MAX16992AUBB/V+ [MAXIM]

Switching Controller, Current-mode, 2500kHz Switching Freq-Max, BICMOS, PDSO10, UMAX-10;
MAX16992AUBB/V+
型号: MAX16992AUBB/V+
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Switching Controller, Current-mode, 2500kHz Switching Freq-Max, BICMOS, PDSO10, UMAX-10

信息通信管理 开关 光电二极管
文件: 总19页 (文件大小:1248K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
EVALUATION KIT AVAILABLE  
MAX16990/MAX16992  
36V, 2.5MHz Automotive Boost/  
SEPIC Controllers  
General Description  
Benefits and Features  
Minimized Radio Interference with 2.5MHz Switching  
The MAX16990/MAX16992 are high-performance,  
current-mode PWM controllers with 4μA (typ) shut-  
down current for wide input voltage range boost/SEPIC  
converters. The 4.5V to 36V input operating volt-  
age range makes these devices ideal in automotive  
applications such as for front-end “preboost” or “SEPIC”  
power supplies and for the first boost stage in high-  
power LED lighting applications. An internal low-dropout  
regulator (PVL regulator) with a 5V output voltage  
enables the MAX16990/MAX16992 to operate directly  
from an automotive battery input. The input operating  
range can be extended to as low as 2.5V when the  
converter output is applied to the SUP input.  
Frequency Above the AM Radio Band  
Space-Efficient Solution Design with Minimized  
External Components  
• 100kHz to 1MHz (MAX16990) and 1MHz to  
2.5MHz (MAX16992) Switching-Frequency Ranges  
• 12-Pin TQFN (3mm x 3mm) and 10-Pin μMAX  
Packages  
Spread Spectrum Simplifies EMI Management Design  
Flexibility with Available Configurations for Boost,  
SEPIC, and Multiphase Applications  
• Adjustable Slope Compensation  
• Current-Mode Control  
• Internal Soft-Start (9ms)  
There are multiple versions of the devices offering one  
or more of the following functions: a synchronization  
output (SYNCO) for two-phase operation, an overvoltage  
protection function using a separate input pin (OVP), and  
a reference input pin (REFIN) to allow on-the-fly output  
voltage adjustment.  
Protection Features Support Robust Automotive  
Applications  
• Operating Voltage Range Down to 4.5V (2.5V or  
Lower in Bootstrapped Mode), Immune to  
Load-Dump Transient Voltages Up to 42V  
• PGOOD Output and Hiccup Mode for Enhanced  
System Protection  
• Overtemperature Shutdown  
• -40°C to +125°C Operation  
The MAX16990 and MAX16992 operate in different  
frequency ranges. All versions can be synchronized to  
an external master clock using the FSET/SYNC input.  
In addition, the MAX16990/MAX16992 have a factory-  
programmable spread-spectrum option. Both devices  
are available in compact 12-pin TQFN and 10-pin µMAX®  
packages.  
Typical Application Circuit  
Applications  
BOOTSTRAPPED 2.2MHz APPLICATION WITH LOW OPERATING VOLTAGE  
22µF  
Automotive LED Lighting  
Automotive Audio/Navigation Systems  
Dashboards  
0.47µH  
P
BATTERY INPUT  
2.5V to 40V  
SW_OUT  
8V/2A  
47µF  
CERAMIC  
1µF  
17k  
PVL  
SUP  
DRV  
N
10kΩ  
10kΩ  
Ordering Information appears at end of data sheet.  
91kΩ  
1kΩ  
PGOOD  
PGOOD  
N
ISNS  
22mΩ  
PVL  
MAX16992AUBA/B  
2.2µF  
FB  
FSET/SYNC  
COMP  
13kΩ  
12kΩ  
µMAX is a registered trademark of Maxim Integrated Products, Inc.  
EN  
N
GND  
ENABLE  
19-6632; Rev 7; 2/17  
 
MAX16990/MAX16992  
36V, 2.5MHz Automotive Boost/  
SEPIC Controllers  
Absolute Maximum Ratings  
EN, SUP, OVP, FB to GND....................................-0.3V to +42V  
DRV, SYNCO, FSET/SYNC, COMP,  
PGOOD, ISNS, REFIN to GND............ -0.3V to (V  
Operating Temperature Range........................ -40NC to +125NC  
Maximum Junction Temperature.....................................+150NC  
Storage Temperature Range............................ -65NC to +150NC  
Lead Temperature (soldering, 10s) ................................+300NC  
Soldering Temperature (reflow) ......................................+260NC  
+ 0.3V)  
PVL  
PVL to GND............................................................... -0.3V to 6V  
Continuous Power Dissipation (T = +70NC)  
A
FMAX on SLB (derate 10.3mW/NC above +70NC).......825mW  
FMAX on MLB (derate 12.9mW/NC above +70NC)....1031mW  
TQFN on SLB (derate 13.2mW/NC above +70NC).....1053mW  
TQFN on MLB (derate 14.7mW/NC above +70NC)....1176mW  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional opera-  
tion of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect device reliability.  
Package Thermal Characteristics (Note 1)  
FMAX (Single-Layer Board)  
Junction-to-Ambient Thermal Resistance (B ) ..........97NC/W  
TQFN (Single-Layer Board)  
Junction-to-Ambient Thermal Resistance (B ) ..........76NC/W  
JA  
JA  
Junction-to-Case Thermal Resistance (B ).................5NC/W  
Junction-to-Case Thermal Resistance (B )...................11NC/W  
JC  
JC  
FMAX (Four-Layer Board)  
TQFN (Four-Layer Board)  
Junction-to-Ambient Thermal Resistance (B ) ..........78NC/W  
Junction-to-Ambient Thermal Resistance (B ) ..........68NC/W  
JA  
JA  
Junction-to-Case Thermal Resistance (B ).....................5NC/W  
Junction-to-Case Thermal Resistance (B )...............11NC/W  
JC  
JC  
Note 1: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer  
board. For detailed information on package thermal considerations, refer to www.maximintegrated.com/thermal-tutorial.  
Electrical Characteristics  
(V  
= 14V, T = T = -40NC to +125NC, unless otherwise noted. Typical values are at T =+25NC.) (Note 2)  
SUP  
A
J
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
POWER SUPPLY  
SUP Operating Supply Range  
V
4.5  
36  
1.3  
2
V
SUP  
MAX16990  
MAX16992  
0.75  
1.25  
4
V
= 1.1V, no  
FB  
SUP Supply Current in Operation  
I
mA  
CC  
switching  
SUP Supply Current in Shutdown  
OVP Threshold Voltage  
I
V
= 0V  
7
FA  
SHDN  
EN  
% of  
V
OVP rising  
105  
-1  
110  
2.5  
115  
OVP  
V
FB  
OVP Threshold Voltage  
Hysteresis  
% of  
V
OVPH  
V
FB  
OVP Input Current  
I
+1  
FA  
OVP  
PVL REGULATOR  
PVL Output Voltage  
PVL Undervoltage Lockout  
V
4.7  
3.8  
5
4
5.3  
4.3  
V
V
PVL  
V
SUP rising  
UV  
PVL Undervoltage-Lockout  
Hysteresis  
V
0.4  
V
UVH  
Maxim Integrated  
2  
www.maximintegrated.com  
MAX16990/MAX16992  
36V, 2.5MHz Automotive Boost/  
SEPIC Controllers  
Electrical Characteristics (continued)  
(V  
= 14V, T = T = -40NC to +125NC, unless otherwise noted. Typical values are at T =+25NC.) (Note 2)  
SUP  
A
J
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
OSCILLATOR  
R
R
= 69kI  
= 12kI  
360  
400  
440  
FSET  
Switching Frequency  
f
kHz  
SW  
2000  
2200  
2400  
FSET  
Spread-Spectrum Spreading  
Factor  
% of  
SS  
B, D, and F versions  
Q6  
f
SW  
MAX16990  
MAX16992  
MAX16990  
MAX16992  
100  
1000  
220  
1000  
2500  
1000  
2500  
When set with  
resistor on pin  
Switching Frequency Range  
FSET/SYNC Frequency Range  
f
kHz  
kHz  
SWR  
Using external  
SYNC signal  
f
SYNC  
1000  
FSET Regulation Voltage  
Soft-Start Time  
V
12kI < R  
< 69kI  
0.9  
9
V
FSET  
FSET  
t
Internally set  
6
12  
ms  
ms  
SS  
HICCUP  
Hiccup Period  
t
55  
MAX16990, R  
MAX16992, R  
= 69kI  
93  
85  
50  
FSET  
Maximum Duty Cycle  
DC  
%
MAX  
= 12kI  
FSET  
Minimum On-Time  
t
80  
110  
ns  
ON  
THERMAL SHUTDOWN  
Thermal-Shutdown Temperature  
Thermal-Shutdown Hysteresis  
GATE DRIVERS  
T
Temperature rising  
165  
10  
NC  
NC  
S
T
H
I
I
DRV Pullup Resistance  
DRV Pulldown Resistance  
R
I
I
= 100mA  
= -100mA  
3
1.4  
0.75  
1
5.5  
2.5  
DRVH  
DRV  
DRV  
R
DRVL  
Sourcing, C  
= 10nF  
DRV  
DRV Output Peak Current  
I
A
DRV  
Sinking, C  
= 10nF  
DRV  
REGULATION/CURRENT SENSE  
V
V
V
= VPVL  
= 2V  
0.99  
1.98  
0.495  
-0.5  
1
2
1.01  
2.02  
0.505  
+0.5  
288  
REFIN  
REFIN  
REFIN  
Across full line, load,  
and temperature  
range  
FB Regulation Voltage  
V
V
FB  
= 0.5V  
0.5  
FB Input Current  
ISNS Threshold  
I
FA  
FB  
212  
250  
60  
40  
8
mV  
MAX16990  
MAX16992  
ISNS Leading-Edge Blanking  
Time  
t
ns  
BLANK  
Current-Sense Gain  
A
V/V  
VI  
Peak Slope Compensation  
Current-Ramp Magnitude  
Added to ISNS input  
40  
50  
60  
FA  
Rising  
Falling  
85  
80  
90  
85  
95  
90  
Percentage of final  
value  
PGOOD Threshold  
V
%
PG  
Maxim Integrated  
3  
www.maximintegrated.com  
MAX16990/MAX16992  
36V, 2.5MHz Automotive Boost/  
SEPIC Controllers  
Electrical Characteristics (continued)  
(V  
= 14V, T = T = -40NC to +125NC, unless otherwise noted. Typical values are at T =+25NC.) (Note 2)  
SUP  
A
J
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
ERROR AMPLIFIER  
REFIN Input Voltage Range  
0.5  
2
V
V
REFIN Threshold for 1V FB  
Regulation  
V
-
V
PVL  
0.4  
-
V
-
PVL  
0.8  
PVL  
0.1  
Error-Amplifier gm  
A
700  
FS  
MI  
VEA  
Error-Amplifier Output  
Impedance  
R
50  
OEA  
COMP Output Current  
I
140  
3
μA  
V
COMP  
COMP Clamp Voltage  
2.7  
3.3  
LOGIC-LEVEL INPUTS/OUTPUTS  
PGOOD/SYNCO Output Leakage  
Current  
V
/V  
= 5V  
0.5  
FA  
PGOOD SYNCO  
PGOOD/SYNCO Output Low  
Level  
Sinking 1mA  
EN rising  
0.4  
1.2  
V
EN High Input Threshold  
1.7  
2.5  
-1  
V
V
EN Low Input Threshold  
FSET/SYNC High Input Threshold  
FSET/SYNC Low Input Threshold  
EN and REFIN Input Current  
V
1
V
+1  
FA  
Note 2: All devices 100% production tested at T = +25NC. Limits over temperature are guaranteed by design.  
A
Maxim Integrated  
4  
www.maximintegrated.com  
MAX16990/MAX16992  
36V, 2.5MHz Automotive Boost/  
SEPIC Controllers  
Typical Operating Characteristics  
(V  
= 14V, T = +25NC, unless otherwise noted.)  
SUP  
A
SHUTDOWN SUPPLY CURRENT  
vs. SUPPLY VOLTAGE  
SHUTDOWN SUPPLY CURRENT  
SUPPLY CURRENT vs. SUPPLY VOLTAGE  
vs. TEMPERATURE  
10  
5.2  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
9
8
7
5.0  
4.8  
4.6  
4.4  
4.2  
4.0  
3.8  
2.2MHz  
400kHz  
6
5
4
3
3
2
1
0
V
V
= V  
SUP  
= 1.1V  
EN  
FB  
V
= 0V  
V
EN  
= 0V  
EN  
3.6  
4
12  
20  
28  
36  
-40 -20  
0
20 40 60 80 100 120  
TEMPERATURE (°C)  
4
12  
20  
SUPPLY VOLTAGE (V)  
28  
36  
SUPPLY VOLTAGE (V)  
MAX16990 INTERNAL OSCILLATOR  
FREQUENCY vs. SUPPLY VOLTAGE  
PVL VOLTAGE vs. SUPPLY VOLTAGE  
PVL VOLTAGE vs. SUPPLY VOLTAGE  
5.2  
5.1  
5.0  
4.9  
4.8  
4.7  
4.6  
4.5  
4.4  
4.3  
4.2  
4.1  
4.0  
5.2  
5.0  
4.8  
4.6  
4.4  
4.2  
4.0  
3.8  
3.6  
3.4  
3.2  
3.0  
410  
408  
406  
404  
402  
400  
398  
396  
394  
392  
390  
I
= 1mA  
PVL  
I
= 1mA  
PVL  
I
= 10mA  
PVL  
I
= 10mA  
PVL  
R
= 68.1kI  
SET  
28  
12  
20  
36  
4
12  
20  
SUPPLY VOLTAGE (V)  
28  
36  
3
4
5
6
7
4
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
MAX16990 INTERNAL OSCILLATOR  
FREQUENCY vs. TEMPERATURE  
MAX16992 INTERNAL OSCILLATOR  
FREQUENCY vs. SUPPLY VOLTAGE  
MAX16992 INTERNAL OSCILLATOR  
FREQUENCY vs. TEMPERATURE  
420  
415  
410  
405  
400  
395  
390  
385  
380  
2400  
2350  
2300  
2250  
2200  
2150  
2100  
2050  
2000  
2200  
2190  
2180  
2170  
2160  
2150  
2140  
2130  
2120  
2110  
2100  
R
= 68.1kI  
R
= 12.1kI  
R
= 12.1kI  
SET  
SET  
SET  
28  
-40 -20  
0
20 40 60 80 100 120  
TEMPERATURE (°C)  
4
12  
20  
36  
-40 -20  
0
20 40 60 80 100 120  
TEMPERATURE (°C)  
SUPPLY VOLTAGE (V)  
Maxim Integrated  
5  
www.maximintegrated.com  
 
MAX16990/MAX16992  
36V, 2.5MHz Automotive Boost/  
SEPIC Controllers  
Typical Operating Characteristics (continued)  
(V  
= 14V, T = +25NC, unless otherwise noted.)  
SUP  
A
POWER-UP RESPONSE  
POWER-UP RESPONSE  
MAX16990 toc10  
MAX16990 toc11  
5V/div  
0V  
5V/div  
0V  
V
V
V
SUP  
OUT  
SUP  
5V/div  
0V  
5V/div  
0V  
V
V
OUT  
DRV  
5V/div  
5V/div  
0V  
V
PVL  
0V  
5V/div  
0V  
5V/div  
0V  
V
V
PGOOD  
PGOOD  
2ms/div  
2ms/div  
STARTUP RESPONSE  
STARTUP RESPONSE  
MAX16990 toc12  
MAX16990 toc13  
5V/div  
0V  
5V/div  
0V  
V
V
V
SUP  
OUT  
PGOOD  
5V/div  
0V  
5V/div  
0V  
5V/div  
0V  
V
V
OUT  
DRV  
V
PVL  
5V/div  
0V  
5V/div  
0V  
5V/div  
0V  
V
EN  
V
EN  
2ms/div  
2ms/div  
STARTUP RESPONSE  
(WITH SWITCHED OUTPUT)  
OUTPUT LOAD TRANSIENT  
MAX16990 toc15  
MAX16990 toc14  
5V/div  
0V  
5V/div  
0V  
V
SUP  
V
PGOOD  
5V/div  
0V  
5V/div  
0V  
5V/div  
0V  
V
V
OUT  
OUT  
V
OUT  
500mV/div  
(AC-COUPLED)  
V
SW_OUT  
5V/div  
0V  
V
EN  
1A/div  
I
LOAD  
0A  
50ms/div  
2ms/div  
Maxim Integrated  
6  
www.maximintegrated.com  
MAX16990/MAX16992  
36V, 2.5MHz Automotive Boost/  
SEPIC Controllers  
Typical Operating Characteristics (continued)  
(V  
= 14V, T = +25NC, unless otherwise noted.)  
SUP  
A
LINE TRANSIENT  
MAX16992 V  
vs. V  
SYNC SYNCO  
MAX16990 toc16  
MAX16990 toc17  
5V/div  
0V  
V
V
V
SUP  
OUT  
OUT  
2V/div  
0V  
V
SYNC  
5V/div  
0V  
500mV/div  
(AC-COUPLED)  
2V/div  
0V  
V
SYNCO  
1A/div  
0A  
I
LOAD  
20ms/div  
200ns/div  
OUTPUT VOLTAGE vs. REFIN VOLTAGE  
SWITCHING WAVEFORM  
MAX16990 toc19  
toc18  
20  
5V/div  
V
OUT  
0V  
15  
10  
5V/div  
0V  
V
IN  
5V/div  
0V  
V
LX  
5
1A/div  
0A  
I
LOAD  
IOU T = 0  
0
500ns/div  
0.5  
1.0  
1.5  
2.0  
REFIN VOLTAGE (V)  
OVP SHUTDOWN  
HICCUP MODE  
MAX16990 toc20  
MAX16990 toc21  
V
OUT  
5V/div  
0V  
V
V
OUT  
DRV  
5V/div  
0V  
1V/div  
0V  
V
V
OVP  
DRV  
5V/div  
0V  
5V/div  
0V  
V
PGOOD  
5V/div  
0V  
5V/div  
0V  
V
PGOOD  
1s/div  
20ms/div  
Maxim Integrated  
7  
www.maximintegrated.com  
MAX16990/MAX16992  
36V, 2.5MHz Automotive Boost/  
SEPIC Controllers  
Typical Operating Characteristics (continued)  
(V  
= 14V, T = +25NC, unless otherwise noted.)  
SUP  
A
MAX16992 INTERNAL OSCILLATOR  
FREQUENCY vs. R  
MAX16990 EFFICIENCY  
MAX16992 EFFICIENCY  
SET  
2600  
2400  
2200  
2000  
1800  
1600  
1400  
1200  
1000  
800  
100  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
I
= 1A  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
OUT  
I
= 2A  
OUT  
I
= 2A  
OUT  
I
= 1A  
OUT  
I
= 100mA  
OUT  
I
= 100mA  
OUT  
10  
15  
20  
(kI)  
25  
30  
4
5
6
7
8
4
5
6
7
8
R
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
SET  
MAX16990 INTERNAL OSCILLATOR  
FREQUENCY vs. RSET  
CURRENT-LIMIT THRESHOLD  
vs. TEMPERATURE  
MAX16992 MAXIMUM DUTY  
CYCLE vs. TEMPERATURE  
MAX16990/2 toc25  
260  
258  
256  
254  
252  
250  
248  
246  
244  
242  
240  
91.0  
90.5  
90.0  
89.5  
89.0  
88.5  
88.0  
87.5  
87.0  
1100  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
R
= 12.1kI  
SET  
0
100  
200  
RSET(kΩ)  
300  
-40 -20  
0
20 40 60 80 100 120  
TEMPERATURE (°C)  
-40 -20  
0
20 40 60 80 100 120  
TEMPERATURE (°C)  
MAX16990 MAXIMUM DUTY  
CYCLE vs. TEMPERATURE  
COLD-CRANK INPUT VOLTAGE TRANSIENT  
MAX16990 toc29  
95.9  
95.7  
95.5  
95.3  
95.1  
94.9  
94.7  
94.5  
5V/div  
V
IN  
0V  
5V/div  
V
OUT  
0V  
1A/div  
0A  
5V/div  
0V  
I
LOAD  
V
PGOOD  
R
= 68.1kI  
SET  
-40 -20  
0
20 40 60 80 100 120  
TEMPERATURE (°C)  
20ms/div  
Maxim Integrated  
8  
www.maximintegrated.com  
MAX16990/MAX16992  
36V, 2.5MHz Automotive Boost/  
SEPIC Controllers  
Pin Configurations  
TOP VIEW  
TOP VIEW  
TOP VIEW  
9
8
7
9
8
7
+
SUP  
EN  
1
2
3
4
5
10  
9
FB  
FSET/SYNC 10  
COMP 11  
6
5
ISNS  
PVL  
FSET/SYNC 10  
COMP 11  
6
5
ISNS  
PVL  
MAX16990AUBA/B  
MAX16992AUBA/B  
COMP  
FSET/SYNC  
PGOOD  
ISNS  
MAX16990ATCC/D  
MAX16992ATCC/D  
MAX16990ATCE/F  
MAX16992ATCE/F  
GND  
DRV  
PVL  
8
7
EP  
FB 12  
4
DRV  
FB 12  
4
DRV  
EP  
EP  
6
+
+
1
2
3
1
2
3
µMAX  
TQFN  
(3mm x 3mm)  
TQFN  
(3mm x 3mm)  
Pin Descriptions  
MAX16990AUBA/B, MAX16990ATCC/D, MAX16990ATCE/F,  
MAX16992AUBA/B MAX16992ATCC/D MAX16992ATCE/F  
NAME  
FUNCTION  
μMAX-EP  
TQFN-EP  
TQFN-EP  
Power-Supply Input. Place a bypass capacitor of at  
least 1FF between this pin and ground.  
1
1
1
SUP  
Active-High Enable Input. This input is high-voltage  
capable or can alternatively be driven from a logic-  
level signal.  
2
3
4
3
2
4
3
2
4
EN  
GND  
DRV  
Ground Connection  
Drive Output for Gate of nMOS Boost Switch. The  
nominal voltage swing of this output is between PVL  
and GND.  
Output of 5V Internal Regulator. Connect a ceramic  
capacitor of at least 2.2FF from this pin to ground,  
placing it as close as possible to the pin.  
5
6
5
6
5
6
PVL  
Current-Sense Input to Regulator. Connect a sense  
resistor between the source of the external switching  
FET and GND. Then connect another resistor  
between ISNS and the source of the FET for slope  
compensation adjustment.  
ISNS  
Maxim Integrated  
9  
www.maximintegrated.com  
MAX16990/MAX16992  
36V, 2.5MHz Automotive Boost/  
SEPIC Controllers  
Pin Descriptions (continued)  
MAX16990AUBA/B, MAX16990ATCC/D, MAX16990ATCE/F,  
MAX16992AUBA/B MAX16992ATCC/D MAX16992ATCE/F  
NAME  
FUNCTION  
μMAX-EP  
TQFN-EP  
TQFN-EP  
Open-Drain Synchronization Output. SYNCO outputs  
a square-wave signal which is 180N out-of-phase  
7
SYNCO with the device’s operational clock. Connect a pullup  
resistor from this pin to PVL or to a 5V or lower  
supply when used.  
Overvoltage Protection Input. When this pin goes  
above 110% of the FB regulation voltage, all  
switching is disabled. Operation resumes normally  
7
8
8
OVP  
when OVP drops below 107.5% of the FB regulation  
point. Connect a resistor divider between the output,  
OVP, and GND to set the overvoltage protection  
level.  
Reference Input. When using the internal reference  
connect REFIN to PVL. Otherwise, drive this pin with  
an external voltage between 0.5V and 2V to set the  
boost output voltage.  
REFIN  
Open-Drain Power-Good Output. Connect a resistor  
from this pin to PVL or to another voltage less than or  
equal to 5V. PGOOD goes high after soft-start when  
the output exceeds 90% of its final value. When EN is  
low PGOOD is also low. After soft-start is complete,  
if PGOOD goes low and 16 consecutive current-limit  
cycles occur, the devices enter hiccup mode and a  
new soft-start is initiated after a delay of 44ms.  
7
9
9
PGOOD  
Frequency Set/Synchronization. To set a switching  
frequency between 100kHz and 1000kHz  
(MAX16990) or between 1000kHz and 2500kHz  
(MAX16992), connect a resistor from this pin to  
GND. To synchronize the converter, connect a logic  
signal in the range 220kHz to 1000kHz (MAX16990)  
or 1000kHz to 2500kHz (MAX16992) to this input.  
The external n-channel MOSFET is turned on (i.e.,  
DRV goes high) after a short delay (60ns for 2.2MHz  
operation, 125ns for 400kHz) when SYNC transitions  
low.  
FSET/  
SYNC  
8
10  
10  
Output of Error Amplifier. Connect the compensation  
network between COMP and GND.  
9
11  
12  
11  
12  
COMP  
FB  
Boost Converter Feedback. This pin is regulated to  
1V when REFIN is tied to PVL or otherwise regulated  
to REFIN during boost operation. Connect a resistor  
divider between the boost output, the FB pin and  
GND to set the boost output voltage. In a two-phase  
converter connect the FB pin of the slave IC to PVL.  
10  
Maxim Integrated  
10  
www.maximintegrated.com  
MAX16990/MAX16992  
36V, 2.5MHz Automotive Boost/  
SEPIC Controllers  
Pin Descriptions (continued)  
MAX16990AUBA/B, MAX16990ATCC/D, MAX16990ATCE/F,  
MAX16992AUBA/B MAX16992ATCC/D MAX16992ATCE/F  
NAME  
FUNCTION  
μMAX-EP  
TQFN-EP  
TQFN-EP  
Exposed Pad. Internally connected to GND.  
Connect to a large ground plane to maximize  
thermal performance. Not intended as an electrical  
connection point.  
EP  
Functional Diagram  
5V REGULATOR  
+ REFERENCE  
SUP  
PVL  
(OVP)  
UVLO  
REF.  
EN  
EN  
DRV  
GND  
THERMAL  
THERMAL  
50µA x f  
SW  
250mV  
BLANKING  
TIME  
ISNS  
CONTROL  
LOGIC  
FSET/SYNC  
(SYNCO)  
OSCILLATOR  
8
PGOOD  
COMP  
FB  
PGOOD  
COMPARATOR  
OTA  
V
- 0.4V  
PVL  
MAX16990  
MAX16992  
1V  
(REFIN)  
Maxim Integrated  
11  
www.maximintegrated.com  
MAX16990/MAX16992  
36V, 2.5MHz Automotive Boost/  
SEPIC Controllers  
Startup Operation/UVLO/EN  
Detailed Description  
The devices feature undervoltage lockout on the PVL-  
regulator and turn on the converter once PVL rises  
above 4V. The internal UVLO circuit has about 400mV  
hysteresis to avoid chattering during turn-on. Once the  
converter is operating and if SUP is fed from the output,  
the converter input voltage can drop below 4.5V. This  
feature allows operation at cold-crank voltages as low as  
2.5V or even lower with careful selection of external com-  
ponents. The EN input can be used to disable the device  
and reduce the standby current to less than 4FA (typ).  
The MAX16990/MAX16992 are high-performance,  
current-mode PWM controllers for wide input voltage  
range boost/SEPIC converters. The input operating volt-  
age range of 4.5V to 36V makes these devices ideal in  
automotive applications such as for front-end “preboost”  
or “SEPIC” power supplies and for the first boost stage  
in high-power LED lighting applications. An internal  
low-dropout regulator (PVL regulator) with an output volt-  
age of 5V enables the devices to operate directly from an  
automotive battery input. The input operating range can  
be as low as 2.5V when the converter output supplies  
the SUP input.  
Soft-Start  
The devices are provided with an internal soft-start time  
of 9ms. At startup, after voltage is applied and the UVLO  
threshold is reached, the device enters soft-start. During  
soft-start, the reference voltage ramps linearly to its final  
value in 9ms.  
The input undervoltage lockout (UVLO) circuit moni-  
tors the PVL voltage and turns off the converter when  
the voltage drops below 3.6V (typ). An external resistor  
