MAX17501HATB+T [MAXIM]

Switching Regulator;
MAX17501HATB+T
型号: MAX17501HATB+T
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Switching Regulator

开关
文件: 总22页 (文件大小:1424K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
EVALUATION KIT AVAILABLE  
MAX17501  
60V, 500mA, Ultra-Small, High-Efficiency,  
Synchronous Step-Down DC-DC Converter  
General Description  
Benefits and Features  
Eliminates External Components and Reduce Total Cost  
•ꢀ No Schottky-Synchronous Operation for High  
EfficiencyꢀandꢀReducedꢀCost  
The MAX17501 high-efficiency, high-voltage, synchronous  
step-down DC-DC converter with integrated MOSFETs  
operates over a 4.5V to 60V input voltage range. This  
device is offered in a fixed 3.3V, 5V, or adjustable output  
•ꢀ Internal Compensation and Feedback Divider for  
3.3V and 5V Fixed Outputs  
voltage (0.9V to 92%V ) while delivering up to 500mA  
IN  
of current. The output voltage is accurate to within  
±1.7% over -40°C to +125°C. The MAX17501 is available  
in a compact TDFN package. Simulation models are  
available.  
•ꢀ All-Ceramic Capacitors, Ultra-Compact Layout  
Reduces Number of DC-DC Regulators to Stock  
•ꢀ Wide 4.5V to 60V Input Voltage Range  
•ꢀ 0.9V to 92%V Adjustable Output Voltage  
IN  
•ꢀ Delivers Up to 500mA  
The device features peak-current-mode control with  
pulse-width modulation (PWM). Users can choose devices  
with either pulse frequency modulation (PFM) or forced  
PWM scheme. PFM devices skip pulses at light load  
for higher efficiency, while forced-PWM devices operate  
with fixed switching frequency at any load for noise sensitive-  
applications. The low-resistance, on-chip MOSFETs  
ensure high efficiency at full load and simplify the layout.  
•ꢀ 600kHz and 300kHz Switching Frequency Options  
•ꢀ Available in a 10-Pin, 3mm x 2mm TDFN Package  
Reduces Power Dissipation  
•ꢀ PeakꢀEfficiencyꢀ>ꢀ90%  
•ꢀ PFMꢀFeatureꢀforꢀHighꢀLight-LoadꢀEfficiency  
•ꢀ ShutdownꢀCurrentꢀ=ꢀ0.9μAꢀ(typ)  
Operates Reliably in Adverse Industrial Environments  
•ꢀ Hiccup-Mode Current Limit, Sink Current Limit, and  
Autoretry Startup  
A programmable soft-start feature allows users to reduce  
input inrush current. The device also incorporates an  
output enable/undervoltage lockout pin (EN/UVLO) that  
allows the user to turn on the part at the desired input-  
voltage level. An open-drain RESET pin provides a  
delayed power-good signal to the system upon achieving  
successful regulation of the output voltage.  
•ꢀ Built-In Output-Voltage Monitoring (Open-Drain  
RESET Pin)  
•ꢀ Resistor-Programmable EN/UVLO Threshold  
•ꢀ Adjustable Soft-Start and Prebiased Power-Up  
•ꢀ High Industrial -40°C to +125°C Ambient Operating  
Temperature Range/-40°C to +150°C Junction  
Temperature Range  
Applications  
Industrial Process Control  
HVAC and Building Control  
Base Station, VOIP, Telecom  
Home Theatre  
Ordering Information/Selector Guide appears at end of data sheet.  
Battery-Powered Equipment  
General-Purpose Point-of-Load  
19-6244; Rev 7; 7/16  
MAX17501  
60V, 500mA, Ultra-Small, High-Efficiency,  
Synchronous Step-Down DC-DC Converter  
Absolute Maximum Ratings  
IN  
V
to GND.............................................................-0.3V to +70V  
Continuous Power Dissipation (T = +70°C)  
A
EN/UVLO to GND.......................................-0.3V to (V + 0.3V)  
(derate 14.9mW/°C above +70°C) (multilayer board).1188.7mW  
Junction Temperature......................................................+150°C  
Storage Temperature Range............................. -65°C to +160°C  
Lead Temperature (soldering, 10s).................................+300°C  
Soldering Temperature (reflow).......................................+260°C  
IN  
LX to PGND................................................-0.3V to (V + 0.3V)  
IN  
FB, RESET, COMP, SS to GND .............................-0.3V to +6V  
V
to GND..............................................................-0.3V to +6V  
CC  
GND to PGND.......................................................-0.3V to +0.3V  
LX Total RMS Current......................................................... ±1.6A  
Output Short-Circuit Duration.....................................Continuous  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these  
or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect  
device reliability. Junction temperature greater than +125°C degrades operating lifetimes.  
(Note 1)  
Package Thermal Characteristics  
TDFN  
Junction-to-AmbientꢀThermalꢀResistanceꢀ(θ ) .......67.3°C/W  
JA  
Junction-to-CaseꢀThermalꢀResistanceꢀ(θ )............18.2°C/W  
JC  
Note 1: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer  
board. For detailed information on package thermal considerations, refer to www.maximintegrated.com/thermal-tutorial.  
Electrical Characteristics  
(V = 24V, V  
= V  
= 0V, C  
= C  
ꢀ=ꢀ1μF,ꢀV  
= 1.5V, C = 3300pF, V = 0.98 x V  
, LX = unconnected, RESET =  
OUT  
IN  
GND  
PGND  
VIN  
VCC  
EN  
SS  
FB  
unconnected. T = -40°C to +125°C, unless otherwise noted. Typical values are at T = +25°C. All voltages are referenced to GND,  
A
A
unless otherwise noted.) (Note 2)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
INPUT SUPPLY (V  
)
IN  
Input Voltage Range  
V
4.5  
60  
3.5  
145  
V
IN  
IN-SH  
IN-HIBERNATE  
I
V
V
= 0V, shutdown mode  
0.9  
90  
EN  
µA  
I
= 1.03 x V  
, MAX17501A/B  
FB  
OUT  
Input Supply Current  
MAX17501E/F/G  
MAX17501H  
4.75  
2.5  
6.75  
3.6  
Normal switching  
mode, no load  
I
mA  
IN-SW  
ENABLE/UVLO (EN/UVLO)  
V
V
V
V
V
rising  
falling  
1.194  
1.114  
1.218  
1.135  
0.7  
1.236  
1.156  
ENR  
EN  
EN  
EN  
EN  
EN Threshold  
V
V
ENF  
EN-TRUESD  
V
falling, true shutdown  
= V = 60V, T = +25°C  
EN Input Leakage Current  
I
8
200  
nA  
EN  
IN  
A
LDO  
6V < V < 12V, 0mA < I  
< 10mA,  
IN  
VCC  
V
Output Voltage Range  
V
4.65  
5
5.35  
80  
V
CC  
CC  
12V < V < 60V, 0mA < I  
< 2mA  
IN  
VCC  
V
V
Current Limit  
Dropout  
I
V
V
V
V
= 4.3V, V = 12V  
15  
40  
mA  
V
CC  
VCC-MAX  
CC  
IN  
V
= 4.5V, I = 5mA  
VCC  
4.1  
CC  
CC-DO  
IN  
V
rising  
falling  
3.85  
3.55  
4
4.15  
3.85  
CC-UVR  
CC  
CC  
V
UVLO  
V
CC  
V
3.7  
CC-UVF  
Maxim Integrated  
2  
www.maximintegrated.com  
MAX17501  
60V, 500mA, Ultra-Small, High-Efficiency,  
Synchronous Step-Down DC-DC Converter  
Electrical Characteristics (continued)  
(V = 24V, V  
= V  
= 0V, C  
= C  
ꢀ=ꢀ1μF,ꢀV  
= 1.5V, C = 3300pF, V = 0.98 x V  
, LX = unconnected, RESET =  
OUT  
IN  
GND  
PGND  
VIN  
VCC  
EN  
SS  
FB  
unconnected. T = -40°C to +125°C, unless otherwise noted. Typical values are at T = +25°C. All voltages are referenced to GND,  
A
A
unless otherwise noted.) (Note 2)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
POWER MOSFETs  
T
T
= +25°C  
0.55  
0.85  
1.2  
A
A
I
= 0.5A  
LX  
High-Side pMOS On-Resistance  
R
Ω
= T = +125°C  
DS-ONH  
J
(sourcing)  
(Note 3)  
T
= +25°C  
0.2  
0.35  
0.47  
A
A
I
= 0.5A  
LX  
Low-Side nMOS On-Resistance  
LX Leakage Current  
R
Ω
T
= T = +125°C  
J
DS-ONL  
(sinking)  
(Note 3)  
V
V
= 0V, T = +25°C,  
EN  
LX  
A
I
1
µA  
LX_LKG  
= (V  
+ 1V) to (V - 1V)  
IN  
PGND  
SOFT-START (SS)  
Charging Current  
I
V
= 0.5V  
4.7  
5
5.3  
µA  
V
SS  
SS  
FEEDBACK (FB/VO)  
FB Regulation Voltage  
V
MAX17501G/H  
0.884  
6.8  
0.9  
12  
0.916  
17  
FB_REG  
MAX17501A/E,  
V
= 3.3V  
FB  
µA  
nA  
MAX17501B/F,  
= 5V  
FB Input Bias Current  
I
T
= +25NC  
6.8  
12  
17  
FB  
A
V
FB  
MAX17501G/H,  
= 0.9V  
100  
V
FB  
OUTPUT VOLTAGE (V  
)
OUT  
MAX17501A  
3.248  
3.380  
3.448  
MAX17501B  
MAX17501E  
MAX17501F  
4.922  
3.248  
4.922  
5.121  
3.3  
5
5.225  
3.352  
5.08  
Output Voltage Accuracy  
V
OUT  
V
TRANSCONDUCTANCE AMPLIFIER (COMP)  
Transconductance  
G
I
= ±2.5µA, MAX17501G/H  
COMP  
510  
19  
590  
32  
32  
1
650  
55  
µS  
µA  
M
COMP Source Current  
COMP Sink Current  
I
MAX17501G/H  
MAX17501G/H  
MAX17501G/H  
COMP_SRC  
I
19  
55  
µA  
COMP_SINK  
Current-Sense Transresistance  
CURRENT LIMIT  
R
0.9  
1.1  
V/A  
CS  
Peak Current-Limit Threshold  
I
0.64  
0.65  
0.76  
0.78  
0.86  
A
A
PEAK-LIMIT  
I
RUNAWAY-  
LIMIT  
Runaway Current-Limit Threshold  
0.905  
MAX17501A/B  
0.03  
0.35  
Sink Current-Limit Threshold  
PFM Current-Limit Threshold  
I
A
A
SINK-LIMIT  
MAX17501E/F/G/H  
MAX17501A/B  
0.3  
0.4  
I
0.125  
PFM  
Maxim Integrated  
3  
www.maximintegrated.com  
MAX17501  
60V, 500mA, Ultra-Small, High-Efficiency,  
Synchronous Step-Down DC-DC Converter  
Electrical Characteristics (continued)  
(V = 24V, V  
= V  
= 0V, C  
= C  
ꢀ=ꢀ1μF,ꢀV  
= 1.5V, C = 3300pF, V = 0.98 x V  
, LX = unconnected, RESET =  
OUT  
IN  
GND  
PGND  
VIN  
VCC  
EN  
SS  
FB  
unconnected. T = -40°C to +125°C, unless otherwise noted. Typical values are at T = +25°C. All voltages are referenced to GND,  
A
A
unless otherwise noted.) (Note 2)  
PARAMETER  
TIMINGS  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
MAX17501A/B/E/F/G  
MAX17501H  
560  
280  
280  
600  
300  
300  
640  
320  
320  
V
ꢀ>ꢀV  
FB  
HICF  
OUT-  
Switching Frequency  
f
kHz  
SW  
V
< V  
OUT-HICF  
FB  
Events to Hiccup after Crossing  
Runaway Current Limit  
1
Event  
%
V
Undervoltage Trip Level to  
OUT  
V
V
>ꢀ0.95Vꢀ(soft-startꢀisꢀdone)  
69.14  
71.14  
73.14  
OUT-HICF  
SS  
Cause Hiccup  
HICCUP Timeout  
Minimum On-Time  
32,768  
75  
Cycles  
ns  
t
120  
96  
ON_MIN  
MAX17501A/B/E/F/G  
MAX17501H  
92  
94  
V
V
= 0.98 x  
FB  
Maximum Duty Cycle  
D
%
MAX  
96.5  
97.5  
5
98.5  
FB-REG  
LX Dead Time  
RESET  
ns  
0.02  
0.45  
V
I
= 1mA  
RESET Output Level Low  
RESET  
RESET Output Leakage  
Current High  
V
= 1.01 x V  
, T = +25°C  
µA  
FB  
FB-REG  
A
V
V
V
V
falling  
rising  
90.5  
93.5  
92.5  
95.5  
94.5  
97.5  
%
%
V
V
Threshold for RESET Falling  
OUT-OKF  
FB  
OUT  
Threshold for RESET Rising  
OUT-OKR  
FB  
OUT  
RESET Delay After FB Reaches  
95% Regulation  
V
rising  
1024  
Cycles  
FB  
THERMAL SHUTDOWN  
Thermal-Shutdown Threshold  
Thermal-Shutdown Hysteresis  
Temperature rising  
165  
10  
°C  
°C  
Note 2: All limits are 100% tested at +25°C. Limits over the operating temperature range and relevant supply voltage range are  
guaranteed by design and characterization.  
Note 3: Guaranteed by design, not production tested.  
Maxim Integrated  
4  
www.maximintegrated.com  
MAX17501  
60V, 500mA, Ultra-Small, High-Efficiency,  
Synchronous Step-Down DC-DC Converter  
Typical Operating Characteristics  
(V = 24V, V  
= V  
= 0V, C  
= C  
ꢀ=ꢀ1μF,ꢀV  
= 1.5V, C = 3300pF, V = 0.98 x V  
, LX = unconnected, RESET =  
OUT  
IN  
GND  
PGND  
VIN  
VCC  
EN  
SS  
FB  
unconnected, T = -40°C to +125°C, unless otherwise noted. Typical values are at T = +25°C. All voltages are referenced to GND,  
A
A
unless otherwise noted.)  
EFFICIENCY vs. LOAD CURRENT  
(MAX17501B), 5V OUTPUT, FIGURE 7 CIRCUIT  
100  
EFFICIENCY vs. LOAD CURRENT  
EFFICIENCY vs. LOAD CURRENT  
(MAX17501A), 3.3V OUTPUT, FIGURE 6 CIRCUIT  
100  
(MAX17501E), 3.3V OUTPUT, FIGURE 6 CIRCUIT  
95  
90  
85  
80  
75  
90  
80  
70  
60  
50  
40  
30  
90  
80  
70  
60  
50  
40  
30  
V
= 24V  
= 36V  
IN  
IN  
V
IN  
= 12V  
V
= 24V  
V = 36V  
IN  
IN  
70  
65  
60  
55  
50  
45  
V
IN  
= 12V  
V
= 36V  
IN  
V
V
= 24V  
IN  
V
IN  
= 48V  
100  
V
IN  
= 12V  
10  
1
100  
50 100 150 200 250 300 350 400 450 500  
LOAD CURRENT (mA)  
1
10  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
OUTPUT VOLTAGE vs. LOAD CURRENT  
(MAX17501A), 3.3V OUTPUT, FIGURE 6 CIRCUIT  
3.45  
OUTPUT VOLTAGE vs. LOAD CURRENT  
EFFICIENCY vs. LOAD CURRENT  
(MAX17501F), 5V OUTPUT, FIGURE 7 CIRCUIT  
(MAX17501B), 5V OUTPUT, FIGURE 7 CIRCUIT  
5.20  
100  
90  
80  
70  
60  
50  
40  
V
= 12V  
IN  
5.15  
5.10  
5.05  
5.00  
4.95  
4.90  
V
= 12V  
= 24V  
= 36V  
= 48V  
IN  
3.40  
3.35  
3.30  
3.25  
V
V
V
IN  
IN  
IN  
V
= 36V  
IN  
V
IN  
= 36V  
V = 48V  
IN  
V
= 24V  
IN  
V
IN  
= 24V  
V
= 12V  
IN  
0
50 100 150 200 250 300 350 400 450 500  
LOAD CURRENT (mA)  
0
50 100 150 200 250 300 350 400 450 500  
LOAD CURRENT (mA)  
50 100 150 200 250 300 350 400 450 500  
LOAD CURRENT (mA)  
OUTPUT VOLTAGE vs. LOAD CURRENT  
OUTPUT VOLTAGE vs. LOAD CURRENT  
(MAX17501F), 5V OUTPUT, FIGURE 7 CIRCUIT  
SHUTDOWN CURRENT  
vs. TEMPERATURE  
(MAX17501E), 3.3V OUTPUT, FIGURE 6 CIRCUIT  
3.320  
5.05  
1.10  
1.05  
1.00  
0.95  
0.90  
0.85  
0.80  
0.75  
0.70  
5.04  
5.03  
5.02  
5.01  
5.00  
4.99  
4.98  
4.97  
4.96  
4.95  
3.315  
3.310  
3.305  
3.300  
3.295  
3.290  
V
IN  
= 48V V = 36V V = 24V V = 12V  
IN IN IN  
V
IN  
= 36V  
V
IN  
= 24V  
V
IN  
= 12V  
0
50 100 150 200 250 300 350 400 450 500  
LOAD CURRENT (mA)  
0
50 100 150 200 250 300 350 400 450 500  
LOAD CURRENT (mA)  
-40 -20  
0
20 40 60 80 100 120  
TEMPERATURE (°C)  
Maxim Integrated  
5  
www.maximintegrated.com  
MAX17501  
60V, 500mA, Ultra-Small, High-Efficiency,  
Synchronous Step-Down DC-DC Converter  
Typical Operating Characteristics (continued)  
(V = 24V, V  
= V  
= 0V, C  
= C  
ꢀ=ꢀ1μF,ꢀV  
= 1.5V, C = 3300pF, V = 0.98 x V  
, LX = unconnected, RESET =  
OUT  
IN  
GND  
PGND  
VIN  
VCC  
EN  
SS  
FB  
unconnected, T = -40°C to +125°C, unless otherwise noted. Typical values are at T = +25°C. All voltages are referenced to GND,  
A
A
unless otherwise noted.)  
NO-LOAD SWITCHING CURRENT  
vs. TEMPERATURE (PFM OPERATION)  
NO-LOAD SWITCHING CURRENT vs. TEMPERATURE  
EN/UVLO THRESHOLD  
vs. TEMPERATURE  
(FORCED-PWM OPERATION)  
140  
120  
100  
80  
5.00  
1.23  
1.22  
1.21  
1.20  
1.19  
1.18  
1.17  
1.16  
1.15  
1.14  
1.13  
1.12  
4.95  
4.90  
4.85  
4.80  
RISING  
THRESHOLD  
FALLING  
THRESHOLD  
60  
40  
-40 -20  
0
20 40 60 80 100 120  
TEMPERATURE (°C)  
-40 -20  
0
20 40 60 80 100 120  
TEMPERATURE (°C)  
-40 -20  
0
20 40 60 80 100 120  
TEMPERATURE (°C)  
NO-LOAD OUTPUT VOLTAGE  
FEEDBACK VOLTAGE  
vs. TEMPERATURE  
NO-LOAD OUTPUT VOLTAGE  
vs. TEMPERATURE (MAX17501F),  
5V OUTPUT, FIGURE 7 CIRCUIT  
vs. TEMPERATURE (MAX17501E),  
3.3V OUTPUT, FIGURE 6 CIRCUIT  
0.92  
0.91  
0.90  
0.89  
0.88  
5.050  
5.025  
5.000  
4.975  
4.950  
3.350  
3.325  
3.300  
3.275  
3.250  
-40 -20  
0
20 40 60 80 100 120  
TEMPERATURE (°C)  
-40 -20  
0
20 40 60 80 100 120  
TEMPERATURE (°C)  
-40 -20  
0
20 40 60 80 100 120  
TEMPERATURE (°C)  
PEAK AND RUNAWAY CURRENT LIMIT  
vs. TEMPERATURE  
SWITCHING FREQUENCY  
vs. TEMPERATURE  
NO-LOAD SOFT-START FROM EN/UVLO  
(MAX17501A), 3.3V OUTPUT, FIGURE 6 CIRCUIT  
MAX17501 toc18  
0.90  
0.85  
0.80  
0.75  
0.70  
0.65  
0.60  
700  
600  
500  
400  
300  
200  
EN/UVLO  
2V/div  
RUNAWAY  
CURRENT  
LIMIT  
V
PEAK  
CURRENT  
LIMIT  
OUT  
1V/div  
RESET  
2V/div  
1ms/div  
-40 -20  
0
20 40 60 80 100 120  
TEMPERATURE (°C)  
-40 -20  
0
20 40 60 80 100 120  
TEMPERATURE (°C)  
Maxim Integrated  
6  
www.maximintegrated.com  
MAX17501  
60V, 500mA, Ultra-Small, High-Efficiency,  
Synchronous Step-Down DC-DC Converter  
Typical Operating Characteristics (continued)  
(V = 24V, V  
= V  
= 0V, C  
= C  
ꢀ=ꢀ1μF,ꢀV  
= 1.5V, C = 3300pF, V = 0.98 x V  
, LX = unconnected, RESET =  
OUT  
IN  
GND  
PGND  
VIN  
VCC  
EN  
SS  
FB  
unconnected, T = -40°C to +125°C, unless otherwise noted. Typical values are at T = +25°C. All voltages are referenced to GND,  
A
A
unless otherwise noted.)  
NO-LOAD SOFT-START FROM EN/UVLO  
(MAX17501B), 5V OUTPUT, FIGURE 7 CIRCUIT  
FULL-LOAD SOFT-START/SHUTDOWN FROM EN/UVLO  
(MAX17501E), 3.3V OUTPUT, FIGURE 6 CIRCUIT  
MAX17501 toc19  
MAX17501 toc20  
EN/UVLO  
2V/div  
EN/UVLO  
2V/div  
V
V
OUT  
OUT  
1V/div  
2V/div  
I
OUT  
200mA/div  
RESET  
5V/div  
RESET  
2V/div  
1ms/div  
1ms/div  
NO-LOAD SOFT-START FROM V  
FULL-LOAD SOFT-START/SHUTDOWN FROM EN/UVLO  
IN  
(MAX17501A), 3.3V OUTPUT, FIGURE 6 CIRCUIT  
(MAX17501F), 5V OUTPUT, FIGURE 7 CIRCUIT  
MAX17501 toc22  
MAX17501 toc21  
V
IN  
20V/div  
EN/UVLO  
2V/div  
V
OUT  
2V/div  
I
OUT  
200mA/div  
V
OUT  
1V/div  
RESET  
2V/div  
RESET  
5V/div  
400µs/div  
1ms/div  
NO-LOAD SOFT-START FROM V  
FULL-LOAD SOFT-START FROM V  
IN  
IN  
(MAX17501B), 5V OUTPUT, FIGURE 7 CIRCUIT  
(MAX17501E), 3.3V OUTPUT, FIGURE 6 CIRCUIT  
MAX17501 toc23  
MAX17501 toc24  
V
V
IN  
IN  
20V/div  
20V/div  
I
OUT  
200mA/div  
V
OUT  
2V/div  
V
OUT  
1V/div  
RESET  
2V/div  
RESET  
5V/div  
400µs/div  
400µs/div  
Maxim Integrated  
7  
www.maximintegrated.com  
MAX17501  
60V, 500mA, Ultra-Small, High-Efficiency,  
Synchronous Step-Down DC-DC Converter  
Typical Operating Characteristics (continued)  
(V = 24V, V  
= V  
= 0V, C  
= C  
ꢀ=ꢀ1μF,ꢀV  
= 1.5V, C = 3300pF, V = 0.98 x V  
, LX = unconnected, RESET =  
OUT  
IN  
GND  
PGND  
VIN  
VCC  
EN  
SS  
FB  
unconnected, T = -40°C to +125°C, unless otherwise noted. Typical values are at T = +25°C. All voltages are referenced to GND,  
A
A
unless otherwise noted.)  
FULL-LOAD SOFT-START FROM V  
IN  
SOFT-START WITH 2V PREBIAS  
(MAX17501A), 3.3V OUTPUT, FIGURE 6 CIRCUIT  
(MAX17501F), 5V OUTPUT, FIGURE 7 CIRCUIT  
MAX17501 toc26  
MAX17501 toc25  
V
EN/UVLO  
2V/div  
IN  
20V/div  
V
OUT  
1V/div  
I
OUT  
200mA/div  
V
OUT  
2V/div  
RESET  
5V/div  
RESET  
2V/div  
400µs/div  
400µs/div  
SOFT-START WITH 2.5V PREBIAS  
SOFT-START WITH 2V PREBIAS  
(MAX17501B), 5V OUTPUT, FIGURE 7 CIRCUIT  
MAX17501 toc27  
(MAX17501E), 3.3V OUTPUT, FIGURE 6 CIRCUIT  
MAX17501 toc28  
EN/UVLO  
2V/div  
EN/UVLO  
2V/div  
V
OUT  
1V/div  
V
OUT  
1V/div  
RESET  
5V/div  
RESET  
2V/div  
400µs/div  
400µs/div  
LOAD TRANSIENT RESPONSE OF MAX17501A  
SOFT-START WITH 2.5V PREBIAS  
(LOAD CURRENT STEPPED FROM 5mA TO 255mA),  
(MAX17501F), 5V OUTPUT, FIGURE 7 CIRCUIT  
MAX17501 toc29  
3.3V OUTPUT, FIGURE 6 CIRCUIT  
MAX17501 toc30  
V
(AC)  
OUT  
100mV/div  
EN/UVLO  
2V/div  
V
OUT  
1V/div  
RESET  
5V/div  
I
OUT  
100mA/div  
400µs/div  
200µs/div  
Maxim Integrated  
8  
www.maximintegrated.com  
MAX17501  
60V, 500mA, Ultra-Small, High-Efficiency,  
Synchronous Step-Down DC-DC Converter  
Typical Operating Characteristics (continued)  
(V = 24V, V  
= V  
= 0V, C  
= C  
ꢀ=ꢀ1μF,ꢀV  
= 1.5V, C = 3300pF, V = 0.98 x V  
, LX = unconnected, RESET =  
OUT  
IN  
GND  
PGND  
VIN  
VCC  
EN  
SS  
FB  
unconnected, T = -40°C to +125°C, unless otherwise noted. Typical values are at T = +25°C. All voltages are referenced to GND,  
A
A
unless otherwise noted.)  
LOAD TRANSIENT RESPONSE OF MAX17501B  
LOAD TRANSIENT RESPONSE OF MAX17501E  
(LOAD CURRENT STEPPED FROM NO-LOAD TO 250mA),  
3.3V OUTPUT, FIGURE 6 CIRCUIT  
(LOAD CURRENT STEPPED FROM 5mA TO 255mA),  
5V OUTPUT, FIGURE 7 CIRCUIT  
V
(AC)  
OUT  
100mV/div  
V (AC)  
OUT  
50mV/div  
I
OUT  
100mA/div  
I
OUT  
100mA/div  
200µs/div  
20µs/div  
LOAD TRANSIENT RESPONSE OF MAX17501F  
(LOAD CURRENT STEPPED FROM NO-LOAD TO 250mA),  
5V OUTPUT, FIGURE 7 CIRCUIT  
LOAD TRANSIENT RESPONSE OF MAX17501E  
(LOAD CURRENT STEPPED FROM 250mA TO 500mA),  
3.3V OUTPUT, FIGURE 6 CIRCUIT  
V
(AC)  
V (AC)  
OUT  
50mV/div  
OUT  
100mV/div  
I
OUT  
200mA/div  
I
OUT  
100mA/div  
20µs/div  
20µs/div  
LOAD TRANSIENT RESPONSE OF MAX17501F  
(LOAD CURRENT STEPPED FROM 250mA TO 500mA),  
5V OUTPUT, FIGURE 7 CIRCUIT  
SWITCHING WAVEFORMS OF MAX17501F  
AT 500mA LOAD, 5V OUTPUT, FIGURE 7 CIRCUIT  
V
(AC)  
OUT  
50mV/div  
V
(AC)  
OUT  
100mV/div  
I
LX  
500mA/div  
I
OUT  
200mA/div  
LX  
10V/div  
20µs/div  
2µs/div  
Maxim Integrated  
9  
www.maximintegrated.com  
MAX17501  
60V, 500mA, Ultra-Small, High-Efficiency,  
Synchronous Step-Down DC-DC Converter  
Typical Operating Characteristics (continued)  
(V = 24V, V  
= V  
= 0V, C  
= C  
ꢀ=ꢀ1μF,ꢀV  
= 1.5V, C = 3300pF, V = 0.98 x V  
, LX = unconnected, RESET =  
OUT  
IN  
GND  
PGND  
VIN  
VCC  
EN  
SS  
FB  
unconnected, T = -40°C to +125°C, unless otherwise noted. Typical values are at T = +25°C. All voltages are referenced to GND,  
A
A
unless otherwise noted.)  
SWITCHING WAVEFORMS OF MAX17501A  
AT 15mA LOAD, 3.3V OUTPUT, FIGURE 6 CIRCUIT  
OUTPUT OVERLOAD PROTECTION  
OF MAX17501F, 5V OUTPUT, FIGURE 7 CIRCUIT  
V
(AC)  
OUT  
100mV/div  
V
OUT  
2V/div  
LX  
10V/div  
I
OUT  
200mA/div  
I
LX  
100mA/div  
20ms/div  
10µs/div  
BODE PLOT OF MAX17501F  
AT 500mA LOAD, 5V OUTPUT, FIGURE 7 CIRCUIT  
BODE PLOT OF MAX17501E  
AT 500mA LOAD, 3.3V OUTPUT, FIGURE 6 CIRCUIT  
f
= 51kHz  
CR  
PM = 55°  
f
= 49.8kHz  
CR  
PM = 62°  
4
5
6
7
8 9 1  
2
4
5
6
7 8 9 1  
2
MAX17501, 5V OUTPUT, 0.5A LOAD CURRENT,  
FIGURE 7 CIRCUIT, CONDUCTED EMI CURVE  
70  
QUASI-PEAK LIMIT  
AVERAGE LIMIT  
60  
50  
40  
30  
20  
10  
PEAK  
EMISSIONS  
AVERAGE  
EMISSIONS  
30  
1
10  
0.15  
FREQUENCY (MHz)  
Measured on the MAX17501FTEVKIT with input filter—  
C
IN  
= 2.2µF, L = 4.7µH, 2.2µF additional input capaci-  
IN  
tor used.  
Maxim Integrated  
10  
www.maximintegrated.com  
MAX17501  
60V, 500mA, Ultra-Small, High-Efficiency,  
Synchronous Step-Down DC-DC Converter  
Pin Configuration  
TOP VIEW  
MAX17501  
PGND  
1
2
10 LX  
+
V
IN  
9
GND  
EN/UVLO  
3
4
5
8
7
6
RESET  
N.C./COMP  
SS  
V
CC  
EP*  
FB/VO  
TDFN  
(3mm x 2mm)  
*EP = EXPOSED PAD. CONNECT TO GND  
Pin Description  
PIN  
NAME  
FUNCTION  
Power Ground. Connect PGND externally to the power ground plane. Connect GND and PGND pins  
1
PGND  
together at the ground return path of the V  
bypass capacitor.  
CC  
2
V
IN  
Power-Supply Input. The input supply range is from 4.5V to 60V.  
Enable/Undervoltage Lockout Input. Drive EN/UVLO high to enable the output voltage. Connect to the  
3
EN/UVLO  
center of the resistive divider between V and GND to set the input voltage (undervoltage threshold) at  
IN  
which the device turns on. Pull up to V for always on.  
IN  
4
5
6
V
5V LDO Output. Bypass V  
with 1µF ceramic capacitance to GND.  
CC  
CC  
FeedbackꢀInput.ꢀForꢀfixedꢀoutputꢀvoltageꢀdevices,ꢀdirectlyꢀconnectꢀFB/VOꢀtoꢀtheꢀoutput.ꢀForꢀadjustableꢀ  
output voltage devices, connect FB/VO to the center of the resistive divider between V  
FB/VO  
SS  
and GND.  
OUT  
Soft-Start Input. Connect a capacitor from SS to GND to set the soft-start time.  
External Loop Compensation. For adjustable output voltage (MAX17501G/H) connect to an RC network  
from COMP to GND. See the External Loop Compensation for Adjustable Output Versions section for  
moreꢀdetails.ꢀForꢀaꢀfixed-outputꢀvoltageꢀ(MAX17501A/B/E/F),ꢀthisꢀpinꢀisꢀaꢀnoꢀconnectꢀ(N.C.)ꢀandꢀshouldꢀ  
be left unconnected.  
7
8
N.C./COMP  
Open-Drain RESET Output. The RESET output is driven low if FB drops below 92.5% of its set value.  
RESET goes high 1024 clock cycles after FB rises above 95.5% of its set value. RESET is valid when  
RESET  
the device is enabled and V is above 4.5V.  
IN  
9
GND  
LX  
Analog Ground  
Switching Node. Connect LX to the switching side of the inductor. LX is high impedance when the device  
is in shutdown mode.  
10  
Exposed Pad. Connect to the GND pin of the IC. Connect to a large copper plane below the IC to improve  
heat dissipation capability.  
EP  
Maxim Integrated  
11  
www.maximintegrated.com  
MAX17501  
60V, 500mA, Ultra-Small, High-Efficiency,  
Synchronous Step-Down DC-DC Converter  
Block Diagram  
V
CC  
PGND  
N DRIVER  
5µA  
SS  
SS  
LX  
MAX17501  
HICCUP  
P DRIVER  
V
IN  
CURRENT  
SENSE  
V
CC  
PWM  
CLK  
PWM, PFM  
LOGIC  
LDO  
OSC  
COMPARATOR  
COMP  
HICCUP  
SLOPE  
COMPENSATION  
START  
EN  
FB  
RESET  
RESET  
LOGIC  
SS  
900mV  
REFERENCE  
SWITCHOVER  
LOGIC  
COMP  
N.C./COMP  
G
M
INTERNAL  
COMPENSATION  
(FOR A, B, E, F VERSIONS)  
GND  
Maxim Integrated  
12  
www.maximintegrated.com  
MAX17501  
60V, 500mA, Ultra-Small, High-Efficiency,  
Synchronous Step-Down DC-DC Converter  
that disables the internal linear regulator when V  
falls  
CC  
Detailed Description  
below 3.7V (typical). The internal V  
linear regulator can  
CC  
The MAX17501 synchronous step-down regulator oper-  
ates from 4.5V to 60V and delivers up to 500mA load  
current. Output voltage regulation accuracy meets ±1.7%  
over temperature.  
source up to 40mA (typical) to supply the device and to  
power the low-side gate driver.  
Operating Input Voltage Range  
The device uses a peak-current-mode control scheme.  
An internal transconductance error amplifier generates an  
integrated error voltage. The error voltage sets the duty  
cycle using a PWM comparator, a high-side current-sense  
amplifier, and a slope-compensation generator. At each  
rising edge of the clock, the high-side p-channel MOSFET  
turns on and remains on until either the appropriate or  
maximum duty cycle is reached, or the peak current limit  
is detected.  
The maximum operating input voltage is determined by  
the minimum controllable on-time and the minimum oper-  
ating input voltage is determined by the maximum duty  
cycle and circuit voltage drops. The minimum and maxi-  
mum operating input voltages for a given output voltage  
should be calculated as:  
V
+ (I  
×(R  
+ 0.47))  
DCR  
OUT  
OUT(MAX)  
V
=
IN(MIN)  
D
MAX  
During the high-side MOSFET’s on-time, the inductor  
current ramps up. During the second half of the switching  
cycle, the high-side MOSFET turns off and the low-side  
n-channel MOSFET turns on and remains on until either  
the next rising edge of the clock arrives or sink current  
limit is detected. The inductor releases the stored energy  
as its current ramps down, and provides current to the  
+ (I  
× 0.73)  
OUT(MAX)  
V
OUT  
V
=
IN(MAX)  
f
× t  
ON(MIN)  
SW (MAX)  
where V  
is the steady-state output voltage, I  
OUT(MAX)  
is the maximum load current, R  
OUT  
is the DC resistance  
DCR  
of the inductor, f  
is the switching frequency (max-  
is the worst-case minimum switch  
SW(MAX)  
output (the internal low R  
pMOS/nMOS switches  
DSON  
imum) and t  
ON(MIN)  
ensure high efficiency at full load).  
on-time (120ns). The following table lists the f  
values to be used for calculation for different  
versions of the MAX17501:  
SW(MAX)  
This device also integrates enable/undervoltage lockout  
(EN/UVLO), adjustable soft-start time (SS), and open-  
drain reset output (RESET) functionality.  
and D  
MAX  
PART VERSION  
MAX17501A/B/E/F/G  
MAX17501H  
f
(kHz)  
D
MAX  
SW (MAX)  
PFM Operation  
640  
0.92  
The A and B versions of the MAX17501 feature a PFM  
scheme to improve light load efficiency. At light loads,  
once the part enters PFM mode, the inductor current is  
forced to a fixed peak of 125mA (typical) every clock cycle  
until the output rises to 103.3% of nominal voltage. Once  
output reaches 103.3% of nominal voltage, both high-  
side and low-side FETs are turned off and the part enters  
hibernate operation until the load discharges output to  
101.3% of nominal voltage. Most of the internal blocks  
are turned off in hibernate operation to save quiescent  
current. Such an operation reduces the effective switch-  
ing frequency of the converter at light loads, resulting in  
reduced switching losses and improved light load effi-  
ciency. The part naturally exits PFM mode when the load  
current exceeds 62.5mA (typical).  
320  
0.965  
Overcurrent Protection/HICCUP Mode  
The device is provided with a robust overcurrent-  
protection scheme that protects the device under over-  
load and output short-circuit conditions. A cycle-by-cycle  
peak current limit turns off the high-side MOSFET when-  
ever the high-side switch current exceeds an internal limit  
of 760mA (typ). A runaway current limit on the high-side  
switch current at 780mA (typ) protects the device under  
high input voltage, short-circuit conditions when there is  
insufficient output voltage available to restore the inductor  
current that built up during the on period of the step-down  
converter. One occurrence of the runaway current limit  
triggers a hiccup mode. In addition, if due to a fault condition,  
output voltage drops to 71.14% (typ) of its nominal value  
any time after soft-start is complete, hiccup mode is  
triggered.  
Linear Regulator (V  
)
CC  
An internal linear regulator (V ) provides a 5V nominal  
CC  
supply to power the internal blocks and the low-side  
MOSFET driver. The output of the V  
linear regulator  
CC  
In hiccup mode, the converter is protected by suspending  
switching for a hiccup timeout period of 32,768 clock  
shouldꢀ beꢀ bypassedꢀ withꢀ aꢀ 1μFꢀ ceramicꢀ capacitorꢀ toꢀ  
GND. The device employs an undervoltage-lockout circuit  
Maxim Integrated  
13  
www.maximintegrated.com  
MAX17501  
60V, 500mA, Ultra-Small, High-Efficiency,  
Synchronous Step-Down DC-DC Converter  
cycles. Once the hiccup timeout period expires, soft-start  
is attempted again. This operation results in minimal  
power dissipation under overload fault conditions.  
is located distant from the device input, an electrolytic  
capacitorꢀshouldꢀbeꢀaddedꢀinꢀparallelꢀtoꢀtheꢀ1μFꢀceramicꢀ  
capacitor to provide necessary damping for potential  
oscillations caused by the longer input power path and  
input ceramic capacitor.  
RESET Output  
The device includes a RESET comparator to monitor the  
output voltage. The open-drain RESET output requires  
an external pullup resistor. RESET can sink 2mA of  
current while low. RESET goes high (high impedance)  
1024 switching cycles after the regulator output increases  
above 95.5% of the designated nominal regulated  
voltage. RESET goes low when the regulator output  
voltage drops to below 92.5% of the nominal regulated  
voltage. RESET also goes low during thermal shutdown.  
Inductor Selection  
Three key inductor parameters must be specified for  
operation with the device: inductance value (L), inductor  
saturation current (I  
), and DC resistance (R  
SAT  
). The  
DCR  
switching frequency and output voltage determine the  
inductor value as follows:  
4.8 x V  
OUT  
L =  
RESET is valid when the device is enabled and V is  
f
IN  
SW  
above 4.5V.  
where V  
and f  
are nominal values.  
OUT  
SW  
Prebiased Output  
Select a low-loss inductor closest to the calculated value  
with acceptable dimensions and having the lowest pos-  
When the device starts into a prebiased output, both the  
high-side and low-side switches are turned off so the  
converter does not sink current from the output. High-  
side and low-side switches do not start switching until  
the PWM comparator commands the first PWM pulse, at  
which point switching commences first with the high-side  
switch. The output voltage is then smoothly ramped up to  
the target value in alignment with the internal reference.  
sible DC resistance. The saturation current rating (I  
)
SAT  
of the inductor must be high enough to ensure that satu-  
ration can occur only above the peak current-limit value  
(I  
(typ) = 0.76A for the device).  
PEAK-LIMIT  
Output Capacitor Selection  
X7R ceramic output capacitors are preferred due to their  
stability over temperature in industrial applications. The  
output capacitor is usually sized to support a step load  
of 50% of the maximum output current in the application,  
so the output-voltage deviation is contained to ±3% of the  
output-voltage change.  
Thermal-Overload Protection  
Thermal-overload protection limits total power dissipation  
in the device. When the junction temperature of the device  
exceeds +165°C, an on-chip thermal sensor shuts down  
the device, allowing the device to cool. The thermal sensor  
turns the device on again after the junction temperature  
cools by 10°C. Soft-start resets during thermal shutdown.  
Carefully evaluate the total power dissipation (see the  
Power Dissipation section) to avoid unwanted triggering of  
the thermal-overload protection in normal operation.  
For fixed 3.3V and 5V output voltage versions, connect  
aꢀ minimumꢀ ofꢀ 10μFꢀ (1206)ꢀ capacitorꢀ atꢀ theꢀ output.ꢀ Forꢀ  
adjustable output voltage versions, the output capaci-  
tance can be calculated as follows:  
I
× t  
RESPONSE  
1
2
STEP  
C
=
×
OUT  
V  
OUT  
Applications Information  
Input Capacitor Selection  
0.33  
1
t
+
RESPONSE  
The discontinuous input-current waveform of the buck  
converter causes large ripple currents in the input capaci-  
tor. The switching frequency, peak inductor current, and  
the allowable peak-to-peak voltage ripple that reflects  
back to the source dictate the capacitance requirement.  
The device’s high switching frequency allows the use of  
smaller value input capacitors. X7R capacitors are rec-  
ommended in industrial applications for their temperature  
stability.ꢀAꢀminimumꢀvalueꢀofꢀ1μFꢀshouldꢀbeꢀusedꢀforꢀtheꢀ  
input capacitor. Higher values help reduce the ripple on  
the input DC bus further. In applications where the source  
f
f
SW  
C
where I  
is the load current step, t  
responseꢀ timeꢀ ofꢀ theꢀ controller,ꢀ ΔV  
output-voltage deviation, f is the target closed-loop cross-  
is the switching frequency. Select  
f to be 1/12th of f . Derating of ceramic capacitors with  
DC-voltage must be considered while selecting the output  
capacitor. Derating curves are available from all major  
ceramic capacitor vendors.  
is the  
is the allowable  
STEP  
RESPONSE  
OUT  
C
over frequency, and f  
SW  
SW  
C
Maxim Integrated  
14  
www.maximintegrated.com  
MAX17501  
60V, 500mA, Ultra-Small, High-Efficiency,  
Synchronous Step-Down DC-DC Converter  
select the parallel combination of R4 and R5, Rp to be  
lessꢀthanꢀ30kΩ.ꢀOnceꢀRpꢀisꢀselected,ꢀcalculateꢀR4ꢀas:  
Soft-Start Capacitor Selection  
The MAX17501 implements adjustable soft-start opera-  
tion to reduce inrush current. A capacitor connected from  
the SS pin to GND programs the soft-start period.  
Rp× V  
OUT  
R4 =  
0.9  
The selected output capacitance (C  
) and the output  
SEL  
Calculate R5 as follows:  
voltage (V  
) determine the minimum required soft-start  
OUT  
R4× 0.9  
capacitor as follows:  
R5 =  
(V  
- 0.9)  
OUT  
CSS  
-6 x CSEL x VOUT  
The soft-start time (t ) is related to the capacitor  
SS  
Setting the Input Undervoltage Lockout Level  
The device offers an adjustable input undervoltage-  
lockout level. Set the voltage at which the device turns  
connected at SS (C ) by the following equation:  
SS  
CSS  
tSS  
=
on with a resistive voltage-divider connected from V  
5.55 x 10-6  
IN  
to GND (see Figure 2). Connect the center node of the  
divider to EN/UVLO.  
Adjusting Output Voltage  
The MAX17501A/E and MAX17501B/F have preset  
output voltages of 3.3V and 5.0V, respectively. Connect  
FB/VO directly to the positive terminal of the output  
capacitor (see the Typical Applications Circuits).  
ChooseꢀR1ꢀtoꢀbeꢀ3.3MΩ,ꢀandꢀthenꢀcalculateꢀR2ꢀas:  
R1×1.218  
R2 =  
(V  
-1.218)  
INU  
The MAX17501G/H offer an adjustable output voltage  
where V  
is the voltage at which the device is required  
INU  
from 0.9V to 92%V . Set the output voltage with a resistive  
to turn on. For adjustable output voltage devices, ensure  
IN  
voltage-divider connected from the positive terminal of the  
that V is higher than 0.8 x V . If the EN/UVLO pin is  
INU  
OUT  
output capacitor (V  
) to GND (see Figure 1). Connect  
driven from an external signal source, a series resistance  
ofꢀminimumꢀ1kΩꢀisꢀrecommendedꢀtoꢀbeꢀplacedꢀbetweenꢀ  
the signal source output and the EN/UVLO pin, to reduce  
voltage ringing on the line.  
OUT  
the center node of the divider to FB/VO. To optimize  
efficiency and output accuracy, use the following procedure  
to choose the values of R4 and R5:  
For MAX17501G, select the parallel combination of R4  
andR5,Rptobelessthan15kΩ.FortheMAX17501H,ꢀ  
V
OUT  
V
IN  
R4  
R1  
R2  
FB/VO  
EN/UVLO  
R5  
GND  
GND  
Figure 1. Setting the Output Voltage  
Figure 2. Adjustable EN/UVLO Network  
Maxim Integrated  
15  
www.maximintegrated.com  
 
 
MAX17501  
60V, 500mA, Ultra-Small, High-Efficiency,  
Synchronous Step-Down DC-DC Converter  
At a particular operating condition, the power losses that  
lead to temperature rise of the device are estimated as  
follows:  
External Loop Compensation for Adjustable  
Output Versions  
The MAX17501 uses peak current-mode control scheme  
and needs only a simple RC network to have a stable,  
high-bandwidth control loop for the adjustable output voltage  
versions. The basic regulator loop is modeled as a power  
modulator, an output feedback divider, and an error amplifier.  
1
2
P
= (P  
×( - 1)) - I  
×R  
OUT DCR  
)
LOSS  
(
OUT  
η
P
= V  
×I  
OUT  
OUT OUT  
The power modulator has DC gain G  
, with a pole  
MOD(dc)  
and zero pair. The following equation defines the power  
modulator DC gain:  
where P  
the device, and R  
inductor (refer to the Typical Operating Characteristics  
in the evaluation kit data sheets for more information on  
efficiency at typical operating conditions).  
ꢀisꢀtheꢀoutputꢀpower,ꢀηꢀisꢀisꢀtheꢀefficiencyꢀofꢀ  
OUT  
is the DC resistance of the output  
DCR  
1
G
=
MOD(dc)  
1
0.2  
0.5 - D  
f ×L  
SW  
+
+
R
V
LOAD  
IN  
SEL  
For a typical multilayer board, the thermal performance  
metrics for the 10-pin TDFN package are given as:  
where R  
= V  
/I  
, f  
is the switching  
LOAD  
OUT OUT(MAX) SW  
frequency, L  
is the selected output inductance, D is  
SEL  
θ
θ
= 67.3°C W  
= 18.2°C W  
the duty ratio, D = V  
V .  
OUT/ IN  
JA  
JC  
The compensation network is shown in Figure 3.  
R can be calculated as:  
Z
The junction temperature of the device can be estimated  
at any given maximum ambient temperature (T  
from the following equation:  
R
= 12000× f × C  
× V  
SEL OUT  
Z
C
)
A_MAX  
where R ꢀisꢀinꢀΩ.ꢀChooseꢀf to be 1/12th of the switching  
Z
C
frequency.  
T
= T  
+ θ ×P  
A_MAX JA LOSS  
(
)
J_MAX  
C can be calculated as follows:  
Z
If the application has a thermal-management system that  
ensures that the exposed pad of the device is maintained  
C
× G  
MOD(dc)  
SEL  
C
=
Z
R
Z
at a given temperature (T ) by using proper heat  
EP_MAX  
sinks, then the junction temperature of the device can be  
estimated at any given maximum ambient temperature as:  
C can be calculated as follows:  
P
1
C
=
P
π×R × f  
Z
SW  
T
= T  
+ θ ×P  
(
)
J_MAX  
EP_MAX JC LOSS  
Power Dissipation  
The exposed pad of the IC should be properly soldered to  
the PCB to ensure good thermal contact.  
Junction temperature greater than +125°C degrades  
operating lifetimes.  
TO COMP PIN  
R
Z
C
P
C
Z
Figure 3. External Compensation Network  
Maxim Integrated  
16  
www.maximintegrated.com  
 
MAX17501  
60V, 500mA, Ultra-Small, High-Efficiency,  
Synchronous Step-Down DC-DC Converter  
3) The analog small-signal ground and the power ground  
for switching currents must be kept separate. They  
should be connected together at a point where switch-  
ing activity is at minimum, typically the return terminal  
PCB Layout Guidelines  
Careful PCB layout is critical to achieve low switching loss-  
es and stable operation. For a sample layout that ensures  
first-pass success, refer to the MAX17501 evaluation kit  
layouts available at www.maximintegrated.com. Follow  
these guidelines for good PCB layout:  
of the V  
bypass capacitor. The ground plane should  
CC  
be kept continuous as much as possible.  
4) A number of thermal vias that connect to a large  
ground plane should be provided under the exposed  
pad of the device, for efficient heat dissipation.  
1) All connections carrying pulsed currents must be very  
short and as wide as possible. The loop area of these  
connections must be made very small to reduce stray  
inductance and radiated EMI.  
Figure 4 and Figure 5 show the recommended component  
placement for MAX17501.  
2) A ceramic input filter capacitor should be placed close  
to the V pin of the device. The bypass capacitor for  
IN  
the V  
pin should also be placed close to the V  
CC  
CC  
pin. External compensation components should be  
placed close to the IC and far from the inductor. The  
feedback trace should be routed as far as possible  
from the inductor.  
V
PLANE  
PGND PLANE  
OUT  
C4  
L1  
C1  
LX PLANE  
EP  
V
IN  
PLANE  
R1  
R2  
RESET  
C2  
R4  
C3  
GND PLANE  
VIAS TO BOTTOM SIDE PGND PLANE  
VIAS TO BOTTOM SIDE V TRACK  
OUT  
VIAS TO BOTTOM SIDE GND PLANE  
Figure 4. Recommended Component Placement for MAX17501A/B/E/F  
Maxim Integrated  
17  
www.maximintegrated.com  
 
MAX17501  
60V, 500mA, Ultra-Small, High-Efficiency,  
Synchronous Step-Down DC-DC Converter  
V
PLANE  
PGND PLANE  
OUT  
C4  
L1  
C1  
LX PLANE  
RESET  
EP  
V
IN  
PLANE  
R1  
R2  
R3  
C2  
R4  
C3  
C9  
C5  
R5  
GND PLANE  
VIAS TO BOTTOM SIDE PGND PLANE  
VIAS TO BOTTOM SIDE V TRACK  
OUT  
VIAS TO BOTTOM SIDE GND PLANE  
Figure 5. Recommended Component Placement for MAX17501G/H  
Maxim Integrated  
18  
www.maximintegrated.com  
 
MAX17501  
60V, 500mA, Ultra-Small, High-Efficiency,  
Synchronous Step-Down DC-DC Converter  
Typical Applications Circuits  
L1  
33µH  
V
V
OUT  
IN  
V
LX  
IN  
3.3V, 500mA  
24V  
C1  
C4  
R1  
1µF  
10µF,  
3.32MΩ  
1206  
1206  
1
JU1 2  
3
PGND  
EN/UVLO  
R2  
866kΩ  
MAX17501  
GND  
V
CC  
C2  
1µF  
FB/VO  
SS  
C3  
3300pF  
L1 = LPS6235-333  
N.C.  
RESET  
RESET  
Figure 6. MAX17501A/E Application Circuit (3.3V Output, 500mA Maximum Load Current, 600kHz Switching Frequency)  
L1  
47µH  
V
V
OUT  
IN  
V
LX  
IN  
5V, 500mA  
24V  
C1  
1µF  
1206  
C4  
10µF,  
1206  
R1  
3.32MΩ  
1
2
3
PGND  
EN/UVLO  
JU1  
R2  
866kΩ  
MAX17501  
GND  
V
CC  
C2  
1µF  
FB/VO  
SS  
C3  
3300pF  
L1 = LPS6235-473  
N.C.  
RESET  
RESET  
Figure 7. MAX17501B/F Application Circuit (5V Output, 500mA Maximum Load Current, 600kHz Switching Frequency)  
Maxim Integrated  
19  
www.maximintegrated.com  
 
MAX17501  
60V, 500mA, Ultra-Small, High-Efficiency,  
Synchronous Step-Down DC-DC Converter  
L1  
100µH  
V
V
OUT  
IN  
V
LX  
IN  
12V, 500mA  
24V  
C1  
1µF  
1206  
C4  
R1  
4.7µF,  
3.32MΩ  
1206  
1
JU1 2  
3
PGND  
EN/UVLO  
R2  
316kΩ  
R4  
174kΩ  
MAX17501  
GND  
V
CC  
C2  
1µF  
FB/VO  
SS  
C3  
6800pF  
R5  
14kΩ  
COMP  
RESET  
RESET  
R3  
C9  
10pF  
27.4kΩ  
L1 = DR74-101-R  
C5  
1200pF  
Figure 8. MAX17501G Application Circuit (12V Output, 500mA Maximum Load Current, 600kHz Switching Frequency)  
L1  
47µH  
V
V
OUT  
2.5V, 500mA  
IN  
V
LX  
IN  
24V  
C1  
2.2µF  
1210  
C4  
22µF,  
1210  
R1  
3.32MΩ  
1
JU1 2  
3
PGND  
EN/UVLO  
R2  
1MΩ  
R4  
MAX17501  
69.8kΩ  
GND  
V
CC  
C2  
1µF  
FB/VO  
SS  
C3  
6800pF  
R5  
39.2kΩ  
COMP  
RESET  
RESET  
R3  
C9  
47pF  
20kΩ  
C5  
2200pF  
L1 = LPS6235-473  
Figure 9. MAX17501H Application Circuit (2.5V Output, 500mA Maximum Load Current, 300kHz Switching Frequency)  
Maxim Integrated  
20  
www.maximintegrated.com  
MAX17501  
60V, 500mA, Ultra-Small, High-Efficiency,  
Synchronous Step-Down DC-DC Converter  
Ordering Information/Selector Guide  
SWITCHING  
FREQUENCY (kHz)  
PART  
PIN-PACKAGE  
OUTPUT VOLTAGE (V)  
MODE  
MAX17501AATB+  
MAX17501BATB+  
MAX17501EATB+  
MAX17501FATB+  
MAX17501GATB+  
MAX17501HATB+  
10 TDFN-EP*  
10 TDFN-EP*  
10 TDFN-EP*  
10 TDFN-EP*  
10 TDFN-EP*  
10 TDFN-EP*  
3.3  
600  
600  
600  
600  
600  
300  
PFM  
PFM  
5
3.3  
PWM  
PWM  
PWM  
PWM  
5
Adjustable  
Adjustable  
+Denotes a lead(Pb)-free/RoHS-compliant package.  
*EP = Exposed pad.  
Chip Information  
PROCESS: BiCMOS  
Package Information  
For the latest package outline information and land patterns  
(footprints), go to www.maximintegrated.com/packages. Note  
that a “+”, “#”, or “-” in the package code indicates RoHS status  
only. Package drawings may show a different suffix character, but  
the drawing pertains to the package regardless of RoHS status.  
PACKAGE  
TYPE  
PACKAGE  
CODE  
OUTLINE LAND PATTERN  
NO.  
NO.  
10 TDFN  
T1032N+1  
21-0429  
90-0082  
Maxim Integrated  
21  
www.maximintegrated.com  
 
MAX17501  
60V, 500mA, Ultra-Small, High-Efficiency,  
Synchronous Step-Down DC-DC Converter  
Revision History  
REVISION  
NUMBER  
REVISION  
DATE  
PAGES  
CHANGED  
DESCRIPTION  
0
1
2
3
5/12  
11/12  
1/13  
7/13  
Initial release  
Added MAX17501A, MAX17501B, MAX17501G, MAX17501H to data sheet  
Added explanation on detailed condition for RESET  
1–22  
11, 14  
3
Added output voltage accuracy for the MAX17501A and MAX17501B  
Edited General Description, Benefits and Features, Pin Description, and  
Adjusting Output Voltage sections  
4
8/14  
1, 11, 15  
5
6
7
11/14  
6/15  
7/16  
Removed automotive references from Applications section  
Added output voltage to Typical Operating Characteristics section  
Operating and junction temperature values updated  
1
4–10, 14-17, 19, 20  
14–16  
Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses  
are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits)  
shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.  
©
Maxim Integrated and the Maxim Integrated logo are trademarks of Maxim Integrated Products, Inc.  
2016 Maxim Integrated Products, Inc.  
22  

相关型号:

MAX17501_13

60V, 500mA, Ultra-Small, High-Efficiency, Synchronous Step-Down DC-DC Converter
MAXIM

MAX17502

60V, 1A, Ultra-Small, High-Efficiency, Synchronous Step-Down DC-DC Converter
MAXIM

MAX17502EATB+

60V, 1A, Ultra-Small, High-Efficiency,Synchronous Step-Down DC-DC Converter
MAXIM

MAX17502EATB+T

Switching Regulator/Controller, Current-mode, 1A, 640kHz Switching Freq-Max, BICMOS, PDSO10,
MAXIM

MAX17502FATB+

60V, 1A, Ultra-Small, High-Efficiency,Synchronous Step-Down DC-DC Converter
MAXIM

MAX17502GATB+

60V, 1A, Ultra-Small, High-Efficiency, Synchronous Step-Down DC-DC Converter
MAXIM

MAX17502GATB+T

Switching Regulator/Controller, Current-mode, 1A, 640kHz Switching Freq-Max, BICMOS, PDSO10,
MAXIM

MAX17502HAUD+

Switching Regulator, Current-mode, 1.9A, 640kHz Switching Freq-Max, BICMOS, PDSO14, 5 X 4.40 MM, ROHS COMPLIANT, TSSOP-14
MAXIM

MAX17502_13

60V, 1A, Ultra-Small, High-Efficiency, Synchronous Step-Down DC-DC Converter
MAXIM

MAX17503SATP+

Switching Regulator, Current-mode, 2450kHz Switching Freq-Max, BICMOS, TQFN-20
MAXIM

MAX17504

4.5V–60V、3.5A、高效率、 同步降压DC-DC转换器,带内部补偿
MAXIM

MAX17504ATP+

Switching Regulator, Current-mode, 5.85A, 2450kHz Switching Freq-Max, BICMOS, TQFN-20
MAXIM