MAX17225ELT+ [MAXIM]

Switching Regulator,;
MAX17225ELT+
型号: MAX17225ELT+
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Switching Regulator,

开关 光电二极管
文件: 总23页 (文件大小:826K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
EVALUATION KIT AVAILABLE  
MAX17220‒MAX17225  
400mV to 5.5V Input, nanoPower Synchronous  
Boost Converter with True Shutdown  
General Description  
Benefits and Features  
300nA Quiescent Supply Current Into OUT  
The MAX17220–MAX17225 is a family of ultra-low  
quiescent current boost (step-up) DC-DC converters  
with a 225mA/0.5A/1A peak inductor current limit and  
True Shutdown™. True Shutdown disconnects the output  
from the input with no forward or reverse current. The  
output voltage is selectable using a single standard 1%  
resistor. The 225mA (MAX17220), 500mA (MAX17222/  
MAX17223), and 1A (MAX17224/MAX17225) peak inductor  
current limits allow flexibility when choosing inductors. The  
MAX17220/MAX17222/MAX17224 versions have post-  
startup enable transient protection (ETP), allowing the  
output to remain regulated for input voltages down to  
400mV, depending on load current. The MAX17220–  
MAX17225 offer ultra-low quiescent current, small total  
solution size, and high efficiency throughout the entire load  
range. The MAX17220–MAX17225 are ideal for battery  
applications where long battery life is a must.  
True Shutdown Mode  
• 0.5nA Shutdown Current  
• Output Disconnects from Input  
• No Reverse Current with V  
0V to 5V  
OUT  
95% Peak Efficiency  
400mV to 5.5V Input Range  
0.88V Minimum Startup Voltage  
1.8V to 5V Output Voltage Range  
• 100mV/Step  
• Single 1% Resistor Selectable Output  
225mA, 500mA, and 1A Peak Inductor Current Limit  
• MAX17220: 225mA I  
LIM  
• MAX17222/MAX17223: 500mA I  
• MAX17224/MAX17225: 1A I  
LIM  
LIM  
MAX17220/MAX17222/MAX17224 Enable Transient  
Applications  
Protection (ETP)  
Optical Heart-Rate Monitoring (OHRM) LED Drivers  
Supercapacitor Backup for RTC/Alarm Buzzers  
Primary-Cell Portable Systems  
● 2mm x 2mm 6-Pin μDFN  
0.88mm x 1.4mm 6-Bump WLP (2 x 3, 0.4mm Pitch)  
Tiny, Low-Power IoT Sensors  
Typical Operating Circuit  
Secondary-Cell Portable Systems  
Wearable Devices  
IN  
L1 2.2µH  
400mV TO 5.5V  
Battery-Powered Medical Equipment  
Low-Power Wireless Communication Products  
OUT  
EN  
CIN  
10µF  
Ordering Information appears at end of data sheet.  
GND  
MAX1722X  
COUT  
10µF  
STARTUP  
0.88 (TYP)  
RSEL  
True Shutdown is a trademark of Maxim Integrated Products, Inc.  
19-8753; Rev 3; 7/17  
MAX17220–MAX17225  
400mV to 5.5V Input, nanoPower Synchronous  
Boost Converter with True Shutdown  
Absolute Maximum Ratings  
OUT, EN, IN to GND ...............................................-0.3V to +6V  
Continuous Power Dissipation (T = 70°C)  
A
RSEL to GND................ -0.3V to Lower of (V  
LX RMS Current WLP............................-1.6A  
LX RMS Current µDFN ................................-1A  
+ 0.3V) or 6V  
µDFN (derate 4.5mW/°C above +70°C)...................357.8mW  
Operating Temperature Range........................... -40°C to +85°C  
Junction Temperature......................................................+150°C  
Storage Temperature Range............................ -40°C to +150°C  
Soldering Temperature (reflow).......................................+260°C  
OUT  
to +1.6A  
RMS  
RMS  
RMS  
to +1A  
RMS  
Continuous Power Dissipation (T = 70°C)  
A
WLP (derate 10.5mW/°C above +70°C)......................840mW  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these  
or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect  
device reliability.  
Package Information  
µDFN  
PACKAGE CODE  
L622+1C  
Outline Number  
21-0164  
90-0004  
Land Pattern Number  
Thermal Resistance, Four-Layer Board:  
Junction to Ambient (θ  
)
223.6°C/W  
122°C/W  
JA  
Junction to Case (θ  
)
JC  
WLP  
PACKAGE CODE  
N60E1+1  
Outline Number  
21-100128  
Land Pattern Number  
Refer to Application Note 1891  
Thermal Resistance, Four-Layer Board:  
Junction to Ambient (θ  
)
95.15°C/W  
N/A  
JA  
Junction to Case (θ  
)
JC  
For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a “+”,  
“#”, or “-” in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing  
pertains to the package regardless of RoHS status.  
Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer board.  
For detailed information on package thermal considerations, refer to www.maximintegrated.com/thermal-tutorial.  
Maxim Integrated  
2  
www.maximintegrated.com  
MAX17220–MAX17225  
400mV to 5.5V Input, nanoPower Synchronous  
Boost Converter with True Shutdown  
Electrical Characteristics  
(V = V  
= 1.5V, V  
= 3V T = -40°C to +85°C, typical values are at T = +25°C, unless otherwise noted. (Note 1))  
IN  
EN  
OUT  
,
A
A
PARAMETER  
Minimum Input Voltage  
Input Voltage Range  
SYMBOL  
CONDITIONS  
Runs from output after startup, I  
MIN  
TYP  
MAX  
UNITS  
mV  
V
= 1mA  
OUT  
400  
IN_MIN  
V
Guaranteed by LX Maximum On-Time  
R ≥ 3kΩ, Typical Operating Circuit,  
0.95  
5.5  
V
IN  
Minimum Startup Input  
Voltage  
L
V
0.88  
0.95  
V
V
IN_STARTUP  
T = 25°C  
A
See R  
Selection table.  
SEL  
Output Voltage Range  
Output Accuracy, LPM  
V
1.8  
-1.5  
1
5
+1.5  
4
OUT  
For V < V  
target (Note 2)  
IN  
OUT  
V
falling, when LX switching frequency  
OUT  
ACC  
%
%
LPM  
is > 1MHz (Note 3)  
V falling, when LX switching frequency  
OUT  
Output Accuracy,  
Ultra-Low-Power Mode  
ACC  
2.5  
ULPM  
is > 1kHz (Note 4)  
MAX17220/2/4  
EN = open after startup,  
MAX17223/5 EN = V  
not switching, RSEL OPEN,  
,
T = 25°C.  
300  
600  
900  
IN  
A
V
= 104% of 1.8V  
Quiescent Supply Current  
Into OUT  
OUT  
I
nA  
Q_OUT  
MAX17220/2/4  
EN = open after startup,  
MAX17223/5 EN = V  
,
T
= 85°C  
470  
IN  
A
not switching, RSEL OPEN,  
V
= 104% of 1.8V  
OUT  
Quiescent Supply Current  
Into IN  
I
T
= 25°C  
0.1  
0.5  
nA  
nA  
Q_IN  
A
MAX17220/2/4 EN = Open after startup.  
MAX17223/5 EN = V , not switching,  
V
Total Quiescent Supply  
Current into IN LX EN  
IN  
I
100  
100  
Q_IN_TOTAL  
= 104% of V  
target, total current  
OUT  
OUT  
includes IN, LX, and EN, T = 25ºC  
A
MAX17220/2/3/4/5, R = 3kΩ, V  
= V = 0V,  
EN  
L
OUT  
Shutdown Current Into IN  
I
0.1  
0.5  
nA  
nA  
SD_IN  
T
= 25ºC  
A
MAX17220/2/3/4/5, R = 3kΩ, V  
V
= V  
=
L
EN  
IN  
Total Shutdown Current  
into IN LX  
I
= 3V, includes LX and IN leakage,  
SD_TOTAL  
LX  
T
= 25ºC  
A
MAX17220  
180  
0.4  
0.8  
70  
225  
0.5  
1
270  
0.575  
1.2  
mA  
A
Inductor Peak Current  
Limit  
I
(Note 5)  
MAX17222/3  
MAX17224/5  
PEAK  
LX Maximum Duty Cycle  
LX Maximum On-Time  
DC  
(Note 6)  
(Note 6)  
75  
%
V
V
V
V
V
= 1.8V  
= 3V  
280  
270  
90  
365  
300  
120  
100  
450  
330  
150  
120  
OUT  
OUT  
OUT  
OUT  
t
ns  
ON  
= 1.8V  
= 3V  
LX Minimum Off-Time  
LX Leakage Current  
t
(Note 6)  
ns  
OFF  
80  
= 1.5V,  
LX  
0.3  
30  
T
= 25°C  
A
I
V
= V = 0V  
EN  
nA  
LX_LEAK  
OUT  
V
= 5.5V,  
LX  
T = 85°C  
A
Maxim Integrated  
3  
www.maximintegrated.com  
 
MAX17220–MAX17225  
400mV to 5.5V Input, nanoPower Synchronous  
Boost Converter with True Shutdown  
Electrical Characteristics (continued)  
(V = V  
= 1.5V, V  
= 3V T = -40°C to +85°C, typical values are at T = +25°C, unless otherwise noted. (Note 1))  
IN  
EN  
OUT  
,
A
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
124  
62  
MAX  
270  
135  
70  
UNITS  
MAX17220  
N-Channel On-Resistance  
R
R
V
= 3.3V  
MAX17222/3  
MAX17224/5  
MAX17220  
mΩ  
DS(ON)  
DS(ON)  
OUT  
31  
300  
150  
75  
600  
300  
150  
P-Channel On-Resistance  
V
V
= 3.3V  
MAX17222/3  
MAX17224/5  
mΩ  
OUT  
Synchronous Rectifier  
Zero-Crossing as Percent  
of Peak Current Limit  
I
= 3.3V (Note 7)  
2.5  
5
7.5  
%
ZX  
OUT  
V
When LX switching stops, EN falling  
EN rising  
300  
500  
600  
0.1  
IL  
Enable Voltage Threshold  
mV  
nA  
V
850  
IH  
MAX17223/5, V = 5.5V, T = 25°C  
EN  
A
Enable Input Leakage  
I
EN_LK  
MAX17220/2/4, V  
= 0V, T = 25°C,  
0.1  
EN  
A
Enable Input Impedance  
MAX17220/2/4  
100  
200  
+1  
kΩ  
Required Select Resistor  
Accuracy  
Use the nearest ±1% resistor from R  
Selection Table  
SEL  
R
-1  
%
SEL  
Select Resistor Detection  
Time  
t
V
= 1.8V, C < 2pF (Note 8)  
RSEL  
360  
600  
1320  
μs  
RSEL  
OUT  
Note 1: Limits are 100% production tested at T = +25°C. Limits over the operating temperature range are guaranteed through  
A
correlation using statistical quality control (SQC) methods.  
Note 2: Guaranteed by the Required Select Resistor Accuracy parameter.  
Note 3: Output Accuracy, Low Power mode is the regulation accuracy window expected when I  
> I  
. See PFM  
OUT  
OUT_TRANSITION  
Control Scheme and V  
ERROR vs I  
TOC for more details. This accuracy does not include load, line, or ripple.  
OUT  
LOAD  
Note 4: Output Accuracy, Ultra-Low Power mode is the regulation accuracy window expected when I  
< I  
. See  
OUT  
OUT_TRANSITION  
PFM Control Scheme and V  
ERROR vs. I  
TOC for more details. This accuracy does not include load, line, or ripple.  
OUT  
LOAD  
Note 5: This is a static measurement. See I  
vs. V TOC. The actual peak current limit depends upon V and L due to propagation  
LIM  
IN IN  
delays.  
Note 6: Guaranteed by measuring LX frequency and duty cycle  
Note 7: This is a static measurement.  
Note 8: This is the time required to determine RSEL value. This time adds to the startup time. See Output Voltage Selection.  
Maxim Integrated  
4  
www.maximintegrated.com  
MAX17220–MAX17225  
400mV to 5.5V Input, nanoPower Synchronous  
Boost Converter with True Shutdown  
Typical Operating Characteristics  
(MAX17222ELT+, IN = 1.5V, OUT = 3V, L = 2.2μH Coilcraft XFL4020-222, C = 10μF, C  
= 10μF, T = +25°C, unless otherwise noted.)  
IN  
OUT  
A
TOTAL SYSTEM SUPPLY CURRENT  
MAXIMUM OUTPUT CURRENT  
vs. INPUT VOLTAGE  
TOTAL SYSTEM SHUTDOWN CURRENT  
vs. TEMPERATURE  
vs. TEMPERATURE  
toc02  
toc01  
toc03  
1400.0  
1300.0  
350  
75  
70  
300  
VOUT = 3V,  
1200.0  
L = 1µH  
250  
200  
150  
100  
50  
65  
1100.0  
EN = OPEN  
60  
55  
50  
45  
40  
WITH EXTERNAL RESISTOR  
FROM IN TO EN  
1000.0  
900.0  
800.0  
700.0  
600.0  
500.0  
VOUT = 3.3V,  
L = 1µH  
VOUT = 5V,  
L = 1µH  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
-40  
-15  
10  
35  
60  
85  
-50  
-25  
0
25  
50  
75  
100  
INPUT VOLTAGE (V)  
TEMPERATURE (ºC)  
TEMPERATURE (ºC)  
MAX17222ELT+  
INDUCTOR CURRENT LIMIT  
vs. INPUT VOLTAGE  
OUTPUT VOLTAGE ERROR  
vs. LOAD CURRENT  
(VOUT = 3.3V)  
MAXIMUM OUTPUT CURRENT  
vs. INPUT VOLTAGE  
toc04  
toc05  
toc06  
400.0  
350.0  
300.0  
250.0  
200.0  
150.0  
100.0  
50.0  
800  
700  
600  
500  
400  
300  
200  
100  
4
3
VOUT = 3.3V,  
VIN = 2.5V  
L = 1µH  
VOUT = 5V,  
L = 1µH  
VOUT = 3V,  
L = 2.2µH  
VIN = 2V  
2
1
VIN = 1V  
0
VOUT = 5V,  
L = 2.2µH  
VOUT = 3.3V,  
L = 2.2µH  
VIN = 1.5V  
-1  
-2  
-3  
-4  
VOUT = 5V,  
L = 2.2µH  
VIN = 0.8V  
VOUT = 3.3V,  
L = 2.2µH  
0.0  
0.5  
1.5  
2.5  
3.5  
4.5  
0.50  
1.00  
1.50  
2.00  
2.50  
3.00  
1
100  
10000  
1000000  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
LOAD CURRENT (µA)  
STARTUP VOLTAGE vs. LOAD CURRENT  
EFFICIENCY vs. LOAD CURRENT  
(VOUT = 3.3V)  
SWITCHING FREQUENCY  
vs. LOAD CURRENT  
(VOUT = 3.3V)  
toc08  
toc09  
toc07  
3
2.5  
2
100  
90  
80  
70  
60  
50  
40  
RS IS THE SOURCE RESISTANCE  
1000  
100  
10  
1
VIN = 1.5V, VOUT = 3V  
1.5  
1
VIN = 1.5V  
VIN = 2.5V  
VIN = 1V  
RS = 30Ω  
VIN = 2V  
VIN = 3.2V, VOUT = 5V  
RS = 5Ω  
RS = 1Ω  
0
0.5  
0
0
1
10  
100  
1000 10000 100000 1000000  
1
10  
100  
1000 10000 100000 1000000  
0.1  
10  
1000  
100000  
LOAD CURRENT (µA)  
LOAD CURRENT (µA)  
LOAD CURRENT (µA)  
Maxim Integrated  
5  
www.maximintegrated.com  
 
MAX17220–MAX17225  
400mV to 5.5V Input, nanoPower Synchronous  
Boost Converter with True Shutdown  
Typical Operating Characteristics (continued)  
(MAX17222ELT+, IN = 1.5V, OUT = 3V, L = 2.2μH Coilcraft XFL4020-222, C = 10μF, C  
= 10μF, T = +25°C, unless otherwise noted.)  
A
IN  
OUT  
INTO AND OUT OF ULPM  
LOAD TRANSIENT  
INTO AND OUT OF LPM  
LOAD TRANSIENT  
toc10  
toc11  
VLX  
2V/div  
VLX  
2V/div  
IOUT  
100mA/div  
500mA/div  
IOUT  
ILX  
100mA/div  
500mA/div  
ILX  
100mV/div  
(AC-COUPLED)  
VOUT  
VOUT  
100mV/  
AC-COUPLED)  
VIN = 1.5V, VOUT = 3V, IOUT = 0 TO 180mA  
200µs/div  
VIN = 1.5V, VOUT = 3V, IOUT = 10mA TO 180mA  
200µs/div  
Maxim Integrated  
6  
www.maximintegrated.com  
MAX17220–MAX17225  
400mV to 5.5V Input, nanoPower Synchronous  
Boost Converter with True Shutdown  
Typical Operating Characteristics (continued)  
(MAX17222ELT+, IN = 1.5V, OUT = 3V, L = 2.2μH Coilcraft XFL4020-222, C = 10μF, C  
= 10μF, T = +25°C, unless otherwise noted.)  
IN  
OUT  
A
/div  
MAX17220ENT+ INDUCTOR CURRENT LIMIT  
vs. INPUT VOLTAGE  
toc18  
600  
550  
VOUT = 5V , L = 1µH  
500  
VOUT = 3.3V, L = 1µH  
450  
VOUT = 3.3V,  
400  
350  
300  
250  
200  
150  
100  
L = 2.2µH  
VOUT = 5V,  
L = 2.2µH  
VOUT = 5V, L = 4.7µH  
VOUT = 3.3V, L = 4.7µH  
1.50 2.50 3.50  
INPUT VOLTAGE (V)  
0.50  
4.50  
Maxim Integrated  
7  
www.maximintegrated.com  
MAX17220–MAX17225  
400mV to 5.5V Input, nanoPower Synchronous  
Boost Converter with True Shutdown  
Bump Configuration  
TOP VIEW  
TOP VIEW  
+
MAX1722x  
OUT  
1
2
3
6
5
4
EN  
A
OUT  
GND  
LX  
IN  
LX  
IN  
MAX1722x  
EN  
SEL  
B
GND  
SEL  
1
2
3
µDFN  
WLP  
Bump Description  
PIN  
NAME  
FUNCTION  
6 WLP  
A1  
µDFN  
1
2
3
6
OUT  
LX  
Output Pin. Connect a 10µF X5R ceramic capacitor (minimum 2µF capacitance) to ground.  
Switching Node Pin. Connect the inductor from IN to LX.  
Ground Pin.  
A2  
A3  
GND  
EN  
B1  
Active-High Enable Input. See Supply Current section for recommended connections.  
Input Pin. Connect a 10µF X5R ceramic capacitor (minimum 2µF capacitance) to ground.  
Depending on the application requirements, more capacitance may be needed (i.e., BLE).  
B2  
B3  
5
4
IN  
Output Voltage Select Pin. Connect a resistor from SEL to GND based on the desired  
output voltage. See RSEL Selection table.  
SEL  
Maxim Integrated  
8  
www.maximintegrated.com  
MAX17220–MAX17225  
400mV to 5.5V Input, nanoPower Synchronous  
Boost Converter with True Shutdown  
Functional Diagrams  
2.2µH  
LX  
MAX17220/2/3/4/5  
TRUE SHUTDOWN  
IN  
STARTUP  
OUT  
CIN  
10µF  
COUT  
10µF  
CURRENT SENSE  
MODULATOR  
REFERENCE  
OPTIONAL ENABLE PIN  
TRANSIENT PROTECTION  
EN  
OUTPUT VOLTAGE  
SELECTOR  
SEL  
RSEL  
GND  
Maxim Integrated  
9  
www.maximintegrated.com  
MAX17220–MAX17225  
400mV to 5.5V Input, nanoPower Synchronous  
Boost Converter with True Shutdown  
Detailed Description  
33MΩ  
R
PULLUP  
The MAX17220/2/3/4/5 compact, high-efficiency, step-up  
DC-DC converters have ultra-low quiescent current, are  
guaranteed to start up with voltages as low as 0.95V, and  
operate with an input voltage down to 400mV, depending  
on load current. True Shutdown disconnects the input  
from the output, saving precious battery life. Every detail  
of the MAX17220/2/3/4/5 was carefully chosen to allow  
for the lowest power and smallest solution size. Such  
details as switching frequencies up to 2.5MHz, tiny package  
options, a single-output setting resistor, 300ns fixed turn-  
on time, as well as three current limit options, allow the  
user to minimize the total solution size.  
IN  
OUT  
MAX17220/2/3/4/5  
µC  
OPEN-DRAIN  
GPIO  
Supply Current  
Figure 1. For All Versions, EN Pin Can Be Driven by an Open-  
Drain Microcontroller GPIO.  
True Shutdown Current  
The total system shutdown current (I  
) is  
SD_TOTAL_SYSTEM  
made up of the MAX17220/2/3/4/5's total shutdown current  
(I ) and the current through an external pullup resis-  
SD_TOTAL  
IN  
tor, as shown in Figure 1. I  
is listed in the Electrical  
SD_TOTAL  
OUT  
Characteristics table and is typically 0.5nA. It is important  
to note that I includes LX and IN leakage cur-  
SD_TOTAL  
rents. (See the Shutdown Supply Current vs. Temperature  
graph in the Typical Operating Characteristics section.)  
MAX17223  
MAX17225  
VIO  
µC  
I
current can be calculated using the  
SD_TOTAL_SYSTEM  
formula below. For example, for the MAX17220/2/3/4/5 with  
EN connected to an open-drain GPIO of a microcontroller,  
a V = 1.5V, V  
I
= 3V, and a 33MΩ pullup resistor,  
current is 45.9nA.  
IN  
SD_TOTAL_SYSTEM  
OUT  
V
IN  
PULLUP  
I
= I  
+
SD_TOTAL  
SD_TOTAL_SYSTEM  
R
Figure 2. Only the MAX17223/5’s EN Pin Can Be Driven by a  
Push-Pull Microcontroller GPIO.  
1.5  
= 0.5nA +  
= 45.9nA, (Figure1)  
33MΩ  
Figure 2 shows a typical connection of the MAX17223/5  
to a push-pull microcontroller GPIO. I  
current can be calculated using the formula below. For  
SD_TOTAL_SYSTEM  
IN  
OUT  
example, a MAX17223/5 with EN connected to a push-  
pull microcontroller GPIO, V = 1.5V, and V  
= 3V,  
IN  
OUT  
I
current is 0.5nA.  
SD_TOTAL_SYSTEM  
MAX17220/  
MAX17222/  
MAX17224  
I
= I  
= 0.5nA  
SD_TOTAL  
SD_TOTAL_SYSTEM  
µC  
(Figure2, Figure3)  
33MΩ  
GPIO  
Figure 3 shows a typical connection of the MAX17220/2/4  
with a push-button switch to minimize the I  
SD_TOTAL_  
current. I  
current can be  
SYSTEM  
SD_TOTAL_SYSTEM  
calculated using the formula above. For example, a  
MAX17220/2/4 with EN connected as shown in Figure 3,  
Figure 3. The MAX17220/2/4’s Total System Shutdown Current  
Will Only Be Leakage If Able To Use Push-Button As Shown.  
with V = 1.5V and V  
= 3V, the I  
IN  
OUT  
SD_TOTAL_SYSTEM  
current is 0.5nA.  
Maxim Integrated  
10  
www.maximintegrated.com  
 
 
 
MAX17220–MAX17225  
400mV to 5.5V Input, nanoPower Synchronous  
Boost Converter with True Shutdown  
the total system quiescent current IQ_TOTAL_SYSTEM  
Enable Transient Protection (ETP) Current  
using the efficiency η from the flat portion of the  
efficiency graph in the Typical Operating Characteristics  
section while the device is in ULPM. See the PFM control  
scheme section for more info on ULPM. Do not use the  
efficiency for your actual load current. To calculate the  
IQ_ETP for the MAX17220/2/4, see the Enable Transient  
Protection (ETP) Current section. If you are using the  
versions of the part without enable input transient protection  
(using MAX17223/5) or if you are using any part version  
and the electrical path from the EN pin is opened after startup,  
then the IQ_ETP current will be zero. For example, for the  
The MAX17220/2/4 have internal circuitry that helps  
protect against accidental shutdown by transients on the  
EN pin. Once the part is started up, these parts allow the  
voltage at IN to drop as low as 400mV while still keeping  
the part enabled, depending on the load current. This  
feature comes at the cost of slightly higher supply  
current that is dependent on the pullup resistor resistance.  
The extra supply current for this protection option can be  
calculated by the equation below. For example, for the  
MAX17220/2/4 used in the Figure 1 connection, a V  
IN  
= 1.5V, V  
= 3V, a 33MΩ pullup resistor and an 85%  
OUT  
MAX17223/5, a V = 1.5V, V  
= 3V, and an 85%  
IN  
OUT  
efficiency, the IQ_ETP is expected to be 61.3nA.  
efficiency, the IQ_TOTAL_SYSTEM is 706.4nA.  
(V  
- V  
)
V
OUT  
V
IN  
1
OUT  
IN  
IQ_OUT  
IQ_ETP =  
×
×
-1 ,  
IQ_TOTAL_SYSTEM = IQ_IN_TOTAL +  
(MAX17223/5)  
(R  
+100k)  
η
PULLUP  
V
IN  
η×  
(Figure1)  
V
OUT   
(3V-1.5V)  
1
3V  
IQ_ETP =  
×
×
-1 = 61.3nA,  
300nA  
IQ_TOTAL_SYSTEM = 0.5nA +  
= 706.4nA,  
(33M+100k) 0.85 1.5  
1.5V  
0.85×  
(Figure1)  
3V  
(MAX17223/5)  
Use the efficiency η from the flat portion of the efficiency  
typical operating curves while the device is in ultra-low-  
power mode (ULPM). See the PFM Control Scheme  
section for more info on ULPM. Do not use the efficiency  
for your actual load current. If you are using the versions  
of the part without enable input transient protection (using  
MAX17223/5), or if you are using any part version and  
the electrical path from the EN pin is opened after startup,  
then there is no IQ_ETP current and it will be zero.  
IQ_OUT  
IQ_TOTAL_SYSTEM = IQ_IN_TOTAL +  
+ IQ_ETP,  
V
IN  
η×  
V
OUT   
(MAX17220/2/4)  
300nA  
IQ_TOTAL_SYSTEM = 0.5nA +  
+ 61.3nA = 767.7nA,  
1.5V  
0.85×  
3V  
(MAX17220/2/4)  
IQ_ETP = N A = 0, (Figure 2)  
/
PFM Control Scheme  
The MAX17220/2/3/4/5 utilizes a fixed on-time, current-  
limited, pulse-frequency-modulation (PFM) control  
scheme that allows ultra-low quiescent current and high  
efficiency over a wide output current range. The inductor  
current is limited by the 0.225A/0.5A/1A N-channel  
current limit or by the 300ns switch maximum on-time.  
During each on cycle, either the maximum on-time or the  
maximum current limit is reached before the off-time of  
the cycle begins. The MAX17220/2/3/4/5's PFM control  
scheme allows for both continuous conduction mode  
(CCM) or discontinuous conduction mode (DCM). When  
the error comparator senses that the output has fallen  
below the regulation threshold, another cycle begins. See  
the MAX17220/2/3/4/5 simplified functional diagram.  
(V  
)
V
OUT  
V
IN  
1
OUT  
IQ_ETP =  
×
×
,
(R  
+100k)  
η
PULLUP  
(Figure 3)  
(3V)  
1
3V  
IQ_ETP =  
×
×
= 213.2nA,  
(33M +100k) 0.85 1.5V  
(Figure 3)  
Quiescent Current  
The MAX17220/2/3/4/5 has ultra-low quiescent current  
and was designed to operate at low input voltages by  
bootstrapping itself from its output by drawing current  
from the output. Use the equation below to calculate  
Maxim Integrated  
11  
www.maximintegrated.com  
 
 
MAX17220–MAX17225  
400mV to 5.5V Input, nanoPower Synchronous  
Boost Converter with True Shutdown  
The MAX17220/2/3/4/5 automatically switches between  
the ULPM, low-power mode (LPM) and high-power mode  
(HPM), depending on the load current. Figure 4 and  
Figure 5 show typical waveforms while in each mode.  
The output voltage, by design, is biased 2.5% higher  
while in ULPM so that it can more easily weather a future  
large load transient. ULPM is used when the system is  
in standby or an ultra-low-power state. LPM and HPM  
are useful for sensitive sensor measurements or during  
wireless communications for medium output currents  
and large output currents respectively. The user can  
calculate the value of the load current where ULPM transi-  
VOUT  
ULTRA-LOW POWER MODE (UPLM): LIGHT LOADS  
DCM  
VOUT TARGET + 2.5%  
LOW POWER MODE (LPM): MEDIUM LOADS  
DCM  
VOUT TARGET  
17.5µs  
5µs  
CCM  
VOUT TARGET - LOAD REG  
LOAD DEPENDENT  
750ns  
HIGH POWER MODE (HPM): HEAVY LOADS  
TIME  
Figure 4. ULPM, LPM, and HPM Waveforms (Part 1).  
VOUT  
ULTRA LOW POWER MODE (UPLM): LIGHT LOADS  
DCM  
100ms  
VOUT TARGET + 2.5%  
LOW POWER MODE (LPM): MEDIUM LOADS  
17.5µs  
DCM  
VOUT TARGET  
7µs  
CCM  
VOUT TARGET - LOAD REG  
650ns  
LOAD DEPENDENT  
HIGH POWER MODE (HPM): HEAVY LOADS  
TIME  
Figure 5. ULPM, LPM, and HPM Waveforms (Part 2).  
Maxim Integrated  
12  
www.maximintegrated.com  
 
 
MAX17220–MAX17225  
400mV to 5.5V Input, nanoPower Synchronous  
Boost Converter with True Shutdown  
tions to LPM using the equation below. For example, for  
= 1.5V, V = 3V and L = 2.2µH, the UPLM to LPM  
transition current happens at approximately 1.49mA and  
a no-load frequency of 11.5Hz. The MAX17220/2/3/4/5  
enters HPM when the inductor current transitions from  
DCM to CCM.  
Design Procedure  
V
IN  
OUT  
Output Voltage Selection  
The MAX17220/2/3/4/5 has a unique single-resistor output  
selection method known as RSEL, as shown in Figure 6.  
At startup, the MAX17220/2/3/4/5 uses up to 200µA only  
during the select resistor detection time, typically for  
600µs, to read the RSEL value. RSEL has many benefits,  
which include lower cost and smaller size, since only one  
resistor is needed versus the two resistors needed in typical  
feedback connections. Another benefit is RSEL allows  
our customers to stock just one part in their inventory  
system and use it in multiple projects with different output  
voltages just by changing a single standard 1% resistor.  
Lastly, RSEL eliminates wasting current continuously through  
feedback resistors for ultra low power battery operated  
products. Select the RSEL resistor value by choosing the  
desired output voltage in the RSEL Selection Table.  
2
300ns  
2L  
V
η
IN  
IOUT_TRANSITION =  
×
×
V
17.5µs  
OUT  
-1  
V
IN  
2
300ns  
1.5V  
3V  
0.85   
=
×
×
= 1.49mA  
2× 2.2µH  
17.5µs  
-1  
1.5V  
The minimum switching frequency can be calculated by  
this equation below:  
1
IQ  
f
=
×
SW(MIN)  
17.5µs IOUT_TRANSITION  
IN  
OUT  
EN  
1
300nA  
f
=
×
= 11.5Hz  
SW(MIN)  
17.5µs 1.49mA  
MAX1722X  
GND  
Operation with V > V  
IN  
OUT  
If the input voltage (V ) is greater than the output voltage  
IN  
RSEL  
(V  
) by a diode drop (V  
OUT  
varies from ~0.2V at  
DIODE  
light load to ~0.7V at heavy load), then the output voltage  
is clamped to a diode drop below the input voltage (i.e.,  
V
= V - V  
).  
OUT  
IN  
DIODE  
Figure 6. Single RSEL Resistor Sets the Output Voltage.  
When the input voltage is closer to the output voltage target  
(i.e., V target + V > V > V target) the  
OUT  
DIODE  
IN  
OUT  
MAX17220–MAX17225 operate like a buck converter.  
Maxim Integrated  
13  
www.maximintegrated.com  
 
 
MAX17220–MAX17225  
400mV to 5.5V Input, nanoPower Synchronous  
Boost Converter with True Shutdown  
Inductor Selection  
RSEL Selection Table  
A2.2µH inductor value provides the best size and efficiency  
tradeoff in most applications. Smaller inductance values  
typically allow for the smallest physical size and larger  
inductance values allow for more output current assuming  
continuous conduction mode (CCM) is achieved. Most  
applications are expected to use a 2.2µH, as shown in  
the example circuits. For low input voltages, 1µH will  
work best. If one of the example application circuits do not  
provide Enough output current, use the equations below  
to calculate a larger inductance value that meets the  
output current requirements, assuming it is possible to  
V
STD RES  
1% (kΩ)  
OUT  
(V)  
1.8  
1.9  
2.0  
2.1  
2.2  
2.3  
2.4  
2.5  
2.6  
2.7  
2.8  
2.9  
3.0  
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
3.7  
3.8  
3.9  
4.0  
4.1  
4.2  
4.3  
4.4  
4.5  
4.6  
4.7  
4.8  
4.9  
5.0  
OPEN  
909  
768  
634  
536  
452  
383  
324  
267  
226  
191  
162  
133  
113  
achieve. For the equations below, choose an I between  
IN  
0.9 x I  
and half I . It is not recommended to use an  
LIM  
LIM  
inductor value smaller than 1µH or larger than 4.7µH. See  
the Typical Operating Characteristics section for choosing  
the value of efficiency η using the closest conditions for  
your application. An example calculation has been  
provided for the MAX17222 that has an I  
= 500mA,  
LIM  
a V (min) = 1.8V, a V  
= 3V, and a desired I  
IN  
OUT  
OUT  
of 205mA, which is beyond one of the 2.2µH example  
circuits. The result shows that the inductor value can be  
changed to 3.3µH to achieve a little more output current.  
95.3  
80.6  
66.5  
56.2  
47.5  
40.2  
34  
V
×I  
3V × 205mA  
0.85×1.8V  
OUT OUT  
I
=
=
= 402mA;  
IN  
η× V  
IN  
I
< I < 0.9 × I  
LIM  
LIM IN  
I=(I  
- I )× 2 = (500mA - 402mA)× 2 = 196mA  
LIM IN  
28  
23.7  
20  
V
× t  
ON(MAX)  
1.8V × 300ns  
IN  
L
=
=
= 2.76µH  
MIN  
I  
196mA  
16.9  
14  
= > 3.3µH closest standard value  
Capacitor Selection  
11.8  
10  
Input capacitors reduce current peaks from the battery  
and increase efficiency. For the input capacitor, choose a  
ceramic capacitor because they have the lowest equivalent  
series resistance (ESR), smallest size, and lowest cost.  
Choose an acceptable dielectric such as X5R or X7R.  
Other capacitor types can be used as well but will have  
larger ESR. The biggest down side of ceramic capacitors is  
their capacitance drop with higher DC bias and because  
of this at minimum a standard 10µF ceramic capacitor  
is recommended at the input for most applications. The  
minimum recommended capacitance (not capacitor) at  
the input is 2µF for most applications. For applications  
that use batteries that have a high source impedance  
greater than 1Ω, more capacitance may be needed. A  
good starting point is to use the same capacitance value at  
the input as for the output.  
8.45  
7.15  
5.9  
4.99  
SHORT  
Maxim Integrated  
14  
www.maximintegrated.com  
 
MAX17220–MAX17225  
400mV to 5.5V Input, nanoPower Synchronous  
Boost Converter with True Shutdown  
The minimum output capacitance that ensures stability is  
F. At minimum a standard 10µF X5R (or X7R) ceramic  
capacitor is recommended for most applications. Due to  
DC bias effects the actual capacitance can be 80% lower  
than the nominal capacitor value. The output ripple can be  
calculated with the equation below. For example, For the  
C
(Effective) = 5µF, ESR_COUT for Murata  
OUT  
GRM155R61A106ME44 is 4mΩ from 200kHz to 2MHz  
1
V_RIPPLE = 204mA × 4m+ 204mA  
2
1
× 300ns×  
= 7mV  
MAX17220/2/3/4/5 with a V = 1.5V, V  
= 3V, and an  
5µF  
IN  
OUT  
effective capacitance of 5µF, a capacitor ESR of 4mΩ, the  
expected ripple is 7mV.  
PCB Layout Guidelines  
Careful PC board layout is especially important in a nano-  
current DC-DC converters. In general, minimize trace  
lengths to reduce parasitic capacitance, parasitic resistance  
and radiated noise. Remember that every square of 1oz  
copper will result in 0.5mΩ of parasitic resistance. The  
connection from the bottom of the output capacitor and  
the ground pin of the device must be extremely short  
as should be that of the input capacitor. Keep the main  
power path from IN, LX, OUT, and GND as tight and short  
as possible. Minimize the surface area used for LX since  
this is the noisiest node. Lastly, the trace used for RSEL  
should not be too long nor produce a capacitance of more  
than a few pico Farads.  
V_RIPPLE = IL_PEAK ×ESR_COUT  
1
2
1
+
IL_PEAK × t  
×
OFF  
C
(Effective)  
OUT  
Where,  
V
1.5V  
IN  
IL_PEAK =  
× t  
=
× 300ns = 204mA  
ON  
L
2.2µH  
V
1.5V  
IN  
-V  
t
= t  
×
ON  
= 300ns×  
= 300ns  
OFF  
V
3V -1.5V  
OUT IN  
Maxim Integrated  
15  
www.maximintegrated.com  
MAX17220–MAX17225  
400mV to 5.5V Input, nanoPower Synchronous  
Boost Converter with True Shutdown  
Applications Information  
Primary Cell Bluetooth Low Energy (BLE) Temperature Sensor Wearable  
OPTIONAL LDO  
400mV* TO 1.6V  
2.75V  
3V  
MAX1725  
LDO  
MAX30205  
MEDICAL GRADE  
TEMP SENSOR  
X
MAX1722  
BOOST  
BATTERY  
SILVER OXIDE  
ZINC AIR  
AAAA  
I2C PORT  
BLE RADIO  
ARM®  
AAA  
AA  
CORTEX®  
M4  
FLASH  
RAM  
*LOAD CURRENT DEPENDENT  
LP BLE/NFC µC  
WITH INTERNAL BUCK  
DC-DC  
BUCK  
1.3V  
NFC  
3V  
ARM is a registered trademark and registered service mark and Cortex  
is a registered trademark of ARM Limited.  
GND  
Figure 7. MAX1722x/MAX30205 Temperature Sensor Wearable Solution  
Maxim Integrated  
16  
www.maximintegrated.com  
MAX17220–MAX17225  
400mV to 5.5V Input, nanoPower Synchronous  
Boost Converter with True Shutdown  
Primary Cell Bluetooth Low Energy (BLE) Optical Heart Rate Monitoring (OHRM) Sensor Wearable  
0.8V TO 1.6V  
3.3V LED SUPPLY  
(OR ADJ TO 5V)  
MAX30110  
MAX30101  
X
MAX30102  
OHRM  
MAX1722  
BOOST  
BATTERY  
SILVER OXIDE  
ZINC AIR  
AAAA  
AAA  
AA  
2
BLE RADIO  
I C PORT  
ARM  
CORTEX  
M4  
FLASH  
RAM  
LP BLE/NFC µC  
WITH INTERNAL BUCK  
DC-DC  
BUCK  
1.3V  
3.3V  
3.6V MAX  
NFC  
GND  
Figure 8. MAX1722x/MAX30110/MAX30101/MAX30102 Optical Heart Rate Monitor (OHRM) Sensor Wearable Solution for Primary Cells.  
Maxim Integrated  
17  
www.maximintegrated.com  
MAX17220–MAX17225  
400mV to 5.5V Input, nanoPower Synchronous  
Boost Converter with True Shutdown  
Secondary Rechargable Lithium Cell Bluetooth Low Energy (BLE) Optical Heart Rate Monitor  
(OHRM) Sensor Wearable  
2.7V TO 4.2V  
OPTIONAL LDO LED SUPPLY  
4.5V  
5V  
MAX8880  
LDO  
MAX30110  
MAX30101  
MAX30102  
OHRM  
OR  
ADJ  
X
MAX1722  
BOOST  
BATTERY  
Li+  
µC  
2
I C  
MAX32625/26  
MAX32620/21  
Figure 9. MAX1722x/MAX30110/MAX30101/MAX30102 Optical Heart Rate Monitor (OHRM) Sensor Wearable Solution for  
Secondary Cells.  
Supercap Backup Solution for Real-Time Clock (RTC) Preservation  
REGULATE WITH SUPERCAP DOWN TO 400mV!  
VCAP = 400mV TO 5.5V  
2.3V TO 5.5V  
SOURCE  
MAX14575  
ADJ CURRENT  
LIMIT  
3.3V  
DS1341  
RTC  
X
MAX1722  
BOOST  
SUPERCAP  
INTERNAL  
LOAD  
REVERSE CURRENT- BLOCKING  
DISCONNECT  
VCAP = 5V TO 3.8V ≥ VOUT = VCAP - VDIODE  
VCAP = 3.8V TO 400mV ≥ VOUT = 3.3V  
Figure 10. MAX1722x/MAX14575/DS1341 RTC Backup Solution.  
Maxim Integrated  
18  
www.maximintegrated.com  
MAX17220–MAX17225  
400mV to 5.5V Input, nanoPower Synchronous  
Boost Converter with True Shutdown  
Supercap Backup Solution to Maintain Uniform Sound for Alarm Beeper Buzzers  
UNIFORM ALARM WITH SUPERCAP DOWN TO 400mV!*  
VCAP = 400mV TO 5.5V  
2.3V TO 5.5V  
SOURCE  
MAX14575  
ADJ CURRENT  
LIMIT  
5V  
ALARM  
BEEPER  
BUZZER  
X
MAX1722  
BOOST  
SUPERCAP  
INTERNAL  
LOAD  
REVERSE CURRENT- BLOCKING  
DISCONNECT  
VCAP = 5.5V TO 400mV* ≥ VOUT = 5V  
*LOAD DEPENDENT  
Figure 11. MAX1722x/MAX14575 Solution for Alarm Beeper Buzzers.  
Zero Reverse Current in True Shutdown for Multisource Applications  
ZERO REVERSE CURRENT IN SHUTDOWN  
2.7V TO 4.2V  
X
MAX1722  
BOOST  
0UA  
ILOAD  
SHUTDOWN  
5V  
SOLAR CELLS  
X
MAX1722  
BOOST  
0UA  
ENABLED  
SUPERCAP  
CIRCUIT  
(LOAD)  
BATTERY  
Li+  
X
MAX1722  
0UA  
BOOST  
SHUTDOWN  
USB  
Figure 12. MAX1722x Has Zero Reverse Current in True Shutdown.  
Maxim Integrated  
19  
www.maximintegrated.com  
MAX17220–MAX17225  
400mV to 5.5V Input, nanoPower Synchronous  
Boost Converter with True Shutdown  
Typical Application Circuits  
Smallest Solution Size—0603 Inductor—MAX17222/MAX17223 500mA ILIM (Part 1)  
IN  
IN  
1.8V TO 3V  
0.8V TO 3V  
L1 1µH  
L1 2.2µH  
OUT  
OUT  
CIN  
10µF  
CIN  
10µF  
EN  
EN  
3.3V, 160mA  
3V, 185mA  
3.3V,16mA  
3V, 20mA  
MAX17222  
MAX17223  
MAX17222  
MAX17223  
COUT  
10µF  
COUT  
10µF  
GND  
GND  
STARTUP  
0.88 (TYP)  
RSEL  
RSEL  
L1 1µH/0603 MURATA DFE160808S-1R0M  
L1 2.2µH/0603 MURATA DFM18PAN2R2MG0L  
CIN 10µF/0402/X5R/6.3V MURATA GRM155R60J106ME44  
COUT 10µF/0402/X5R/10V MURATA GRM155R61A106ME44  
3.3V OUTPUT RSEL 80.6K 1%  
CIN 10µF/0402/X5R/6.3V MURATA GRM155R60J106ME44  
COUT 10µF/0402/X5R/10V MURATA GRM155R61A106ME44  
3.3V OUTPUT RSEL 80.6K 1%  
3V OUTPUT RSEL 133K 1%  
3V OUTPUT RSEL 133K 1%  
Smallest Solution Size—0603 Inductor—MAX17222/MAX17223 500mA ILIM (Part 2)  
IN  
IN  
2.7V TO 4.2  
0.8V TO 1.8V  
L1 2.2µH  
L1 2.2µH  
OUT  
OUT  
CIN  
10µF  
CIN  
10µF  
EN  
EN  
5V, 160mA  
3.3V*, 250mA  
2V, 90mA  
1.8V,100mA  
MAX17222  
MAX17223  
MAX17222  
MAX17223  
COUT  
10µF  
COUT  
10µF  
GND  
GND  
STARTUP  
0.88 (TYP)  
RSEL  
RSEL  
* = IN < OUT  
L1 2.2µH/0603 MURATA MFD160810-2R2M  
L1 2.2µH/0603 MURATA MFD160810-2R2M  
CIN 10µF/0402/X5R/6.3V MURATA GRM155R60J106ME44  
COUT 10µF/0402/X5R/10V MURATA GRM155R61A106ME44  
2V OUTPUT RSEL 768K 1%  
CIN 10µF/0402/X5R/6.3V MURATA GRM155R60J106ME44  
COUT 10µF/0402/X5R/10V MURATA GRM155R61A106ME44  
5V OUTPUT RSEL SHORT TO GND (NO RESISTOR)  
3.3V OUTPUT RSEL 80.6K 1%  
1.8V OUTPUT RSEL OPEN (NO RESISTOR)  
Maxim Integrated  
20  
www.maximintegrated.com  
MAX17220–MAX17225  
400mV to 5.5V Input, nanoPower Synchronous  
Boost Converter with True Shutdown  
Typical Application Circuits (continued)  
Highest Efficiency Solution—4mm x 4mm Inductor—MAX17222/MAX17223 500mA ILIM (Part 1)  
IN  
IN  
1.8V TO 3V  
0.8V TO 3V  
L1 1µH  
L1 2.2µH  
OUT  
OUT  
CIN  
10µF  
CIN  
10µF  
EN  
EN  
3.3V, 185mA  
3V, 200mA  
3.3V,18mA  
3V, 22mA  
MAX17222  
MAX17223  
MAX17222  
MAX17223  
COUT  
10µF  
COUT  
10µF  
GND  
GND  
STARTUP  
0.88 (TYP)  
RSEL  
RSEL  
L1 1µH/4X4X2.1MM COILCRAFT XFL4020-102  
L1 2.2µH/4X4X2.1MM COILCRAFT XFL4020-222  
CIN 10µF/0402/X5R/6.3V MURATA GRM155R60J106ME44  
COUT 10µF/0402/X5R/10V MURATA GRM155R61A106ME44  
3.3V OUTPUT RSEL 80.6K 1%  
CIN 10µF/0402/X5R/6.3V MURATA GRM155R60J106ME44  
COUT 10µF/0402/X5R/10V MURATA GRM155R61A106ME44  
3.3V OUTPUT RSEL 80.6K 1%  
3V OUTPUT RSEL 133K 1%  
3V OUTPUT RSEL 133K 1%  
Highest Efficiency Solution—4 x 4mm Inductor—MAX17222/MAX17223 500mA ILIM (Part 2)  
IN  
IN  
2.7V TO 4.2V  
0.8V TO 1.8V  
L1 2.2µH  
L1 2.2µH  
OUT  
OUT  
C
10µF  
IN  
C
10µF  
IN  
EN  
EN  
5V, 185mA  
3.3V*, 285mA  
2V, 115mA  
1.8V,120mA  
MAX17222  
MAX17223  
MAX17222  
MAX17223  
C
10µF  
OUT  
C
10µF  
OUT  
GND  
GND  
STARTUP  
0.88 (TYP)  
R
SEL  
R
SEL  
* = IN < OUT  
L1 2.2µH/4X4X3MM WURTH 74438357022CIN  
L1 2.2µH/4X4X2.1MM COILCRAFT XFL4020-222  
C
C
10µF/0402/X5R/6.3V MURATA GRM155R60J106ME44  
IN  
C
C
10µF/0402/X5R/6.3V MURATA GRM155R60J106ME44  
IN  
10µF/0402/X5R/10V MURATA GRM155R61A106ME44  
OUT  
10µF/0402/X5R/10V MURATA GRM155R61A106ME44  
OUT  
5V OUTPUT R  
SHORT TO GND (NO RESISTOR)  
SEL  
2V OUTPUT R  
768K 1%  
SEL  
3.3V OUTPUT R  
80.6K 1%  
SEL  
1.8V OUTPUT R  
OPEN (NO RESISTOR)  
SEL  
Maxim Integrated  
21  
www.maximintegrated.com  
MAX17220–MAX17225  
400mV to 5.5V Input, nanoPower Synchronous  
Boost Converter with True Shutdown  
Ordering Information  
INPUT PEAK  
CURRENT  
IPEAK  
ENABLE TRANSIENT  
PROTECTION  
(ETP)  
TEMPERATURE  
PART NUMBER  
PIN-PACKAGE  
TRUE SHUTDOWN  
RANGE  
MAX17220ENT+  
MAX17222ENT+  
MAX17223ENT+  
MAX17224ENT+  
MAX17225ENT+  
MAX17220ELT+  
MAX17222ELT+  
MAX17223ELT+  
MAX17224ELT+  
MAX17225ELT+  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
6 WLP  
6 WLP  
6 WLP  
6 WLP  
6 WLP  
6 μDFN  
6 μDFN  
6 μDFN  
6 μDFN  
6 μDFN  
225mA  
0.5A  
0.5A  
1A  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
1A  
225mA  
0.5A  
0.5A  
1A  
Yes  
Yes  
Yes  
1A  
+Denotes a lead(Pb)-free/RoHS-compliant package.  
T = Tape and reel.  
Maxim Integrated  
22  
www.maximintegrated.com  
 
MAX17220–MAX17225  
400mV to 5.5V Input, nanoPower Synchronous  
Boost Converter with True Shutdown  
Revision History  
REVISION REVISION  
PAGES  
DESCRIPTION  
CHANGED  
NUMBER  
DATE  
0
2/17  
Initial release  
Updated Electrical Characteristics and Ordering Information tables and added  
Operation with V > V section  
1
2
4/17  
5/17  
3, 8, 13, 19, 21  
1–23  
IN OUT  
Removed MAX17221 part number, general data sheet updates  
Updated Shutdown Current into IN and Total Shutdown Current into IN LX conditions,  
Note 5, TOC 5, True Shutdown Current section, Figure 10, added TOC 18, removed  
future product references (MAX17220ENT+, MAX17224ENT+, MAX17220ELT+,  
MAX17223ELT+, and MAX17224ELT+)  
3–5, 7, 10,  
18, 22  
3
7/17  
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim Integrated’s website at www.maximintegrated.com.  
Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses  
are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits)  
shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.  
©
Maxim Integrated and the Maxim Integrated logo are trademarks of Maxim Integrated Products, Inc.  
2017 Maxim Integrated Products, Inc.  
23  

相关型号:

MAX17225ELT+T

Switching Regulator,
MAXIM

MAX17225ENT

400mV to 5.5V Input, nanoPower Synchronous Boost Converter with True Shutdown
MAXIM

MAX17225ENT+

暂无描述
MAXIM

MAX1722ELT+

暂无描述
MAXIM

MAX1722ELT+T+

Switching Regulator, 0.62A, PDSO6, 2 X 2 MM, 0.75 MM, ROHS COMPLIANT, UDFN-6
MAXIM

MAX1722EZK

1.5uA IQ, Step-Up DC-DC Converters in Thin SOT23-5
MAXIM

MAX1722EZK+T

Switching Regulator, Current-mode, 1A, PDSO5, SOT-23, 5 PIN
MAXIM

MAX1722EZK+T+

Switching Regulator, 0.62A, PDSO5, 0.90 MM HEIGHT, ROHS COMPLIANT, TSOT-5
MAXIM

MAX1722EZK-T

1.5uA IQ, Step-Up DC-DC Converters in Thin SOT23-5
MAXIM

MAX1722_12

1.5μA IQ, Step-Up DC-DC Converters in Thin SOT23-5
MAXIM

MAX1722_13

1.5μA IQ, Step-Up DC-DC Converters in TSOT
MAXIM

MAX1723

1.5uA IQ, Step-Up DC-DC Converters in Thin SOT23-5
MAXIM