programs the switching frequency in two ranges from  
100kHz to 1000kHz (MAX16990) or between 1000kHz  
and 2500kHz (MAX16992). The FSET/SYNC input can  
also be used for synchronization to an external clock. The  
SYNC pulse width should be greater than 70ns.  
Oscillator Frequency/External Synchronization/  
Spread Spectrum  
Use an external resistor at FSET/SYNC to program  
the MAX16990 internal oscillator frequency from 100kHz  
to 1MHz and the MAX16992 frequency between 1MHz  
and 2.5MHz. See TOCs 24 and 25 in the Typical Operating  
Characteristics section for resistor selection.  
Inductor current information is obtained by means of an  
external sense resistor connected from the source of the  
external n-channel MOSFET to GND.  
The devices include an internal transconductance error  
amplifier with 1% accurate reference. At startup the  
internal reference is ramped in a time of 9ms to obtain  
soft-start.  
The SYNCO output is a 180N phase-shifted version  
of the internal clock and can be used to synchro-  
nize other converters in the system or to implement a  
two-phase boost converter with a second MAX16990/  
MAX16992. The advantages of a two-phase boost topol-  
ogy are lower input and output ripple and simpler thermal  
managementasthepowerdissipationisspreadovermore  
components. See the Multiphase Operation section for  
further details.  
The devices also include protection features such as  
hiccup mode and thermal shutdown as well as an  
optional overvoltage-detection circuit (OVP pin, C and D  
versions).  
Current-Mode Control Loop  
The devices can be synchronized using an external  
clock at the FSET/SYNC input. A falling clock edge on  
FSET/SYNC turns on the external MOSFET by driving  
DRV high after a short delay.  
The MAX16990/MAX16992 offers peak current-mode  
control operation for best load step performance and  
simpler compensation. The inherent feed-forward  
characteristic is useful especially in automotive appli-  
cations where the input voltage changes quickly  
during cold-crank and load dump conditions. While the  
current-mode architecture offers many advantages, there  
are some shortcomings. In high duty-cycle operation,  
subharmonic oscillations can occur. To avoid this, the  
device offers programmable slope compensation using  
a single resistor between the ISNS pin and the current-  
sense resistor. To avoid premature turn-off at the begin-  
ning of the on-cycle the current-limit and PWM compara-  
tor inputs have leading-edge blanking.  
The B, D, and F versions of the devices have spread-  
spectrum oscillators. In these parts the internal oscillator  
frequency is varied dynamically 6% around the switch-  
ing frequency. Spread spectrum can improve system  
EMI performance by reducing the height of peaks due  
to the switching frequency and its harmonics in the  
spectrum. The SYNCO output includes spread-spectrum  
modulation when the internal oscillator is used on the B,  
D, and F versions. Spread spectrum is not active when  
an external clock is applied to the FSET/SYNC pin.  
Maxim Integrated  
12  
www.maximintegrated.com  
MAX16990/MAX16992  
36V, 2.5MHz Automotive Boost/  
SEPIC Controllers  
n-Channel MOSFET Driver  
device tries to restart by initiating a soft-start. Note that  
a short-circuit on the output places considerable stress  
on all the power components even with hiccup mode,  
so that careful component selection is important if this  
condition is encountered. For more complete protection  
against output short-circuits, a series pMOS switch driven  
from PGOOD through a level-shifter can be employed  
(see Figure 1).  
DRV drives the gate of an external n-channel MOSFET.  
The driver is powered by the internal regulator (PVL),  
which provides approximately 5V. This makes both the  
devices suitable for use with logic-level MOSFETs. DRV  
can source 750mA and sink 1000mA peak current.  
The average current sourced by DRV depends on the  
switching frequency and total gate charge of the external  
MOSFET (see the Power Dissipation section).  
Applications Information  
Error Amplifier  
Inductor Selection  
Using the following equation, calculate the minimum  
inductor value so that the converter remains in continu-  
The devices include an internal transconductance error  
amplifier. The noninverting input of the error amplifier is  
connected to the internal 1V reference and feedback is  
provided at the inverting input. High 700FS open-loop  
transconductance and 50MΩ output impedance allow  
good closed-loop bandwidth and transient response.  
Moreover, the source and sink current capability of  
140FA provides fast error correction during output load  
transients.  
ous mode operation at minimum output current (I  
):  
OMIN  
2
L
= (V  
x D x E)/(2 x f  
x V  
x I  
)
MIN  
IN  
SW  
OUT  
OMIN  
where:  
D = (V  
+ V - V )/(V  
+ V - V  
)
DS  
OUT  
D
IN  
OUT  
D
and:  
I
is between 10% and 25% of I  
OUT  
OMIN  
Slope Compensation  
A higher value of I  
however, it increases the peak and RMS currents in the  
switching MOSFET and inductor. Select I between  
10% to 25% of the full load current. V is the forward  
voltage drop of the external Schottky diode, D is the duty  
reduces the required inductance;  
The devices use an internal current-ramp generator for  
slope compensation. The internal ramp signal resets at  
the beginning of each cycle and slews at a typical rate of  
OMIN  
OMIN  
50FA x f . The amount of slope compensation needed  
D
SW  
depends on the slope of the current ramp in the inductor.  
See the Current-Sense Resistor Selection and Setting  
Slope Compensation section for further information.  
cycle, and V  
is the voltage drop across the external  
DS  
switch. Select an inductor with low DC resistance and  
with a saturation current (I ) rating higher than the  
SAT  
Current Limit  
peak switch current limit of the converter.  
The current-sense resistor (R ) connected between the  
source of the MOSFET and ground sets the current limit.  
CS  
Input and Output Capacitors  
The input current to a boost converter is almost  
continuous and the RMS ripple current at the input  
capacitor is low. Calculate the minimum input capacitor  
value and maximum ESR using the following equations:  
The ISNS input has a voltage trip level (V ) of 250mV.  
CS  
When the voltage produced by the current in the induc-  
tor exceeds the current-limit comparator threshold, the  
MOSFET driver (DRV) quickly terminates the on-cycle.  
In some cases, a short time-constant RC filter could be  
required to filter out the leading-edge spike on the sense  
waveform in addition to the internal blanking time. The  
amplitude and width of the leading edge spike depends  
on the gate capacitance, drain capacitance, and switch-  
ing speed (MOSFET turn-on time).  
C
IN  
= DI x D/(4 x f  
x DV )  
SW Q  
L
ESR  
= DV /DI  
ESR L  
MAX  
where DI = ((V - V ) x D)/(L x f ).  
L
IN  
DS  
SW  
V
is the total voltage drop across the external  
DS  
MOSFET plus the voltage drop across the inductor  
ESR. DI is peak-to-peak inductor ripple current as  
L
Hiccup Operation  
calculated above. DV is the portion of input ripple due  
Q
The devices incorporate a hiccup mode in an effort to  
protect the external power components when there is  
an output short-circuit. If PGOOD is low (i.e., the output  
voltage is less than 85% of its set value) and there are  
16 consecutive current-limit events, switching is stopped.  
There is then a waiting period of 44ms before the  
to the capacitor discharge and DV  
is the contribution  
ESR  
due to ESR of the capacitor. Assume the input capacitor  
ripple contribution due to ESR (DV ) and capacitor  
ESR  
discharge (DV ) are equal when using a combination of  
Q
ceramic and aluminium capacitors. During the converter  
Maxim Integrated  
13  
www.maximintegrated.com  
MAX16990/MAX16992  
36V, 2.5MHz Automotive Boost/  
SEPIC Controllers  
INPUT  
V
OUT  
SUP  
EN  
DRV  
N
ISNS  
N
PVL  
MAX16990  
MAX16992AUBA  
PVL  
PGOOD  
FB  
FSET/SYNC  
COMP  
GND  
Figure 1. Application with Output Short-Circuit Protection  
turn-on, a large current is drawn from the input source  
especially at high output to input differential. The devices  
have an internal soft-start, however, a larger input capac-  
itor than calculated above could be necessary to avoid  
chattering due to finite hysteresis during turn-on.  
minimum input voltage). Use a combination of low-ESR  
ceramic and high-value, low-cost aluminium capacitors  
for lower output ripple and noise.  
Current-Sense Resistor Selection and Setting  
Slope Compensation  
In a boost converter, the output capacitor supplies the  
load current when the main switch is on. The required  
output capacitance is high, especially at lower duty  
cycles. Also, the output capacitor ESR needs to be low  
enough to minimize the voltage drop due to the ESR while  
supporting the load current. Use the following equations  
to calculate the output capacitor, for a specified output  
ripple. All ripple values are peak-to-peak.  
Set the current-limit threshold 20% higher than the peak  
switch current at the rated output power and minimum  
input voltage. Use the following equation to calculate an  
initial value for R  
:
CS  
R
CS  
= 0.2/{1.2 x [((V  
x I  
) x (V  
)/E)/V  
+ 0.5 x  
x L))]}  
OUT  
OUT  
INMIN  
((V  
– V  
)/V  
/(f  
OUT  
INMIN OUT  
INMIN SW  
where E is the estimated efficiency of the converter (use  
0.85 as an initial value or consult the graph in the Typical  
ESR = DV  
/I  
ESR OUT  
Operating Characteristics section); V  
the output voltage and current, respectively; V  
and I  
INMIN  
is the switching  
are  
is the  
OUT  
OUT  
C
OUT  
= (I  
x D  
)/(DV x f  
)
OUT  
MAX  
Q
SW  
where I  
is the output current, DV is the portion of the  
Q
OUT  
minimum value of the input voltage; f  
SW  
ripple due to the capacitor discharge, and DV  
ripple contribution due to the ESR of the capacitor. D  
is the maximum duty cycle (i.e., the duty cycle at the  
is the  
ESR  
frequency; and L is the minimum value of the chosen  
inductor.  
MAX  
Maxim Integrated  
14  
www.maximintegrated.com  
 
 
MAX16990/MAX16992  
36V, 2.5MHz Automotive Boost/  
SEPIC Controllers  
The devices use an internal ramp generator for slope  
compensation to stabilize the current loop when oper-  
ating at duty cycles above 50%. The amount of slope  
compensation required depends on the down-slope of  
the inductor current when the main switch is off. The  
inductor down-slope in turn depends on the input to out-  
put voltage differential of the converter and the inductor  
value. Theoretically, the compensation slope should be  
equal to 50% of the inductor downslope; however, a  
little higher than 50% slope is advised. Use the following  
equation to calculate the required compensating slope  
(mc) for the boost converter:  
At high switching frequencies, dynamic characteristics  
(parameters 1 and 2 of the above list) that predict switch-  
ing losses have more impact on efficiency than R  
),  
DS(ON  
which predicts DC losses. Qg includes all capacitances  
associated with charging the gate. The V of the  
DS(MAX)  
selected MOSFET must be greater than the maximum  
output voltage setting plus a diode drop (or the maximum  
input voltage if greater) plus an additional margin to allow  
for spikes at the MOSFET drain due to the inductance in  
the rectifier diode and output capacitor path. In addition,  
Qg determines the current needed to drive the gate at the  
selected operating frequency via the PVL linear regulator  
and thus determines the power dissipation of the IC (see  
the Power Dissipation section).  
mc = 0.5 x (V  
– V )/L A/s  
IN  
OUT  
The internal ramp signal resets at the beginning of each  
cycle and slews at the rate of 50FA x f . Adjust the  
Low-Voltage Operation  
SW  
amount of slope compensation by choosing R  
satisfy the following equation:  
to  
SCOMP  
The devices operate down to a voltage of 4.5V or less on  
their SUP pins. If the system input voltage is lower than  
this the circuit can be operated from its own output as  
shown in the Typical Application Circuit. At very low input  
voltages it is important to remember that input current will  
be high and the power components (inductor, MOSFET  
and diode) must be specified for this higher input current.  
In addition, the current-limit of the devices must be set  
high enough so that the limit is not reached during the on-  
time of the MOSFET which would result in output power  
limitation and eventually entering hiccup mode. Estimate  
the maximum input current using the following equation:  
R
= (mc x R )/(50e-6 x f  
)
SCOMP  
CS  
SW  
In some applications a filter could be needed between  
the current-sense resistor and the ISNS pin to augment  
the internal blanking time. Set the RC time constant just  
long enough to suppress the leading edge spike of the  
MOSFET current. For a given design, measure the lead-  
ing spike at the lowest input and rated output load to  
determine the value of the RC filter which can be formed  
from the slope-compensation resistor and an added  
capacitor from ISNS to GND.  
I
= ((V  
x I  
)/V  
)/E)/V  
+ 0.5 x  
INMAX  
OUT  
OUT  
OUT  
INMIN  
MOSFET Selection  
((V  
– V  
) x (V  
/(f  
x L))  
INMIN OUT  
INMIN SW  
The devices drive a wide variety of logic-level n-channel  
power MOSFETs. The best performance is achieved  
with low-threshold n-channel MOSFETs that specify  
where I  
is the maximum input current; V  
and  
INMAX  
OUT  
I
are the output voltage and current, respectively;  
OUT  
E is the estimated efficiency (which is lower at low input  
voltages due to higher resistive losses); V is the  
on-resistance with a gate-source voltage (V ) of 5V or  
GS  
INMIN  
less. When selecting the MOSFET, key parameters can  
include:  
minimum value of the input voltage; f  
frequency; and L is the minimum value of the chosen  
inductor.  
is the switching  
SW  
1) Total gate charge (Q ).  
g
2) Reverse-transfer capacitance or charge (C  
).  
RSS  
Boost Converter Compensation  
3) On-resistance (R  
).  
DS(ON)  
Refer to Application Note 5587: Selecting External  
Components and Compensation for Automotive Step-Up  
DC-DC Regulator with Preboost Reference Design.  
4) Maximum drain-to-source voltage (V  
).  
DS(MAX)  
5) Maximumgatefrequenciesthresholdvoltage(V  
).  
TH(MAX)  
SEPIC Operation  
For a reference example of using the devices in SEPIC  
mode, see Figure 2.  
Maxim Integrated  
15  
www.maximintegrated.com  
MAX16990/MAX16992  
36V, 2.5MHz Automotive Boost/  
SEPIC Controllers  
22µF  
1µF  
33µF  
27µH  
5V/2A  
BATTERY INPUT  
2.5V-40V  
24x7µF  
CERAMIC  
10µH  
PVL  
SUP  
DRV  
N
10k  
470Ω  
12kΩ  
PGOOD  
ISNS  
22mΩ  
PVL  
330pF  
MAX16990AUBA  
MAX16990AUBB  
2.2µF  
FB  
FSET/SYNC  
COMP  
3kΩ  
69kΩ  
EN  
N
GND  
ENABLE  
Figure 2. SEPIC Bootstrapped 400kHz Application with Low Operating Voltage  
INPUT  
V
OUT  
SUP  
DRV  
N
ISNS  
REFIN  
MAX16990/2_ATC  
PVL  
OVP  
FB  
SYNCO  
COMP  
FSET/SYNC  
EN  
ENABLE  
GND  
Figure 3. Application with Independent Output Overvoltage Protection  
Maxim Integrated  
16  
www.maximintegrated.com  
 
 
MAX16990/MAX16992  
36V, 2.5MHz Automotive Boost/  
SEPIC Controllers  
1µF  
10µH  
VIN  
50V/1A  
2x47µF  
CERAMIC  
22µF  
SUP  
DRV  
N
FSET/SYNC  
2200  
69kΩ  
ISNS  
MAX16992_ATC  
20mΩ  
PGOOD  
PVL  
FB  
2.2µF  
COMP  
EN  
SYNCO GND  
10kΩ  
10µH  
22µF  
1µF  
FSET/  
SYNC  
SUP  
DRV  
N
75kΩ  
2200Ω  
ISNS  
REFIN  
20mΩ  
MAX16992_ATC  
PGOOD  
1500Ω  
PVL  
2.2µF  
COMP  
SYNCO  
FB  
EN  
N
GND  
ENABLE  
Figure 4. Two-Phase 400kHz Boost Application with Minimum Component Count  
Overvoltage Protection  
of the COMP signal and good current-sharing is attained  
between the two phases. When designing the PCB for a  
multiphase converter it is important to protect the COMP  
trace in the layout from noisy signals by placing it on an  
inner layer and surrounding it with ground traces.  
The “C” and “D” variants of the devices include the over-  
voltage protection input. When the OVP pin goes above  
110% of the FB regulation voltage, all switching is dis-  
abled. For an example application circuit, see Figure 3.  
Using REFIN to Adjust the Output Voltage  
Multiphase Operation  
The REFIN pin can be used to directly adjust the  
reference voltage of the boost converter, thus altering  
the output voltage. When not used, REFIN should be  
connected to PVL. Because REFIN is a high-impedance  
pin, it is simple to drive it by means of an external digital-  
to-analog converter (DAC) or a filtered PWM signal.  
Two boost phases can be implemented with no extra  
components using two ICs as shown in Figure 4. In this  
circuit the SYNCO output of the master device drives the  
SYNC input of the slave forcing it to operate 180N out-of-  
phase. The FB pin of the slave device is connected to  
PVL, thus disabling its error amplifier. In this way the error  
amplifier of the master controls both devices by means  
Maxim Integrated  
17  
www.maximintegrated.com  
 
 
MAX16990/MAX16992  
36V, 2.5MHz Automotive Boost/  
SEPIC Controllers  
Power Dissipation  
where V  
is the voltage at the SUP pin of the IC, I  
CC  
SUP  
is the IC quiescent current consumption or typically  
0.75mA (MAX16990) or 1.25mA (MAX16992), Q is the  
total gate charge of the chosen MOSFET at 5V, and f  
SW  
is the switching frequency. P reaches it maximum at  
The power dissipation of the IC comes from two sources:  
the current consumption of the IC itself and the current  
required to drive the external MOSFET, of which the latter  
is usually dominant. The total power dissipation can be  
estimated using the following equation:  
g
IC  
maximum V  
.
SUP  
P
IC  
= V  
x I  
+ (V  
– 5) x (Q x f  
)
SUP  
CC  
SUP  
g
SW  
Ordering Information  
FREQUENCY  
OVP/  
SYNCO  
SPREAD  
SPECTRUM  
PART  
TEMP RANGE  
PIN-PACKAGE  
RANGE  
MAX16990AUBA/V+  
MAX16990AUBB/V+  
MAX16990ATCC/V+  
MAX16990ATCD/V+  
MAX16990ATCE/V+  
MAX16990ATCF/V+  
MAX16992AUBA/V+  
MAX16992AUBB/V+  
MAX16992ATCC/V+  
MAX16992ATCD/V+  
MAX16992ATCE/V+  
MAX16992ATCF/VY+**  
220kHz to 1MHz  
220kHz to 1MHz  
220kHz to 1MHz  
220kHz to 1MHz  
220kHz to 1MHz  
220kHz to 1MHz  
1MHz to 2.5MHz  
1MHz to 2.5MHz  
1MHz to 2.5MHz  
1MHz to 2.5MHz  
1MHz to 2.5MHz  
1MHz to 2.5MHz  
None  
None  
Off  
On  
Off  
On  
Off  
On  
Off  
On  
Off  
On  
Off  
On  
-40NC to +125NC  
-40NC to +125NC  
-40NC to +125NC  
-40NC to +125NC  
-40NC to +125NC  
-40NC to +125NC  
-40NC to +125NC  
-40NC to +125NC  
-40NC to +125NC  
-40NC to +125NC  
-40NC to +125NC  
-40NC to +125NC  
10 FMAX-EP*  
10 FMAX-EP*  
12 TQFN-EP*  
12 TQFN-EP*  
12 TQFN-EP*  
12 TQFN-EP*  
10 FMAX-EP*  
10 FMAX-EP*  
12 TQFN-EP*  
12 TQFN-EP*  
12 TQFN-EP*  
12 SWTQFN-EP*  
OVP  
OVP  
SYNCO  
SYNCO  
None  
None  
OVP  
OVP  
SYNCO  
SYNCO  
/V denotes an automotive qualified part.  
+Denotes a lead(Pb)-free/RoHS-compliant package.  
*EP = Exposed pad.  
**Future productcontact factory for availability.  
Chip Information  
PROCESS: BiCMOS  
Package Information  
For the latest package outline information and land patterns (foot-  
prints), go to www.maximintegrated.com/packages. Note that a  
“+”, “#”, or “-” in the package code indicates RoHS status only.  
Package drawings may show a different suffix character, but the  
drawing pertains to the package regardless of RoHS status.  
LAND  
PATTERN  
NO.  
PACKAGE  
TYPE  
PKG  
CODE  
OUTLINE  
NO.  
12 SWTQFN-EP  
12 TQFN-EP  
10 FMAX-EP  
T1233Y+4  
T1233+4  
U10E+3  
21-100171  
21-0136  
90-100060  
90-0019  
21-0109  
90-0148  
Maxim Integrated  
18  
www.maximintegrated.com  
 
 
MAX16990/MAX16992  
36V, 2.5MHz Automotive Boost/  
SEPIC Controllers  
Revision History  
REVISION REVISION  
PAGES  
CHANGED  
DESCRIPTION  
NUMBER  
DATE  
3/13  
4/13  
4/13  
7/13  
2/15  
7/15  
8/15  
0
1
2
3
4
5
6
Initial release  
Added EP to μMAX package in Pin Description  
9–11  
7, 8  
Corrected errors in TOCs 21 and 29  
Removed future product asterisks from Ordering Information  
Update the Benefits and Features section  
18  
1
Corrected value in Figure 2, changing inductor value from 22mF to 22mH  
Corrected part number in Typical Application Circuit  
16  
1
Replaced toc18 in Typical Operating Characteristics, added MAX16992ATCF/VY+  
in Ordering Information as a future product, and added SWTQFN-EP (package code  
T1233Y+4) in Package Information sections  
7
2/17  
7, 18  
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim Integrated’s website at www.maximintegrated.com.  
Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses  
are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits)  
shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.  
©
Maxim Integrated and the Maxim Integrated logo are trademarks of Maxim Integrated Products, Inc.  
2017 Maxim Integrated Products, Inc.  
19  

相关型号:

MAX16993

Step-Down Controller with Dual 2.1MHz Step-Down DC-DC Converters
MAXIM

MAX16993AGJA/VY+

Dual Switching Controller, Current-mode, 2100kHz Switching Freq-Max, QFND-32
MAXIM

MAX16993AGJC/VY+

Dual Switching Controller, Current-mode, 2100kHz Switching Freq-Max, QFND-32
MAXIM

MAX16993AGJD/VY+

Dual Switching Controller, Current-mode, 2100kHz Switching Freq-Max, QFND-32
MAXIM

MAX16993AGJE/VY+

Dual Switching Controller,
MAXIM

MAX16993AGJG/VY+

Dual Switching Controller,
MAXIM

MAX16993AGJI/VY+

Dual Switching Controller,
MAXIM

MAX16993ATJA+

Dual Switching Controller,
MAXIM

MAX16993ATJB+

Dual Switching Controller,
MAXIM

MAX16993ATJE+

Dual Switching Controller,
MAXIM

MAX16993ATJF+

Dual Switching Controller,
MAXIM

MAX16993ATJF+T

Switching Regulator/Controller, Current-mode, 1.5A, 2200kHz Switching Freq-Max, PQCC32
MAXIM