MAX17292ETCE [MAXIM]

2.5V to 36V, 2.5MHz, PWM Boost Controller with 4μA Shutdown Current and Reduced EMI;
MAX17292ETCE
型号: MAX17292ETCE
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

2.5V to 36V, 2.5MHz, PWM Boost Controller with 4μA Shutdown Current and Reduced EMI

文件: 总18页 (文件大小:1340K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
EVALUATION KIT AVAILABLE  
MAX17290/MAX17292  
2.5V to 36V, 2.5MHz, PWM Boost Controller  
with 4µA Shutdown Current and Reduced EMI  
General Description  
Benefits and Features  
Reduces Solution Size and Cost  
• All-Ceramic Capacitor Solution Allows Ultra-Compact  
Solution Size  
The MAX17290/MAX17292 high-efficiency, synchronous  
step-up DC-DC controllers operate over a 4.5V to 36V  
input voltage range with 42V input transient protection.  
The input operating range can be extended to as low as  
2.5V in Bootstrapped mode.  
• 100kHz to 1MHz (MAX17290) and 1MHz to  
2.5MHz (MAX17292) Switching-Frequency with  
External Synchronization  
The MAX17290 and MAX17292 use a constant-frequency,  
pulse-width modulating (PWM), peak current-mode  
control architecture. There are multiple versions of the  
devices offering one or more of the following functions:  
a synchronization output (SYNCO) for 180° out-of-phase  
operation, an overvoltage protection function using a  
separate input pin (OVP), and a reference input pin  
(REFIN) to allow on-the-fly output voltage adjustment.  
Increases Design Flexibility  
• Bootstrapped Mode Allows Input Voltage to be 2.5V  
• Adjustable Slope Compensation  
Reduces Power Dissipation  
>90% Peak Efficiency  
Low 4μA (typ.) Shutdown Current  
Operates Reliably  
The MAX17290 and MAX17292 operate in different  
frequency ranges. All versions can be synchronized to an  
external master clock using the FSET/SYNC input.  
• 42V Input Voltage Transient Protection  
• Fixed 9ms Internal Software Start Reduces Input  
Inrush Current  
• PGOOD Output and Hiccup Mode for Enhanced  
System Protection  
• Overtemperature Shutdown  
• Reduced EMI Emission with Spread-Spectrum  
Control  
The devices are available in a compact 12-pin (3mm x  
3mm) TQFN and 10-pin µMAX packages. Both packages  
have exposed pads. -40°C to +85°C Operation.  
Applications  
Distributed Supply Regulation  
Typical Application Circuit  
● Offline Power Supplies  
Telecom Hardware  
General-Purpose Point-of-Load  
BOOTSTRAPPED 2.2MHz APPLICATION WITH LOW OPERATING VOLTAGE  
22µF  
0.47µH  
BATTERY INPUT  
2.5V to 40V  
SW_OUT  
8V/2A  
47µF  
CERAMIC  
PVL  
SUP  
DRV  
N
10k  
91kΩ  
1kΩ  
PGOOD  
ISNS  
22mΩ  
PVL  
MAX17292EUBA/B  
2.2µF  
FB  
FSET/SYNC  
COMP  
13kΩ  
12kΩ  
EN  
GND  
Ordering Information appears at end of data sheet.  
ENABLE  
µMAX is a registered trademark of Maxim Integrated Products, Inc.  
19-8544; Rev 0; 8/16  
MAX17290/MAX17292  
2.5V to 36V, 2.5MHz, PWM Boost Controller  
with 4µA Shutdown Current and Reduced EMI  
Absolute Maximum Ratings  
EN, SUP, OVP, FB to GND....................................-0.3V to +42V  
DRV, SYNCO, FSET/SYNC, COMP,  
PGOOD, ISNS, REFIN to GND............ -0.3V to (V  
Operating Temperature Range.......................... -40NC to +85NC  
Maximum Junction Temperature.....................................+150NC  
Storage Temperature Range............................ -65NC to +150NC  
Lead Temperature (soldering, 10s) ................................+300NC  
Soldering Temperature (reflow) ......................................+260NC  
+ 0.3V)  
PVL  
PVL to GND............................................................... -0.3V to 6V  
Continuous Power Dissipation (T = +70NC)  
A
μMAX on SLB (derate 10.3mW/NC above +70NC) ......825mW  
μMAX on MLB (derate 12.9mW/NC above +70NC)....1031mW  
TQFN on SLB (derate 13.2mW/NC above +70NC).....1053mW  
TQFN on MLB (derate 14.7mW/NC above +70NC)....1176mW  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation  
of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum  
rating conditions for extended periods may affect device reliability.  
(Note 1)  
Package Thermal Characteristics  
μMAX (Single-Layer Board)  
Junction-to-Ambient Thermal Resistance (B ) ..........97NC/W  
TQFN (Single-Layer Board)  
Junction-to-Ambient Thermal Resistance (B ) ..........76NC/W  
JA  
JA  
Junction-to-Case Thermal Resistance (B ).................5NC/W  
Junction-to-Case Thermal Resistance (B )...............11NC/W  
JC  
JC  
μMAX (Four-Layer Board)  
TQFN (Four-Layer Board)  
Junction-to-Ambient Thermal Resistance (B ) ..........78NC/W  
Junction-to-Ambient Thermal Resistance (B ) ..........68NC/W  
JA  
JA  
Junction-to-Case Thermal Resistance (B ).................5NC/W  
Junction-to-Case Thermal Resistance (B )...............11NC/W  
JC  
JC  
Note 1: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer  
board. For detailed information on package thermal considerations, refer to www.maximintegrated.com/thermal-tutorial.  
Electrical Characteristics  
(V  
= 14V, T = T = -40NC to +85NC, unless otherwise noted. Typical values are at T =+25NC.) (Note 2)  
SUP  
A
J
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
POWER SUPPLY  
SUP Operating Supply Range  
V
4.5  
36  
1.3  
2
V
SUP  
MAX17290  
MAX17292  
0.75  
1.25  
4
V
= 1.1V, no  
FB  
SUP Supply Current in Operation  
I
mA  
CC  
switching  
SUP Supply Current in Shutdown  
OVP Threshold Voltage  
I
V
= 0V  
7
FA  
SHDN  
EN  
% of  
V
OVP rising  
105  
-1  
110  
2.5  
115  
OVP  
V
FB  
OVP Threshold Voltage  
Hysteresis  
% of  
V
OVPH  
V
FB  
OVP Input Current  
I
+1  
FA  
OVP  
PVL REGULATOR  
PVL Output Voltage  
PVL Undervoltage Lockout  
V
4.7  
3.8  
5
4
5.45  
4.3  
V
V
PVL  
V
SUP rising  
UV  
PVL Undervoltage-Lockout  
Hysteresis  
V
0.4  
V
UVH  
Maxim Integrated  
2  
www.maximintegrated.com  
MAX17290/MAX17292  
2.5V to 36V, 2.5MHz, PWM Boost Controller  
with 4µA Shutdown Current and Reduced EMI  
Electrical Characteristics (continued)  
(V  
= 14V, T = T = -40NC to +85NC, unless otherwise noted. Typical values are at T =+25NC.) (Note 2)  
SUP  
A
J
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
OSCILLATOR  
R
R
= 69kI  
= 12kI  
360  
400  
440  
FSET  
Switching Frequency  
f
kHz  
SW  
2000  
2200  
2400  
FSET  
Spread-Spectrum Spreading  
Factor  
% of  
SS  
B, D, and F versions  
Q6  
f
SW  
MAX17290  
MAX17292  
MAX17290  
MAX17292  
100  
1000  
220  
1000  
2500  
1000  
2500  
When set with  
resistor on pin  
Switching Frequency Range  
FSET/SYNC Frequency Range  
f
kHz  
kHz  
SWR  
Using external  
SYNC signal  
f
SYNC  
1000  
FSET Regulation Voltage  
Soft-Start Time  
V
12kI < R  
< 69kI  
0.9  
9
V
FSET  
FSET  
t
Internally set  
6
12  
ms  
ms  
SS  
Hiccup Period  
t
55  
HICCUP  
MAX17290, R  
MAX17292, R  
= 69kI  
93  
85  
50  
FSET  
Maximum Duty Cycle  
DC  
%
MAX  
= 12kI  
FSET  
Minimum On-Time  
t
80  
110  
ns  
ON  
THERMAL SHUTDOWN  
Thermal-Shutdown Temperature  
Thermal-Shutdown Hysteresis  
GATE DRIVERS  
T
Temperature rising  
165  
10  
NC  
NC  
S
T
H
I
I
DRV Pullup Resistance  
DRV Pulldown Resistance  
R
I
I
= 100mA  
= -100mA  
3
1.4  
0.75  
1
5.5  
2.5  
DRVH  
DRV  
DRV  
R
DRVL  
Sourcing, C  
= 10nF  
DRV  
DRV Output Peak Current  
I
A
DRV  
Sinking, C  
= 10nF  
DRV  
REGULATION/CURRENT SENSE  
V
V
V
= VPVL  
= 2V  
0.99  
1.98  
0.495  
-0.5  
1
2
1.01  
2.02  
0.505  
+0.5  
288  
REFIN  
REFIN  
REFIN  
Across full line, load,  
and temperature  
range  
FB Regulation Voltage  
V
V
FB  
= 0.5V  
0.5  
FB Input Current  
ISNS Threshold  
I
FA  
FB  
212  
250  
60  
40  
8
mV  
MAX16990  
MAX16992  
ISNS Leading-Edge Blanking  
Time  
t
ns  
BLANK  
Current-Sense Gain  
A
V/V  
VI  
Peak Slope Compensation  
Current-Ramp Magnitude  
Added to ISNS input  
40  
50  
60  
FA  
Rising  
Falling  
85  
80  
90  
85  
95  
90  
Percentage of final  
value  
PGOOD Threshold  
V
%
PG  
Maxim Integrated  
3  
www.maximintegrated.com  
MAX17290/MAX17292  
2.5V to 36V, 2.5MHz, PWM Boost Controller  
with 4µA Shutdown Current and Reduced EMI  
Electrical Characteristics (continued)  
(V  
= 14V, T = T = -40NC to +85NC, unless otherwise noted. Typical values are at T =+25NC.) (Note 2)  
SUP  
A
J
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
ERROR AMPLIFIER  
REFIN Input Voltage Range  
0.5  
2
V
V
REFIN Threshold for 1V FB  
Regulation  
V
-
V
PVL  
0.4  
-
V
-
PVL  
0.8  
PVL  
0.1  
Error-Amplifier gm  
A
700  
FS  
MI  
VEA  
Error-Amplifier Output  
Impedance  
R
50  
OEA  
COMP Output Current  
I
140  
3
μA  
V
COMP  
COMP Clamp Voltage  
2.7  
3.3  
LOGIC-LEVEL INPUTS/OUTPUTS  
PGOOD/SYNCO Output Leakage  
Current  
V
/V  
= 5V  
0.5  
FA  
PGOOD SYNCO  
PGOOD/SYNCO Output Low  
Level  
Sinking 1mA  
EN rising  
0.4  
1.2  
V
EN High Input Threshold  
1.7  
2.5  
-1  
V
V
EN Low Input Threshold  
FSET/SYNC High Input Threshold  
FSET/SYNC Low Input Threshold  
EN and REFIN Input Current  
V
1
V
+1  
FA  
Note 2: All devices 100% production tested at T = +25NC. Limits over temperature are guaranteed by design.  
A
Maxim Integrated  
4  
www.maximintegrated.com  
MAX17290/MAX17292  
2.5V to 36V, 2.5MHz, PWM Boost Controller  
with 4µA Shutdown Current and Reduced EMI  
Typical Operating Characteristics  
(V  
= 14V, T = +25NC, unless otherwise noted.)  
SUP  
A
SHUTDOWN SUPPLY CURRENT  
vs. SUPPLY VOLTAGE  
SHUTDOWN SUPPLY CURRENT  
vs. TEMPERATURE  
SUPPLY CURRENT vs. SUPPLY VOLTAGE  
toc01  
toc02  
toc03  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
10  
5.2  
5.0  
4.8  
4.6  
4.4  
4.2  
4.0  
3.8  
3.6  
9
8
7
2.2MHz  
400kHz  
6
5
4
3
3
2
1
0
V
V
= V  
SUP  
= 1.1V  
EN  
FB  
V
= 0V  
V
EN  
= 0V  
EN  
4
12  
20  
SUPPLY VOLTAGE (V)  
28  
36  
4
12  
20  
28  
36  
-40 -20  
0
20 40 60 80 100 120  
TEMPERATURE (°C)  
SUPPLY VOLTAGE (V)  
MAX17290 INTERNAL OSCILLATOR  
FREQUENCY vs. SUPPLY VOLTAGE  
PVL VOLTAGE vs. SUPPLY VOLTAGE  
PVL VOLTAGE vs. SUPPLY VOLTAGE  
toc05  
toc06  
toc04  
410  
408  
406  
404  
402  
400  
398  
396  
394  
392  
390  
5.2  
5.1  
5.0  
4.9  
4.8  
4.7  
4.6  
4.5  
4.4  
4.3  
4.2  
4.1  
4.0  
5.2  
I
= 1mA  
PVL  
5.0  
4.8  
4.6  
4.4  
4.2  
4.0  
3.8  
3.6  
3.4  
3.2  
3.0  
I
= 1mA  
PVL  
I
= 10mA  
PVL  
I
= 10mA  
PVL  
R
= 68.1kI  
SET  
28  
4
12  
20  
36  
4
12  
20  
SUPPLY VOLTAGE (V)  
28  
36  
3
4
5
6
7
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
MAX17290 INTERNAL OSCILLATOR  
FREQUENCY vs. TEMPERATURE  
MAX17292 INTERNAL OSCILLATOR  
FREQUENCY vs. SUPPLY VOLTAGE  
MAX17292 INTERNAL OSCILLATOR  
FREQUENCY vs. TEMPERATURE  
toc08  
toc09  
toc07  
420  
415  
410  
405  
400  
395  
390  
385  
380  
2400  
2350  
2300  
2250  
2200  
2150  
2100  
2050  
2000  
2200  
2190  
2180  
2170  
2160  
2150  
2140  
2130  
2120  
2110  
2100  
R
= 68.1kI  
R
= 12.1kI  
R
= 12.1kI  
SET  
SET  
SET  
28  
-40 -20  
0
20 40 60 80 100 120  
TEMPERATURE (°C)  
4
12  
20  
36  
-40 -20  
0
20 40 60 80 100 120  
TEMPERATURE (°C)  
SUPPLY VOLTAGE (V)  
Maxim Integrated  
5  
www.maximintegrated.com  
MAX17290/MAX17292  
2.5V to 36V, 2.5MHz, PWM Boost Controller  
with 4µA Shutdown Current and Reduced EMI  
Typical Operating Characteristics (continued)  
(V  
= 14V, T = +25NC, unless otherwise noted.)  
SUP  
A
POWER-UP RESPONSE  
POWER-UP RESPONSE  
toc10  
toc11  
5V/div  
0V  
5V/div  
0V  
V
V
V
SUP  
OUT  
SUP  
5V/div  
0V  
5V/div  
0V  
V
V
OUT  
DRV  
5V/div  
5V/div  
0V  
V
PVL  
0V  
5V/div  
0V  
5V/div  
0V  
V
V
PGOOD  
PGOOD  
2ms/div  
2ms/div  
STARTUP RESPONSE  
STARTUP RESPONSE  
toc12  
toc13  
5V/div  
0V  
5V/div  
0V  
V
V
V
SUP  
OUT  
PGOOD  
5V/div  
0V  
5V/div  
0V  
5V/div  
0V  
V
V
OUT  
DRV  
V
PVL  
5V/div  
0V  
5V/div  
0V  
5V/div  
0V  
V
EN  
V
EN  
2ms/div  
2ms/div  
STARTUP RESPONSE  
(WITH SWITCHED OUTPUT)  
OUTPUT LOAD TRANSIENT  
toc15  
toc14  
5V/div  
0V  
5V/div  
0V  
V
SUP  
V
PGOOD  
5V/div  
0V  
5V/div  
0V  
5V/div  
0V  
V
V
OUT  
OUT  
V
OUT  
500mV/div  
(AC-COUPLED)  
V
SW_OUT  
5V/div  
0V  
V
EN  
1A/div  
0A  
I
LOAD  
50ms/div  
2ms/div  
Maxim Integrated  
6  
www.maximintegrated.com  
MAX17290/MAX17292  
2.5V to 36V, 2.5MHz, PWM Boost Controller  
with 4µA Shutdown Current and Reduced EMI  
Typical Operating Characteristics (continued)  
(V  
= 14V, T = +25NC, unless otherwise noted.)  
SUP  
A
LINE TRANSIENT  
MAX17292 V vs. V  
SYNC SYNCO  
toc16  
toc17  
5V/div  
0V  
V
V
V
SUP  
OUT  
OUT  
2V/div  
0V  
V
SYNC  
5V/div  
0V  
500mV/div  
(AC-COUPLED)  
2V/div  
0V  
V
SYNCO  
1A/div  
0A  
I
LOAD  
20ms/div  
200ns/div  
SWITCHING WAVEFORM  
OUTPUT VOLTAGE vs. REFIN VOLTAGE  
toc19  
toc18  
30  
25  
20  
15  
10  
5
5V/div  
V
OUT  
0V  
5V/div  
0V  
V
IN  
5V/div  
0V  
V
LX  
1A/div  
0A  
I
LOAD  
I
= 0A  
OUT  
0
500ns/div  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
REFIN VOLTAGE (V)  
OVP SHUTDOWN  
HICCUP MODE  
toc20  
toc21  
V
OUT  
5V/div  
0V  
V
V
OUT  
DRV  
5V/div  
0V  
1V/div  
0V  
V
V
OVP  
DRV  
5V/div  
0V  
5V/div  
0V  
V
PGOOD  
5V/div  
0V  
5V/div  
0V  
V
PGOOD  
1s/div  
20ms/div  
Maxim Integrated  
7  
www.maximintegrated.com  
MAX17290/MAX17292  
2.5V to 36V, 2.5MHz, PWM Boost Controller  
with 4µA Shutdown Current and Reduced EMI  
Typical Operating Characteristics (continued)  
(V  
= 14V, T = +25NC, unless otherwise noted.)  
SUP  
A
MAX17292 INTERNAL OSCILLATOR  
MAX17290 EFFICIENCY  
MAX17292 EFFICIENCY  
FREQUENCY vs. R  
SET  
toc23  
toc22  
toc24  
100  
100  
2600  
2400  
2200  
2000  
1800  
1600  
1400  
1200  
1000  
800  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
I
= 1A  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
OUT  
I
= 2A  
OUT  
I
= 2A  
OUT  
I
= 1A  
OUT  
I
= 100mA  
OUT  
I
= 100mA  
OUT  
4
5
6
7
8
4
5
6
7
8
10  
15  
20  
(kI)  
25  
30  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
R
SET  
CURRENT-LIMIT THRESHOLD  
vs. TEMPERATURE  
MAX17292 MAXIMUM DUTY  
CYCLE vs. TEMPERATURE  
MAX17290 INTERNAL OSCILLATOR  
FREQUENCY vs. RSET  
toc27  
toc25  
toc28  
260  
258  
256  
254  
252  
250  
248  
246  
244  
242  
240  
1100  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
91.0  
90.5  
90.0  
89.5  
89.0  
88.5  
88.0  
87.5  
87.0  
R
= 12.1kI  
SET  
0
100  
200  
RSET(kΩ)  
300  
-40 -20  
0
20 40 60 80 100 120  
TEMPERATURE (°C)  
-40 -20  
0
20 40 60 80 100 120  
TEMPERATURE (°C)  
MAX17290 MAXIMUM DUTY  
CYCLE vs. TEMPERATURE  
INPUT VOLTAGE TRANSIENT  
toc29  
toc30  
95.9  
95.7  
95.5  
95.3  
95.1  
94.9  
94.7  
94.5  
5V/div  
V
IN  
0V  
5V/div  
V
OUT  
0V  
1A/div  
0A  
5V/div  
0V  
I
LOAD  
V
PGOOD  
R
= 68.1kI  
SET  
-40 -20  
0
20 40 60 80 100 120  
TEMPERATURE (°C)  
20ms/div  
Maxim Integrated  
8  
www.maximintegrated.com  
MAX17290/MAX17292  
2.5V to 36V, 2.5MHz, PWM Boost Controller  
with 4µA Shutdown Current and Reduced EMI  
Pin Configurations  
TOP VIEW  
TOP VIEW  
TOP VIEW  
9
8
7
9
8
7
+
SUP  
EN  
1
2
3
4
5
10  
9
FB  
FSET/SYNC 10  
COMP 11  
6
5
ISNS  
PVL  
FSET/SYNC 10  
COMP 11  
6
5
ISNS  
PVL  
MAX17290EUBA/B  
MAX17292EUBA/B  
COMP  
FSET/SYNC  
PGOOD  
ISNS  
MAX17290ETCC/D  
MAX17292ETCC/D  
MAX17290ETCE/F  
MAX17292ETCE/F  
GND  
DRV  
PVL  
8
7
EP  
FB 12  
4
DRV  
FB 12  
4
DRV  
EP  
EP  
6
+
+
1
2
3
1
2
3
µMAX  
TQFN  
(3mm x 3mm)  
TQFN  
(3mm x 3mm)  
Pin Descriptions  
MAX17290EUBA/B, MAX17290ETCC/D, MAX17290ETCE/F,  
MAX17292EUBA/B MAX17292ETCC/D MAX17292ETCE/F  
NAME  
FUNCTION  
μMAX-EP  
TQFN-EP  
TQFN-EP  
Power-Supply Input. Place a bypass capacitor of at  
least 1FF between this pin and ground.  
1
1
1
SUP  
Active-High Enable Input. This input is high-voltage  
capable or can alternatively be driven from a logic-  
level signal.  
2
3
4
3
2
4
3
2
4
EN  
GND  
DRV  
Ground Connection  
Drive Output for Gate of nMOS Boost Switch. The  
nominal voltage swing of this output is between PVL  
and GND.  
Output of 5V Internal Regulator. Connect a ceramic  
capacitor of at least 2.2FF from this pin to ground,  
placing it as close as possible to the pin.  
5
6
5
6
5
6
PVL  
Current-Sense Input to Regulator. Connect a sense  
resistor between the source of the external switching  
FET and GND. Then connect another resistor  
between ISNS and the source of the FET for slope  
compensation adjustment.  
ISNS  
Open-Drain Synchronization Output. SYNCO outputs  
a square-wave signal which is 180N out-of-phase  
7
SYNCO with the device’s operational clock. Connect a pullup  
resistor from this pin to PVL or to a 5V or lower  
supply when used.  
Maxim Integrated  
9  
www.maximintegrated.com  
MAX17290/MAX17292  
2.5V to 36V, 2.5MHz, PWM Boost Controller  
with 4µA Shutdown Current and Reduced EMI  
Pin Descriptions (continued)  
MAX17290EUBA/B, MAX17290ETCC/D, MAX17290ETCE/F,  
MAX17292EUBA/B MAX17292ETCC/D MAX17292ETCE/F  
NAME  
FUNCTION  
μMAX-EP  
TQFN-EP  
TQFN-EP  
Overvoltage Protection Input. When this pin goes  
above 110% of the FB regulation voltage, all  
switching is disabled. Operation resumes normally  
when OVP drops below 107.5% of the FB regulation  
point. Connect a resistor-divider between the output,  
OVP, and GND to set the overvoltage protection  
level.  
7
OVP  
Reference Input. When using the internal reference  
connect REFIN to PVL. Otherwise, drive this pin with  
an external voltage between 0.5V and 2V to set the  
boost output voltage.  
8
9
8
9
REFIN  
Open-Drain Power-Good Output. Connect a resistor  
from this pin to PVL or to another voltage less than or  
equal to 5V. PGOOD goes high after soft-start when  
the output exceeds 90% of its final value. When EN is  
low PGOOD is also low. After soft-start is complete,  
if PGOOD goes low and 16 consecutive current-limit  
cycles occur, the devices enter hiccup mode and a  
new soft-start is initiated after a delay of 44ms.  
7
PGOOD  
Frequency Set/Synchronization. To set a switching  
frequency between 100kHz and 1000kHz  
(MAX16990) or between 1000kHz and 2500kHz  
(MAX16992), connect a resistor from this pin to GND.  
To synchronize the converter, connect a logic signal  
in the range 220kHz to 1000kHz (MAX16990) or  
1000kHz to 2500kHz (MAX16992) to this input. The  
external nMOSFET is turned on (i.e., DRV goes high)  
after a short delay (60ns for 2.2MHz operation, 125ns  
for 400kHz) when SYNC transitions low.  
FSET/  
SYNC  
8
10  
10  
Output of Error Amplifier. Connect the compensation  
network between COMP and GND.  
9
11  
12  
11  
12  
COMP  
FB  
Boost Converter Feedback. This pin is regulated to  
1V when REFIN is tied to PVL or otherwise regulated  
to REFIN during boost operation. Connect a resistor-  
divider between the boost output, the FB pin and  
GND to set the boost output voltage. In a two-phase  
converter connect the FB pin of the slave IC to PVL.  
10  
Exposed Pad. Internally connected to GND.  
Connect to a large ground plane to maximize  
thermal performance. Not intended as an electrical  
connection point.  
EP  
Maxim Integrated  
10  
www.maximintegrated.com  
MAX17290/MAX17292  
2.5V to 36V, 2.5MHz, PWM Boost Controller  
with 4µA Shutdown Current and Reduced EMI  
Functional Diagram  
5V REGULATOR  
PVL  
SUP  
+ REFERENCE  
(OVP)  
UVLO  
REF.  
EN  
EN  
DRV  
THERMAL  
THERMAL  
50µA x f  
SW  
GND  
250mV  
BLANKING  
TIME  
ISNS  
CONTROL  
LOGIC  
FSET/SYNC  
(SYNCO)  
OSCILLATOR  
8
AGND  
AGND  
PGOOD  
COMP  
FB  
PGOOD  
COMPARATOR  
OTA  
V
- 0.4V  
PVL  
MAX17290  
MAX17292  
1V  
(REFIN)  
input. The input operating range can be as low as 2.5V  
when the converter output supplies the SUP input.  
Detailed Description  
The MAX17290/MAX17292 are high-performance,  
current-mode PWM controllers for wide input voltage  
range boost converters. The input operating voltage  
range of 4.5V to 36V makes these devices ideal in  
battery operated harsh environment applications such as  
for front-end “preboost” for the first boost stage in high-power  
LED lighting applications. An internal low-dropout regulator  
(PVL regulator) with an output voltage of 5V enables the  
devices to operate directly from an automotive battery  
The input undervoltage lockout (UVLO) circuit monitors  
the PVL voltage and turns off the converter when the  
voltage drops below 3.6V (typ). An external resistor  
programs the switching frequency in two ranges from  
100kHz to 1000kHz (MAX17290) or between 1000kHz  
and 2500kHz (MAX17292). The FSET/SYNC input can  
also be used for synchronization to an external clock. The  
SYNC pulse width should be greater than 70ns.  
Maxim Integrated  
11  
www.maximintegrated.com  
MAX17290/MAX17292  
2.5V to 36V, 2.5MHz, PWM Boost Controller  
with 4µA Shutdown Current and Reduced EMI  
Inductor current information is obtained by means of an  
external sense resistor connected from the source of the  
external nMOSFET to GND.  
Oscillator Frequency/External Synchronization/  
Spread Spectrum  
Use an external resistor at FSET/SYNC to program  
the MAX17290 internal oscillator frequency from 100kHz  
to 1MHz and the MAX17292 frequency between 1MHz  
and 2.5MHz. See TOCs 24 and 25 in the Typical Operating  
Characteristics section for resistor selection.  
The devices include an internal transconductance error  
amplifier with 1% accurate reference. At startup, the  
internal reference is ramped in a time of 9ms to obtain  
soft-start.  
The SYNCO output is a 180N phase-shifted version of  
the internal clock and can be used to synchronize other  
converters in the system or to implement a two-phase  
boost converter with a second MAX17290/MAX17292.  
The advantages of a two-phase boost topology are  
lower input and output ripple and simpler thermal  
management as the power dissipation is spread over more  
components. See the Multiphase Operation section for  
further details.  
The devices also include protection features such as  
hiccup mode and thermal shutdown as well as an optional  
overvoltage-detection circuit (OVP pin, C and D versions).  
Current-Mode Control Loop  
The MAX17290/MAX17292 offers peak current-mode  
control operation for best load step performance and  
simpler compensation. The inherent feed-forward  
characteristic is useful especially in applications where  
the input voltage changes quickly. While the current-mode  
architecture offers many advantages, there are some  
shortcomings. In high duty-cycle operation, subharmonic  
oscillations can occur. To avoid this, the device offers  
programmable slope compensation using a single resistor  
between the ISNS pin and the current-sense resistor. To  
avoid premature turn-off at the beginning of the on-cycle  
the current-limit and PWM comparator inputs have  
leading-edge blanking.  
The devices can be synchronized using an external clock  
at the FSET/SYNC input. A falling clock edge on FSET/  
SYNC turns on the external MOSFET by driving DRV high  
after a short delay.  
The B, D, and F versions of the devices have spread-  
spectrum oscillators. In these parts the internal  
oscillator frequency is varied dynamically ±6% around  
the switching frequency. Spread spectrum can improve  
system EMI performance by reducing the height of peaks  
due to the switching frequency and its harmonics in the  
spectrum. The SYNCO output includes spread-spectrum  
modulation when the internal oscillator is used on the B,  
D, and F versions. Spread spectrum is not active when an  
external clock is applied to the FSET/SYNC pin.  
Startup Operation/UVLO/EN  
The devices feature undervoltage lockout on the PVL-  
regulator and turn on the converter once PVL rises  
above 4V. The internal UVLO circuit has about 400mV  
hysteresis to avoid chattering during turn-on. Once the  
converter is operating and if SUP is fed from the output,  
the converter input voltage can drop below 4.5V. This  
feature allows operation at voltages as low as 2.5V or  
even lower with careful selection of external components.  
The EN input can be used to disable the device and  
reduce the standby current to less than 4μA (typ).  
nMOSFET Driver  
DRV drives the gate of an external nMOSFET. The  
driver is powered by the internal regulator (PVL), which  
provides approximately 5V. This makes both the devices  
suitable for use with logic-level MOSFETs. DRV can  
source 750mA and sink 1000mA peak current. The  
average current sourced by DRV depends on the  
switching frequency and total gate charge of the external  
MOSFET (see the Power Dissipation section).  
Soft-Start  
The devices are provided with an internal soft-start time  
of 9ms. At startup, after voltage is applied and the UVLO  
threshold is reached, the device enters soft-start. During  
soft-start, the reference voltage ramps linearly to its final  
value in 9ms.  
Maxim Integrated  
12  
www.maximintegrated.com  
MAX17290/MAX17292  
2.5V to 36V, 2.5MHz, PWM Boost Controller  
with 4µA Shutdown Current and Reduced EMI  
Error Amplifier  
Applications Information  
The devices include an internal transconductance error  
amplifier. The noninverting input of the error amplifier is  
connected to the internal 1V reference and feedback is  
provided at the inverting input. High 700μS open-loop  
transconductance and 50MΩ output impedance allow  
good closed-loop bandwidth and transient response.  
Moreover, the source and sink current capability of 140μA  
provides fast error correction during output load transients.  
Inductor Selection  
Using the following equation, calculate the minimum  
inductor value so that the converter remains in continuous  
mode operation at minimum output current (I  
):  
OMIN  
2
L
= (V  
x D x E)/(2 x f  
x V  
x I  
)
MIN  
IN  
SW  
OUT  
OMIN  
where:  
D = (V  
+ V - V )/(V  
+ V - V  
)
OUT  
D
IN  
OUT  
D
DS  
Slope Compensation  
and:  
The devices use an internal current-ramp generator for  
slope compensation. The internal ramp signal resets at  
the beginning of each cycle and slews at a typical rate of  
I
is between 10% and 25% of I  
OUT  
OMIN  
A higher value of I  
however, it increases the peak and RMS currents in the  
switching MOSFET and inductor. Select I between  
10% to 25% of the full load current. V is the forward  
voltage drop of the external Schottky diode, D is the duty  
reduces the required inductance;  
OMIN  
50μA x f . The amount of slope compensation needed  
SW  
OMIN  
depends on the slope of the current ramp in the inductor.  
See the Current-Sense Resistor Selection and Setting  
Slope Compensation section for further information.  
D
cycle, and V  
is the voltage drop across the external  
DS  
Current Limit  
switch. Select an inductor with low DC resistance and  
with a saturation current (I ) rating higher than the peak  
switch current limit of the converter.  
The current-sense resistor (R ) connected between  
SAT  
CS  
the source of the MOSFET and ground sets the current  
limit. The ISNS input has a voltage trip level (V ) of  
CS  
Input and Output Capacitors  
250mV. When the voltage produced by the current in the  
inductor exceeds the current-limit comparator threshold, the  
MOSFET driver (DRV) quickly terminates the on-cycle.  
In some cases, a short time-constant RC filter could be  
required to filter out the leading-edge spike on the sense  
waveform in addition to the internal blanking time. The  
amplitude and width of the leading edge spike depends  
on the gate capacitance, drain capacitance, and switching  
speed (MOSFET turn-on time).  
The input current to a boost converter is almost  
continuous and the RMS ripple current at the input capacitor  
is low. Calculate the minimum input capacitor value and  
maximum ESR using the following equations:  
C
= DI x D/(4 x f  
x DV )  
IN  
L
SW Q  
ESR  
= DV  
/DI  
MAX  
ESR L  
where DI = ((V - V ) x D)/(L x f ).  
L
IN  
DS  
SW  
V
is the total voltage drop across the external  
DS  
Hiccup Operation  
MOSFET plus the voltage drop across the inductor  
ESR. DI is peak-to-peak inductor ripple current as  
calculated above. DV is the portion of input ripple due  
to the capacitor discharge and DV  
due to ESR of the capacitor. Assume the input capacitor  
ripple contribution due to ESR (DV ) and capacitor  
The devices incorporate a hiccup mode in an effort to  
protect the external power components when there is  
an output short-circuit. If PGOOD is low (i.e., the output  
voltage is less than 85% of its set value) and there are  
16 consecutive current-limit events, switching is stopped.  
There is then a waiting period of 44ms before the device  
tries to restart by initiating a soft-start. Note that a  
short-circuit on the output places considerable stress on  
all the power components even with hiccup mode, so that  
careful component selection is important if this condition  
is encountered. For more complete protection against  
output short-circuits, a series pMOS switch driven from  
PGOOD through a level-shifter can be employed.  
L
Q
is the contribution  
ESR  
ESR  
discharge (DV ) are equal when using a combination of  
Q
ceramic and aluminium capacitors. During the converter  
turn-on, a large current is drawn from the input source  
especially at high output to input differential. The devices  
have an internal soft-start, however, a larger input capacitor  
than calculated above could be necessary to avoid  
chattering due to finite hysteresis during turn-on.  
Maxim Integrated  
13  
www.maximintegrated.com  
MAX17290/MAX17292  
2.5V to 36V, 2.5MHz, PWM Boost Controller  
with 4µA Shutdown Current and Reduced EMI  
In a boost converter, the output capacitor supplies the  
load current when the main switch is on. The required  
output capacitance is high, especially at lower duty  
cycles. Also, the output capacitor ESR needs to be low  
enough to minimize the voltage drop due to the ESR while  
supporting the load current. Use the following equations  
to calculate the output capacitor, for a specified output  
ripple. All ripple values are peak-to-peak.  
The internal ramp signal resets at the beginning of each  
cycle and slews at the rate of 50μA x f . Adjust the  
SW  
amount of slope compensation by choosing R  
satisfy the following equation:  
to  
SCOMP  
R
= (mc x R )/(50e-6 x f  
)
SCOMP  
CS  
SW  
In some applications a filter could be needed between the  
current-sense resistor and the ISNS pin to augment the  
internal blanking time. Set the RC time constant just long  
enough to suppress the leading-edge spike of the MOSFET  
current. For a given design, measure the leading spike  
at the lowest input and rated output load to determine  
the value of the RC filter which can be formed from the  
slope-compensation resistor and an added capacitor from  
ISNS to GND.  
ESR = DV  
/I  
ESR OUT  
C
= (I  
x D  
)/(DV x f  
)
OUT  
OUT  
MAX  
Q
SW  
where I  
is the output current, DV is the portion of the  
Q
OUT  
ripple due to the capacitor discharge, and DV  
is the  
ESR  
ripple contribution due to the ESR of the capacitor. D  
MAX  
is the maximum duty cycle (i.e., the duty cycle at the  
minimum input voltage). Use a combination of low-ESR  
ceramic and high-value, low-cost aluminium capacitors  
for lower output ripple and noise.  
MOSFET Selection  
The devices drive a wide variety of logic-level n-channel  
power MOSFETs. The best performance is achieved with  
low-threshold nMOSFETs that specify on-resistance with  
Current-Sense Resistor Selection and Setting  
Slope Compensation  
Set the current-limit threshold 20% higher than the peak  
switch current at the rated output power and minimum  
input voltage. Use the following equation to calculate an  
a gate-source voltage (V ) of 5V or less. When selecting  
GS  
the MOSFET, key parameters can include:  
1) Total gate charge (Q ).  
g
2) Reverse-transfer capacitance or charge (C  
).  
RSS  
initial value for R  
:
CS  
3) On-resistance (R  
).  
DS(ON)  
R
= 0.2/{1.2 x [((V  
x I  
) x (V  
)/E)/V  
+ 0.5 x  
x L))]}  
CS  
((V  
OUT  
OUT  
INMIN  
4) Maximum drain-to-source voltage (V  
).  
DS(MAX)  
– V  
)/V  
/(f  
OUT  
INMIN OUT  
INMIN SW  
5) Maximumgatefrequenciesthresholdvoltage(V  
).  
TH(MAX)  
where E is the estimated efficiency of the converter (use  
0.85 as an initial value or consult the graph in the Typical  
Non-Synchronous Diode Selection  
Operating Characteristics section); V  
and I  
are  
OUT  
OUT  
The average diode current for a Boost converter is equal  
to the output load current. The peak diode current depends  
on how much ripple current is implemented in the design.  
Therefore at minimum, choose a diode with average forward  
current rating that is higher than the output current and  
ensure the peak forward current rating is higher than the  
output current plus one half the ripple current. As a rule  
of thumb, choose I_AVG_DIODE at least equal to two  
the output voltage and current, respectively; V  
is the  
INMIN  
minimum value of the input voltage; f  
is the switching  
SW  
frequency; and L is the minimum value of the chosen  
inductor.  
The devices use an internal ramp generator for slope  
compensation to stabilize the current loop when  
operating at duty cycles above 50%. The amount of slope  
compensation required depends on the down-slope of  
the inductor current when the main switch is off. The  
inductor down-slope in turn depends on the input to output  
voltage differential of the converter and the inductor value.  
Theoretically, the compensation slope should be equal to  
50% of the inductor downslope; however, a little higher  
than 50% slope is advised. Use the following equation to  
calculate the required compensating slope (mc) for the  
boost converter:  
times I  
for minimum power loss and proper component  
OUT  
thermal dissipation. Once that is met the diode’s peak  
specification will be more than enough.  
I_AVG_DIODE = I  
x 2  
OUT  
V_DIODE >> V  
OUT  
mc = 0.5 x (V  
– V )/L A/s  
IN  
OUT  
Maxim Integrated  
14  
www.maximintegrated.com  
MAX17290/MAX17292  
2.5V to 36V, 2.5MHz, PWM Boost Controller  
with 4µA Shutdown Current and Reduced EMI  
At high switching frequencies, dynamic characteristics  
(parameters 1 and 2 of the above list) that predict switching  
In addition, the current-limit of the devices must be set  
high enough so that the limit is not reached during the on-  
time of the MOSFET which would result in output power  
limitation and eventually entering hiccup mode. Estimate  
the maximum input current using the following equation:  
losses have more impact on efficiency than R  
),  
DS(ON  
which predicts DC losses. Qg includes all capacitances  
associated with charging the gate. The V of the  
DS(MAX)  
selected MOSFET must be greater than the maximum  
output voltage setting plus a diode drop (or the maximum  
input voltage if greater) plus an additional margin to allow  
for spikes at the MOSFET drain due to the inductance in  
the rectifier diode and output capacitor path. In addition,  
Qg determines the current needed to drive the gate at the  
selected operating frequency via the PVL linear regulator  
and thus determines the power dissipation of the IC (see  
the Power Dissipation section).  
I
= ((V  
x I  
)/V  
)/E)/V  
+ 0.5 x  
INMAX  
OUT  
OUT  
OUT  
INMIN  
((V  
– V  
) x (V  
/(f  
x L))  
INMIN OUT  
INMIN SW  
where I  
is the maximum input current; V  
and  
INMAX  
OUT  
I
are the output voltage and current, respectively;  
E is the estimated efficiency (which is lower at low input  
voltages due to higher resistive losses); V is the  
minimum value of the input voltage; f  
frequency; and L is the minimum value of the chosen  
OUT  
INMIN  
is the switching  
SW  
inductor.  
Low-Voltage Operation  
Boost Converter Compensation  
Refer to Application Note 5587.  
The devices operate down to a voltage of 4.5V or less on  
their SUP pins. If the system input voltage is lower than  
this the circuit can be operated from its own output as  
shown in the Typical Application Circuit. At very low input  
voltages it is important to remember that input current will  
be high and the power components (inductor, MOSFET,  
and diode) must be specified for this higher input current.  
Overvoltage Protection  
The “C” and “D” variants of the devices include the  
overvoltage protection input. When the OVP pin goes  
above 110% of the FB regulation voltage, all switching is  
disabled. For an example application circuit, see Figure 2.  
INPUT  
V
OUT  
INPUT  
V
OUT  
SUP  
DRV  
N
SUP  
EN  
DRV  
N
ISNS  
REFIN  
PVL  
ISNS  
PVL  
MAX17290ETCC/D  
MAX17292ETCC/D  
MAX17290  
MAX17292EUBA  
PVL  
OVP  
PGOOD  
SYNCO  
FB  
FB  
COMP  
FSET/SYNC  
FSET/SYNC  
COMP  
EN  
ENABLE  
GND  
GND  
Figure 2. Application with Independent Output Overvoltage  
Protection  
Figure 1. Standard Boost Application Circuit.  
Maxim Integrated  
15  
www.maximintegrated.com  
MAX17290/MAX17292  
2.5V to 36V, 2.5MHz, PWM Boost Controller  
with 4µA Shutdown Current and Reduced EMI  
1µF  
10µH  
VIN  
50V/1A  
2x47µF  
CERAMIC  
22µF  
SUP  
DRV  
N
FSET/SYNC  
2200  
69kΩ  
ISNS  
MAX17290ETCE/F  
20mΩ  
PGOOD  
PVL  
FB  
2.2µF  
COMP  
EN  
SYNCO GND  
10kΩ  
10µH  
22µF  
1µF  
FSET/  
SYNC  
SUP  
DRV  
N
75kΩ  
2200Ω  
ISNS  
REFIN  
20mΩ  
MAX17290ETCE/F  
PGOOD  
1500Ω  
PVL  
2.2µF  
COMP  
SYNCO  
FB  
EN  
N
GND  
ENABLE  
Figure 3. Two-Phase 400kHz Boost Application with Minimum Component Count  
multiphase converter it is important to protect the COMP  
trace in the layout from noisy signals by placing it on an  
inner layer and surrounding it with ground traces.  
Multiphase Operation  
Two boost phases can be implemented with no extra  
components using two ICs as shown in Figure 3. In this  
circuit the SYNCO output of the master device drives the  
SYNC input of the slave forcing it to operate 180N out-  
of-phase. The FB pin of the slave device is connected to  
PVL, thus disabling its error amplifier. In this way the error  
amplifier of the master controls both devices by means  
of the COMP signal and good current-sharing is attained  
between the two phases. When designing the PCB for a  
Using REFIN to Adjust the Output Voltage  
The REFIN pin can be used to directly adjust the  
reference voltage of the boost converter, thus altering  
the output voltage. When not used, REFIN should be  
connected to PVL. Because REFIN is a high-impedance  
pin, it is simple to drive it by means of an external digital-  
to-analog converter (DAC) or a filtered PWM signal.  
Maxim Integrated  
16  
www.maximintegrated.com  
MAX17290/MAX17292  
2.5V to 36V, 2.5MHz, PWM Boost Controller  
with 4µA Shutdown Current and Reduced EMI  
where V  
is the voltage at the SUP pin of the IC,  
Power Dissipation  
SUP  
I
is the IC quiescent current consumption or typically  
CC  
The power dissipation of the IC comes from two sources:  
the current consumption of the IC itself and the current  
required to drive the external MOSFET, of which the latter  
is usually dominant. The total power dissipation can be  
estimated using the following equation:  
0.75mA (MAX17290) or 1.25mA (MAX17292), Q is the  
total gate charge of the chosen MOSFET at 5V, and f  
is the switching frequency. P reaches it maximum at  
maximum V  
g
SW  
IC  
.
SUP  
P
IC  
= V  
x I  
+ (V  
– 5) x (Q x f  
)
SUP  
CC  
SUP  
g
SW  
Ordering Information  
FREQUENCY  
OVP/  
SYNCO  
SPREAD  
SPECTRUM  
PART  
TEMP RANGE  
PIN-PACKAGE  
RANGE  
MAX17290EUBA+  
MAX17290EUBB+  
MAX17290ETCC+  
MAX17290ETCD+  
MAX17290ETCE+  
MAX17290ETCF+  
MAX17292EUBA+  
MAX17292EUBB+  
MAX17292ETCC+  
MAX17292ETCD+  
MAX17292ETCE+  
MAX17292ETCF+  
220kHz to 1MHz  
220kHz to 1MHz  
220kHz to 1MHz  
220kHz to 1MHz  
220kHz to 1MHz  
220kHz to 1MHz  
1MHz to 2.5MHz  
1MHz to 2.5MHz  
1MHz to 2.5MHz  
1MHz to 2.5MHz  
1MHz to 2.5MHz  
1MHz to 2.5MHz  
None  
None  
Off  
On  
Off  
On  
Off  
On  
Off  
On  
Off  
On  
Off  
On  
-40NC to +85NC  
-40NC to +85NC  
-40NC to +85NC  
-40NC to +85NC  
-40NC to +85NC  
-40NC to +85NC  
-40NC to +85NC  
-40NC to +85NC  
-40NC to +85NC  
-40NC to +85NC  
-40NC to +85NC  
-40NC to +85NC  
10 FMAX-EP*  
10 FMAX-EP*  
12 TQFN-EP*  
12 TQFN-EP*  
12 TQFN-EP*  
12 TQFN-EP*  
10 FMAX-EP*  
10 FMAX-EP*  
12 TQFN-EP*  
12 TQFN-EP*  
12 TQFN-EP*  
12 TQFN-EP*  
OVP  
OVP  
SYNCO  
SYNCO  
None  
None  
OVP  
OVP  
SYNCO  
SYNCO  
+Denotes a lead(Pb)-free/RoHS-compliant package.  
*EP = Exposed pad.  
Chip Information  
PROCESS: BiCMOS  
Package Information  
For the latest package outline information and land patterns (foot-  
prints), go to www.maximintegrated.com/packages. Note that  
a “+”, “#”, or “-” in the package code indicates RoHS status only.  
Package drawings may show a different suffix character, but the  
drawing pertains to the package regardless of RoHS status.  
PACKAGE  
TYPE  
PACKAGE  
CODE  
OUTLINE  
NO.  
LAND  
PATTERN NO.  
21-0136  
21-0109  
90-0019  
90-0148  
12 TQFN-EP  
T1233+4  
U10E+3  
10 μMAX-EP  
Maxim Integrated  
17  
www.maximintegrated.com  
MAX17290/MAX17292  
2.5V to 36V, 2.5MHz, PWM Boost Controller  
with 4µA Shutdown Current and Reduced EMI  
Revision History  
REVISION REVISION  
PAGES  
DESCRIPTION  
CHANGED  
NUMBER  
DATE  
0
8/16  
Initial release  
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim Integrated’s website at www.maximintegrated.com.  
Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses  
are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits)  
shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.  
©
Maxim Integrated and the Maxim Integrated logo are trademarks of Maxim Integrated Products, Inc.  
2016 Maxim Integrated Products, Inc.  
18  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY