MAX1706EEE [MAXIM]

1- to 3-Cell, High-Current, Low-Noise, Step-Up DC-DC Converters with Linear Regulator; 1至3节电池,大电流,低噪声,升压型线性稳压器DC- DC转换器
MAX1706EEE
型号: MAX1706EEE
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

1- to 3-Cell, High-Current, Low-Noise, Step-Up DC-DC Converters with Linear Regulator
1至3节电池,大电流,低噪声,升压型线性稳压器DC- DC转换器

转换器 稳压器 开关式稳压器或控制器 电源电路 电池 开关式控制器 光电二极管
文件: 总20页 (文件大小:216K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-1198; Rev 0; 4/97  
1 - t o 3 -Ce ll, Hig h -Cu rre n t , Lo w -No is e ,  
S t e p -Up DC-DC Co n ve rt e rs w it h Lin e a r Re g u la t o r  
5/MAX1706  
_______________Ge n e ra l De s c rip t io n  
____________________________Fe a t u re s  
The MAX1705/MAX1706 are high-efficiency, low-noise,  
s te p -up DC-DC c onve rte rs with a n a uxilia ry line a r-  
regulator output. These devices are intended for use in  
battery-powered wireless applications. They use a syn-  
chronous rectifier pulse-width-modulation (PWM) boost  
topology to generate 2.5V to 5.5V outputs from battery  
inputs, such as 1 to 3 NiCd/NiMH cells or 1 Li-Ion cell.  
The MAX1705 has an internal 1A N-channel MOSFET  
switch. The MAX1706 has a 0.5A switch. Both devices  
also have a built-in low-dropout linear regulator that  
delivers up to 200mA.  
Up to 96% Efficiency  
1.1V Guaranteed Start-Up  
IN  
Up to 850mA Output (MAX1705)  
Step-Up Output (2.5V to 5.5V adjustable)  
Linear Regulator (1.25V to 5.0V adjustable)  
PWM/PFM Synchronous-Rectified Topology  
300kHz PWM Mode or Synchronizable  
1µA Shutdown Mode  
With an internal synchronous rectifier, the MAX1705/  
MAX1706 deliver 5% better efficiency than similar non-  
synchronous converters. They also feature a pulse-  
frequency-modulation (PFM) standby mode to improve  
efficiency at light loads, and a 1µA shutdown mode. An  
efficiency-enhancing track mode reduces the step-up  
DC-DC converter output to 300mV above the linear-reg-  
ulator output.  
Voltage Monitor  
Pushbutton On/Off Control  
______________Ord e rin g In fo rm a t io n  
PART  
TEMP. RANGE  
0°C to +70°C  
PIN-PACKAGE  
Dice*  
MAX1705C/D  
MAX1705EEE  
MAX1706C/D  
MAX1706EEE  
Both devices come in a 16-pin QSOP package, which  
occupies the same space as an 8-pin SO. Other features  
include two shutdown-control inputs for push-on/push-off  
control, and an uncommitted comparator for use as a volt-  
age monitor.  
-40°C to +85°C  
0°C to +70°C  
16 QSOP  
Dice*  
-40°C to +85°C  
16 QSOP  
*Dice are tested at T = +25°C, DC parameters only.  
A
________________________Ap p lic a t io n s  
__________Typ ic a l Op e ra t in g Circ u it  
Digital Cordless Phones  
Personal Communicators  
Palmtop Computers  
PCS Phones  
Wireless Handsets  
Two-Way Pagers  
INPUT 0.7V TO 5.5V  
Hand-Held Instruments  
LX  
STEP-UP OUTPUT  
LBP  
__________________P in Co n fig u ra t io n  
POUT  
LOW-BATTERY  
OUT  
DETECTION  
TOP VIEW  
LBP  
LBN  
1
2
3
4
5
6
7
8
16 POUT  
15 ONA  
14 ONB  
13 LX  
FB  
MAX1705  
MAX1706  
LBO  
ONA  
ON/OFF CONTROL  
LINEAR  
REGULATOR  
OUTPUT  
REF  
ONB  
HIGH  
LOW  
CLK/SEL  
TRACK  
TRACK  
GND  
OUT  
MAX1705  
MAX1706  
EFFICIENCY  
NOISE  
LDO  
12 PGND  
11 CLK/SEL  
10 LBO  
FBLDO  
LBN  
REF  
GND PGND  
FB  
FBLDO  
9 LDO  
QSOP  
________________________________________________________________ Maxim Integrated Products  
1
For free samples & the latest literature: http://www.maxim-ic.com, or phone 1-800-998-8800  
1 - t o 3 -Ce ll, Hig h -Cu rre n t , Lo w -No is e ,  
S t e p -Up DC-DC Co n ve rt e rs w it h Lin e a r Re g u la t o r  
ABSOLUTE MAXIMUM RATINGS  
Continuous Power Dissipation (T = +70°C)  
A
ONA, ONB, FBLDO, OUT, POUT to GND...................-0.3V to 6V  
PGND to GND.....................................................................±0.3V  
POUT to OUT......................................................................±0.3V  
QSOP (derate 8.70mW/°C above +70°C)...................696mW  
Operating Temperature Range ...........................-40°C to +85°C  
Junction Temperature ......................................................+150°C  
Storage Temperature Range .............................-65°C to +160°C  
Lead Temperature (soldering, 10sec) .............................+300°C  
LX to PGND ............................................-0.3V to (V  
CLK/SEL, REF, FB, TRACK, LDO,  
+ 0.3V)  
POUT  
LBN, LBP, LBO to GND.......................-0.3V to (V  
+ 0.3V)  
OUT  
LDO Short Circuit .......................................................Continuous  
Stresses beyond those listed under Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(V  
OUT  
= V  
= V  
= 3.6V, CLK/SEL = FB = LBN = LBO = ONA = ONB = TRACK = GND, REF = open (bypassed with 0.22µF),  
POUT  
LBP  
LX = open, T = 0°C to +85°C, unless otherwise noted. Typical values are at T = +25°C.)  
A
A
PARAMETER  
DC-DC CONVERTER  
Minimum Start-Up Voltage  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
5/MAX1706  
T
= +25°C, I  
< 1mA, Figure 2  
0.9  
0.7  
1.1  
V
V
A
LOAD  
Minimum Operating Battery  
Voltage  
(Note 1)  
FB Regulation Voltage  
FB Input Current  
CLK/SEL = OUT  
= 1.5V  
1.219  
2.5  
1.233  
0.01  
1.247  
50  
V
nA  
V
V
FB  
OUT Adjust Range  
5.5  
MAX1705, 0A I 0.5A;  
LX  
Load Regulation  
MAX1706, 0A I 0.25A;  
0.65  
1.25  
%
LX  
CLK/SEL = OUT  
V
+ 0.2  
V
+ 0.3  
V
LDO  
+ 0.4  
LDO  
LDO  
OUT Voltage in Track Mode  
Frequency in Start-Up Mode  
TRACK = V  
> 2.3V  
= 1.5V  
V
kHz  
V
LDO  
f
V
= V  
40  
150  
300  
LX  
POUT OUT  
Start-Up to Normal Mode  
Transition Voltage  
(Note 2)  
ONA = GND, ONB = OUT, measure I  
2.00  
2.15  
1
2.30  
20  
Supply Current in Shutdown  
I
µA  
OUT  
OUT  
Supply Current in  
Low-Power Mode  
CLK/SEL = GND, V = V  
no load  
= 1.5V,  
FB  
FBLDO  
I
100  
190  
360  
µA  
OUT  
V
FB  
= V  
= 1.5V, no load  
180  
2.1  
µA  
FBLDO  
Supply Current in  
Low-Noise Mode  
I
CLK/SEL = OUT  
OUT  
FB = GND (LX switching)  
mA  
REFERENCE  
Reference Output Voltage  
Reference Load Regulation  
Reference Supply Regulation  
I
= 0µA  
1.238  
1.250  
4
1.262  
15  
V
REF  
-1µA < I  
< 50µA  
mV  
mV  
REF  
2.5V < V  
< 5.5V  
0.2  
5
OUT  
2
_______________________________________________________________________________________  
1 - t o 3 -Ce ll, Hig h -Cu rre n t , Lo w -No is e ,  
S t e p -Up DC-DC Co n ve rt e rs w it h Lin e a r Re g u la t o r  
5/MAX1706  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
OUT  
= V  
= V  
= 3.6V, CLK/SEL = FB = LBN = LBO = ONA = ONB = TRACK = GND, REF = open (bypassed with 0.22µF),  
POUT  
LBP  
LX = open, T = 0°C to +85°C, unless otherwise noted. Typical values are at T = +25°C.)  
A
A
PARAMETER  
DC-DC SWITCHES  
POUT Leakage Current  
LX Leakage Current  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
= 0V, V  
= 0V, V  
= V  
= 5.5V  
0.1  
0.1  
20  
20  
µA  
µA  
ONB  
ONB  
OUT  
LX  
V
LX  
= V  
= 5.5V  
OUT  
CLK/SEL = GND  
0.23  
0.16  
0.27  
1280  
750  
435  
435  
0.45  
0.28  
0.50  
1550  
950  
550  
550  
N-channel, I = 100mA  
LX  
CLK/SEL = OUT  
Switch On-Resistance  
P-channel, I = 100mA  
LX  
MAX1705  
MAX1706  
MAX1705  
MAX1706  
1000  
550  
250  
250  
CLK/SEL = OUT  
CLK/SEL = GND  
CLK/SEL = GND  
N-Channel MOSFET  
Current Limit  
I
mA  
mA  
LIM  
P-Channel Synchronous-  
Rectifier Turn-Off Current  
20  
70  
120  
LINEAR REGULATOR  
FBLDO Regulation Voltage  
FBLDO Input Current  
LDO Adjust Range  
FBLDO = LDO, I  
= 1mA  
1.238  
1.250  
0.01  
1.262  
50  
V
nA  
V
LOAD  
V
FBLDO  
= 1.5V  
1.25  
220  
5.0  
Short-Circuit Current Limit  
Dropout Resistance  
FBLDO = GND  
= 1V, I  
300  
0.5  
0.4  
500  
1.2  
mA  
V
= 200mA  
LDO  
FBLDO  
Load Regulation  
10µA < I  
< 200mA, FBLDO = LDO  
< 5.5V, FBLDO = LDO,  
1.2  
%
LDO  
2.5V < V  
OUT  
Line Regulation  
0.1  
0.5  
%
I
= 1mA  
LDO  
AC Power-Supply Rejection  
Thermal Shutdown  
f = 300kHz  
38  
dB  
°C  
Hysteresis approximately 10°C  
155  
LOW-BATTERY COMPARATOR  
LBN, LBP Offset  
LBP falling  
LBP rising  
-5  
5
mV  
mV  
LBN, LBP Hysteresis  
16  
LBN, LBP Common-Mode  
Input Range  
V
= 0.5V and 1.5V (at least one input must  
LBN  
0.5  
1.5  
50  
0.4  
1
V
nA  
V
be within this range)  
LBN, LBP Input Current  
LBO Output Low Voltage  
V
LBN  
= VLBP = 1V  
0.01  
I
= 1mA, V = 2.5V, LBP = GND,  
OUT  
SINK  
LBN = OUT  
LBO High Leakage  
V
LBO  
= V = 5V  
OUT  
µA  
CONTROL INPUTS  
0.2V  
1.2V < V  
< 5.5V, ONA, ONB (Note 3)  
OUT  
OUT  
Input Low Level  
Input High Level  
V
V
V
OUT  
= 2.5V, CLK/SEL, TRACK  
0.2V  
OUT  
0.8V  
1.2V < V  
< 5.5V, ONA, ONB (Note 3)  
OUT  
OUT  
V
OUT  
= 5.5V, CLK/SEL, TRACK  
0.8V  
OUT  
Input Leakage Current  
(CLK/SEL, ONA, ONB, TRACK)  
1
µA  
_______________________________________________________________________________________  
3
1 - t o 3 -Ce ll, Hig h -Cu rre n t , Lo w -No is e ,  
S t e p -Up DC-DC Co n ve rt e rs w it h Lin e a r Re g u la t o r  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
OUT  
= V  
= V  
= 3.6V, CLK/SEL = FB = LBN = LBO = ONA = ONB = TRACK = GND, REF = open (bypassed with 0.22µF),  
POUT  
LBP  
LX = open, T = 0°C to +85°C, unless otherwise noted. Typical values are at T = +25°C.)  
A
A
PARAMETER  
SYMBOL  
CONDITIONS  
CLK/SEL = OUT  
MIN  
TYP  
MAX  
UNITS  
Internal Oscillator Frequency  
260  
300  
340  
kHz  
External Oscillator  
Synchronization Range  
200  
80  
400  
90  
kHz  
Oscillator Maximum Duty Cycle  
Minimum CLK/SEL Pulse  
86  
%
200  
ns  
Maximum CLK/SEL  
Rise/Fall Time  
100  
ns  
ELECTRICAL CHARACTERISTICS  
(V  
OUT  
= V  
= V  
= 3.6V, CLK/SEL = FB = LBN = LBO = ONA = ONB = TRACK = GND, REF = open (bypassed with 0.22µF),  
POUT  
LBP  
LX = open, T = -40°C to +85°C, unless otherwise noted, Note 4.)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
5/MAX1706  
DC-DC CONVERTER  
FB Regulation Voltage  
CLK/SEL = OUT  
TRACK = OUT, V  
1.215  
1.251  
V
V
V
LDO  
0.2  
+
V
LDO  
+
OUT Voltage in Track Mode  
> 2.3V  
LDO  
0.4  
2.3  
Start-Up to Normal Mode  
Transition Voltage  
2.0  
V
Supply Current in Shutdown  
I
20  
µA  
µA  
ONA = 0V, ONB = OUT, measure I  
OUT  
OUT  
Supply Current in  
Low-Power Mode  
I
CLK/SEL = 0V, FB = FBLDO = 1.5V, no load  
190  
OUT  
Supply Current in  
Low-Noise Mode  
CLK/SEL = OUT, V = V  
no load  
= 1.5V,  
FBLDO  
FB  
I
360  
µA  
V
OUT  
REFERENCE  
Reference Output Voltage  
DC-DC CONVERTER  
I
= 0µA  
1.235  
1.265  
REF  
CLK/SEL = 0V  
CLK/SEL = OUT  
CLK/SEL = OUT  
MAX1705  
0.45  
0.28  
0.50  
1700  
950  
N-channel, I = 100mA  
LX  
Switch On-Resistance  
P-channel, I = 100mA  
LX  
1000  
550  
250  
250  
CLK/SEL = OUT  
CLK/SEL = 0V  
CLK/SEL = 0V  
MAX1706  
N-Channel MOSFET  
Current Limit  
I
mA  
mA  
LIM  
MAX1705  
570  
MAX1706  
570  
P-Channel Synchronous-  
Rectifier Turn-Off Current  
20  
120  
4
_______________________________________________________________________________________  
1 - t o 3 -Ce ll, Hig h -Cu rre n t , Lo w -No is e ,  
S t e p -Up DC-DC Co n ve rt e rs w it h Lin e a r Re g u la t o r  
5/MAX1706  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
OUT  
= V  
= V  
= 3.6V, CLK/SEL = FB = LBN = LBO = ONA = ONB = TRACK = GND, REF = open (bypassed with 0.22µF),  
POUT  
LBP  
LX = open, T = -40°C to +85°C, unless otherwise noted, Note 4.)  
A
PARAMETER  
LINEAR REGULATOR  
FBLDO Regulation Voltage  
FBLDO Input Current  
SYMBOL  
CONDITIONS  
MIN  
1.233  
220  
TYP  
MAX  
UNITS  
FBLDO = LDO, I  
= 1mA  
1.268  
50  
V
nA  
mA  
LOAD  
V
= 1.5V  
0.01  
FBLDO  
Short-Circuit Current Limit  
Dropout Resistance  
FBLDO = LDO = GND  
= 1V, I = 200mA  
600  
1.2  
V
FBLDO  
LDO  
LOW-BATTERY COMPARATOR  
LBN, LBP Offset  
LBP falling  
-5  
5
1.5  
1
mV  
V
LBN, LBP Common-Mode  
Input Range  
LBN = 0.5V and 1.5V (at least one input must  
be within this range)  
0.5  
LBO High Leakage  
LBO = OUT = 5V  
µA  
CONTROL INPUTS  
0.15V  
1.2V < V  
< 5.5V, ONA, ONB (Note 2)  
OUT  
OUT  
Input Low Level  
V
V
= 2.5V, CLK/SEL, TRACK  
0.15V  
OUT  
OUT  
0.85V  
1.2V < V  
< 5.5V, ONA, ONB (Note 2)  
OUT  
OUT  
Input High Level  
V
V
= 5.5V, CLK/SEL, TRACK  
0.85V  
OUT  
OUT  
Internal Oscillator Frequency  
CLK/SEL = OUT  
260  
340  
400  
kHz  
kHz  
External Oscillator  
Synchronization Range  
200  
Note 1: Once the output is in regulation, the MAX1705/MAX1706 operate down to a 0.7V input voltage.  
Note 2: The device is in start-up mode when V is below this value (see Low-Voltage Start-Up Oscillator section).  
OUT  
Note 3: ONA and ONB inputs have a hysteresis of approximately 0.15V  
.
OUT  
Note 4: Specifications to -40°C to are guaranteed by design, not production tested.  
_______________________________________________________________________________________  
5
1 - t o 3 -Ce ll, Hig h -Cu rre n t , Lo w -No is e ,  
S t e p -Up DC-DC Co n ve rt e rs w it h Lin e a r Re g u la t o r  
__________________________________________Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s  
(Circuit of Figure 2, T = +25°C, unless otherwise noted.)  
A
MAX1705  
MAX1705  
EFFICIENCY vs. OUTPUT CURRENT  
(V = 5V)  
MAX1705  
MAXIMUM OUTPUT CURRENT  
vs. INPUT VOLTAGE  
EFFICIENCY vs. OUTPUT CURRENT  
(V = 3.3V)  
OUT  
OUT  
1000  
100  
90  
100  
90  
L = 10µH  
B.1  
A.1  
C.1  
900  
800  
B.1  
B.2  
80  
70  
60  
50  
40  
30  
20  
10  
80  
70  
60  
50  
40  
30  
20  
10  
C.2  
B.2  
PWM MODE  
A.2  
A.2  
700  
600  
500  
400  
A.1  
V
OUT  
= 5V  
V
OUT  
= 3.3V  
L = 10µH  
V = 5V  
OUT  
L = 10µH  
= 3.3V  
A: V = 0.9V  
B: V = 2.7V  
1: PFM MODE  
2: PWM MODE  
PFM MODE  
V
OUT  
A: V = 0.9V  
C: V = 2.4V  
IN  
E: V = 3.6V  
1: PFM MODE  
2: PWM MODE  
IN  
300  
200  
100  
0
IN  
V
OUT  
= 3.3V  
IN  
IN  
V
OUT  
= 5V  
0
0
0.1  
1
10  
100  
1000  
0.1  
1
10  
100  
1000  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5  
INPUT VOLTAGE (V)  
5/MAX1706  
OUTPUT CURRENT (mA)  
OUTPUT CURRENT (mA)  
MAX1706  
MAX1706  
MAX1706  
EFFICIENCY vs. OUTPUT CURRENT  
EFFICIENCY vs. OUTPUT CURRENT  
MAXIMUM OUTPUT CURRENT  
vs. INPUT VOLTAGE  
(V = 5V)  
OUT  
(V = 3.3V)  
OUT  
100  
90  
100  
90  
700  
600  
B.1  
L = 22µH  
C.1  
A.1  
80  
70  
60  
50  
40  
30  
20  
10  
80  
70  
60  
50  
40  
30  
20  
10  
B.2  
C.2  
B.2  
B.1  
PWM MODE  
A.2  
500  
400  
300  
200  
A.2  
V
OUT  
= 5V  
A.1  
V
OUT  
= 3.3V  
L = 22µH  
OUT  
V
= 5V  
A: V = 0.9V  
B: V = 2.4V  
IN  
C: V = 3.6V  
1: PFM MODE  
2: PWM MODE  
L = 22µH  
= 3.3V  
A: V = 0.9V  
B: V = 2.7V  
IN  
1: PFM MODE  
2: PWM MODE  
V
OUT  
IN  
V
OUT  
= 3.3V  
IN  
IN  
V
OUT  
= 5V  
100  
0
PFM MODE  
0
0
0.1  
1
10  
100  
1000  
0.1  
1
10  
100  
1000  
0
0.5 1.0 1.5 2.0 2.5  
3
3.5  
4
4.5  
OUTPUT CURRENT (mA)  
OUTPUT CURRENT (mA)  
INPUT VOLTAGE (V)  
MAX1705  
START-UP INPUT VOLTAGE  
vs. OUTPUT CURRENT  
NO-LOAD SUPPLY CURRENT  
vs. INPUT VOLTAGE  
LINEAR-REGULATOR DROPOUT  
VOLTAGE vs. LOAD CURRENT  
2.3  
12  
140  
120  
100  
80  
V
= 3.3V  
NO-LOAD START-UP:  
1.0V AT -40°C  
0.79 AT +25°C  
0.64V AT +85°C  
CONSTANT-CURRENT LOAD  
OUT  
11  
10  
9
2.1  
1.9  
L = 10µH  
V
LDO  
= 3.3V  
1.7  
1.5  
1.3  
8
V
OUT  
= 3.3V  
7
V
LDO  
= 2.5V  
PWM MODE  
L = 10µH  
D1 = MBR0520L  
6
60  
5
V
LDO  
= 5V  
4
1.1  
0.9  
0.7  
0.5  
T = -40°C  
A
40  
3
T = +25°C  
A
2
20  
PFM MODE  
1
T = +85°C  
A
0
0
0.01  
0.1  
1
10  
100  
1000  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
INPUT VOLTAGE (V)  
0
40  
80  
120  
160  
200  
OUTPUT CURRENT (mA)  
LOAD CURRENT (mA)  
6
_______________________________________________________________________________________  
1 - t o 3 -Ce ll, Hig h -Cu rre n t , Lo w -No is e ,  
S t e p -Up DC-DC Co n ve rt e rs w it h Lin e a r Re g u la t o r  
5/MAX1706  
____________________________Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s (c o n t in u e d )  
(Circuit of Figure 2, T = +25°C, unless otherwise noted.)  
A
LINEAR-REGULATOR  
REGION OF STABLE C6 ESR  
vs. LOAD CURRENT  
LINEAR-REGULATOR POWER-SUPPLY  
REJECTION RATIO vs. FREQUENCY  
60  
100  
10  
1
C6 = 22µF  
50  
40  
30  
20  
UNCOMPENSATED  
C2 = 22pF (FEED FORWARD)  
STABLE REGION  
V
V
LDO  
= 4V TO 5V  
= 3.3V  
OUT  
0.1  
0
10  
0
I
= 200mA  
LDO  
C5 = 0.33µF  
100  
1k  
10k  
100k 1M  
10M  
1
50  
100  
150  
200  
250  
300  
FREQUENCY (Hz)  
LOAD CURRENT (mA)  
MAX1705  
NOISE SPECTRUM AT POUT  
(V = 4.5V, V = 1.2V, 200mA LOAD)  
OUT  
IN  
0V  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
MAX1705  
LINEAR-REGULATOR OUTPUT NOISE SPECTRUM  
(V = 3.3V, V = 4.5V, V = 1.2V, I = 200mA)  
LDO  
OUT  
IN  
LDO  
0V  
1k  
10k  
100k  
FREQUENCY (Hz)  
1M  
10M  
_______________________________________________________________________________________  
7
1 - t o 3 -Ce ll, Hig h -Cu rre n t , Lo w -No is e ,  
S t e p -Up DC-DC Co n ve rt e rs w it h Lin e a r Re g u la t o r  
____________________________Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s (c o n t in u e d )  
(Circuit of Figure 2, T = +25°C, unless otherwise noted.)  
A
MAX1705  
POWER-ON DELAY  
(PWM MODE)  
MAX1705  
LOAD-TRANSIENT RESPONSE  
MAX1705  
LINE-TRANSIENT RESPONSE  
3V  
A
B
2.5V  
A
B
A
B
3.3V  
0mA  
C
D
200µs/div  
200µs/div  
200µs/div  
5/MAX1706  
V
IN  
= 1.2V, V = 3.3V  
OUT  
V = 1.2V, LOAD = 1kΩ  
IN  
I
= 0mA, V = 3.3V  
OUT  
OUT  
A = V , 50mV/div, 3.3V DC OFFSET  
A = ONA, 2V/div  
A = V , 1.5V TO 2.0V, 200mV/div  
OUT  
IN  
B = I , 0mA TO 200mA, 200mA/div  
OUT  
B = V , 2V/div  
B = V 10mV/div, 3.3V DC OFFSET  
OUT,  
LDO  
C = V , 2V/div  
OUT  
D = INDUCTOR CURRENT, 500mA/div  
MAX1705  
LINEAR-REGULATOR  
OUTPUT NOISE  
MAX1705  
PWM SWITCHING WAVEFORMS  
MAX1705  
PFM SWITCHING WAVEFORMS  
DC TO 500kHz  
A
1A  
0V  
A
B
C
0mA  
0V  
B
C
V
LDO  
V
OUT  
V
OUT  
D
V
LDO  
D
V
LDO  
1µs/div  
2µs/div  
1ms/div  
V = 1.2V, V = 4.5V, V = 3.3V, I = 40mA  
IN OUT LDO LDO  
A = INDUCTOR CURRENT, 500mA/div  
B = LX VOLTAGE, 5V/div  
V
I
IS AC COUPLED, 1mv/div  
= 200mA  
V
= 1.2V, V = 4.5V, V = 3.3V, I = 200mA  
LDO  
IN  
OUT  
LDO  
LDO  
A = INDUCTOR CURRENT, 500mA/div  
B = LX VOLTAGE, 5V/div  
LDO  
C5 = 0.33µF  
C = V RIPPLE, 50m/div AC COUPLED  
C = V  
RIPPLE, 50mV/div AC COUPLED  
OUT  
OUT  
D = V RIPPLE, 5m/div AC COUPLED  
D = V RIPPLE, 5mV/div AC COUPLED  
LDO  
LDO  
C5 = 0.33µF  
C5 = 0.33µF  
8
_______________________________________________________________________________________  
1 - t o 3 -Ce ll, Hig h -Cu rre n t , Lo w -No is e ,  
S t e p -Up DC-DC Co n ve rt e rs w it h Lin e a r Re g u la t o r  
5/MAX1706  
______________________________________________________________P in De s c rip t io n  
PIN  
1
NAME  
LBP  
FUNCTION  
Low-Battery Comparator Noninverting Input. Common-mode range is 0.5V to 1.5V.  
Low-Battery Comparator Inverting Input. Common-mode range is 0.5V to 1.5V.  
1.250V Reference Output. Bypass REF with a 0.33µF capacitor to GND. REF can source up to 50µA.  
2
LBN  
REF  
3
Track-Mode Control Input for DC-DC Converter. In track mode, the boost-converter output is sensed at  
OUT and set 0.3V above LDO to improve efficiency. Set TRACK to OUT for track mode. Connect TRACK to  
GND for normal operation.  
4
TRACK  
5
6
GND  
OUT  
Ground  
Step-Up Converter Feedback Input, used during track mode. IC power and low-dropout linear-regulator  
input. Bypass OUT to GND with a 0.1µF ceramic capacitor placed as close to the IC as possible.  
Step-Up DC-DC Converter Feedback Input. Connect FB to a resistor voltage divider between POUT and  
GND to set the output voltage between 2.5V and 5.5V. FB regulates to 1.233V.  
7
FB  
Low-Dropout Linear-Regulator Feedback Input. Connect FBLDO to a resistor voltage divider between LDO  
8
9
FBLDO  
LDO  
to GND to set the output voltage from 1.25V to V  
- 0.3V (5.0V max). FBLDO regulates to 1.250V.  
OUT  
Low-Dropout Linear-Regulator Output. LDO sources up to 200mA. Bypass to GND with a 22µF capacitor.  
Low-Battery Comparator Output. This open-drain, N-channel output is low when LBP < LBN.  
Input hysteresis is 16mV.  
10  
LBO  
Switching-Mode Selection and External-Clock Synchronization Input:  
• CLK/SEL = low: low-power, low-quiescent-current PFM mode.  
• CLK/SEL = high: low-noise, high-power PWM mode. Switches at a constant frequency (300kHz). Full  
output power is available.  
• CLK/SEL = driven with an external clock: low-noise, high-power synchronized PWM mode.  
Synchronizes to an external clock (from 200kHz to 400kHz).  
11  
CLK/SEL  
Turning on the DC-DC converter with CLK/SEL = GND also serves as a soft-start function,  
since peak inductor current is reduced.  
12  
13  
PGND  
LX  
Power Ground for the source of the N-channel power MOSFET switch  
Inductor connection to the drains of the P-channel synchronous rectifier and N-channel switch  
Off Control Input. When ONB = high and ONA = low, the IC is off. Connect ONB to GND for normal  
operation (Table 2).  
14  
15  
ONB  
On Control Input. When ONA = high or ONB = low, the IC turns on. Connect ONA to OUT for normal  
operation (Table 2).  
ONA  
Boost DC-DC Converter Power Output. POUT is the source of the P-channel synchronous-rectifier MOSFET  
switch. Connect an external Schottky diode from LX to POUT. The output current available from POUT is  
reduced by the current drawn from the LDO linear-regulator output.  
16  
POUT  
_______________________________________________________________________________________  
9
1 - t o 3 -Ce ll, Hig h -Cu rre n t , Lo w -No is e ,  
S t e p -Up DC-DC Co n ve rt e rs w it h Lin e a r Re g u la t o r  
maximum battery life during standby and shutdown.  
_______________De t a ile d De s c rip t io n  
They feature constant-frequency (300kHz), low-noise  
The MAX1705/MAX1706 are designed to supply both  
pulse-width-modulation (PWM) operation with 300mA or  
power and low-noise circuitry in portable RF and data-  
730mA output capability from one or two cells, respec-  
acquisition instruments. They combine a linear regula-  
tively, with 3.3V output. A low-quiescent-current stand-  
tor, s te p -up s witc hing re g ula tor, N-c ha nne l p owe r  
by pulse-frequency-modulation (PFM) mode offers an  
MOSFET, P-channel synchronous rectifier, precision  
outp ut up to 60mA a nd 140µA, re s p e c tive ly, a nd  
reference, and low-battery comparator in a single 16-  
reduces quiescent power consumption to 500µW. In  
pin QSOP package (Figure 1). The switching DC-DC  
s hutd own mod e , the q uie s c e nt c urre nt is furthe r  
converter boosts a 1- or 2-cell input to an adjustable  
reduced to just 1µA. Figure 2 shows the standard appli-  
output between 2.5V and 5.5V. The internal low-dropout  
c a tion c irc uit for the MAX1705 c onfig ure d in hig h-  
re g ula tor p rovid e s line a r p os t-re g ula tion for nois e -  
power PWM mode.  
sensitive circuitry, as well as outputs from 1.25V to  
Additional features include synchronous rectification for  
hig h e ffic ie nc y a nd imp rove d b a tte ry life , a nd a n  
uncommitted comparator for low-battery detection. A  
CLK/SEL input allows frequency synchronization to  
reduce interference. Dual shutdown controls allow shut-  
down using a momentary pushbutton switch and micro-  
processor control.  
300mV b e low the s witc hing -re g ula tor outp ut. The  
MAX1705/MAX1706 start from a low, 1.1V input and  
remain operational down to 0.7V.  
These devices are optimized for use in cellular phones  
and other applications requiring low noise during full-  
power operation, as well as low quiescent current for  
5/MAX1706  
LBO  
MAX1705  
MAX1706  
THERMAL  
SENSOR  
LBP  
N
SHUTDOWN  
LOGIC  
LBN  
OUT  
FBLDO  
OUT  
MOSFET DRIVER  
WITH CURRENT  
LIMITING  
ERROR  
AMP  
P
LDO  
REF  
EN  
IC PWR  
2.15V  
POUT  
START-UP  
OSCILLATOR  
D
P
Q
Q
GND  
PFM/PWM  
CONTROLLER  
ONA  
ONB  
LX  
ON  
EN  
RDY  
1.250V  
REFERENCE  
OSC  
REF  
N
Q
EN  
300kHz  
OSCILLATOR  
PFM/PWM  
CLK/SEL  
ICS  
MODE  
IREF  
V
LDO  
FB  
PGND  
IFB  
V
OUT  
- 300mV  
TRACK  
Figure 1. Functional Diagram  
10 ______________________________________________________________________________________  
1 - t o 3 -Ce ll, Hig h -Cu rre n t , Lo w -No is e ,  
S t e p -Up DC-DC Co n ve rt e rs w it h Lin e a r Re g u la t o r  
5/MAX1706  
INPUT 0.9V TO 3.6V  
L1 10µH (22µH)  
D1  
C7  
22µF  
R5  
LX  
BOOST OUTPUT 3.6V  
POUT  
OUT  
LBP  
C4  
220µF  
(100µF)  
(TO PGND)  
C3  
0.1µF  
C9  
0.33µF  
LBN  
REF  
R1  
191k  
TRACK  
PGND  
R6  
C1*  
C8  
0.33µF  
(TO PGND)  
MAX1705  
MAX1706  
R2  
100k  
FB  
ONA  
ONB  
LDO OUTPUT 3.3V  
LDO  
CLK/SEL  
LBO  
FBLDO  
C5*  
0.33µF  
C6  
22µF  
R3  
165k  
GND  
C2*  
R4  
100k  
R7  
100k  
*OPTIONAL.  
( ) ARE FOR MAX1706.  
NOTE: HEAVY LINES INDICATE HIGH-CURRENT PATH.  
Figure 2. Typical Operating Circuit (PWM Mode)  
S t e p -Up Co n ve rt e r  
Table 1. Selecting the Operating Mode  
The step-up switching DC-DC converter generates an  
adjustable output to supply both power circuitry (such  
as RF power amplifiers) and the internal low-dropout  
linear regulator. During the first part of each cycle, the  
internal N-channel MOSFET switch is turned on. This  
allows current to ramp up in the inductor and store  
energy in a magnetic field. During the second part of  
each cycle, when the MOSFET is turned off, the voltage  
a c ros s the ind uc tor re ve rs e s a nd forc e s c urre nt  
through the diode and synchronous rectifier to the out-  
put filter capacitor and load. As the energy stored in  
the inductor is depleted, the current ramps down, and  
the output diode and synchronous rectifier turn off.  
Voltage across the load is regulated using either PWM  
or PFM operation, depending on the CLK/SEL pin set-  
ting (Table 1).  
CLK/SEL  
MODE  
FEATURES  
0
PFM  
Low supply current  
Low noise,  
high output current  
1
PWM  
External Clock  
(200kHz to 400kHz)  
Synchronized  
PWM  
Low noise,  
high output current  
devices can output up to 850mA. Switching harmonics  
generated by fixed-frequency operation are consistent  
and easily filtered.  
During PWM operation, each of the internal clocks ris-  
ing edges sets a flip-flop, which turns on the N-channel  
MOSFET switch (Figure 3). The switch is turned off  
whe n the s um of the volta g e -e rror a nd c urre nt-  
feedback signals trips a multi-input comparator and  
resets the flip-flop; the switch remains off for the rest of  
the cycle. When a change occurs in the output voltage  
error signal into the comparator, it shifts the level that  
the inductor current is allowed to ramp to during each  
cycle and modulates the MOSFET switch pulse width.  
A second comparator enforces a 1.55A (max) inductor-  
Low-Noise, High-Power PWM Operation  
When CLK/SEL is pulled high, the MAX1705/MAX1706  
operate in a high-power, low-noise PWM mode. During  
PWM operation, they switch at a constant frequency  
(300kHz), a nd mod ula te the MOSFET s witc h p uls e  
width to control the power transferred per cycle and  
regulate the voltage across the load. In PWM mode, the  
______________________________________________________________________________________ 11  
1 - t o 3 -Ce ll, Hig h -Cu rre n t , Lo w -No is e ,  
S t e p -Up DC-DC Co n ve rt e rs w it h Lin e a r Re g u la t o r  
POUT  
LOGIC HIGH  
Q
Q
D
POUT  
IFB*  
P
N
R
IREF*  
P
LX  
R
S
Q
LX  
IFB*  
N
S
Q
ICS  
IREF*  
R
PGND  
CURRENT  
LIMIT LEVEL  
CURRENT  
OSC  
LIMIT LEVEL  
PGND  
*SEE FIGURE 1  
*SEE FIGURE 1  
Figure 3. Simplified PWM Controller Block Diagram  
5/MAX1706  
Figure 4. Controller Block Diagram in PFM Mode  
current limit for the MAX1705, and 950mA (max) for the  
MAX1706. During PWM operation, the circuit operates  
with a continuous inductor current.  
cycle until the energy stored in the inductor is dumped  
into the output filter capacitor and the synchronous rec-  
tifier current ramps down to 70mA. This forces opera-  
tion with a discontinuous inductor current.  
Synchronized PWM Operation  
The MAX1705/MAX1706 can also be synchronized to a  
200kHz to 400kHz frequency by applying an external  
clock to CLK/SEL. This allows the user to set the har-  
monics, to avoid IF bands in wireless applications. The  
synchronous rectifier is also active during synchronized  
PWM operation.  
Synchronous Rectifier  
The MAX1705/MAX1706 feature an internal 270m,  
P-channel synchronous rectifier to enhance efficiency.  
Sync hronous re c tific a tion provide s a 5% e ffic ie nc y  
imp rove me nt ove r s imila r nons ync hronous s te p -up  
regulators. In PWM mode, the synchronous rectifier is  
turned on during the second half of each cycle. In PFM  
mode, an internal comparator turns on the synchronous  
rectifier when the voltage at LX exceeds the step-up  
converter output, and then turns it off when the inductor  
current drops below 70mA.  
Low-Power PFM Operation  
Pulling CLK/SEL low places the MAX1705/MAX1706 in  
low-power standby mode. During standby mode, PFM  
operation regulates the output voltage by transferring a  
fixed amount of energy during each cycle, and then  
mod ula ting the s witc hing fre q ue nc y to c ontrol the  
power delivered to the output. The devices switch only  
as needed to service the load, resulting in the highest  
possible efficiency at light loads. Output current capa-  
bility in PFM mode is 140mA (from 2.4V input to 3.3V  
output). The output is regulated at 1.3% above the  
PWM threshold.  
Lin e a r Re g u la t o r  
The internal low-dropout linear regulator steps down the  
output from the step-up converter and reduces switching  
ripple. It is intended to power noise-sensitive analog cir-  
cuitry, such as low-noise amplifiers and IF stages in cel-  
lular phones and other instruments, and can deliver up to  
200mA. However, in practice, the maximum output cur-  
rent is further limited by the current available from the  
boost converter and by the voltage differential between  
OUT and LDO. Use a 22µF capacitor with a 1or less  
equivalent series resistance (ESR) at the output for sta-  
bility (see the Linear Regulator Region of Stable C6 ESR  
vs . Loa d Curre nt g ra p h in the Typ ic a l Op e ra ting  
Characteristics). During power-up, the linear regulator  
remains off until the step-up converter goes into regula-  
tion for the first time.  
During PFM operation, the error comparator detects  
outp ut volta g e fa lling out of re g ula tion a nd s e ts a  
flip -flop , turning on the N-c ha nne l MOSFET s witc h  
(Figure 4). When the inductor current ramps to the PFM  
mode current limit (435mA) and stores a fixed amount  
of energy, the current-sense comparator resets a flip-  
flop. The flip-flop turns off the N-channel switch and  
turns on the P-channel synchronous rectifier. A second  
flip-flop, previously reset by the switchs “on” signal,  
inhibits the error comparator from initiating another  
12 ______________________________________________________________________________________  
1 - t o 3 -Ce ll, Hig h -Cu rre n t , Lo w -No is e ,  
S t e p -Up DC-DC Co n ve rt e rs w it h Lin e a r Re g u la t o r  
5/MAX1706  
The linear regulator in the MAX1705/MAX1706 features  
a 0.5, P-channel MOSFET pass transistor. This pro-  
Table 2. On/Off Logic Control  
vides several advantages, including longer battery life,  
over similar designs using a PNP pass transistor. The  
P-channel MOSFET requires no base-drive current,  
which reduces quiescent current considerably. PNP-  
based regulators tend to waste base-drive current in  
d rop out whe n the p a s s tra ns is tor s a tura te s . The  
MAX1705/MAX1706 eliminate this problem.  
ONA  
MAX1705/MAX1706  
ONB  
0
0
1
1
0
1
0
1
On  
Off  
On  
On  
The linear-regulator error amplifier compares the output  
feedback sensed at the FBLDO input against the inter-  
na l 1.250V re fe re nc e , a nd a mp lifie s the d iffe re nc e  
(Figure 1). The MOSFET driver reads the error signal  
and applies the appropriate drive to the P-channel  
pass transistor. If the feedback signal is lower than the  
reference, the pass-transistor gate is pulled lower,  
allowing more current to pass to the output, thereby  
increasing the output voltage. If the feedback voltage is  
too high, the pass-transistor gate is pulled up, allowing  
less current to pass to the output. Additional blocks  
include a current-limiting block and a thermal-overload  
protection block.  
Tra c k in g  
Connecting TRACK to the step-up converter output  
imp le me nts a tra c king mod e tha t s e ts the s te p -up  
converter output to 300mV above the linear-regulator  
output, improving efficiency. In track mode, feedback  
for the step-up converter is derived from the OUT pin.  
When TRACK is low, the step-up converter and linear  
regulator are separately controlled by their respective  
feedback inputs, FB and FBLDO. TRACK is a logic  
input with a 0.5V  
threshold, and should be hard-  
wired or switched with a slew rate exceeding 1V/µs.  
must be set above 2.3V for track mode to operate  
OUT  
V
LDO  
Lo w -Vo lt a g e S t a rt -Up Os c illa t o r  
The MAX1705/MAX1706 us e a CMOS, low-volta g e  
start-up oscillator for a 1.1V guaranteed minimum start-  
up input voltage at +25°C. On start-up, the low-voltage  
oscillator switches the N-channel MOSFET until the out-  
put voltage reaches 2.15V. Above this level, the normal  
step-up converter feedback and control circuitry take  
over. Once the device is in regulation, it can operate  
down to a 0.7V input, since internal power for the IC is  
bootstrapped from the output using the OUT pin.  
properly.  
On power-up with TRACK = OUT, the step-up convert-  
er initially uses the FB input to regulate its output. After  
the step-up converter goes into regulation for the first  
time, the linear regulator turns on. When the linear regu-  
lator reaches 2.3V, track mode is enabled and the step-  
up converter is regulated to 300mV above the linear-  
regulator output.  
Lo w -Ba t t e ry Co m p a ra t o r  
The internal low-battery comparator has uncommitted  
inputs and an open-drain output capable of sinking  
1mA. To use it as a low-battery-detection comparator,  
connect the LBN input to the reference, and connect  
the LBP input to an external resistor divider between  
the positive battery terminal and GND (Figure 2). The  
resistor values are then as follows:  
To reduce current loading during step-up, the linear  
regulator is kept off until the start-up converter goes  
into regulation. Minimum start-up voltage is influenced  
by load and temperature (see the Typical Operating  
Characteristics). To allow proper start-up, do not apply  
a full load at POUT until after the device has exited  
start-up mode and entered normal operation.  
S h u t d o w n  
The MAX1705/MAX1706 feature a shutdown mode that  
reduces quiescent current to less than 1µA, preserving  
battery life when the system is not in use. During shut-  
down, the reference, the low-battery comparator, and  
all feedback and control circuitry are off. The step-up  
converters output drops to one Schottky diode drop  
b e low the inp ut, b ut the line a r re g ula tor outp ut is  
turned off.  
V
IN,TH  
R5 = R6  
- 1  
V
LBN  
where V  
is the desired input voltage trip point and  
= 1.25V. Since the input bias current into  
IN,TH  
REF  
V
= V  
LBN  
LBP is less than 50nA, R6 can be a large value (such  
a s 270kor le s s ) without s a c rific ing a c c ura c y.  
Connect the resistor voltage divider as close to the IC  
as possible, within 0.2in. (5mm) of the LBP pin. The  
inputs have a 0.5V to 1.5V common-mode input range,  
and a 16mV input-referred hysteresis.  
Entry into shutdown mode is controlled by logic input  
pins ONA and ONB (Table 2). Both inputs have trip  
points near 0.5V  
with 0.15V  
hysteresis.  
OUT  
OUT  
______________________________________________________________________________________ 13  
1 - t o 3 -Ce ll, Hig h -Cu rre n t , Lo w -No is e ,  
S t e p -Up DC-DC Co n ve rt e rs w it h Lin e a r Re g u la t o r  
The low-battery comparator can also be used to moni-  
tor the output voltage, as shown in Figure 5.  
POUT  
To set the low-battery threshold to a voltage below the  
LDO  
1.25V reference, insert a resistor divider between REF  
and LBN, and connect the battery to the LBP input  
through a 10kcurrent-limiting resistor (Figure 6). The  
equation for setting the resistors for the low-battery  
threshold is then as follows:  
MAX1705  
MAX1706  
R5  
R6  
LBO  
LBP  
LBN  
REF  
GND  
0.33µF  
V
REF  
R5 = R6  
- 1  
V
IN,TH  
Alternatively, the low-battery comparator can be used  
to check the output voltage or to control the load direct-  
ly on POUT during start-up (Figure 7). Use the following  
equation to set the resistor values:  
Figure 5. Using the Low-Battery Comparator to Sense  
the Output Voltage  
5/MAX1706  
V
OUT,TH  
R5 = R6  
- 1  
V
POUT  
REF  
LBP  
where V  
is the desired output voltage trip point  
is connected to the reference or 1.25V.  
MAX1705  
R5  
OUT,TH  
0.33µF  
MAX1706  
and V  
LBP  
LBO  
LBN  
Re fe re n c e  
R8  
10k  
The MAX1705/MAX1706 have an internal 1.250V, 1%  
bandgap reference. Connect a 0.33µF bypass capaci-  
tor to GND within 0.2in. (5mm) of the REF pin. REF can  
source up to 50µA of external load current.  
R6  
LBP  
GND  
BATTERY  
VOLTAGE  
_________________ De s ig n P ro c e d u re  
S e t t in g t h e Ou t p u t Vo lt a g e s  
Set the step-up converter output voltage between 2.5V  
and 5.5V by connecting a resistor voltage-divider to FB  
from OUT to GND, as shown in Figure 8. The resistor  
values are then as follows:  
Figure 6. Detecting Battery Voltages Below 1.25V  
STEP-UP OUTPUT  
P
C3  
0.1µF  
C5  
POUT  
OUT  
R5  
V
270k  
POUT  
R1 = R2  
- 1  
V
LBN  
FB  
C4  
MAX1705  
MAX1706  
R6  
where V , the step-up regulator feedback setpoint, is  
FB  
LBO  
LBP  
REF  
1.233V. Since the input bias current into FB is less than  
50nA, R2 can have a large value (such as 270kor  
less) without sacrificing accuracy. Connect the resistor  
voltage-divider as close to the IC as possible, within  
0.2in. (5mm) of the FB pin.  
GND  
0.33µF  
Alternatively, set the step-up converter output to track  
the linear regulator by 300mV. To accomplish this, set  
TRACK to OUT.  
Figure 7. Using the Low-Battery Comparator for Load Control  
During Start-Up  
14 ______________________________________________________________________________________  
1 - t o 3 -Ce ll, Hig h -Cu rre n t , Lo w -No is e ,  
S t e p -Up DC-DC Co n ve rt e rs w it h Lin e a r Re g u la t o r  
5/MAX1706  
To set the low-dropout linear-regulator output, use a  
resistor voltage-divider connected to FBLDO from LDO  
to GND. Set the output to a value at least 300mV less  
than the step-up converter output using the following  
formula:  
MUR150 or EC11FS1). Do not use ordinary rectifier  
d iod e s , s inc e s low s witc hing s p e e d s a nd long re -  
verse recovery times compromise efficiency and load  
regulation.  
Ch o o s e In p u t a n d Ou t p u t  
Filt e r Ca p a c it o rs  
V
LDO  
Choose input and output filter capacitors that service  
the input and output peak currents with acceptable  
voltage ripple. Choose input capacitors with working  
voltage ratings over the maximum input voltage, and  
output capacitors with working voltage ratings higher  
than the output.  
R3 = R4  
- 1  
V
FBLDO  
where V  
, the linear-regulator feedback trip point,  
FBLDO  
is 1.250V. Since the input bias current into FBLDO is  
le s s tha n 50nA, R4 c a n b e a la rg e va lue (s uc h a s  
270kor less). Connect the resistor voltage-divider as  
close to the IC as possible, within 0.2in. (5mm) of the  
FBLDO pin.  
A 100µF, 100m, low-ESR tantalum capacitor is recom-  
me nd e d a t the MAX1706s s te p -up outp ut. For the  
MAX1705, use two in parallel or a 220µF low-ESR tanta-  
lum c a p a c itor. The inp ut filte r c a p a c itor (C7) a ls o  
reduces peak currents drawn from the input source  
and reduces input switching noise. The input voltage  
source impedance determines the size required for the  
input capacitor. When operating directly from one or  
two NiCd cells placed close to the MAX1705/MAX1706,  
us e a 22µF, low-ESR inp ut filte r c a p a c itor. Whe n  
operating from a power source placed farther away, or  
In d u c t o r S e le c t io n  
The MAX1705/MAX1706s high switching frequency  
allows the use of a small surface-mount inductor. Use a  
10µH inductor for the MAX1705 and a 22µH inductor  
for the MAX1706. Make sure the saturation-current rat-  
ing exceeds the N-channel switch current limit of 1.55A  
for the MAX1705 and 950mA for the MAX1706. For high  
efficiency, chose an inductor with a high-frequency  
core material, such as ferrite, to reduce core losses. To  
minimize radiated noise, use a torroid, pot core, or  
shielded-bobbin inductor. See Table 3 for suggested  
p a rts a nd Ta b le 4 for a lis t of ind uc tor s up p lie rs .  
Connect the inductor from the battery to the LX pin as  
close to the IC as possible.  
LINEAR-  
REGULATOR  
OUTPUT  
STEP-UP  
OUTPUT  
LDO  
POUT  
OUT  
MAX1705  
MAX1706  
C2*  
C1*  
R3  
R4  
R1  
R2  
At t a c h in g t h e Ou t p u t Dio d e  
Use a Schottky diode, such as a 1N5817, MBR0520L,  
or equivalent. The Schottky diode carries current during  
start-up, and in PFM mode after the synchronous rectifi-  
er turns off. Thus, the current rating only needs to be  
500mA. Attach the diode between the LX and POUT  
pins, as close to the IC as possible.  
FB  
FBLDO  
GND  
PGND  
In hig h-te mp e ra ture a p p lic a tions , s ome Sc hottky  
diodes may be unsuitable due to high reverse-leakage  
currents. Try substituting a Schottky diode with a higher  
reverse voltage rating, or use an ultra-fast silicon rectifi-  
er with reverse recover times less than 60ns (such as a  
* OPTIONAL COMPENSATION CAPACITORS  
Figure 8. Feedback Connections for the MAX1705/MAX1706  
Table 3. Component Selection Guide  
PRODUCTION  
INDUCTORS  
CAPACITORS  
Matsuo 267 series  
Sprague 595D series  
AVX TPS series  
DIODES  
Sumida CDR63B, CD73, CDR73B, CD74B series  
Coilcraft DO1608, DO3308, DT3316 series  
Surface Mount  
Motorola MBR0520L  
Sanyo OS-CON series  
Nichicon PL series  
Through Hole  
Sumida RCH654 series  
Motorola 1N5817  
______________________________________________________________________________________ 15  
1 - t o 3 -Ce ll, Hig h -Cu rre n t , Lo w -No is e ,  
S t e p -Up DC-DC Co n ve rt e rs w it h Lin e a r Re g u la t o r  
from higher-impedance batteries, consider using one  
or two 100µF, 100m, low-ESR tantalum capacitors.  
Table 4. Component Suppliers  
SUPPLIER  
PHONE  
FAX  
Low-ESR capacitors are recommended. Capacitor ESR  
is a major contributor to output rippleoften more than  
70%.  
USA: (803) 946-0690  
(800) 282-4975  
(803) 626-3123  
AVX  
Coilcraft  
Matsuo  
USA: (847) 639-6400  
USA: (714) 969-2491  
USA: (602) 303-5454  
(847) 639-1469  
(714) 960-6492  
(602) 994-6430  
Ceramic, Sanyo OS-CON, and Panasonic SP/CB-series  
capacitors offer the lowest ESR. Low-ESR tantalum  
capacitors are second best and generally offer a good  
tra d e -off b e twe e n p ric e a nd p e rforma nc e . Do not  
exceed the ripple-current ratings of tantalum capaci-  
tors. Avoid aluminum-electrolytic capacitors, since their  
ESR is too high.  
Motorola  
USA: (619) 661-6835  
Japan: 81-7-2070-6306  
(619) 661-1055  
81-7-2070-1174  
Sanyo  
USA: (847) 956-0666  
Japan: 81-3-3607-5111  
(847) 956-0702  
81-3-3607-5144  
Sumida  
Ad d in g Byp a s s Ca p a c it o rs  
Several ceramic bypass capacitors are required for  
proper operation of the MAX1705/MAX1706. Bypass  
REF with a 0.33µF capacitor to GND. Connect a 0.1µF  
ceramic capacitor from OUT to GND and a 0.33µF  
ceramic capacitor from POUT to PGND. Place a 22µF,  
low-ESR capacitor and an optional 0.33µF ceramic  
capacitor from the linear-regulator output LDO to GND.  
An optional 22pF ceramic capacitor can be added to  
the linear-regulator feedback network to reduce noise  
(C2, Figure 2). Place each of these as close to their  
respective pins as possible, within 0.2in. (5mm) of the  
DC-DC converter IC. High-value, low-voltage, surface-  
mount ceramic capacitors are now readily available in  
small packages; see Table 4 for suggested suppliers.  
ground plane. Instead, place them close together and  
route them in a star-ground configuration using compo-  
nent-side copper. Then connect the star ground to the  
internal ground plane using vias.  
5/MAX1706  
Keep the voltage-feedback networks very close to the  
MAX1705/MAX1706—within 0.2in. (5mm) of the FB and  
FBLDO pins. Keep noisy traces, such as from the LX  
pin, away from the reference and voltage-feedback net-  
works, especially the LDO feedback, and separated  
from the m us ing g round e d c op p e r. Cons ult the  
MAX1705/MAX1706 EV kit for a full PC board example.  
__________ Ap p lic a t io n s In fo rm a t io n  
Us e in a Typ ic a l  
Wire le s s P h o n e Ap p lic a t io n  
De s ig n in g a P C Bo a rd  
High switching frequencies and large peak currents  
make PC board layout an important part of design.  
Poor design can cause excessive EMI and ground-  
b ounc e , b oth of whic h c a n c a us e ins ta b ility or  
regulation errors by corrupting voltage- and current-  
feedback signals. It is highly recommended that the PC  
board example of the MAX1705 evaluation kit (EV kit)  
be followed.  
The MAX1705/MAX1706 are ideal for use in digital cord-  
less and PCS phones. The power amplifier (PA) is con-  
ne c te d d ire c tly to the s te p -up c onve rte r outp ut for  
maximum voltage swing (Figure 9). The internal linear  
regulator is used for post-regulation to generate low-  
noise power for DSP, control, and RF circuitry. Typically,  
RF phones spend most of their life in standby mode and  
short periods in transmit/receive mode. During standby,  
maximize battery life by setting CLK/SEL = GND and  
TRACK = OUT; this places the IC in PFM and track  
modes (for lowest quiescent power consumption). In  
transmit/receive mode, set TRACK = GND and CLK/SEL  
= OUT to increase the PA supply voltage and initiate  
high-power, low-noise PWM operation. Table 5 lists the  
typical available output current when operating with  
one or more NiCd/NiMH cells or one Li-Ion cell.  
Power components—such as the inductor, converter  
IC, filte r c a p a c itors , a nd outp ut d iod e —s hould b e  
placed as close together as possible, and their traces  
should be kept short, direct, and wide. Place the LDO  
output capacitor as close to the LDO pin as possible.  
Make the connection between POUT and OUT very  
short. Keep the extra copper on the board, and inte-  
grate it into ground as a pseudo-ground plane.  
On multilayer boards, do not connect the ground pins  
of the power components using vias through an internal  
16 ______________________________________________________________________________________  
1 - t o 3 -Ce ll, Hig h -Cu rre n t , Lo w -No is e ,  
S t e p -Up DC-DC Co n ve rt e rs w it h Lin e a r Re g u la t o r  
5/MAX1706  
µC  
270k  
MAX1705  
MAX1706  
LX  
POUT  
V
DD  
OUT  
CONTROL  
INPUTS  
ONB  
ON/OFF  
MAX1705  
MAX1706  
I/O  
I/O  
GND  
LDO  
ONA  
PA  
µC  
RF  
I/O  
0.1µF  
270k  
Figure 10. Momentary Pushbutton On/Off Switch  
Figure 9. Typical Phone Application  
Table 5. Typical Available Output Current  
TOTAL OUTPUT CURRENT  
(mA)  
STEP-UP OUTPUT VOLTAGE:  
(PA POWER SUPPLY)  
(V)  
INPUT VOLTAGE  
NUMBER OF CELLS  
(V)  
MAX1705  
300  
MAX1706  
200  
1 NiCd/NiMH  
1.2  
2.4  
2.4  
3.6  
3.3  
3.3  
5.0  
5.0  
2 NiCd/NiMH  
730  
450  
2 NiCd/NiMH  
500  
350  
3 NiCd/NiMH or 1 Li-Ion  
850  
550  
Im p le m e n t in g S o ft -S t a rt  
___________________Ch ip In fo rm a t io n  
TRANSISTOR COUNT: 1649  
To implement soft-start, set CLK/SEL low on power-up;  
this forces PFM operation and reduces the peak switch-  
ing current to 435mA. Once the circuit is in regulation,  
CLK/SEL can be set high for full-power operation.  
SUBSTRATE CONNECTED TO GND  
Ad d in g a Ma n u a l P o w e r Re s e t  
A momentary pushbutton switch can be used to turn  
the MAX1705/MAX1706 on and off (Figure 10). ONA is  
pulled low and ONB is pulled high to turn the part off.  
When the momentary switch is pressed, ONB is pulled  
low and the regulator turns on. The switch must be  
pressed long enough for the microcontroller (µC) to exit  
reset (200ms) and drive ONA high. A small capacitor is  
added to help debounce the switch. The µC issues a  
logic high to ONA, which holds the part on regardless  
of the switch state. To turn the regulator off, press the  
switch again, allowing the µC to read the switch status  
and pull ONA low. When the switch is released, ONB is  
pulled high.  
______________________________________________________________________________________ 17  
1 - t o 3 -Ce ll, Hig h -Cu rre n t , Lo w -No is e ,  
S t e p -Up DC-DC Co n ve rt e rs w it h Lin e a r Re g u la t o r  
__________________________________________________Ta p e -a n d -Re e l In fo rm a t io n  
4.0 ±0.1  
1.0 ±0.1  
1.75 ±0.1  
2.0 ±0.05  
1.5 +0.1/-0.0 DIAMETER  
A
3.5 ±0.05  
8.0 ±0.3  
2.2 ±0.1  
0.5 RADIUS  
TYPICAL  
A0  
1.0 MINIMUM  
4.0 ±0.1  
A
Bo  
5/MAX1706  
Ao = 3.1mm ±0.1  
Bo = 2.7mm ±0.1  
Ko = 1.2mm ±0.1  
NOTE: DIMENSIONS ARE IN MM.  
AND FOLLOW EIA481-1 STANDARD.  
Ko  
0.30 ±0.05  
0.8 ±0.05  
0.30R MAX.  
18 ______________________________________________________________________________________  
1 - t o 3 -Ce ll, Hig h -Cu rre n t , Lo w -No is e ,  
S t e p -Up DC-DC Co n ve rt e rs w it h Lin e a r Re g u la t o r  
5/MAX1706  
________________________________________________________P a c k a g e In fo rm a t io n  
______________________________________________________________________________________ 19  
1 - t o 3 -Ce ll, Hig h -Cu rre n t , Lo w -No is e ,  
S t e p -Up DC-DC Co n ve rt e rs w it h Lin e a r Re g u la t o r  
NOTES  
5/MAX1706  
20 ______________________________________________________________________________________  

相关型号:

MAX1706EEE+

暂无描述
MAXIM

MAX1706EEE+T

Switching Regulator, Voltage-mode, 0.95A, 340kHz Switching Freq-Max, PDSO16, 0.150 INCH, 0.025 INCH PITCH, LEAD FREE, QSOP-16
MAXIM

MAX1706EEE-T

Switching Regulator, Voltage-mode, 0.95A, 340kHz Switching Freq-Max, CMOS, PDSO16, 0.150 INCH, 0.025 INCH PITCH, MO-137AB, QSOP-16
MAXIM

MAX1706EVKIT

Evaluation Kit for the MAX1705/MAX1706
MAXIM

MAX1707

Light-Management IC with Efficient 1x/1.5x/2x Charge Pump for Backlight/Flash/RGB LEDs
MAXIM

MAX17075

Boost Regulator with Integrated Charge Pumps, Switch Control, and High-Current Op Amp
MAXIM

MAX17075ETG

Boost Regulator with Integrated Charge Pumps, Switch Control, and High-Current Op Amp
MAXIM

MAX17075ETG+

Boost Regulator with Integrated Charge Pumps, Switch Control, and High-Current Op Amp
MAXIM

MAX17075EVKIT

1.2MHz Switching Frequency
MAXIM

MAX17075EVKIT+

1.2MHz Switching Frequency
MAXIM

MAX17075GTG/V+

Switching Regulator, Current-mode, 3.5A, 1200kHz Switching Freq-Max, CMOS, TQFN-24
MAXIM

MAX17075_12

Boost Regulator with Integrated Charge Pumps, Switch Control, and High-Current Op Amp
MAXIM