MAX1722ELT+ [MAXIM]

暂无描述;
MAX1722ELT+
型号: MAX1722ELT+
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

暂无描述

转换器
文件: 总12页 (文件大小:292K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-1735; Rev 0; 7/01  
1.5µA I , Step-Up DC-DC Converters  
Q
in Thin SOT23-5  
General Description  
Features  
The MAX1722/MAX1723/MAX1724 compact, high-effi-  
ciency, step-up DC-DC converters are available in tiny, 5-  
pin thin SOT23 packages. They feature an extremely low  
1.5µA quiescent supply current to ensure the highest pos-  
sible light-load efficiency. Optimized for operation from  
one to two alkaline or nickel-metal-hydride (NiMH) cells, or  
a single Li+ cell, these devices are ideal for applications  
where extremely low quiescent current and ultra-small size  
are critical.  
o Up to 90% Efficiency  
o No External Diode or FETs Needed  
o 1.5µA Quiescent Supply Current  
o 0.1µA Logic-Controlled Shutdown  
o
1% ꢀutput ꢁoltage Accuracy  
o Fixed ꢀutput ꢁoltage (MAX1724) or Adjustable  
ꢀutput ꢁoltage (MAX1722/MAX1723)  
o Up to 150mA ꢀutput Current  
Built-in synchronous rectification significantly improves  
efficiency and reduces size and cost by eliminating the  
need for an external Schottky diode. All three devices fea-  
ture a 0.5N-channel power switch. The MAX1722/  
MAX1724 also feature proprietary noise-reduction circuitry,  
which suppresses electromagnetic interference (EMI)  
caused by the inductor in many step-up applications. The  
family offers different combinations of fixed or adjustable  
outputs, shutdown, and EMI reduction (see Selector  
Guide).  
o 0.8ꢁ to 5.5ꢁ Input ꢁoltage Range  
o 0.91ꢁ Guaranteed Startup (MAX1722/MAX1724)  
o Internal EMI Suppression (MAX1722/MAX1724)  
o Thin SꢀT23-5 Package (1.1mm max Height)  
Ordering Information  
PIN-  
TꢀP  
PART  
TEMP. RANGE  
PACKAGE MARK  
MAX1722EZK-T  
MAX1723EZK-T  
MAX1724EZK27-T  
MAX1724EZK30-T  
MAX1724EZK33-T  
MAX1724EZK50-T  
-40°C to +85°C 5 SOT23  
-40°C to +85°C 5 SOT23  
-40°C to +85°C 5 SOT23  
-40°C to +85°C 5 SOT23  
-40°C to +85°C 5 SOT23  
-40°C to +85°C 5 SOT23  
ADQF  
ADQG  
ADQH  
ADQI  
Applications  
Pagers  
Single-Cell Battery-  
Powered Devices  
Remote Controls  
ADQJ  
ADQK  
Low-Power Hand-Held  
Instruments  
Remote Wireless  
Transmitters  
MP3 Players  
Personal  
Medical Devices  
Selector Guide  
Personal Digital  
Assistants (PDA)  
LX  
DAMPING  
Digital Still Cameras  
PART  
ꢀUTPUT (ꢁ)  
SHDN  
MAX1722EZK  
Adjustable  
Adjustable  
Fixed 2.7  
Fixed 3.0  
Fixed 3.3  
Fixed 5.0  
No  
Yes  
No  
MAX1723EZK  
Yes  
Yes  
Yes  
Yes  
Yes  
MAX1724EZK27  
MAX1724EZK30  
MAX1724EZK33  
MAX1724EZK50  
Yes  
Yes  
Yes  
Yes  
Typical Operating Circuit  
Pin Configurations  
10µH  
TOP VIEW  
IN  
BATT  
LX  
0.8V TO 5.5V  
BATT  
GND  
FB  
1
2
3
5
LX  
MAX1724  
MAX1722  
OUT  
OUT  
ON  
3.3V AT  
UP TO 150mA  
SHDN  
OFF  
4
OUT  
GND  
THIN SꢀT23-5  
Pin Configurations are continued at end of data sheet.  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
1.5µA I , Step-Up DC-DC Converters  
Q
in Thin SOT23-5  
ABSꢀLUTE MAXIMUM RATINGS  
OUT, SHDN, BATT, LX to GND ................................-0.3V to +6V  
FB to GND ................................................-0.3V to (V + 0.3V)  
Operating Temperature Range ...........................-40°C to +85°C  
Junction Temperature......................................................+150°C  
Storage Temperature Range.............................-65°C to +150°C  
Lead Temperature (soldering, 10s) ................................ +300°C  
OUT  
OUT, LX Current.......................................................................1A  
Continuous Power Dissipation (T = +70°C)  
A
5-Pin Thin SOT23 (derate 7.1mW/°C above +70°C)...571mW  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(V  
= 1.2V, V  
= 3.3V (MAX1722/MAX1723), V  
= V  
(MAX1724), SHDN = OUT, R = , T = 0°C to +85°C,  
OUT(NOM) L A  
BATT  
OUT  
OUT  
unless otherwise noted. Typical values are at T = +25°C.) (Note 1)  
A
PARAMETER  
SYMBꢀL  
CꢀNDITIꢀNS  
MAX1722/MAX1724  
MIN  
TYP  
MAX  
UNITS  
Minimum Input Voltage  
0.8  
V
MAX1722/MAX1724  
0.91  
1.2  
5.5  
5.5  
Operating Input Voltage  
V
T
= +25°C  
V
V
IN  
A
MAX1723 (Note 2)  
MAX1722/MAX1724  
MAX1723 (Note 2)  
0.83  
0.87  
2.7  
0.91  
1.2  
T
A
= +25°C,  
Minimum Startup Input Voltage  
R = 3kΩ  
L
T
A
T
A
T
A
T
A
T
A
T
A
T
A
T
A
= +25°C  
2.673  
2.633  
2.970  
2.925  
3.267  
3.218  
4.950  
4.875  
2
2.727  
2.767  
3.030  
3.075  
3.333  
3.383  
5.050  
5.125  
5.5  
MAX1724EZK27  
MAX1724EZK30  
MAX1724EZK33  
= 0°C to +85°C  
= +25°C  
3.0  
3.3  
5.0  
= 0°C to +85°C  
= +25°C  
Output Voltage  
V
V
V
OUT  
= 0°C to +85°C  
= +25°C  
MAX1724EZK50  
= 0°C to +85°C  
Output Voltage Range  
Feedback Voltage  
MAX1722/MAX1723  
MAX1722/MAX1723  
V
V
OUT  
T
A
T
A
T
A
T
A
= +25°C  
1.223  
1.210  
1.235  
1.247  
1.260  
20  
V
FB  
= 0°C to +85°C  
= +25°C  
1.5  
2.2  
0.5  
1.0  
500  
5
Feedback Bias Current  
I
FB  
MAX1722/MAX1723  
nA  
= +85°C  
N-Channel On-Resistance  
P-Channel On-Resistance  
N-Channel Switch Current Limit  
Switch Maximum On-Time  
R
R
V
V
V
forced to 3.3V  
forced to 3.3V  
forced to 3.3V  
1.0  
2.0  
600  
6.5  
DS(ON)  
OUT  
OUT  
OUT  
DS(ON)  
I
400  
3.5  
mA  
µs  
LIM  
t
ON  
Synchronous Rectifier Zero-  
Crossing Current  
V
forced to 3.3V  
5
20  
35  
mA  
µA  
µA  
OUT  
Quiescent Current into OUT  
Shutdown Current into OUT  
(Notes 3, 4)  
1.5  
0.01  
0.1  
3.6  
0.5  
T
A
T
A
T
A
T
A
= +25°C  
= +85°C  
= +25°C  
= +85°C  
MAX1723/MAX1724  
(Notes 3, 4)  
0.001  
0.01  
0.5  
MAX1722/MAX1724  
(Note 4)  
Quiescent Current into BATT  
µA  
2
_______________________________________________________________________________________  
1.5µA I , Step-Up DC-DC Converters  
Q
in Thin SOT23-5  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= 1.2V, V  
= 3.3V (MAX1722/MAX1723), V  
= V  
(MAX1724), SHDN = OUT, R = , T = 0°C to +85°C,  
OUT(NOM) L A  
BATT  
OUT  
OUT  
unless otherwise noted. Typical values are at T = +25°C.) (Note 1)  
A
PARAMETER  
SYMBꢀL  
CꢀNDITIꢀNS  
MIN  
TYP  
0.001  
0.01  
400  
500  
2
MAX  
UNITS  
T
A
T
A
= +25°C  
= +85°C  
0.5  
Shutdown Current into BATT  
MAX1724 (Note 4)  
µA  
V
IL  
MAX1723/MAX1724  
MAX1723/MAX1724  
75  
mV  
nA  
SHDN Voltage Threshold  
SHDN Input Bias Current  
V
IH  
800  
100  
T
T
= +25°C  
= +85°C  
MAX1723/MAX1724,  
A
V
= 5.5V  
SHDN  
7
A
ELECTRICAL CHARACTERISTICS  
(V  
= 1.2V, V  
= 3.3V (MAX1722/MAX1723), V  
= V  
(MAX1724), SHDN = OUT, R = , T = -40°C to +85°C,  
OUT(NOM) L A  
BATT  
OUT  
OUT  
unless otherwise noted.) (Note 1)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
2.767  
3.075  
3.383  
5.125  
5.5  
UNITS  
MAX1724EZK27  
MAX1724EZK30  
MAX1724EZK33  
MAX1724EZK50  
MAX1722/MAX1723  
MAX1722/MAX1723  
2.633  
2.925  
3.218  
4.875  
2
Output Voltage  
V
V
V
OUT  
Output Voltage Range  
V
V
OUT  
Feedback Voltage  
V
1.200  
1.270  
1.0  
FB  
R
R
N-Channel On-Resistance  
P-Channel On-Resistance  
N-Channel Switch Current Limit  
Switch Maximum On-Time  
V
V
V
forced to 3.3V  
forced to 3.3V  
forced to 3.3V  
DS(ON)  
DS(ON)  
OUT  
OUT  
OUT  
2.0  
I
400  
3.5  
620  
mA  
µs  
LIM  
t
6.5  
ON  
Synchronous Rectifier Zero-  
Crossing Current  
V
forced to 3.3V  
5
35  
mA  
µA  
OUT  
Quiescent Current into OUT  
(Notes 3,4)  
3.6  
V
MAX1723/MAX1724  
MAX1723/MAX1724  
75  
IL  
SHDN Voltage Threshold  
mV  
V
800  
IH  
Note 1: Limits are 100% production tested at T = +25°C. Limits over the operating temperature range are guaranteed by design.  
A
Note 2: Guaranteed with the addition of a Schottky MBR0520L external diode between LX and OUT when using the MAX1723  
with only one cell, and assumes a 0.3V voltage drop across the Schottky diode (see Figure 3).  
Note 3: Supply current is measured with an ammeter between the output and OUT pin. This current correlates directly with actual  
battery supply current, but is reduced in value according to the step-up ratio and efficiency.  
Note 4: V  
forced to the following conditions to inhibit switching: V  
= 1.05  
V
(MAX1724), V  
= 3.465V  
OUT  
OUT  
OUT  
OUT(NOM)  
(MAX1722/MAX1723).  
_______________________________________________________________________________________  
3
1.5µA I , Step-Up DC-DC Converters  
Q
in Thin SOT23-5  
Typical Operating Characteristics  
(Figure 3 (MAX1723), Figure 7 (MAX1722), Figure 8 (MAX1724), V  
unless otherwise noted.)  
= V = 1.5V, L = 10µH, C = 10µF, C  
= 10µF, T = +25°C,  
A
BATT  
IN  
IN  
OUT  
EFFICIENCY vs. LOAD CURRENT  
(V = 5.0V)  
EFFICIENCY vs. LOAD CURRENT  
EFFICIENCY vs. LOAD CURRENT  
(V = 3.3V)  
(V  
= 2.5V)  
OUT  
OUT  
OUT  
100  
90  
100  
100  
V
IN  
= 3.3V  
V = 4.0V  
IN  
V
IN  
= 2.5V  
V
= 2.0V  
IN  
V
IN  
= 2.0V  
90  
80  
90  
80  
V
IN  
= 2.0V  
80  
70  
60  
V = 1.5V  
IN  
70  
60  
50  
70  
60  
V
IN  
= 1.0V  
V
IN  
= 1.0V  
V
IN  
= 1.5V  
1
V
IN  
= 1.0V  
10  
L = DO1606  
100 1000  
V
IN  
= 1.5V  
1
L = DO1606  
100 1000  
L = DO1606  
100 1000  
50  
50  
0.01  
0.1  
10  
0.01  
0.1  
1
0.01  
0.1  
10  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
MAXIMUM OUTPUT CURRENT  
vs. INPUT VOLTAGE  
QUIESCENT CURRENT INTO OUT  
vs. OUTPUT VOLTAGE  
STARTUP VOLTAGE  
vs. LOAD CURRENT  
2.0  
2.4  
200  
RESISTIVE LOAD  
V = 5.0V  
OUT  
NO LOAD  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
2.2  
V
= 2.5V  
OUT  
160  
120  
80  
40  
0
2.0  
1.8  
1.6  
1.4  
1.2  
V
OUT  
= 5.0V  
V
OUT  
= 3.3V  
1.0  
0.8  
0.6  
0
1
2
3
4
5
0.01  
0.1  
1
10  
100  
1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
OUTPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
LOAD CURRENT (mA)  
STARTUP VOLTAGE vs.  
TEMPERATURE  
SWITCHING WAVEFORMS  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
NO LOAD  
I
LX  
500mA/div  
V
OUT  
50mV/div  
V
LX  
2V/div  
0
1µs/div  
-40  
-15  
10  
35  
60  
85  
I
= 50mA, V = 5.0V, V = 3.3V  
OUT IN  
TEMPERATURE (°C)  
OUT  
4
_______________________________________________________________________________________  
1.5µA I , Step-Up DC-DC Converters  
Q
in Thin SOT23-5  
Typical Operating Characteristics (continued)  
(Figure 3 (MAX1723), Figure 7 (MAX1722), Figure 8 (MAX1724), V  
unless otherwise noted.)  
= V = 1.5V, L = 10µH, C = 10µF, C  
= 10µF, T = +25°C,  
OUT A  
BATT  
IN  
IN  
SHUTDOWN RESPONSE  
LOAD-TRANSIENT RESPONSE  
V
5V  
OUT  
3.3V  
2V/div  
A
0
50mA  
2V  
B
V
SHDN  
1V/div  
0
0
1ms/div  
200µs/div  
A: V , 50mV/div  
OUT  
OUT  
V
IN  
= 3.3V, V  
= 5.0V, R  
= 100Ω  
OUT  
OUT  
B: I , 20mA/div  
SHUTDOWN INPUT THRESHOLD  
vs. TEMPERATURE  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
RISING EDGE  
FALLING EDGE  
-40  
-15  
10  
35  
60  
85  
TEMPERATURE (°C)  
Pin Description  
PIN  
NAME  
FUNCTION  
Battery Input and Damping Switch Connection  
MAX1722  
MAX1723  
MAX1724  
1
2
1
1
3
2
BATT  
SHDN  
GND  
Shutdown Input. Drive high for normal operation. Drive low for shutdown.  
Ground  
2
Feedback Input to Set Output Voltage. Use a resistor-divider network to  
adjust the output voltage. See Setting the Output Voltage section.  
3
4
5
3
4
5
4
FB  
OUT  
LX  
Power Output. OUT also provides bootstrap power to the IC.  
Internal N-channel MOSFET Switch Drain and P-Channel Synchronous  
Rectifier Drain  
5
_______________________________________________________________________________________  
5
1.5µA I , Step-Up DC-DC Converters  
Q
in Thin SOT23-5  
OUT  
MAX1723  
ZERO-  
CROSSING  
DETECTOR  
STARTUP  
CIRCUITRY  
P
SHDN  
FB  
CONTROL  
LOGIC  
DRIVER  
LX  
ERROR  
COMPARATOR  
N
CURRENT  
LIMIT  
1.235V REFERENCE  
GND  
Figure 1. MAX1723 Simplified Functional Diagram  
MAX1722/MAX1723/MAX1724. This scheme provides  
ultra-low quiescent current and high efficiency over a  
wide output current range. There is no oscillator; the  
inductor current is limited by the 0.5A N-channel cur-  
rent limit or by the 5µs switch maximum on-time.  
Following each on cycle, the inductor current must  
ramp to zero before another cycle may start. When the  
error comparator senses that the output has fallen  
below the regulation threshold, another cycle begins.  
Detailed Description  
The MAX1722/MAX1723/MAX1724 compact, high-effi-  
ciency, step-up DC-DC converters are guaranteed to  
start up with voltages as low as 0.91V and operate with  
an input voltage down to 0.8V. Consuming only 1.5µA of  
quiescent current, these devices include a built-in syn-  
chronous rectifier that reduces cost by eliminating the  
need for an external diode and improves overall efficien-  
cy by minimizing losses in the circuit (see Synchronous  
Rectification section). The MAX1722/MAX1724 feature a  
clamp circuit that reduces EMI due to inductor ringing.  
The MAX1723/MAX1724 feature an active-low shutdown  
that reduces quiescent supply current to 0.1µA. The  
MAX1722/MAX1723 have an adjustable output voltage,  
while the MAX1724 is available with four fixed-output  
voltage options (see Selector Guide). Figure 1 is the  
MAX1723 simplified functional diagram and Figure 2 is  
the MAX1724 simplified functional diagram.  
Synchronous Rectification  
The internal synchronous rectifier eliminates the need  
for an external Schottky diode, thus reducing cost and  
board space. While the inductor discharges, the P-  
channel MOSFET turns on and shunts the MOSFET  
body diode. As a result, the rectifier voltage drop is sig-  
nificantly reduced, improving efficiency without the  
addition of external components.  
Low-Voltage Startup Circuit  
The MAX1722/MAX1723/MAX1724 contain a low-volt-  
age startup circuit to control DC-DC operation until the  
output voltage exceeds 1.5V (typ). The minimum start-  
PFM Control Scheme  
A forced discontinuous, current-limited, pulse-frequency-  
modulation (PFM) control scheme is a key feature of the  
6
_______________________________________________________________________________________  
1.5µA I , Step-Up DC-DC Converters  
Q
in Thin SOT23-5  
DAMPING  
SWITCH  
BATT  
OUT  
MAX1724  
ZERO-  
CROSSING  
STARTUP  
DETECTOR  
CIRCUITRY  
R
2
P
SHDN  
CONTROL  
LOGIC  
DRIVER  
LX  
ERROR  
COMPARATOR  
N
R
1
CURRENT  
LIMIT  
1.235V REFERENCE  
GND  
Figure 2. MAX1724 Simplified Functional Diagram  
lacks a BATT pin; therefore, this circuit is powered  
through the OUT pin. Adding a Schottky diode in paral-  
lel with the P-channel synchronous rectifier allows for  
startup voltages as low as 1.2V for the MAX1723  
(Figure 3). The external Schottky diode is not needed  
for input voltages greater than 1.8V. Once started, the  
output maintains the load as the battery voltage  
decreases below the startup voltage.  
10µH  
1.2V TO V  
OUT  
D1  
10µF  
LX  
OUT  
SHDN  
V
= 3.6V  
OUT  
R2  
10µF  
2.37MΩ  
MAX1723  
GND  
FB  
Shutdown (MAX1723/MAX1724)  
The MAX1723/MAX1724 enter shutdown when the  
SHDN pin is driven low. During shutdown, the body  
diode of the P-channel MOSFET allows current to flow  
R1  
1.24MΩ  
from the battery to the output. V  
falls to approxi-  
OUT  
mately V - 0.6V and LX remains high impedance.  
IN  
Shutdown can be pulled as high as 6V, regardless of  
the voltage at BATT or OUT. For normal operation, con-  
nect SHDN to the input.  
Figure 3. MAX1723 Single-Cell Operation  
up voltage is a function of load current (see Typical  
Operating Characteristics). This circuit is powered from  
the BATT pin for the MAX1722/MAX1724, guaranteeing  
startup at input voltages as low as 0.91V. The MAX1723  
_______________________________________________________________________________________  
7
1.5µA I , Step-Up DC-DC Converters  
Q
in Thin SOT23-5  
V
OUT  
V
IN  
OUT  
P
MAX1722  
MAX1724  
BATT  
PDRV  
DAMPING  
SWITCH  
TIMING  
CIRCUIT  
DAMP  
LX  
N
NDRV  
GND  
Figure 4. Simplified Diagram of Damping Switch  
1V/div  
1V/div  
1µs/div  
1µs/div  
Figure 5. LX Ringing Without Damping Switch (MAX1723)  
Figure 6. LX Ringing With Damping Switch (MAX1722/MAX1724)  
BATT/Damping Switch  
(MAX1722/MAX1724)  
Design Procedure  
Setting the Output Voltage  
(MAX1722/MAX1723)  
The MAX1722/MAX1724 include an internal damping  
switch (Figure 4) to minimize ringing at LX and reduce  
EMI. When the energy in the inductor is insufficient to  
supply current to the output, the capacitance and  
inductance at LX form a resonant circuit that causes  
ringing. The damping switch supplies a path to quickly  
dissipate this energy, suppressing the ringing at LX.  
This does not reduce the output ripple, but does  
reduce EMI with minimal impact on efficiency. Figures  
5 and 6 show the LX node voltage waveform without  
and with the damping switch, respectively.  
The output voltage can be adjusted from 2V to 5.5V  
using external resistors R1 and R2 (Figure 7). Since FB  
leakage is 20nA (max), select feedback resistor R1 in  
the 100kto 1Mrange. Calculate R2 as follows:  
V
V
OUT  
R2 = R1  
1  
FB  
where V = 1.235V.  
FB  
8
_______________________________________________________________________________________  
1.5µA I , Step-Up DC-DC Converters  
Q
in Thin SOT23-5  
For maximum output current, choose the inductor value  
so that the controller reaches the current-limit before  
the maximum on-time is triggered:  
INPUT  
0.8V TO V  
10µH  
OUT  
V
t
BATT ON(MAX)  
OUTPUT  
2V TO 5.5V  
L <  
10µF  
BATT  
LX  
I
LIM  
OUT  
where the maximum on-time is typically 5µs, and the  
current limit (I  
) is typically 500mA (see Electrical  
LIM  
R2  
R1  
MAX1722  
10µF  
Characteristics table).  
FB  
For larger inductor values, determine the peak inductor  
current (I  
by:  
PEAK)  
GND  
V
t
BATT ON(MAX)  
L
I
=
PEAK  
Figure 7. Adjustable Output Circuit  
INPUT  
Inductor Selection  
10µH  
0.8V TO V  
OUT  
The control scheme of the MAX1722/MAX1723/  
MAX1724 permits flexibility in choosing an inductor. A  
10µH inductor value performs well in most applications.  
Smaller inductance values typically offer smaller physi-  
cal size for a given series resistance, allowing the  
smallest overall circuit dimensions. Circuits using larger  
inductance values may start up at lower battery volt-  
ages, provide higher efficiency, and exhibit less ripple,  
but they may reduce the maximum output current. This  
occurs when the inductance is sufficiently large to pre-  
C1  
10µF  
BATT  
LX  
OUTPUT  
OUT (NOM)  
OUT  
V
MAX1724  
C2  
10µF  
ON  
OFF  
SHDN  
GND  
vent the maximum current limit (I  
) from being  
LIM  
reached before the maximum on-time (t  
expires.  
)
ON(MAX)  
Figure 8. MAX1724 Standard Application Circuit  
Table 1. Suggested Inductors and  
Suppliers  
The inductors incremental saturation current rating should  
be greater than the peak switching current. However, it is  
generally acceptable to bias the inductor into saturation  
by as much as 20%, although this will slightly reduce effi-  
ciency. Table 1 lists suggested inductors and suppliers.  
PHONE  
MANUFACTURER  
Coilcraft  
INDUCTOR  
WEBSITE  
DO1608 Series  
DO1606 Series  
847-639-2361  
www.coilcraft.com  
770-436-1300  
www.murata.com  
Murata  
LQH4C Series  
Maximum Output Current  
The maximum output current depends on the peak induc-  
tor current, the input voltage, the output voltage, and the  
overall efficiency (η):  
CDRH4D18 Series  
CR32 Series  
CMD4D06 Series  
847-545-6700  
www.sumida.com  
Sumida  
Sumitomo/  
Daidoo Electronics  
+81 (06) 6355-5733  
www.daidoo.co.jp  
CXLD140 Series  
V
V
1
2
BATT  
I
=
I
η
OUT(MAX)  
PEAK  
OUT  
3DF Type  
D412F Type  
847-297-0070  
www.toko.com  
Toko  
_______________________________________________________________________________________  
9
1.5µA I , Step-Up DC-DC Converters  
Q
in Thin SOT23-5  
Table 2. Suggested Surface-Mount Capacitors and Manufacturers (C1 and C2)  
CAPACITOR  
VALUE  
PHONE  
WEBSITE  
MANUFACTURER  
DESCRIPTION  
1µF to 10µF  
X7R Ceramic  
843-448-9411  
www.avxcorp.com  
AVX  
TAJ Tantalum Series  
TPS Tantalum Series  
10µF to 330µF  
1µF to 22µF  
10µF to 330µF  
68µF to 330µF  
X5R/X7R Ceramic  
T494 Tantalum Series  
T520 Tantalum Series  
864-963-6300  
www.kemet.com  
Kemet  
408-749-9714  
www.secc.co.jp  
Sanyo  
33µF to 330µF  
33µF to 330µF  
1µF to 10µF  
TPC Polymer Series  
X5R/X7R Ceramic  
X7R Ceramic  
800-368-2496  
www.t-yuden.org  
Taiyo Yuden  
TDK  
847-803-6100  
www.tdk.com  
594D Tantalum Series  
595D Tantalum Series  
203-452-5664  
www.vishay.com  
Vishay Sprague  
10µF to 330µF  
For most applications, the peak inductor current equals  
the current limit. However, for applications using large  
inductor values or low input voltages, the maximum on-  
time limits the peak inductor current (see Inductor  
Selection section).  
where I  
is the peak inductor current (see Inductor  
PEAK  
Selection section). For ceramic capacitors, the output  
voltage ripple is typically dominated by V  
. For  
RIPPLE(C)  
example, a 10µF ceramic capacitor and a 10µH induc-  
tor typically provide 75mV of output ripple when step-  
ping up from 3.3V to 5V at 50mA. Low input-to-output  
voltage differences (i.e. two cells to 3.3V) require high-  
er output capacitor values.  
Capacitor Selection  
Choose input and output capacitors to supply the input  
and output peak currents with acceptable voltage rip-  
Capacitance and ESR variation of temperature should  
be considered for best performance in applications  
with wide operating temperature ranges. Table 2 lists  
suggested capacitors and suppliers.  
ple. The input filter capacitor (C ) reduces peak cur-  
IN  
rents drawn from the battery and improves efficiency.  
Low equivalent series resistance (ESR) capacitors are  
recommended. Ceramic capacitors have the lowest  
ESR, but low ESR tantalum or polymer capacitors offer  
a good balance between cost and performance.  
PC Board Layout Considerations  
Output voltage ripple has two components: variations  
in the charge stored in the output capacitor with each  
LX pulse, and the voltage drop across the capacitors  
ESR caused by the current into and out of the capaci-  
tor:  
Careful PC board layout is important for minimizing  
ground bounce and noise. Keep the ICs GND pin and  
the ground leads of the input and output capacitors  
less than 0.2in (5mm) apart using a ground plane. In  
addition,  
keep  
all  
connections  
to  
FB  
(MAX1722/MAX1723 only) and LX as short as possible.  
VRIPPLE = VRIPPLE C + VRIPPLE ESR  
(
)
(
)
Chip Information  
VRIPPLE ESR IPEAK RESR COUT  
(
)
(
)
TRANSISTOR COUNT: 863  
1
2
L
2
2
VRIPPLE C  
I
(
-IOUT  
)
PEAK  
(
)
V
OUT -VBATT C  
(
)
OUT   
10 ______________________________________________________________________________________  
1.5µA I , Step-Up DC-DC Converters  
Q
in Thin SOT23-5  
Pin Configurations (continued)  
TOP VIEW  
SHDN  
GND  
FB  
1
2
3
5
4
LX  
BATT  
GND  
1
2
3
5
4
LX  
MAX1723  
MAX1724  
OUT  
OUT  
SHDN  
THIN SOT23-5  
THIN SOT23-5  
Package Information  
______________________________________________________________________________________ 11  
1.5µA I , Step-Up DC-DC Converters  
Q
in Thin SOT23-5  
Package Information (continued)  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
12 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
© 2001 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

相关型号:

MAX1722ELT+T+

Switching Regulator, 0.62A, PDSO6, 2 X 2 MM, 0.75 MM, ROHS COMPLIANT, UDFN-6
MAXIM

MAX1722EZK

1.5uA IQ, Step-Up DC-DC Converters in Thin SOT23-5
MAXIM

MAX1722EZK+T

Switching Regulator, Current-mode, 1A, PDSO5, SOT-23, 5 PIN
MAXIM

MAX1722EZK+T+

Switching Regulator, 0.62A, PDSO5, 0.90 MM HEIGHT, ROHS COMPLIANT, TSOT-5
MAXIM

MAX1722EZK-T

1.5uA IQ, Step-Up DC-DC Converters in Thin SOT23-5
MAXIM

MAX1722_12

1.5μA IQ, Step-Up DC-DC Converters in Thin SOT23-5
MAXIM

MAX1722_13

1.5μA IQ, Step-Up DC-DC Converters in TSOT
MAXIM

MAX1723

1.5uA IQ, Step-Up DC-DC Converters in Thin SOT23-5
MAXIM

MAX17230

2V–36V, Synchronous Dual Buck Controller with Integrated Boost and 20μA Quiescent Current
MAXIM

MAX17230ETLR

2V–36V, Synchronous Dual Buck Controller with Integrated Boost and 20μA Quiescent Current
MAXIM

MAX17230ETLR/+T

Dual Switching Controller,
MAXIM

MAX17230ETLS

2V–36V, Synchronous Dual Buck Controller with Integrated Boost and 20μA Quiescent Current
MAXIM