE SHUTDOWN PROTECTION SECTIONS).  
Figure 9. Triple-Output Application for High-Voltage Batteries (MAX1632/MAX1635)  
______________________________________________________________________________________ 25  
Mu lt i-Ou t p u t , Lo w -No is e P o w e r-S u p p ly  
Co n t ro lle rs fo r No t e b o o k Co m p u t e rs  
_____________________________________________________________Ap p lic a t io n Circ u it s (c o n t in u e d )  
ON/OFF  
*
*
INPUT  
+6V TO +24V  
5V ALWAYS ON  
C3  
10Ω  
0.1µF  
22 23  
5
21  
4.7µF  
V+ SHDN SECFB VL  
4.7µF  
18  
16  
25  
27  
BST5  
BST3  
0.1µF  
Q1  
DH5  
DH3  
Q3  
0.1µF  
R1  
L1  
0.1µF  
0.1µF  
2.5V OUTPUT  
26  
24  
17  
19  
L2  
R2  
LX5  
DL5  
LX3  
DL3  
+3.3V OUTPUT  
C2  
Q2  
*
Q4  
MAX1631  
MAX1634  
C1  
*
0–MAX1635  
20  
14  
1N5819  
1N5819  
PGND  
CSH5  
1
2
CSH3  
CSL3  
13  
CSL5  
0Ω  
OPEN  
12  
3
FB3  
FB5  
RESET OUTPUT  
11  
10  
0Ω  
OPEN  
RESET  
SKIP  
7
TIME/ON5  
RUN/ON3  
GND  
ON/OFF  
ON/OFF  
28  
4
STEER  
8
REF SYNC SEQ  
15  
9
6
1µF  
R1 = R2 = 15mΩ  
L1 = L2 = 6.8µH SUMIDA CDRH 127-6R8MC  
Q1 = Q4 = Si4410DY or 1RF7413  
C1 = C2 = 2X SANYO OS-CON 10 SA220M  
C3 = 4X SANYO OS-CON 30SC10M  
*VL DIODES AND OUTPUT SCHOTTKY DIODES REQUIRED  
FOR THE MAX1631 ONLY (SEE OUTPUT OVERVOLTAGE PROTECTION  
AND OUTPUT UNDERVOLTAGE SHUTDOWN PROTECTION SECTIONS).  
Figure 10. Dual, 4A, Notebook Computer Power Supply  
26 ______________________________________________________________________________________  
Mu lt i-Ou t p u t , Lo w -No is e P o w e r-S u p p ly  
Co n t ro lle rs fo r No t e b o o k Co m p u t e rs  
0–MAX1635  
________________________________________________________________________________P in Co n fig u ra t io n s  
TOP VIEW  
CSH3  
CSL3  
CSH3  
CSL3  
FB3  
28  
27  
26  
25  
24  
28  
27  
26  
25  
1
2
1
2
RUN/ON3  
DH3  
RUN/ON3  
DH3  
LX3  
LX3  
FB3  
STEER  
SECFB  
SYNC  
3
3
BST3  
DL3  
BST3  
4
12OUT  
4
V
DD  
24 DL3  
5
5
MAX1631  
MAX1634  
MAX1630  
MAX1632  
MAX1633  
MAX1635  
6
SHDN  
6
23 SHDN  
23  
22  
21  
20  
19  
18  
17  
SYNC  
TIME/ON5  
V+  
VL  
TIME/ON5  
GND  
7
7
22  
21  
20  
19  
18  
17  
16  
15  
V+  
VL  
8
GND  
REF  
8
9
9
REF  
PGND  
DL5  
PGND  
DL5  
10  
10  
SKIP  
SKIP  
RESET 11  
RESET 11  
BST5  
LX5  
BST5  
LX5  
12  
13  
14  
12  
13  
14  
FB5  
FB5  
16  
15  
CSL5  
CSH5  
DH5  
SEQ  
CSL5  
CSH5  
DH5  
SEQ  
SSOP  
SSOP  
_______________________________________________________________S e le c t o r Gu id e  
OVER/UNDERVOLTAGE  
DEVICE  
AUXILIARY OUTPUT  
SECONDARY FEEDBACK  
PROTECTION  
MAX1630  
MAX1631  
MAX1632  
MAX1633  
MAX1634  
MAX1635  
12V Linear Regulator  
None (SECFB input)  
12V Linear Regulator  
12V Linear Regulator  
None (SECFB input)  
12V Linear Regulator  
Feeds into the 3.3V SMPS  
Selectable (STEER pin)  
Feeds into the 5V SMPS  
Feeds into the 3.3V SMPS  
Selectable (STEER pin)  
Feeds into the 5V SMPS  
Yes  
Yes  
Yes  
No  
No  
No  
______________________________________________________________________________________ 27  
Mu lt i-Ou t p u t , Lo w -No is e P o w e r-S u p p ly  
Co n t ro lle rs fo r No t e b o o k Co m p u t e rs  
__Ord e rin g In fo rm a t io n (c o n t in u e d )  
PART  
TEMP. RANGE  
0°C to +70°C  
-40°C to +85°C  
0°C to +70°C  
-40°C to +85°C  
0°C to +70°C  
-40°C to +85°C  
0°C to +70°C  
-40°C to +85°C  
0°C to +70°C  
-40°C to +85°C  
PIN-PACKAGE  
28 SSOP  
28 SSOP  
28 SSOP  
28 SSOP  
28 SSOP  
28 SSOP  
28 SSOP  
28 SSOP  
28 SSOP  
28 SSOP  
MAX1631CAI  
MAX1631EAI  
MAX1632CAI  
MAX1632EAI  
MAX1633CAI  
MAX1633EAI  
MAX1634CAI  
MAX1634EAI  
MAX1635CAI  
MAX1635EAI  
________________________________________________________P a c k a g e In fo rm a t io n  
0–MAX1635  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
28 ____________________Ma x im In t e g ra t e d P ro d u c t s , 1 2 0 S a n Ga b rie l Drive , S u n n yva le , CA 9 4 0 8 6 4 0 8 -7 3 7 -7 6 0 0  
© 1997 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY