MAX17501FATB+ [MAXIM]

60V, 500mA, Ultra-Small, High-Efficiency,Synchronous Step-Down DC-DC Converter; 60V , 500毫安,超小尺寸,高效率,同步降压型DC -DC转换器
MAX17501FATB+
型号: MAX17501FATB+
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

60V, 500mA, Ultra-Small, High-Efficiency,Synchronous Step-Down DC-DC Converter
60V , 500毫安,超小尺寸,高效率,同步降压型DC -DC转换器

转换器
文件: 总16页 (文件大小:2992K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-6244; Rev 0; 5/12  
E V A L U A T I O N K I T A V A I L A B L E  
General Description  
Benefits and Features  
The MAX17501 high-efficiency, high-voltage, synchro-  
nous step-down DC-DC converter operates over a 4.5V to  
60V input voltage range and is designed for a wide range  
of applications. The ultra-wide-input operation makes it  
ideal for not only industrial control and building automa-  
tion, but also base stations, telecom, home entertainment  
and automotive applications. It delivers output currents  
up to 500mA, at output voltages of 3.3V and 5V. The out-  
put voltage is accurate within Q1.6% over temperature.  
The device operates over the -40NC to +125NC industrial  
temperature range and is available in a tiny, 10-pin (3mm  
x 2mm) TDFN with an exposed pad.  
S Eliminate External Components and Reduce Total  
Cost  
No Schottky-Synchronous Operation for High  
Efficiency and Reduced Cost  
Internal Compensation for Ultra-Compact  
Layout  
All-Ceramic Capacitors  
S Reduce Number of DC-DC Regulators to Stock  
Wide 4.5V to 60V Operating-Voltage Range  
Fixed 3.3V and 5V Output  
Delivers Up to 500mA Over Temperature  
600kHz Switching Frequency  
The device features peak-current-mode control with  
pulse-width modulation (PWM). The PWM operation  
ensures constant switching frequency at all operating  
conditions. The low-resistance, on-chip, pMOS/nMOS  
switches ensure high efficiency at full load while minimiz-  
ing the critical inductances, making the layout a much  
simpler task compared to discrete solutions.  
S Reduce Power Dissipation  
Peak Efficiency > 90%  
Shutdown Current = 1µA (typ)  
S Operate Reliably in Adverse Industrial Environments  
Hiccup-Mode Current Limit and Autoretry Startup  
Built-In Output-Voltage Monitoring (Open-Drain  
RESET Pin)  
The device offers fixed switching frequency of 600kHz. To  
reduce input inrush current, the device offers an adjust-  
able voltage soft-start feature with an external capacitor  
from the SS pin to ground. The device also incorporates  
an output enable/undervoltage lockout pin (EN/UVLO)  
that allows the user to turn on the part at the desired  
input-voltage level. An open-drain RESET pin provides a  
delayed power-good signal to the system upon achieving  
successful regulation of the output voltage. The device  
supports hiccup-mode current-limit protection for low  
power dissipation under overload and output short-circuit  
conditions.  
Resistor-Programmable UVLO Threshold  
Increased Safety with Adjustable Soft-Start and  
Prebiased Power-Up  
Optional Adjustable Output and PFM (Available  
Upon Factory Request)  
-40NC to +125NC Industrial Temperature Range  
Typical Operating Circuit  
L1  
47µH  
V
V
OUT  
5V, 500mA  
IN  
24V 20%  
V
LX  
IN  
Applications  
C1  
1µF  
1206  
C4  
10µF, 6.3V  
1206  
R1  
3.32MI  
1
2
3
Industrial Process Control  
HVAC and Building Control  
General-Purpose Point-of-Load  
Base Station, VOIP, Telecom  
Home Theater  
PGND  
EN/UVLO  
JU1  
R2  
866kI  
MAX17501F  
GND  
V
CC  
C2  
1µF  
FB/VO  
RESET  
SS  
C3  
3300pF  
Automotive  
N.C.  
RESET  
Battery-Powered Equipment  
Ordering Information appears at end of data sheet.  
For related parts and recommended products to use with this part, refer to www.maxim-ic.com/MAX17501.related.  
����������������������������������������������������������������� Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642,  
or visit Maxim’s website at www.maxim-ic.com.  
MAX17501  
60V, 500mA, Ultra-Small, High-Efficiency,  
Synchronous Step-Down DC-DC Converter  
ABSOLUTE MAXIMUM RATINGS  
IN  
V
to GND............................................................-0.3V to +70V  
Continuous Power Dissipation (T = +70NC)  
A
EN/UVLO to GND......................................... -0.3V to V + 0.3V  
10-Pin TDFN (derate 14.9mW/NC above +70NC)  
IN  
LX to PGND...........................................................-0.3V to +70V  
FB, RESET, COMP, SS to GND................................. -0.3V to 6V  
(multilayer board) ...................................................1188.7mW  
Operating Temperature Range........................ -40NC to +125NC  
Junction Temperature .....................................................+150NC  
Storage Temperature Range............................ -65NC to +160NC  
Lead Temperature (soldering, 10s) ................................+300NC  
Soldering Temperature (reflow) ......................................+260NC  
V
to GND.............................................................-0.3V to +6V  
CC  
GND to PGND ......................................................-0.3V to +0.3V  
LX Total RMS Current........................................................ Q1.6A  
Output Short-Circuit Duration....................................Continuous  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional opera-  
tion of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect device reliability.  
PACKAGE THERMAL CHARACTERISTICS (Note 1)  
Thermal Resistance  
TDFN  
Junction-to-Ambient Thermal Resistance (B ) .......67.3NC/W  
Junction-to-Case Thermal Resistance (B )............18.2NC/W  
JC  
JA  
Note 1: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-  
layer board. For detailed information on package thermal considerations, refer to www.maxim-ic.com/thermal-tutorial.  
ELECTRICAL CHARACTERISTICS  
(V = 24V, V  
= V  
= 0V, C  
= C  
= 1FF, V  
= 1.5V, C = 3300pF, V = 0.98 x V , LX = unconnected, RESET =  
SS FB OUT  
IN  
GND  
PGND  
VIN  
VCC  
EN  
unconnected. T = T = -40NC to +125NC, unless otherwise noted. Typical values are at T = +25NC. All voltages are referenced to GND,  
A
J
A
unless otherwise noted.) (Note 2)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
INPUT SUPPLY (V  
)
IN  
Input Voltage Range  
V
4.5  
60  
3.5  
V
IN  
I
V
= 0V, shutdown mode  
0.9  
3.7  
5
FA  
IN-SH  
EN  
Input Supply Current  
V
V
= 12V  
= 24V  
5.2  
Normal switching  
mode, V = 0.8V  
IN  
I
mA  
IN-SW  
COMP  
6.75  
IN  
ENABLE/UVLO (EN/UVLO)  
V
V
V
V
rising  
1.194 1.218 1.236  
1.114 1.135 1.156  
0.75  
ENR  
EN  
EN  
EN  
EN Threshold  
V
falling  
falling, true shutdown  
V
ENF  
V
EN-TRUESD  
EN Input Leakage Current  
I
7
200  
nA  
EN  
LDO  
6V < V < 12V, 0mA < I  
< 10mA,  
IN  
VCC  
V
Output Voltage Range  
V
4.65  
5
5.35  
80  
V
CC  
CC  
12V < V < 60V, 0mA < I  
< 2mA  
IN  
VCC  
V
V
Current Limit  
Dropout  
I
V
V
V
V
= 4.3V, V = 12V  
17  
40  
mA  
V
CC  
VCC-MAX  
CC  
IN  
V
= 4.5V, I = 5mA  
VCC  
4.1  
CC  
CC-DO  
IN  
V
rising  
falling  
3.85  
3.55  
4
4.15  
3.85  
CC-UVR  
CC  
CC  
V
UVLO  
V
CC  
V
3.7  
CC-UVF  
����������������������������������������������������������������� Maxim Integrated Products  
2
MAX17501  
60V, 500mA, Ultra-Small, High-Efficiency,  
Synchronous Step-Down DC-DC Converter  
ELECTRICAL CHARACTERISTICS (continued)  
(V = 24V, V  
= V  
= 0V, C  
= C  
= 1FF, V  
= 1.5V, C = 3300pF, V = 0.98 x V  
, LX = unconnected, RESET =  
unconnected. T = T = -40NC to +125NC, unless otherwise noted. Typical values are at T = +25NC. All voltages are referenced to GND,  
IN GND  
PGND  
VIN  
VCC  
EN  
SS FB OUT  
A
J
A
unless otherwise noted.) (Note 2)  
PARAMETER  
LX  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
V
= 0V, T = +25NC,  
A
EN  
LX  
LX Leakage Current  
I
1
FA  
LX_LKG  
= (V  
+ 1V) to (V - 1V)  
PGND  
IN  
SOFT-START (SS)  
Switchover to Internal Reference-  
Voltage Threshold  
V
863  
4.7  
880  
5
898  
5.3  
mV  
SS-TH  
Charging Current  
I
V
= 0.5V  
FA  
SS  
SS  
FEEDBACK (FB)  
MAX17501E,  
6.8  
6.8  
12  
12  
17  
17  
FA  
FA  
V
= 3.3V  
FB  
FB Input Bias Current  
I
T = +25NC  
A
FB  
MAX17501F,  
= 5V  
V
FB  
OUTPUT VOLTAGE (V  
Output Voltage Range  
CURRENT LIMIT  
)
OUT  
MAX17501E only  
MAX17501F only  
3.248  
4.922  
3.3  
5
3.352  
5.08  
Peak-Current-Limit Threshold  
I
0.585 0.685 0.795  
A
A
A
PEAK-LIMIT  
I
RUNAWAY-  
LIMIT  
Runaway-Current-Limit Threshold  
0.73  
0.3  
0.865  
0.35  
1
Valley Current-Limit Threshold  
I
0.4  
SINK-LIMIT  
TIMING  
V
V
>
FB  
OUT-HICF  
560  
280  
600  
300  
1
640  
320  
Switching Frequency  
f
MAX17501E/F  
kHz  
%
SW  
V
V
<
FB  
OUT-HICF  
Events to Hiccup After Crossing  
Runaway-Current Limit  
V
Undervoltage Trip Level to  
OUT  
V
V
> 0.95V (soft-start is done)  
69.14 71.14 73.14  
32,768  
OUT-HICF  
SS  
Cause Hiccup  
HICCUP Timeout  
Minimum On-Time  
Cycles  
ns  
t
85  
94  
5
120  
ON_MIN  
V
= 0.98 x V  
FB  
FB-  
Maximum Duty Cycle  
LX Dead Time  
D
MAX17501E/F  
92  
96  
%
MAX  
REG  
ns  
����������������������������������������������������������������� Maxim Integrated Products  
3
MAX17501  
60V, 500mA, Ultra-Small, High-Efficiency,  
Synchronous Step-Down DC-DC Converter  
ELECTRICAL CHARACTERISTICS (continued)  
(V = 24V, V  
= V  
= 0V, C  
= C  
= 1FF, V  
= 1.5V, C = 3300pF, V = 0.98 x V  
, LX = unconnected, RESET =  
unconnected. T = T = -40NC to +125NC, unless otherwise noted. Typical values are at T = +25NC. All voltages are referenced to GND,  
IN GND  
PGND  
VIN  
VCC  
EN  
SS FB OUT  
A
J
A
unless otherwise noted.) (Note 2)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
RESET  
0.02  
0.45  
V
I
= 1mA  
RESET Output Level Low  
RESET  
RESET Output Leakage Current  
High  
V
V
V
= 1.01 x V  
, T = +25NC  
FA  
FB  
FB  
FB  
OUT  
A
V
Threshold for RESET  
OUT  
V
falling  
rising  
90.5  
93.5  
92.5  
95.5  
1024  
94.5  
97.5  
%
%
OUT-OKF  
Assertion  
V
Threshold for RESET  
OUT  
V
OUT-OKR  
Deassertion  
RESET Deassertion Delay After  
FB Reaches 95% Regulation  
Cycles  
THERMAL SHUTDOWN  
Thermal-Shutdown Threshold  
Thermal-Shutdown Hysteresis  
Temperature rising  
165  
10  
NC  
NC  
Note 2: All limits are 100% tested at +25NC. Limits over temperature are guaranteed by design.  
Note 3: Guaranteed by design, not production tested.  
����������������������������������������������������������������� Maxim Integrated Products  
4
MAX17501  
60V, 500mA, Ultra-Small, High-Efficiency,  
Synchronous Step-Down DC-DC Converter  
Typical Operating Characteristics  
(V = 24V, V  
= V  
= 0V, C  
= C  
= 1FF, V = 1.5V, C = 3300pF,  
V
= 0.98 x V  
, unless otherwise noted.)  
IN  
GND  
PGND  
VIN  
VCC  
EN  
SS  
FB  
OUT  
EFFICIENCY vs. LOAD CURRENT  
(MAX17501E)  
EFFICIENCY vs. LOAD CURRENT  
(MAX17501F)  
OUTPUT VOLTAGE vs. LOAD CURRENT  
(MAX17501E)  
95  
90  
85  
80  
75  
70  
65  
60  
55  
95  
90  
85  
80  
75  
70  
65  
3.310  
3.308  
3.306  
3.304  
3.302  
3.300  
3.298  
3.296  
3.294  
3.292  
3.290  
V
= 48V  
IN  
V
= 36V  
IN  
V
= 48V  
V
= 48V  
IN  
IN  
V
= 24V  
IN  
V
= 24V  
V
= 36V  
IN  
IN  
V
= 24V  
V
= 36V  
IN  
IN  
V
= 12V  
IN  
V
= 12V  
V = 12V  
IN  
IN  
100 150 200 250 300 350 400 450 500  
LOAD CURRENT (mA)  
100 150 200 250 300 350 400 450 500  
LOAD CURRENT (mA)  
0
50 100 150 200 250 300 350 400 450 500  
LOAD CURRENT (mA)  
OUTPUT VOLTAGE vs. LOAD CURRENT  
(MAX17501F)  
SHUTDOWN CURRENT  
vs. TEMPERATURE  
NO-LOAD SWITCHING CURRENT  
vs. TEMPERATURE  
1.10  
1.05  
1.00  
0.95  
0.90  
0.85  
0.80  
0.75  
0.70  
5.00  
4.95  
4.90  
4.85  
4.80  
5.015  
5.010  
5.005  
5.000  
4.995  
4.990  
4.985  
V
= 48V  
IN  
V
= 24V  
IN  
V
= 36V  
IN  
V
= 12V  
IN  
-40 -20  
0
20 40 60 80 100 120  
TEMPERATURE (°C)  
-40 -20  
0
20 40 60 80 100 120  
TEMPERATURE (°C)  
0
50 100 150 200 250 300 350 400 450 500  
LOAD CURRENT (mA)  
EN/UVLO THRESHOLD VOLTAGE  
vs. TEMPERATURE  
OUTPUT VOLTAGE vs. TEMPERATURE  
(MAX17501E)  
OUTPUT VOLTAGE vs. TEMPERATURE  
(MAX17501F)  
1.23  
1.22  
1.21  
1.20  
1.19  
1.18  
1.17  
1.16  
1.15  
1.14  
1.13  
1.12  
3.320  
3.315  
3.310  
3.305  
3.300  
3.295  
3.290  
3.285  
3.280  
5.05  
5.04  
5.03  
5.02  
5.01  
5.00  
4.99  
4.98  
4.97  
4.96  
4.95  
RISING THRESHOLD  
NO LOAD  
NO LOAD  
FULL LOAD  
FULL LOAD  
FALLING THRESHOLD  
-40 -20  
0
20 40 60 80 100 120  
TEMPERATURE (°C)  
-40 -20  
0
20 40 60 80 100 120  
TEMPERATURE (°C)  
-40 -20  
0
20 40 60 80 100 120  
TEMPERATURE (°C)  
����������������������������������������������������������������� Maxim Integrated Products  
5
MAX17501  
60V, 500mA, Ultra-Small, High-Efficiency,  
Synchronous Step-Down DC-DC Converter  
Typical Operating Characteristics (continued)  
(V = 24V, V  
IN  
= V  
= 0V, C  
= C  
= 1FF, V = 1.5V, C = 3300pF,  
V
= 0.98 x V , unless otherwise noted.)  
OUT  
GND  
PGND  
VIN  
VCC  
EN  
SS  
FB  
PEAK CURRENT LIMIT  
vs. TEMPERATURE  
RUNAWAY CURRENT LIMIT  
vs. TEMPERATURE  
SWITCHING FREQUENCY  
vs. TEMPERATURE  
1.0  
0.9  
0.8  
0.7  
0.6  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
700  
680  
660  
640  
620  
600  
580  
560  
540  
520  
500  
0.5  
-40 -20  
0
20 40 60 80 100 120  
TEMPERATURE (°C)  
-40 -20  
0
20 40 60 80 100 120  
TEMPERATURE (°C)  
-40 -20  
0
20 40 60 80 100 120  
TEMPERATURE (°C)  
SOFT-START FROM V  
(MAX17501E)  
SOFT-START/SHUTDOWN FROM EN/EVLO  
SOFT-START/SHUTDOWN FROM EN/EVLO  
IN  
(MAX17501E)  
(MAX17501F)  
MAX17501 toc15  
MAX17501 toc13  
MAX17501 toc14  
EN/UVLO  
2V/div  
V
EN/UVLO  
2V/div  
IN  
20V/div  
V
OUT  
I
OUT  
200mA/div  
2V/div  
I
V
OUT  
OUT  
1V/div  
200mA/div  
V
OUT  
I
OUT  
1V/div  
200mA/div  
RESET  
5V/div  
RESET  
2V/div  
RESET  
2V/div  
400µs/div  
1ms/div  
1ms/div  
SOFT-START WITH 2.5V PREBIAS  
(MAX17501F)  
SOFT-START FROM V  
(MAX17501F)  
SOFT-START WITH 2V PREBIAS  
IN  
(MAX17501E)  
MAX17501 toc18  
MAX17501 toc16  
MAX17501 toc17  
V
IN  
EN/UVLO  
2V/div  
EN/UVLO  
2V/div  
20V/div  
V
OUT  
V
OUT  
1V/div  
1V/div  
I
OUT  
200mA/div  
V
OUT  
2V/div  
RESET  
5V/div  
RESET  
2V/div  
RESET  
5V/div  
400µs/div  
400µs/div  
400µs/div  
����������������������������������������������������������������� Maxim Integrated Products  
6
MAX17501  
60V, 500mA, Ultra-Small, High-Efficiency,  
Synchronous Step-Down DC-DC Converter  
Typical Operating Characteristics (continued)  
(V = 24V, V  
= V  
= 0V, C  
= C  
= 1FF, V = 1.5V, C = 3300pF, V = 0.98 x V  
, unless otherwise noted.)  
IN  
GND  
PGND  
VIN  
VCC  
EN  
SS  
FB OUT  
LOAD TRANSIENT RESPONSE OF  
MAX17501F (LOAD CURRENT STEPPED  
LOAD TRANSIENT RESPONSE OF  
MAX17501E (LOAD CURRENT STEPPED  
LOAD TRANSIENT RESPONSE OF  
MAX17501E (LOAD CURRENT STEPPED  
FROM NO LOAD TO 250mA)  
FROM 250mA TO 500mA)  
FROM NO LOAD TO 250mA)  
MAX17501 toc20  
MAX17501 toc21  
MAX17501 toc19  
V
OUT  
(AC)  
V
OUT  
(AC)  
V
OUT  
(AC)  
100mV/div  
50mV/div  
50mV/div  
I
OUT  
I
OUT  
200mA/div  
200mA/div  
I
OUT  
100mA/div  
20µs/div  
20µs/div  
20µs/div  
LOAD TRANSIENT RESPONSE OF  
MAX17501F (LOAD CURRENT STEPPED  
SWITCHING WAVEFORMS OF  
OUTPUT OVERLOAD PROTECTION OF  
MAX17501F AT 500mA LOAD  
MAX17501F  
FROM 250mA TO 500mA)  
MAX17501 toc23  
MAX17501 toc24  
MAX17501 toc22  
V
OUT  
(AC)  
50mV/div  
V
OUT  
(AC)  
100mV/div  
V
OUT  
I
LX  
2V/div  
500mA/div  
I
OUT  
200mA/div  
LX  
I
OUT  
10V/div  
200mA/div  
s/div  
20ms/div  
20µs/div  
BODEPLOT OF MAX17501E  
AT 500mA LOAD  
BODEPLOT OF MAX17501F  
AT 500mA LOAD  
MAX17501 toc25  
MAX17501 toc26  
BW = 62kHz  
PM = 59°  
BW = 35kHz  
PM = 73°  
4 5 6 7891  
2
3 4 5 67891  
2
4 5 6 7891  
2
3 4 5 67891  
2
����������������������������������������������������������������� Maxim Integrated Products  
7
MAX17501  
60V, 500mA, Ultra-Small, High-Efficiency,  
Synchronous Step-Down DC-DC Converter  
Pin Configuration  
TOP VIEW  
MAX17501  
+
PGND  
1
2
10 LX  
V
9
GND  
IN  
EN/UVLO  
3
4
5
8
7
6
RESET  
N.C.  
SS  
V
CC  
EP*  
FB  
TDFN  
(3mm x 2mm)  
*EP = EXPOSED PAD, CONNECTED TO GND  
Pin Description  
PIN  
1
NAME  
FUNCTION  
Power Ground. Connect PGND externally to the power ground plane. Connect GND and PGND  
pins together at the ground return path of the V bypass capacitor.  
PGND  
CC  
2
V
Power-Supply Input. The input supply range is from 4.5V to 60V.  
IN  
Enable/Undervoltage Lockout Input. Drive EN/UVLO high to enable the output voltage. Connect  
3
EN/UVLO  
to the center of resistive divider between V and GND to set the input voltage (undervoltage  
IN  
threshold) at which the device turns on. Pull up to V for always on.  
IN  
4
5
6
V
5V LDO Output. Bypass V  
with 1FF ceramic capacitance to GND.  
CC  
CC  
FB  
SS  
Feedback Input. Directly connect FB to the output.  
Soft-Start Input. Connect a capacitor from SS to GND to set the soft-start time.  
No Connection. Leave unconnected.  
7
N.C.  
Open-Drain RESET Output. The RESET output is driven low if FB drops below 92.5% of its set  
value. RESET goes high 1024 clock cycles after FB rises above 95.5% of its set value.  
8
RESET  
GND  
LX  
9
Analog Ground  
Switching Node. Connect LX to the switching side of the inductor. LX is high impedance when the  
device is in shutdown mode.  
10  
Exposed Pad. Connect to the GND pin of the IC. Connect to a large copper plane below the IC to  
improve heat dissipation capability.  
EP  
����������������������������������������������������������������� Maxim Integrated Products  
8
MAX17501  
60V, 500mA, Ultra-Small, High-Efficiency,  
Synchronous Step-Down DC-DC Converter  
Block Diagram  
V
CC  
PGND  
LX  
N DRIVER  
5µA  
SS  
SS  
MAX17501  
HICCUP  
P DRIVER  
V
IN  
CURRENT  
SENSE  
V
CC  
PWM  
COMPARATOR  
CLK  
PWM  
LOGIC  
LDO  
OSC  
COMP  
HICCUP  
SLOPE COMPENSATION  
START  
EN/UVLO  
RESET  
RESET  
LOGIC  
SS  
COMP  
REFERENCE  
SWITCHOVER  
LOGIC  
900mV  
G
M
FB  
INTERNAL COMPENSATION  
GND  
����������������������������������������������������������������� Maxim Integrated Products  
9
MAX17501  
60V, 500mA, Ultra-Small, High-Efficiency,  
Synchronous Step-Down DC-DC Converter  
cycle peak-current limit turns off the high-side MOSFET  
whenever the high-side switch current exceeds an internal  
Detailed Description  
limit of 800mA (typ). A runaway-current limit on the high-  
side switch current at 900mA (typ) protects the device  
under high input voltage, short-circuit conditions when  
there is insufficient output voltage available to restore the  
inductor current that built up during the on period of the  
step-down converter. One occurrence of the runaway-  
current limit triggers a hiccup mode. In addition, if due to  
a fault condition, output voltage drops to 71.1% (typ) of  
its nominal value any time after soft-start is complete, and  
hiccup mode is triggered. In hiccup mode, the converter  
is protected by suspending switching for a hiccup timeout  
period of 32,768 clock cycles. Once the hiccup timeout  
period expires, soft-start is attempted again.  
The MAX17501 step-down regulator operates from 4.5V  
to 60V and delivers up to 500mA load current. Output  
voltage regulation accuracy meets Q1.6% over load, line,  
and temperature.  
Thedeviceusesapeak-current-mode-controlscheme. It  
employs synchronous rectification. An internal transcon-  
ductance error amplifier produces an integrated error  
voltage. The error voltage sets the duty cycle using a  
PWM comparator, a high-side current-sense amplifier,  
and a slope-compensation generator. At each rising  
edge of the clock, the high-side p-channel MOSFET  
turns on and remains on until either the appropriate or  
maximum duty cycle is reached, or the peak-current  
limit is detected.  
RESET Output  
The device includes a RESET comparator to monitor the  
output voltage. The open-drain RESET output requires  
an external pullup resistor. RESET can sink 2mA of  
current while low. RESET goes high (high impedance)  
1024 switching cycles after the regulator output increases  
above 95.5% of the designed nominal regulated voltage.  
RESET goes low when the regulator output voltage drops  
to below 92.5% of the nominal regulated voltage. RESET  
goes low during thermal shutdown.  
During the high-side MOSFET’s on-time, the inductor  
current ramps up. During the second half of the switching  
cycle, the high-side MOSFET turns off and the low-side  
n-channel MOSFET turns on. The inductor releases the  
stored energy as its current ramps down, and provides  
current to the output (the internal low RD  
nMOS switches ensure high efficiency at full load).  
pMOS/  
SON  
This device also integrates enable/undervoltage lockout  
(EN/UVLO), adjustable soft-start time (SS), and open-  
drain reset output (RESET) functionality.  
Prebiased Output  
When the device starts into a prebiased output, both the  
high-side and low-side switches are turned off so that the  
converter does not sink current from the output. High-  
side and low-side switches do not start switching until  
the PWM comparator commands the first PWM pulse, at  
which point switching commences first with the high-side  
switch. The output voltage is then smoothly ramped up to  
the target value in alignment with the internal reference.  
Linear Regulator (V  
)
CC  
An internal linear regulator (V ) provides a 5V nominal  
CC  
supply to power the internal blocks and the low-side  
MOSFET driver. The output of the V  
should be bypassed with a 1FF ceramic capacitor to  
linear regulator  
CC  
GND. The device employs an undervoltage-lockout circuit  
that disables the internal linear regulator when V  
below 3.7V (typ). The 300mV UVLO hysteresis prevents  
chattering on power-up/power-down. The internal V  
linear regulator can source up to 40mA (typ) to supply  
the device and to power the low-side gate driver.  
falls  
CC  
CC  
Thermal-Overload Protection  
Thermal-overload protection limits total power dissipa-  
tion in the device. When the junction temperature of  
the device exceeds +165NC, an on-chip thermal sensor  
shuts down the device, allowing the device to cool. The  
thermal sensor turns the device on again after the junc-  
tion temperature cools by 10NC. Soft-start resets during  
thermal shutdown. Carefully evaluate the total power  
dissipation (see the Power Dissipation section) to avoid  
unwanted triggering of the thermal-overload protection in  
normal operation.  
Switching Frequency  
The devices have a fixed 600kHz switching frequency.  
The minimum duty ratio at which the devices can oper-  
ate is 7.7%.  
Overcurrent Protection/Hiccup Mode  
The device is provided with a robust overcurrent-  
protection scheme that protects the device under  
overload and output short-circuit conditions. A cycle-by-  
���������������������������������������������������������������� Maxim Integrated Products 10  
MAX17501  
60V, 500mA, Ultra-Small, High-Efficiency,  
Synchronous Step-Down DC-DC Converter  
where V , V  
, and I  
are nominal values. The  
IN  
OUT  
OUT  
Applications Information  
switching frequency is 600kHz for the MAX17501E/  
MAX17501F. Select a low-loss inductor closest to the  
calculated value with acceptable dimensions and having  
the lowest possible DC resistance.  
Input Capacitor Selection  
The discontinuous input-current waveform of the buck  
converter causes large ripple currents in the input  
capacitor. The switching frequency, peak inductor cur-  
rent, and the allowable peak-to-peak voltage ripple  
that reflects back to the source dictate the capacitance  
requirement. The device’s high switching frequency  
allows the use of smaller value input capacitors. X7R  
capacitors are recommended in industrial applications  
for their temperature stability. A minimum value of 1FF  
should be used for the input capacitor. Higher values  
help reduce the ripple on the input DC bus further. In  
applications where the source is located distant from  
the device input, an electrolytic capacitor should be  
added in parallel to the 1FF ceramic capacitor to provide  
necessary damping for potential oscillations caused by  
the longer input power path and input ceramic capacitor.  
The saturation current rating (I  
be high enough to ensure that saturation can occur  
only above the peak current-limit value (I  
(typ) = 0.8A for the device). A variety of inductors from  
different suppliers are available to meet this requirement  
(e.g., inductors from the Coilcraft LPS6235 series).  
) of the inductor must  
SAT  
PEAK-LIMIT  
See Table 1 to select inductors for 5V and 3.3V fixed  
output-voltage applications based on the MAX17501E/  
MAX17501F.  
Output Capacitor Selection  
X7R ceramic output capacitors are preferred due to their  
stability over temperature in industrial applications. The  
output capacitor is usually sized to support a step load  
of 50% of the maximum output current in the application,  
such that the output-voltage deviation is contained to 3%  
of the output-voltage change. The output capacitance  
can be calculated as follows:  
Inductor Selection  
Three key inductor parameters must be specified  
for operation with the device: inductance value (L),  
inductor saturation current (I  
), and DC resistance  
SAT  
1 I  
×
× t  
RESPONSE  
V  
OUT  
(R  
DCR  
). To determine the inductance value, select the  
STEP  
C
=
OUT  
ratio of inductor peak-to-peak ripple current to the DC  
average current (LIR). For LIR values that are too high,  
the RMS currents are high, and therefore the inductor  
I2R losses are high. For LIR values that are too low,  
the inductance values are high and consequently the  
inductor DC resistance is also high, and therefore  
inductor I2R losses are high as well. A good compromise  
between size and loss is a 30% peak-to-peak ripple  
current to average-current ratio (LIR = 0.3). The switching  
frequency, input voltage, output voltage, and selected LIR  
determine the inductor value as follows:  
2
0.33  
1
t
(  
+
)
RESPONSE  
f
f
SW  
C
where I  
is the load current step, t  
is the  
is the allowable  
STEP  
RESPONSE  
response time of the controller, DV  
OUT  
output-voltage deviation, f is the target closed-loop  
crossover frequency, and f  
C
SW  
is the switching frequency.  
f
is generally chosen to be 1/8 to 1/10 of f  
.
C
SW  
Use Table 2 to select output capacitors for fixed 5V  
and 3.3V output-voltage applications based on the  
MAX17501E/MAX17501F.  
V
×(V - V  
)
OUT  
× f  
IN  
OUT  
L =  
V
×I  
×LIR  
IN SW OUT  
Table 1. Inductor Selection  
V
(V)  
I
(max) (mA)  
500  
L (µH)  
47  
MINIMUM I (mA)  
SAT  
SUGGESTED PART  
Coilcraft LPS6235-473ML_  
Coilcraft LPS6235-333ML_  
OUT  
OUT  
5
800  
800  
3.3  
500  
33  
���������������������������������������������������������������� Maxim Integrated Products 11  
MAX17501  
60V, 500mA, Ultra-Small, High-Efficiency,  
Synchronous Step-Down DC-DC Converter  
Table 2. Output Capacitor Selection  
V
(V)  
I
(max) (mA)  
500  
TYPE  
VOLTAGE RATING (V)  
SUGGESTED PART  
Murata GRM31CR70J106KA01L  
Murata GRM31CR70J106KA01L  
OUT  
OUT  
5
10FF/1206/X7R  
10FF/1206/X7R  
6.3  
6.3  
3.3  
500  
Soft-Start Capacitor Selection  
Power Dissipation  
The device implements adjustable soft-start operation for  
the synchronous step-down converter. A capacitor con-  
nected from the SS pin to GND programs the soft-start  
period.  
It should be ensured that the junction temperature of the  
device does not exceed +125NC under the operating  
conditions specified for the power supply.  
At a particular operating condition, the power losses  
that lead to temperature rise of the device are estimated  
as follows:  
The soft-start time (t ) is related to the capacitor  
SS  
connected at SS (C ) by the following equation:  
SS  
C
= 5.55× t  
SS  
SS  
1
2
P
= P  
×
-1 - I  
×R  
OUT DCR  
)
LOSS  
(
OUT  
where t  
is in milliseconds and C  
For example, to have a 1.8ms soft-start time, a 10nF  
capacitor should be connected from the SS pin to GND.  
is in nanofarads.  
SS  
SS  
η
P
= V  
×I  
OUT  
OUT OUT  
Setting the Input Undervoltage  
Lockout Level  
The device offers an adjustable input undervoltage-  
lockout level. Set the voltage at which the device turns  
where P  
device, and R  
Inductor (see the Typical Operating Characteristics for more  
information on efficiency at typical operating conditions).  
is the output power, Eis is the efficiency of the  
OUT  
is the DC resistance of the output  
DCR  
on with a resistive voltage-divider connected from V  
IN  
The maximum power that can be dissipated in the  
device’s 10-pin TDFN-EP package is 1188.7mW at  
+70NC temperature. The power dissipation capability  
should be derated as the temperature goes above  
+70NC at 14.9mW/NC. For a multilayer board, the thermal  
performance metrics for the package are given below:  
to GND (see Figure 1). Connect the center node of the  
divider to EN/UVLO.  
Choose R1 to be 3.3MI, and then calculate R2 as follows:  
R1×1.218  
R2 =  
(V  
-1.218)  
INU  
B
= 67.3NC/W  
= 18.2NC/W  
JA  
JC  
where V  
to turn on.  
is the voltage at which the device is required  
INU  
B
The junction temperature of the device can be estimated  
at any given maximum ambient temperature (T  
from the following equation:  
)
A_MAX  
V
IN  
R1  
T
= T  
+ θ ×P  
A_MAX JA LOSS  
(
)
J_MAX  
EN/UVLO  
If the application has a thermal-management system that  
ensures that the exposed pad of the device is maintained  
R2  
at a given temperature (T  
) by using proper heat  
EP_MAX  
GND  
sinks, then the junction temperature of the device can be  
estimated at any given maximum ambient temperature  
from the equation below:  
Figure 1. Adjustable EN/UVLO Network  
T
= T  
+ θ ×P  
(
)
J_MAX  
EP_MAX JC LOSS  
���������������������������������������������������������������� Maxim Integrated Products 12  
MAX17501  
60V, 500mA, Ultra-Small, High-Efficiency,  
Synchronous Step-Down DC-DC Converter  
When routing the circuitry around the device, the analog  
small-signal ground and the power ground for switch-  
ing currents must be kept separate. They should be  
connected together at a point where switching activity  
PCB Layout Guidelines  
All connections carrying pulsed currents must be very  
short and as wide as possible. The inductance of these  
connections must be kept to an absolute minimum  
due to the high di/dt of the currents. Since inductance  
of a current-carrying loop is proportional to the area  
enclosed by the loop, if the loop area is made very small  
inductance is reduced. Additionally, small-current loop  
areas reduce radiated EMI.  
is at minimum, typically the return terminal of the V  
CC  
bypass capacitor. This helps to keep the analog ground  
quiet. The ground plane should be kept continuous/  
unbroken as much as possible. No trace carrying high  
switching current should be placed directly over any  
ground plane discontinuity.  
A ceramic input filter capacitor should be placed close to  
PCB layout also affects the thermal performance of the  
design. A number of thermal vias that connect to a large  
ground plane should be provided under the exposed  
pad of the device, for efficient heat dissipation. Several  
vias in parallel have lower impedance than a single via.  
the V pin of the device. This eliminates as much trace  
inductance effects as possible and gives the device a  
IN  
cleaner voltage supply. The bypass capacitor for the V  
CC  
pin should also be placed close to the pin to reduce effects  
of trace impedance. The feedback trace should be routed  
as far as possible from the inductor.  
For a sample layout that ensures first-pass success,  
refer to the MAX17501 evaluation kit layout available at  
www.maxim-ic.com.  
���������������������������������������������������������������� Maxim Integrated Products 13  
MAX17501  
60V, 500mA, Ultra-Small, High-Efficiency,  
Synchronous Step-Down DC-DC Converter  
Typical Applications Circuits  
L1  
47µH  
V
V
OUT  
IN  
V
LX  
IN  
5V, 500mA  
24V 20%  
C1  
1µF  
1206  
C4  
10µF, 6.3V  
1206  
R1  
3.32MI  
1
JU1 2  
3
PGND  
EN/UVLO  
R2  
866kI  
MAX17501F  
GND  
V
CC  
C2  
1µF  
FB  
SS  
C3  
3300pF  
N.C.  
RESET  
RESET  
Figure 2. MAX17501F Application Circuit (5V Output, 500mA Maximum Load Current, 600kHz Switching Frequency)  
L1  
33µH  
V
V
OUT  
IN  
V
LX  
IN  
3.3V, 500mA  
24V 20%  
C1  
1µF  
1206  
C4  
10µF, 6.3V  
1206  
R1  
3.32MI  
1
JU1 2  
3
PGND  
EN/UVLO  
R2  
MAX17501E  
866kI  
GND  
V
CC  
C2  
1µF  
FB  
SS  
C3  
3300pF  
N.C.  
RESET  
RESET  
Figure 3. MAX17501E Application Circuit (3.3V Output, 500mA Maximum Load Current, 600kHz Switching Frequency)  
���������������������������������������������������������������� Maxim Integrated Products 14  
MAX17501  
60V, 500mA, Ultra-Small, High-Efficiency,  
Synchronous Step-Down DC-DC Converter  
Ordering Information/Selector Guide  
OUTPUT  
VOLTAGE  
SWITCHING  
FREQUENCY  
PEAK-CURRENT-MODE  
CONTROL SCHEME  
OUTPUT  
CURRENT  
PART  
PIN-PACKAGE  
MAX17501EATB+  
MAX17501FATB+  
10 TDFN-EP*  
10 TDFN-EP*  
3.3V  
5V  
600kHz  
600kHz  
Forced PWM  
Forced PWM  
500mA  
500mA  
Note: All devices are specified over the -40°C to +125°C operating temperature range. Optional variants available to support  
adjustable output and PFM. Contact your Maxim sales representative for more information.  
+Denotes a lead(Pb)-free/RoHS-compliant package.  
*EP = Exposed pad.  
Chip Information  
Package Information  
For the latest package outline information and land patterns  
(footprints), go to www.maxim-ic.com/packages. Note that a  
“+”, “#”, or “-” in the package code indicates RoHS status only.  
Package drawings may show a different suffix character, but  
the drawing pertains to the package regardless of RoHS status.  
PROCESS: BiCMOS  
PACKAGE  
TYPE  
PACKAGE  
CODE  
OUTLINE  
NO.  
LAND  
PATTERN NO.  
10 TDFN-EP  
T1032N+1  
21-0429  
90-0082  
���������������������������������������������������������������� Maxim Integrated Products 15  
MAX17501  
60V, 500mA, Ultra-Small, High-Efficiency,  
Synchronous Step-Down DC-DC Converter  
Revision History  
REVISION REVISION  
PAGES  
CHANGED  
DESCRIPTION  
NUMBER  
DATE  
0
5/12  
Initial release  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied.  
Maxim reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits) shown in the Electrical  
Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.  
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
16  
©
2012 Maxim Integrated Products  
Maxim is a registered trademark of Maxim Integrated Products, Inc.  

相关型号:

MAX17501FATB+T

Switching Regulator,
MAXIM

MAX17501GATB

60V, 500mA, Ultra-Small, High-Efficiency, Synchronous Step-Down DC-DC Converter
MAXIM

MAX17501GATB+T

Switching Regulator,
MAXIM

MAX17501HATB

60V, 500mA, Ultra-Small, High-Efficiency, Synchronous Step-Down DC-DC Converter
MAXIM

MAX17501HATB+T

Switching Regulator
MAXIM

MAX17501_13

60V, 500mA, Ultra-Small, High-Efficiency, Synchronous Step-Down DC-DC Converter
MAXIM

MAX17502

60V, 1A, Ultra-Small, High-Efficiency, Synchronous Step-Down DC-DC Converter
MAXIM

MAX17502EATB+

60V, 1A, Ultra-Small, High-Efficiency,Synchronous Step-Down DC-DC Converter
MAXIM

MAX17502EATB+T

Switching Regulator/Controller, Current-mode, 1A, 640kHz Switching Freq-Max, BICMOS, PDSO10,
MAXIM

MAX17502FATB+

60V, 1A, Ultra-Small, High-Efficiency,Synchronous Step-Down DC-DC Converter
MAXIM

MAX17502GATB+

60V, 1A, Ultra-Small, High-Efficiency, Synchronous Step-Down DC-DC Converter
MAXIM

MAX17502GATB+T

Switching Regulator/Controller, Current-mode, 1A, 640kHz Switching Freq-Max, BICMOS, PDSO10,
MAXIM