MAX1720EUT+T [MAXIM]

Switched Capacitor Converter, 0.025A, 21kHz Switching Freq-Max, CMOS, PDSO6, SOT-23, 6 PIN;
MAX1720EUT+T
型号: MAX1720EUT+T
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Switched Capacitor Converter, 0.025A, 21kHz Switching Freq-Max, CMOS, PDSO6, SOT-23, 6 PIN

文件: 总8页 (文件大小:124K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-1439; Rev 1; 5/99  
S OT2 3 , S w it c h e d -Ca p a c it o r  
Vo lt a g e In ve rt e rs w it h S h u t d o w n  
90/MAX721  
Ge n e ra l De s c rip t io n  
Fe a t u re s  
The ultra-small MAX1719/MAX1720/MAX1721 monolithic,  
CMOS charge-pump inverters accept input voltages  
ranging from +1.5V to +5.5V. The MAX1720 operates at  
12kHz, and the MAX1719/MAX1721 operate at 125kHz.  
High efficiency, small external components, and logic-  
controlled shutdown make these devices ideal for both  
battery-powered and board-level voltage conversion  
applications.  
1nA Logic-Controlled Shutdown  
6-Pin SOT23 Package  
99.9% Voltage Conversion Efficiency  
50µA Quiescent Current (MAX1719/MAX1720)  
+1.5V to +5.5V Input Voltage Range  
25mA Output Current  
Oscillator control circuitry and four power MOSFET  
switches are included on-chip. A typical MAX1719/  
MAX1720/MAX1721 application is generating a -5V  
supply from a +5V logic supply to power analog circuitry.  
All three parts come in a 6-pin SOT23 package and can  
deliver a continuous 25mA output current.  
Requires Only Two 1µF Capacitors  
(MAX1719/MAX1721)  
For pin-compatible SOT23 switched-capacitor voltage  
inve rte rs without s hutd own (5-p in SOT23), s e e the  
MAX828/MAX829 and MAX870/MAX871 data sheets. For  
applications requiring more power, the MAX860/MAX861  
Ord e rin g In fo rm a t io n  
deliver up to 50mA. For regulated outputs (up to -2 · V ),  
IN  
refer to the MAX868. The MAX860/MAX861 and MAX868  
are available in space-saving µMAX packages.  
PIN-  
SOT  
PART  
TEMP. RANGE  
PACKAGE TOP MARK  
MAX1719EUT -40°C to +85°C 6 SOT23-6  
MAX1720EUT -40°C to +85°C 6 SOT23-6  
MAX1721EUT -40°C to +85°C 6 SOT23-6  
AACA  
AABS  
AABT  
Ap p lic a t io n s  
Local Negative Supply from a Positive Supply  
Small LCD Panels  
GaAs PA Bias Supply  
Handy-Terminals, PDAs  
Battery-Operated Equipment  
P in Co n fig u ra t io n  
Typ ic a l Op e ra t in g Circ u it  
1µF  
TOP VIEW  
C1+  
C1-  
OUT  
OUT  
IN  
1
2
3
C1+  
6
5
4
NEGATIVE  
OUTPUT  
INPUT  
1.5V to 5.5V  
IN  
-1 · V  
IN  
MAX1719  
MAX1720  
MAX1721  
25mA  
SHDN (SHDN)  
GND  
MAX1721  
GND  
1µF  
C1-  
SHDN  
ON  
OFF  
SOT23-6  
( ) ARE FOR MAX1719  
________________________________________________________________ Maxim Integrated Products  
1
For free samples & the latest literature: http://www.maxim-ic.com, or phone 1-800-998-8800.  
For small orders, phone 1-800-835-8769.  
S OT2 3 , S w it c h e d -Ca p a c it o r  
Vo lt a g e In ve rt e rs w it h S h u t d o w n  
ABSOLUTE MAXIMUM RATINGS  
IN to GND.................................................................-0.3V to +6V  
OUT to GND .............................................................-6V to +0.3V  
Continuous Power Dissipation (T = +70°C)  
A
6-Pin SOT23 (derate 8.7mW/°C above +70°C).................696mW  
Operating Temperature Range ...........................-40°C to +85°C  
Junction Temperature ......................................................+150°C  
Storage Temperature Range .............................-65°C to +150°C  
Lead Temperature (soldering, 10sec) .............................+300°C  
C1+, SHDN, SHDN to GND.........................-0.3V to (V + 0.3V)  
IN  
C1- to GND...............................................(V  
- 0.3V) to +0.3V  
OUT  
OUT Output Current..........................................................100mA  
OUT Short Circuit to GND..............................................Indefinite  
Stresses beyond those listed under Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(V = +5V, SHDN = GND (MAX1719), SHDN = IN (MAX1720/MAX1721), C1 = C2 = 10µF (MAX1720), C1 = C2 = 1µF  
IN  
(MAX1719/MAX1721), circuit of Figure 1, T = -40°C to +85°C, unless otherwise noted. Typical values are at T = +25°C.)  
A
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
1.25  
1.5  
TYP  
MAX  
5.5  
5.5  
5.5  
5.5  
90  
UNITS  
T
A
= +25°C  
MAX1720  
= 10kΩ  
R
L
T
= 0°C to + 85°C  
= +25°C  
A
Supply Voltage Range  
V
IN  
V
T
A
1.4  
MAX1719/MAX1721  
R
= 10kΩ  
L
T
A
= 0°C to + 85°C  
1.5  
MAX1720  
50  
Quiescent Supply Current  
Shutdown Supply Current  
I
CC  
T
A
= +25°C  
µA  
µA  
MAX1719/MAX1721  
350  
650  
SHDN = IN (MAX1719),  
SHDN = GND  
(MAX1720/MAX1721)  
T
= +25°C  
= +85°C  
0.001  
0.02  
1
A
I
SHDN  
T
A
MAX1720  
7
12  
125  
99.9  
23  
17  
Oscillator Frequency  
f
T
= +25°C  
kHz  
%
OSC  
A
90/MAX721  
MAX1719/MAX1721  
70  
99  
180  
Voltage Conversion Efficiency  
Output Resistance (Note 1)  
I
= 0, T = +25°C  
OUT  
A
T
A
= +25°C  
50  
65  
R
I
= 10mA  
O
OUT  
T
A
= 0°C to +85°C  
SHDN = IN (MAX1719), SHDN = GND  
(MAX1720/MAX1721), OUT is internally  
forced to GND in shutdown  
OUT to GND  
Shutdown Resistance  
R ,  
O
4
12  
SHDN  
+2.5V V +5.5V  
2.0  
IN  
V
V
SHDN/ SHDN Input Logic High  
SHDN/ SHDN Input Logic Low  
SHDN/ SHDN Bias Current  
IH  
V
V +2.5V  
V
- 0.2  
IN (MIN)  
IN  
IN  
+2.5V V +5.5V  
0.6  
0.2  
IN  
V
IL  
V
V
V +2.5V  
IN  
IN (MIN)  
T
= +25°C  
= +85°C  
-100  
0.05  
10  
100  
A
SHDN/ SHDN = GND  
or V  
I , I  
IL IH  
nA  
µs  
IN  
T
A
MAX1720  
800  
80  
Wake-Up Time from Shutdown  
I
= 5mA  
OUT  
MAX1719/MAX1721  
2
_______________________________________________________________________________________  
S OT2 3 , S w it c h e d -Ca p a c it o r  
Vo lt a g e In ve rt e rs w it h S h u t d o w n  
90/MAX721  
ELECTRICAL CHARACTERISTICS  
(V = +5V, SHDN = GND (MAX1719), SHDN = IN (MAX1720/MAX1721), C1 = C2 = 10µF (MAX1720), C1 = C2 = 1µF  
IN  
(MAX1719/MAX1721), circuit of Figure 1, T = -40°C to +85°C, unless otherwise noted.) (Note 2)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MAX1720  
MAX1719/MAX1721  
MIN  
1.5  
TYP  
MAX  
5.5  
UNITS  
Supply Voltage Range  
V
IN  
R
= 10kΩ  
L
V
1.6  
5.5  
100  
750  
21  
Quiescent Current  
I
MAX1719/MAX1720/MAX1721  
µA  
CC  
MAX1720  
6
Oscillator Frequency  
f
kHz  
OSC  
MAX1719/MAX1721  
60  
99  
200  
Voltage Conversion Efficiency  
Output Resistance (Note 1)  
Output Current  
I
= 0  
%
OUT  
R
I
= 10mA  
65  
25  
O
OUT  
I
Continuous, long-term  
mA  
RMS  
OUT  
SHDN = IN (MAX1719), SHDN = GND  
(MAX1720/MAX1721), OUT is internally  
forced to GND in shutdown  
OUT to GND Shutdown  
Resistance  
R ,  
O
12  
SHDN  
+2.5V V +5.5V  
2.0  
IN  
V
V
V
SHDN/ SHDN Input Logic High  
SHDN/ SHDN Input Logic Low  
IH  
V
V +2.5V  
V
- 0.2  
IN (MIN)  
IN  
IN  
+2.5V V +5.5V  
0.6  
0.2  
IN  
V
IL  
V
V +2.5V  
IN  
IN (MIN)  
Note 1: Capacitor contribution (ESR component plus (1/f  
) · C) is approximately 20% of output impedance.  
OSC  
Note 2: All specifications from -40°C to +85°C are guaranteed by design, not production tested.  
Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s  
(Circuit of Figure 1, V = +5V, SHDN = GND (MAX1719), SHDN = IN (MAX1720/MAX1721), C1 = C2 = C3, T = +25°C, unless other-  
IN  
A
wise noted.)  
OUTPUT VOLTAGE  
MAX1720  
MAX1719/MAX1721  
vs. OUTPUT CURRENT  
EFFICIENCY vs. OUTPUT CURRENT  
EFFICIENCY vs. OUTPUT CURRENT  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
0
-1  
-2  
-3  
-4  
-5  
V
IN  
= +2V  
V
= +1.5V  
= +3.3V  
IN  
V
IN  
= +5V  
V
IN  
= +5V  
V
IN  
= +3.3V  
V
IN  
= +1.5V  
V
IN  
= +3.3V  
V
IN  
= +1.5V  
V = +2V  
IN  
V
IN  
= +2V  
V
IN  
V
= +5V  
IN  
0
5
10 15 20 25 30 35 40 45 50  
OUTPUT CURRENT (mA)  
0
5
10 15 20 25 30 35 40 45 50  
OUTPUT CURRENT (mA)  
0
5
10 15 20 25 30 35 40 45 50  
OUTPUT CURRENT (mA)  
_______________________________________________________________________________________  
3
S OT2 3 , S w it c h e d -Ca p a c it o r  
Vo lt a g e In ve rt e rs w it h S h u t d o w n  
Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s (c o n t in u e d )  
(Circuit of Figure 1, V = +5V, SHDN = GND (MAX1719), SHDN = IN (MAX1720/MAX1721), C1 = C2 = C3, T = +25°C, unless oth-  
IN  
A
erwise noted.)  
SUPPLY CURRENT  
vs. INPUT VOLTAGE  
OUTPUT RESISTANCE  
vs. INPUT VOLTAGE  
SHUTDOWN SUPPLY CURRENT  
vs. TEMPERATURE  
80  
70  
60  
50  
40  
30  
20  
10  
30  
25  
20  
15  
10  
5
450  
400  
350  
300  
250  
200  
150  
100  
50  
MAX1719/  
MAX1721  
V
= +5V  
IN  
MAX1719/  
MAX1721  
-40°C  
-40°C  
+85°C  
V
= +3.3V  
= +1.5V  
IN  
MAX1720  
V
IN  
MAX1720  
+85°C  
0
0
1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
INPUT VOLTAGE (V)  
-40  
-15  
10  
35  
60  
85  
1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
TEMPERATURE (°C)  
INPUT VOLTAGE (V)  
PUMP FREQUENCY  
vs. TEMPERATURE  
OUTPUT RESISTANCE  
vs. TEMPERATURE  
OUTPUT NOISE AND RIPPLE  
MAX1720/21toc09  
1000  
100  
10  
70  
V
= +1.5V  
IN  
60  
50  
40  
30  
20  
10  
V
OUT  
MAX1721  
V
IN  
= +1.5V  
V
= +2V  
IN  
V
= +5V  
IN  
MAX1719/MAX1721  
MAX1720  
90/MAX721  
V
IN  
= +3.3V  
V
OUT  
MAX1720  
V
IN  
= +5V  
V
= +5V  
60  
IN  
V
IN  
= +1.5V  
-10  
10µs/div  
= 3.3V, V = -3.17V, I = 5mA  
20mV/div, AC-COUPLED  
-40  
-15  
35  
60  
85  
-40  
-15  
10  
35  
85  
V
IN  
OUT  
OUT  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
MAX1720  
MAX1720  
OUTPUT CURRENT vs. CAPACITANCE  
OUTPUT VOLTAGE RIPPLE  
vs. CAPACITANCE  
MAX1720  
START-UP FROM SHUTDOWN  
MAX1720/21toc10  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
35  
30  
25  
20  
15  
10  
5
V
= +4.75V, V = -4.0V  
OUT  
IN  
V
2V/div  
OUT  
V
IN  
= +4.75V, V = -4.0V  
OUT  
V
IN  
= +3.15V, V = -2.5V  
OUT  
V
IN  
= +3.15V, V = -2.5V  
OUT  
V
IN  
= +1.9V, V = -1.5V  
OUT  
V
= +1.9V, V = -1.5V  
OUT  
IN  
V
SHDN  
5V/div  
0
0
0
5
10 15 20 25 30 35 40 45 50  
0
5
10  
15  
20  
25  
30  
500µs/div  
R = 1kΩ  
L
CAPACITANCE (µF)  
CAPACITANCE (µF)  
4
_______________________________________________________________________________________  
S OT2 3 , S w it c h e d -Ca p a c it o r  
Vo lt a g e In ve rt e rs w it h S h u t d o w n  
90/MAX721  
Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s (c o n t in u e d )  
(Circuit of Figure 1, V = +5V, SHDN = GND (MAX1719), SHDN = IN (MAX1720/MAX1721), C1 = C2 = C3, T = +25°C, unless  
IN  
A
otherwise noted.)  
MAX1719/MAX1721  
MAX1721  
MAX1719/MAX1721  
OUTPUT VOLTAGE RIPPLE vs. CAPACITANCE  
400  
START-UP FROM SHUTDOWN  
OUTPUT CURRENT vs. CAPACITANCE  
MAX1720/21toc13  
35  
30  
25  
20  
15  
10  
5
350  
300  
250  
200  
150  
100  
50  
V
IN  
= +4.75V, V = -4.0V  
OUT  
V
2V/div  
OUT  
V
= +4.75V, V = -4.0V  
OUT  
IN  
V
IN  
= +3.15V, V = -2.5V  
OUT  
V
IN  
= +3.15V, V = -2.5V  
OUT  
V
= +1.9V, V = -1.5V  
OUT  
IN  
V
IN  
= +1.9V, V = -1.5V  
OUT  
V
SHDN  
5V/div  
0
0
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
50µs/div  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
CAPACITANCE (µF)  
R = 1kΩ  
L
CAPACITANCE (µF)  
P in De s c rip t io n  
PIN  
NAME  
FUNCTION  
MAX1720  
MAX1721  
MAX1719  
OUT  
IN  
Inverting Charge-Pump Output  
1
2
3
4
1
2
3
4
Power-Supply Positive Voltage Input  
C1-  
GND  
Negative Terminal of Flying Capacitor  
Ground  
Noninverting Shutdown Input. Drive this pin low for normal operation; drive it high for  
shutdown mode. OUT is actively pulled to ground during shutdown.  
5
SHDN  
Inverting Shutdown Input. Drive this pin high for normal operation; drive it low for  
shutdown mode. OUT is actively pulled to ground during shutdown.  
6
5
6
SHDN  
C1+  
Positive Terminal of Flying Capacitor  
cycle, S1 and S3 open, S2 and S4 close, and C1 is level  
De t a ile d De s c rip t io n  
shifted downward by V volts. This connects C1 in par-  
IN  
The MAX1719/MAX1720/MAX1721 capacitive charge  
pumps invert the voltage applied to their input. For high-  
est performance, use low equivalent series resistance  
(ESR) capacitors (e.g., ceramic).  
allel with the reservoir capacitor C2. If the voltage across  
C2 is smaller than the voltage across C1, charge flows  
from C1 to C2 until the volta g e a c ros s C2 re a c he s  
-V . The actual voltage at the output is more positive  
IN  
During the first half-cycle, switches S2 and S4 open,  
switches S1 and S3 close, and capacitor C1 charges to  
the voltage at IN (Figure 2). During the second half-  
than -V , since switches S1–S4 have resistance and the  
load drains charge from C2.  
IN  
_______________________________________________________________________________________  
5
S OT2 3 , S w it c h e d -Ca p a c it o r  
Vo lt a g e In ve rt e rs w it h S h u t d o w n  
f
C1  
1µF (10µF)  
V+  
V
OUT  
6
3
INPUT  
1.5V to 5.5V  
NEGATIVE  
OUTPUT  
C1+  
C1-  
2
5
1
C1  
C2  
R
L
IN  
OUT  
-1 · V  
IN  
C3  
1µF (10µF)  
25mA  
C2  
1µF (10µF)  
R
L
MAX1719*  
MAX1721  
ON  
OFF  
SHDN  
Figure 3a. Switched-Capacitor Model  
GND  
4
R
EQUIV  
V+  
V
OUT  
NOTE: ( ) CAPACITORS ARE FOR MAX1720.  
*ON/OFF POLARITY OF SHDN IS REVERSED FOR MAX1719.  
1
R
EQUIV  
=
f × C1  
C2  
R
L
Figure 1. Typical Application Circuit  
S1  
S3  
S2  
IN  
Figure 3b. Equivalent Circuit  
C1  
The internal losses are associated with the ICs internal  
functions, such as driving the switches, oscillator, etc.  
These losses are affected by operating conditions such  
as input voltage, temperature, and frequency.  
C2  
S4  
V
OUT  
= -(V )  
IN  
The other two losses are associated with the voltage  
converter circuit’s output resistance. Switch losses  
occur because of the on-resistance of the MOSFET  
s witc he s in the IC. Cha rg e -p ump c a p a c itor los s e s  
occur because of their ESR. The relationship between  
these losses and the output resistance is as follows:  
Figure 2. Ideal Voltage Inverter  
90/MAX721  
Ch a rg e -P u m p Ou t p u t  
The MAX1719/MAX1720/MAX1721 are not voltage reg-  
ula tors : the c ha rg e p ump s ’ outp ut re s is ta nc e is  
P
+ P  
PUMP CAPACITOR LOSSES  
SWITCH LOSSES  
2
approximately 23at room temperature (with V  
=
IN  
= I  
R
O
OUT  
+5V), and V  
approaches -5V when lightly loaded.  
OUT  
1
V
OUT  
will droop toward GND as load current increases.  
R
+2R  
+ 4ESR +ESR  
O
SWITCHES C1 C2  
f
C1  
The droop of the negative supply (V ) equals the  
DROOP-  
(
)
OSC  
current draw from OUT (I ) times the negative con-  
OUT  
verters output resistance (R ):  
where f  
is the oscillator frequency. The first term is  
O
OSC  
the e ffe c tive re s is ta nc e from a n id e a l s witc he d -  
capacitor circuit. See Figures 3a and 3b.  
V
= I  
· R  
DROOP-  
OUT  
O
The negative output voltage will be:  
= -(V - V )  
DROOP-  
S h u t d o w n Mo d e  
V
OUT  
IN  
The MAX1719/MAX1720/MAX1721 have a logic-con-  
trolled shutdown input. Driving SHDN low places the  
MAX1720/MAX1721 in a low-power shutdown mode.  
The MAX1719s shutdown input is inverted from that of  
the MAX1720/MAX1721. Driving SHDN high places the  
MAX1719 in a low-power shutdown mode. The charge-  
pump switching halts, supply current is reduced to  
1nA, and OUT is actively pulled to ground through a 4Ω  
resistance.  
Effic ie n c y Co n s id e ra t io n s  
The power efficiency of a switched-capacitor voltage  
converter is affected by three factors: the internal loss-  
es in the converter IC, the losses in the power switches,  
and the resistive losses of the pump capacitors. The  
total power loss is:  
ΣP  
= P  
+ P  
LOSS  
INTERNAL LOSSES  
SWITCH LOSSES  
PUMP CAPACITOR LOSSES  
+ P  
6
_______________________________________________________________________________________  
S OT2 3 , S w it c h e d -Ca p a c it o r  
Vo lt a g e In ve rt e rs w it h S h u t d o w n  
90/MAX721  
Ap p lic a t io n s In fo rm a t io n  
+V  
IN  
Ca p a c it o r S e le c t io n  
To maintain the lowest output resistance, use capaci-  
tors with low ESR (Table 1). The charge-pump output  
re s is ta nc e is a func tion of C1s a nd C2s ESR.  
Therefore, minimizing the charge-pump capacitors  
ESR minimize s the tota l output re sista nc e . Ta ble 2  
gives suggested capacitor values for minimizing output  
resistance or minimizing capacitor size.  
2
1
2
1
3
4
3
4
MAX1719  
MAX1720  
MAX1721  
“1”  
MAX1719  
MAX1720  
MAX1721  
“n”  
C1  
C1  
V
OUT  
6
6
C2  
5
5
C2  
SHDN (MAX1719)  
SHDN (MAX1720/  
MAX1721)  
V
= -nV  
IN  
OUT  
Flying Capacitor (C1)  
Increasing the flying capacitors value reduces the out-  
put resistance. Above a certain point, increasing C1s  
capacitance has a negligible effect because the output  
resistance becomes dominated by the internal switch  
resistance and capacitor ESR.  
Figure 4. Cascading MAX1719s or MAX1720s or MAX1721s  
to Increase Output Voltage  
Vo lt a g e In ve rt e r  
The most common application for these devices is a  
charge-pump voltage inverter (Figure 1). This applica-  
tion requires only two external components—capacitors  
C1 and C2—plus a bypass capacitor, if necessary.  
Refer to the Capacitor Selection section for suggested  
capacitor types.  
Output Capacitor (C2)  
Increasing the output capacitors value reduces the  
output ripple voltage. Decreasing its ESR reduces both  
output resistance and ripple. Lower capacitance values  
can be used with light loads if higher output ripple can  
be tolerated. Use the following equation to calculate the  
peak-to-peak ripple:  
Ca s c a d in g De vic e s  
Two devices can be cascaded to produce an even  
larger negative voltage (Figure 4). The unloaded output  
IOUT  
V
=
+ 2 IOUT ESRC2  
RIPPLE  
2 x fOSC C2  
voltage is normally -2 · V , but this is reduced slightly  
IN  
by the output resistance of the first device multiplied by  
the quiescent current of the second. When cascading  
more than two devices, the output resistance rises dra-  
matically. For applications requiring larger negative  
voltages, see the MAX865 and MAX868 data sheets.  
Input Bypass Capacitor (C3)  
Bypass the incoming supply to reduce its AC impedance  
and the impact of the MAX1719/MAX1720/MAX1721s  
switching noise. A bypass capacitor with a value equal  
to that of C1 is recommended.  
Table 1. Low-ESR Capacitor Manufacturers  
PRODUCTION  
METHOD  
MANUFACTURER  
SERIES  
PHONE  
FAX  
AVX  
Matsuo  
Sprague  
AVX  
TPS series  
267 series  
593D, 595D series  
X7R  
803-946-0690  
714-969-2491  
603-224-1961  
803-946-0690  
714-969-2491  
803-626-3123  
714-960-6492  
603-224-1430  
803-626-3123  
714-960-6492  
Surface-Mount  
Tantalum  
Surface-Mount  
Ceramic  
Matsuo  
X7R  
Table 2. Capacitor Selection for Minimum Output Resistance or Capacitor Size  
CAPACITORS TO MINIMIZE  
OUTPUT RESISTANCE  
CAPACITORS TO MINIMIZE SIZE  
PART  
f
(R = 40, TYP)  
OSC  
O
(R = 23, TYP)  
O
C1 = C2  
C1 = C2  
MAX1720  
12kHz  
10µF  
3.3µF  
MAX1719/MAX1721  
125kHz  
1µF  
0.33µF  
_______________________________________________________________________________________  
7
S OT2 3 , S w it c h e d -Ca p a c it o r  
Vo lt a g e In ve rt e rs w it h S h u t d o w n  
SHDN (MAX1719)  
SHDN (MAX1720/  
+V  
IN  
MAX1721)  
+V  
IN  
5
2
2
1
3
2
1
D1, D2 = 1N4148  
3
4
6
3
4
6
MAX1719  
MAX1720  
MAX1721  
“1”  
MAX1719  
MAX1720  
MAX1721  
“n”  
C1  
4
6
MAX1719  
MAX1720  
MAX1721  
C1  
C1  
D1  
D2  
V
OUT  
1
V
OUT  
= -V  
IN  
C2  
C4  
5
5
SHDN (MAX1719)  
SHDN (MAX1720/  
MAX1721)  
V
= (2V ) -  
IN  
C2  
V
OUT  
= -V  
OUT  
IN  
(V ) - (V  
)
FD2  
FD1  
R OF SINGLE DEVICE  
NUMBER OF DEVICES  
O
C3  
R =  
O
Figure 5. Paralleling MAX1719s or MAX1720s or MAX1721s to  
Reduce Output Resistance  
Figure 6. Combined Doubler and Inverter  
P a ra lle lin g De vic e s  
Pa ra lle ling multip le MAX1719s , MAX1720s , or  
MAX1721s reduces the output resistance. Each device  
requires its own pump capacitor (C1), but the reservoir  
capacitor (C2) serves all devices (Figure 5). Increase  
C2s value by a factor of n, where n is the number of  
parallel devices. Figure 5 shows the equation for calcu-  
lating output resistance.  
4
V+  
GND  
MAX1719  
MAX1720  
MAX1721  
R
L
1
OUT  
Figure 7. Heavy Load Connected to a Positive Supply  
Co m b in e d Do u b le r/In ve rt e r  
In the circuit of Figure 6, capacitors C1 and C2 form the  
inverter, while C3 and C4 form the doubler. C1 and C3  
are the pump capacitors; C2 and C4 are the reservoir  
capacitors. Because both the inverter and doubler use  
part of the charge-pump circuit, loading either output  
causes both outputs to decline toward GND. Make sure  
the sum of the currents drawn from the two outputs  
does not exceed 25mA.  
OUT require a Schottky diode (1N5817) between GND  
and OUT, with the anode connected to OUT (Figure 7).  
90/MAX721  
La yo u t a n d Gro u n d in g  
Good layout is important, primarily for good noise per-  
formance. To ensure good layout, mount all compo-  
nents as close together as possible, keep traces short  
to minimize parasitic inductance and capacitance, and  
use a ground plane.  
He a vy Lo a d Co n n e c t e d t o a  
P o s it ive S u p p ly  
Under heavy loads, where a higher supply is sourcing  
current into OUT, the OUT supply must not be pulled  
above ground. Applications that sink heavy current into  
Ch ip In fo rm a t io n  
TRANSISTOR COUNT: 85  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
8
_____________________Ma x im In t e g ra t e d P ro d u c t s , 1 2 0 S a n Ga b rie l Drive , S u n n yva le , CA 9 4 0 8 6 4 0 8 -7 3 7 -7 6 0 0  
© 1999 Maxim Integrated Products Printed USA is a registered trademark of Maxim Integrated Products.  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY