MAX17511 [MAXIM]

Dual-Output, 3-/2-/1-Phase 2-/1-Phase Quick-PWM Controllers for VR12/IMVP7;
MAX17511
型号: MAX17511
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Dual-Output, 3-/2-/1-Phase 2-/1-Phase Quick-PWM Controllers for VR12/IMVP7

文件: 总72页 (文件大小:3512K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-5742; Rev 1; 7/11  
Dual-Output, 3-/2-/1-Phase + 2-/1-Phase  
Quick-PWM Controllers for VR12/IMVP7  
General Description  
Features  
S Intel VR12/IMVP-7-Compliant Serial Interface  
The MAX17411/MAX17511/MAX17511C/MAX17511N/  
MAX17511T are dual-output, step-down, constant on-time  
Quick-PWMK controllers for VR12/IMVP-7 CPU core sup-  
plies. The controllers consist of two high-current switching  
power supplies for CPU and GFX cores. The CPU regulator  
(regulator A) is a three-phase constant on-time architecture.  
The GFX regulator (regulator B) is also constant on-time  
architecture. The MAX17411 supports 2-phase operation  
and the MAX17511/MAX17511C/MAX17511N/MAX17511T  
support 1-phase operation. The MAX17411/MAX17511/  
MAX17511C/MAX17511N/MAX17511T include two internal  
drivers on regulator A and one internal driver on regula-  
tor B. External drivers such as the MAX17491 enable the  
additional phases.  
S 3-/2-/1-Phase Quick-PWM CPU Core Regulator  
Two Internal Drivers and One External Driver  
Transient-Phase Overlap Mode  
Dynamic Phase Selection  
S 2-/1-Phase Quick-PWM GFX Regulator  
One Internal and One External Driver  
S Active Overshoot Suppression  
S 8-Bit VR12/IMVP-7 DAC  
S ±±0.5 V  
Accuracy Over Line, Load, and  
Temperature  
OUT  
S Active Voltage Positioning with Programmable  
Both regulator A and regulator B include output voltage  
sensing and accurate load-line gain. Switching frequen-  
cies are programmable from 200kHz to 600kHz per  
phase. Output overvoltage protection (OVP, MAX17411/  
MAX17511/MAX17511C/MAX17511N), undervoltage pro-  
tection (UVP), and thermal protection ensure effective and  
reliable operation. When any of these protection features  
detect a fault, the controller shuts down both outputs.  
Gain  
S Accurate Lossless Current Balance  
S Accurate Droop and Current Limit  
S Remote Output and Ground Sense  
S Power-Good Window Comparators (POKA and  
POKB)  
The multiphase regulators include transient-phase over-  
lap and active overshoot suppression, which speed up  
the response time and reduce the total output capaci-  
tance. The CPU and GFX outputs are controlled inde-  
pendently by writing the appropriate data into a function-  
mapped register file. VID code transitions and soft-start  
are enabled with a precision slew-rate control circuit. The  
SVID interface also allows each regulator to be individu-  
ally set into a low-power, single-phase, pulse-skipping  
state to optimize efficiency. The MAX17411 is available in  
a 48-pin, 6mm x 6mm, TQFN package. The MAX17511/  
MAX17511C/MAX17511N/MAX17511T are available in a  
40-pin, 5mm O5mm, TQFN lead-free package.  
S 40.V to 24V Battery-Input Voltage Range  
S Programmable 2±±kHz to 6±±kHz Switching  
Frequency  
S External Thermal-Fault Detection Output  
(VR_HOT#)  
S Overvoltage (MAX17411/MAX17.11/MAX17.11C/  
MAX17.11N), Undervoltage, and Thermal-Fault  
Protection  
S Slew-Rate Controlled Soft-Start  
S Passive Soft-Shutdown (2±I Discharge Switches)  
S Integrated Boost Switches  
S Low-Profile, 48-Lead/4±-Lead TQFN Packages  
Applications  
VR12/IMVP-7 CPU Core Power Supplies  
Notebooks/Desktops/Servers  
Quick PWM is a trademark of Maxim Integrated Products, Inc.  
Ordering Information  
PART  
TEMP RANGE  
-40NC to +105NC  
-40NC to +105NC  
PIN-PACKAGE  
48 TQFN-EP*  
40 TQFN-EP*  
FEATURE  
MAX17411GTM+  
MAX17.11GTL+  
3-/2-/1-Phase + 2-/1-Phase  
3-/2-/1-Phase + 1-Phase  
Ordering Information continued on last page.  
+Denotes a lead(Pb)-free/RoHS-compliant package.  
*EP = Exposed pad.  
_______________________________________________________________ Maxim Integrated Products  
1
For information on other Maxim products, visit Maxim’s website at www.maxim-ic.com.  
Dual-Output, 3-/2-/1-Phase + 2-/1-Phase  
Quick-PWM Controllers for VR12/IMVP7  
ABSOLUTE MAXIMUM RATINGS  
CC DDA DDB  
V
, V  
, V  
to GND (AGND).........................-0.3V to +6V  
BSTA_ to V  
......................................................-0.3V to +26V  
DDA  
VDIO, CLK, ALERT# to GND (AGND).....................-0.3V to +6V  
CSPAAVE, CSPBAVE, CSP_,  
CSN_ to GND (AGND) ........................................-0.3V to +6V  
BSTB to V  
.......................................................-0.3V to +26V  
DDB  
LXA_ to BSTA_ ........................................................-6V to +0.3V  
LXB to BSTB............................................................-6V to +0.3V  
LX_ to GND (AGND) ................................................-6V to +26V  
DHA_ to LXA_.......................................-0.3V to (V  
DHB to LXB ........................................... -0.3V to (V  
FBA, FBB to GND (AGND)....................... -0.3V to (V  
SR, IMAX_ to GND (AGND) .................... -0.3V to (V  
+ 0.3V)  
+ 0.3V)  
CC  
CC  
+ 0.3V)  
+ 0.3V)  
BSTA_  
BSTB  
POKA, POKB, EN to GND (AGND).........................-0.3V to +6V  
VR_HOT# to GND (AGND)......................................-0.3V to +6V  
Continuous Power Dissipation (T = +70NC)  
A
THERMA, THERMB to GND (AGND) ....... -0.3V to (V  
GNDSA, GNDSB to GND (AGND) .......................-0.3V to +0.3V  
TON to GND..........................................................-0.3V to +26V  
+ 0.3V)  
40-Pin TQFN (derate 35.7mW/NC above +70NC) ...2857.1mW  
48-Pin TQFN (derate 37mW/NC above +70NC) .........2963mW  
Operating Temperature Range........................ -40NC to +105NC  
Junction Temperature .....................................................+150NC  
Storage Temperature Range............................ -65NC to +165NC  
Lead Temperature (soldering, 10s) ................................+300NC  
Soldering Temperature (reflow) ......................................+260NC  
CC  
DRVPWMA to GND (AGND) .................. -0.3V to (V  
DRVPWMB to GND (AGND) .................. -0.3V to (V  
DLA_ to GND (PGND)............................ -0.3V to (V  
DLB to GND (PGND).............................. -0.3V to (V  
+ 0.3V)  
+ 0.3V)  
+ 0.3V)  
+ 0.3V)  
DDA  
DDB  
DDA  
DDB  
PACKAGE THERMAL CHARACTERISTICS (Note 1)  
40 TQFN  
Junction-to-Ambient Thermal Resistance (q ) ..........28°C/W  
48 TQFN  
Junction-to-Ambient Thermal Resistance (q ) ..........27°C/W  
JA  
JA  
Junction-to-Case Thermal Resistance (q )..............1.6°C/W  
Junction-to-Case Thermal Resistance (q )..............1.3°C/W  
JC  
JC  
Note 1: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-  
layer board. For detailed information on package thermal considerations, refer to www0maxim-ic0com/thermal-tutorial.  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional opera-  
tion of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(Circuits of Figures 1 and 2. V = 10V, V  
= V  
= V  
= 5V, EN = V , V  
= 0V, V  
= V  
= V  
= V  
CSP_ CSN_  
IN  
CC  
DDA  
DDB  
CC GNDS_  
FB_  
CSP_AVE  
= 1V; [SerialVID = 1.00, FPWM MODE]; T = ±°C to +8.°C, unless otherwise noted. Typical values are at T = +25NC. All devices  
A
A
100% tested at T = +25NC. Limits over temperature guaranteed by design.)  
A
PARAMETER  
PWM CONTROLLER  
Input Voltage Range  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
, V  
, V  
4.5  
5.5  
V
CC DDA DDB  
DAC codes from  
1.000V to 1.520V  
-0.5  
+0.5  
%
Measured at FB_ with  
respect to GNDS_;  
includes load regulation  
error (Note 2)  
DC Output Voltage  
Accuracy  
DAC codes from  
0.800V to 0.995V  
-5  
-8  
+5  
+8  
mV  
DAC codes from  
0.250V to 0.795V  
Line Regulation Error  
V
= 4.5V to 5.5V, V = 4.5V to 24V  
0.1  
-10  
10  
mV  
mV  
CC  
IN  
Upward transitions  
-15  
5
-5  
15  
V
Bit Accuracy  
SETTLED  
Downward transitions  
GNDS_ Input Range  
GNDS_ Gain  
-200  
0.97  
-0.5  
+200  
1.03  
+0.5  
0.1  
mV  
V/V  
FA  
A
V
DV  
/DV  
GNDS_  
1.00  
0.01  
GNDS  
OUT  
GNDS_ Input Bias Current  
TON Shutdown Current  
T = +25NC  
A
EN = GND, V = 24V, V  
= 0V, T = +25NC  
FA  
IN  
CC  
A
MAX17511N only, Reg A and Reg B  
MAX17511C only, Reg B only  
1.094 1.100  
0.895 0.900  
1.106  
0.905  
Boot Voltage  
V
BOOT  
2
______________________________________________________________________________________  
Dual-Output, 3-/2-/1-Phase + 2-/1-Phase  
Quick-PWM Controllers for VR12/IMVP7  
ELECTRICAL CHARACTERISTICS (continued)  
(Circuits of Figures 1 and 2. V = 10V, V  
= V  
= V  
= 5V, EN = V , V  
= 0V, V  
= V  
= V  
= V  
CSP_ CSN_  
IN  
CC  
DDA  
DDB  
CC GNDS_  
FB_  
CSP_AVE  
= 1V; [SerialVID = 1.00, FPWM MODE]; T = ±°C to +8.°C, unless otherwise noted. Typical values are at T = +25NC. All devices  
A
A
100% tested at T = +25NC. Limits over temperature guaranteed by design.)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Measured at DHA_ (600kHz - 10%),  
R
R
= 96.7kI(MAX17411 only),  
= 48.35kI (MAX17511/MAX17511C/  
TON  
157  
185  
307  
554  
151  
251  
453  
213  
TON  
MAX17511N/MAX17511T)  
Measured at DHA_, V = 12V (300kHz - 10%),  
R
(MAX17511/MAX17511C/MAX17511N/  
MAX17511T)  
IN  
= 200kI(MAX17411 only), R  
= 100kI  
TON  
TON  
DHA_ On-Time (Note 3)  
t
ns  
ONA  
276  
470  
128  
226  
338  
638  
174  
277  
Measured at DHA_ (200kHz - 10%),  
R
R
= 303.3kI(MAX17411 only),  
= 151.65kI (MAX17511/MAX17511C/  
TON  
TON  
MAX17511N/MAX17511T)  
Measured at DHB (600kHz + 10%),  
R
R
= 96.7kI(MAX17411 only),  
= 48.35kI (MAX17511/MAX17511C/  
TON  
TON  
MAX17511N/MAX17511T)  
Measured at DHB, V = 12V (300kHz + 10%),  
R
(MAX17511/MAX17511C/MAX17511N/  
MAX17511T)  
IN  
= 200kI(MAX17411 only), R  
= 100kI  
TON  
TON  
DHB On-Time (Note 3)  
t
ns  
ONB  
Measured at DHB (200kHz + 10%),  
R
TON  
= 303.3kI(MAX17411 only), R  
=
TON  
385  
150  
521  
250  
151.65kI (MAX17511/MAX17511C/  
MAX17511N/MAX17511T)  
Minimum Off-Time (Note 3)  
t
Measured at DH_  
200  
40  
ns  
ns  
OFF(MIN)  
Minimum DRVPWM_ Pulse  
Width  
BIAS CURRENTS  
Quiescent Supply Current  
Measured at V , SKIP mode, FB_ forced above  
CC  
the regulation point  
I
5
10  
1
mA  
FA  
FA  
FA  
BIAS  
(V  
CC  
)
Quiescent Supply Current  
(V  
T
= +25NC, measured at V , FPWM mode,  
DD_  
A
I
0.02  
16  
DRV  
)
FB_ forced above the regulation point  
DD_  
Shutdown Supply Current  
(V  
Measured at V , EN = GND  
30  
1
CC  
)
CC  
Shutdown Supply Current  
(V  
T
= +25NC, measured at V , EN = GND  
0.01  
A
DD  
)
DD_  
SLEW-RATE CONTROL  
SetVID - fast slew rate =  
10mV/Fs (min)  
10  
2.5  
20  
5
V
= 0V or V = 5V  
SR  
SR  
SetVID - slow slew rate  
= 2.5mV/Fs (min)  
SetVID - fast slew rate =  
20mV/Fs (min)  
SetVID - slow slew rate  
= 5mV/Fs (min)  
Slew-Rate Accuracy  
mV/Fs  
V
V
= 3V or  
= 1.5V  
SR  
SR  
_______________________________________________________________________________________  
3
Dual-Output, 3-/2-/1-Phase + 2-/1-Phase  
Quick-PWM Controllers for VR12/IMVP7  
ELECTRICAL CHARACTERISTICS (continued)  
(Circuit of Figure 1. V = 10V, V  
= V  
= V  
= 5V, EN = V , V  
= 0V, V  
= V  
= V  
= V  
= 1V;  
IN  
CC  
DDA  
DDB  
CC GNDS_  
FB_  
CSP_AVE  
CSP_  
CSN_  
[SerialVID = 1.00, FPWM MODE]; T = ±°C to +8.°C, unless otherwise noted. Typical values are at T = +25NC. All devices 100%  
A
A
tested at T = +25NC. Limits over temperature guaranteed by design.)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Soft-Start Slew Rate  
Non-zero V  
2.5  
mV/Fs  
BOOT  
Discharge Switch  
Resistance  
CSNA, CSNB  
20  
I
Low  
0.4  
1.8  
Mid-low  
1.2  
2.2  
SR Four-Level Logic  
Thresholds  
V
CC  
- 1.2V  
Mid-high  
High  
V
V
CC  
- 0.4V  
FAULT PROTECTION  
Upper POK_ (MAX17411/  
MAX17511/MAX17511C/  
MAX17511N/MAX17511T)  
and Output Overvoltage  
Protection Trip  
Threshold(MAX17411/  
MAX17511/MAX17511C/  
MAX17511N)  
SKIP mode after output reaches the regulation  
voltage or PWM mode; measured at FB_ with  
respect to the voltage target set by the VID code  
(see Table 3)  
200  
250  
300  
mV  
V
V
OVP  
Soft-start, SKIP mode, and output has not reached  
the regulation voltage; measured at FB_  
1.72  
1.77  
0.8  
1.82  
Minimum OVP threshold, measured at FB_  
Upper POK_ and Output  
Overvoltage Propagation  
Delay  
FB_ forced 25mV above trip threshold  
(MAX17411/MAX17511/MAX17511C/MAX17511N)  
t
5
Fs  
OVP  
Lower POK_ and Output  
Undervoltage Protection  
Trip Threshold  
Measured at FB_ with respect to unloaded output  
voltage  
V
-300  
100  
-250  
-200  
350  
mV  
UVP  
Lower POK_ Propagation  
Delay  
FB_ forced 25mV below trip threshold  
FB_ forced 25mV below trip threshold  
5
Fs  
Fs  
Output Undervoltage  
Propagation Delay  
t
200  
UVP  
POK_ Output Low Voltage  
POK_ Leakage Current  
I
= 4mA  
0.3  
1
V
SINK  
High state, POK_ forced to 5V, T = +25NC  
FA  
A
POK_ Startup Delay and  
Transitions Blanking Time  
Measured from the time when FB_ reaches the  
target voltage  
t
_
POK  
20  
Fs  
V
Undervoltage-Lockout  
Rising edge, 50mV typical hysteresis, controller  
disabled below this level  
CC  
V
UVLO  
4.05  
4.25  
4.45  
V
Threshold  
4
______________________________________________________________________________________  
Dual-Output, 3-/2-/1-Phase + 2-/1-Phase  
Quick-PWM Controllers for VR12/IMVP7  
ELECTRICAL CHARACTERISTICS (continued)  
(Circuits of Figures 1 and 2. V = 10V, V  
= V  
= V  
= 5V, EN = V , V  
= 0V, V  
= V  
= V  
= V  
CSP_ CSN_  
IN  
CC  
DDA  
DDB  
CC GNDS_  
FB_  
CSP_AVE  
= 1V; [SerialVID = 1.00, FPWM MODE]; T = ±°C to +8.°C, unless otherwise noted. Typical values are at T = +25NC. All devices  
A
A
100% tested at T = +25NC. Limits over temperature guaranteed by design.)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
THERMAL PROTECTION  
Measured at THERM_ with respect to V  
falling  
CC  
VR_HOT# Trip Threshold  
edge; specify as % error for all TEMP MAX DAC  
code settings, typical hysteresis = 100mV  
49.5  
50.5  
%
Thermal zone comparator trip points, measured  
with respect to V ; voltage threshold  
CC  
corresponding to TMAX O(1 - N%),  
N = 0, 3, 6, 9, 12, 15, 18, 25  
49 +  
24 O  
N/31  
50 +  
24 O  
N/31  
51 +  
24 O  
N/31  
Thermal Zone Registers Trip  
Points  
%
THERM_ Input Leakage  
I
V
= 2.5V, T = +25NC  
-100  
+100  
1
nA  
THRM  
THERM_  
A
High-Z state (THERM_ > 0.505 x V ), VR_HOT#  
forced to 5V, T = +25NC  
CC  
VR_HOT# Leakage Current  
FA  
A
Internal Thermal Fault  
Shutdown Threshold  
T
Typical hysteresis = 15NC  
160  
NC  
TSHDN  
VALLEY CURRENT LIMIT AND DROOP  
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
= 0.65mI, I  
= 0.65mI, I  
= 0.65mI, I  
= 0.65mI, I  
= 0.75mI, I  
= 0.75mI, I  
= 0.75mI, I  
= 0.75mI, I  
= 0.85mI, I  
= 0.85mI, I  
= 0.85mI, I  
= 0.85mI, I  
= 0.95mI, I  
= 0.95mI, I  
= 0.95mI, I  
= 0.95mI, I  
= 39A  
= 36A  
= 30A  
= 26A  
= 39A  
= 36A  
= 30A  
= 26A  
= 39A  
= 36A  
= 30A  
= 26A  
= 39A  
= 36A  
= 30A  
= 26A  
22.5  
21.5  
17.0  
15.0  
27.0  
25.0  
20.0  
17.0  
30.0  
28.0  
22.5  
20.0  
33.5  
31.0  
25.0  
21.5  
25.5  
24.5  
20.0  
18.0  
30.0  
28.0  
23.0  
20.0  
33.0  
31.0  
25.5  
23.0  
36.5  
34.0  
28.0  
24.5  
28.5  
27.5  
23.0  
21.0  
33.0  
31.0  
26.0  
23.0  
36.0  
34.0  
28.5  
26.0  
39.5  
37.0  
31.0  
27.5  
SENSE  
SENSE  
SENSE  
SENSE  
SENSE  
SENSE  
SENSE  
SENSE  
SENSE  
SENSE  
SENSE  
SENSE  
SENSE  
SENSE  
SENSE  
SENSE  
MAXA  
MAXA  
MAXA  
MAXA  
MAXA  
MAXA  
MAXA  
MAXA  
MAXA  
MAXA  
MAXA  
MAXA  
MAXA  
MAXA  
MAXA  
MAXA  
V
V
V
- V  
= 0V,  
= 1.5V,  
,
CSP_  
CSN_  
SR  
Valley Current-Limit  
Threshold Voltage (Positive)  
SR  
V
ILIMA  
mV  
or one-phase  
operation  
_______________________________________________________________________________________  
.
Dual-Output, 3-/2-/1-Phase + 2-/1-Phase  
Quick-PWM Controllers for VR12/IMVP7  
ELECTRICAL CHARACTERISTICS (continued)  
(Circuits of Figures 1 and 2. V = 10V, V  
= V  
= V  
= 5V, EN = V , V  
= 0V, V  
= V  
= V  
= V  
CSP_ CSN_  
IN  
CC  
DDA  
DDB  
CC GNDS_  
FB_  
CSP_AVE  
= 1V; [SerialVID = 1.00, FPWM MODE]; T = ±°C to +8.°C, unless otherwise noted. Typical values are at T = +25NC. All devices  
A
A
100% tested at T = +25NC. Limits over temperature guaranteed by design.)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
= 0.65mI, I  
MIN  
29.0  
28.0  
22.0  
19.5  
35.0  
32.5  
26.0  
22.0  
39.0  
36.5  
29.0  
26.0  
43.5  
40.0  
32.5  
28.0  
22.5  
21.5  
13.0  
11.0  
27.0  
25.0  
15.0  
13.0  
30.0  
28.0  
17.0  
15.0  
33.5  
31.0  
20.0  
17.0  
TYP  
33.0  
32.0  
26.0  
23.5  
39.0  
36.5  
29.9  
26.0  
43.0  
40.5  
33.0  
30.0  
47.5  
44.0  
36.5  
32.0  
25.5  
24.5  
16.0  
14.0  
30.0  
28.0  
18.0  
16.0  
33.0  
31.0  
20.0  
18.0  
36.5  
34.0  
23.0  
20.0  
MAX  
37.0  
36.0  
30.0  
27.5  
43.0  
40.5  
33.8  
30.0  
47.0  
44.5  
37.0  
34.0  
51.5  
48.0  
40.5  
36.0  
28.5  
27.5  
19.0  
17.0  
33.0  
31.0  
21.0  
19.0  
36.0  
34.0  
23.0  
21.0  
39.5  
37.0  
26.0  
23.0  
UNITS  
R
= 39A  
= 36A  
= 30A  
= 26A  
= 39A  
= 36A  
= 30A  
= 26A  
= 39A  
= 36A  
= 30A  
= 26A  
= 39A  
= 36A  
= 30A  
= 26A  
= 39A  
= 36A  
= 23A  
= 20A  
= 39A  
= 36A  
= 23A  
= 20A  
= 39A  
= 36A  
= 23A  
= 20A  
= 39A  
= 36A  
= 23A  
= 20A  
SENSE  
SENSE  
SENSE  
SENSE  
SENSE  
SENSE  
SENSE  
SENSE  
SENSE  
SENSE  
SENSE  
SENSE  
SENSE  
SENSE  
SENSE  
SENSE  
SENSE  
SENSE  
SENSE  
SENSE  
SENSE  
SENSE  
SENSE  
SENSE  
SENSE  
SENSE  
SENSE  
SENSE  
SENSE  
SENSE  
SENSE  
SENSE  
MAXA  
MAXA  
MAXA  
MAXA  
MAXA  
MAXA  
MAXA  
MAXA  
MAXA  
MAXA  
MAXA  
MAXA  
MAXA  
MAXA  
MAXA  
MAXA  
MAXB  
MAXB  
MAXB  
MAXB  
MAXB  
MAXB  
MAXB  
MAXB  
MAXB  
MAXB  
MAXB  
MAXB  
MAXB  
MAXB  
MAXB  
MAXB  
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
= 0.65mI, I  
= 0.65mI, I  
= 0.65mI, I  
= 0.75mI, I  
= 0.75mI, I  
= 0.75mI, I  
= 0.75mI, I  
= 0.85mI, I  
= 0.85mI, I  
= 0.85mI, I  
= 0.85mI, I  
= 0.95mI, I  
= 0.95mI, I  
= 0.95mI, I  
= 0.95mI, I  
= 0.65mI, I  
= 0.65mI, I  
= 0.65mI, I  
= 0.65mI, I  
= 0.75mI, I  
= 0.75mI, I  
= 0.75mI, I  
= 0.75mI, I  
= 0.85mI, I  
= 0.85mI, I  
= 0.85mI, I  
= 0.85mI, I  
= 0.95mI, I  
= 0.95mI, I  
= 0.95mI, I  
= 0.95mI, I  
V
V
V
- V  
= 3V or  
= 5V,  
,
CSP_  
CSN_  
SR  
SR  
Valley Current-Limit  
Threshold Voltage (Positive)  
V
exclude  
one-phase  
operaton  
mV  
ILIMA  
V
V
V
- V  
,
CSP_  
CSN_  
= 0V,  
= 1.5V,  
SR  
SR  
Valley Current-Limit  
Threshold Voltage (Positive)  
V
mV  
ILIMB  
or one-phase  
operation  
6
______________________________________________________________________________________  
Dual-Output, 3-/2-/1-Phase + 2-/1-Phase  
Quick-PWM Controllers for VR12/IMVP7  
ELECTRICAL CHARACTERISTICS (continued)  
(Circuits of Figures 1 and 2. V = 10V, V  
= V  
= V  
= 5V, EN = V , V  
= 0V, V  
= V  
= V  
= V  
CSP_ CSN_  
IN  
CC  
DDA  
DDB  
CC GNDS_  
FB_  
CSP_AVE  
= 1V; [SerialVID = 1.00, FPWM MODE]; T = ±°C to +8.°C, unless otherwise noted. Typical values are at T = +25NC. All devices  
A
A
100% tested at T = +25NC. Limits over temperature guaranteed by design.)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
= 0.65mI, I  
MIN  
29.0  
28.0  
17.0  
14.0  
35.0  
32.5  
19.5  
17.0  
39.0  
36.5  
22.0  
19.5  
43.5  
40.0  
26.0  
22.0  
TYP  
33.0  
32.0  
21.0  
18.0  
39.0  
36.5  
23.5  
21.0  
43.0  
40.5  
26.0  
23.5  
47.5  
44.0  
30.0  
26.0  
MAX  
37.0  
36.0  
25.0  
22.0  
43.0  
40.5  
27.5  
25.0  
47.0  
44.5  
30.0  
27.5  
51.5  
48.0  
34.0  
30.0  
UNITS  
R
= 39A  
= 36A  
= 23A  
= 20A  
= 39A  
= 36A  
= 23A  
= 20A  
= 39A  
= 36A  
= 23A  
= 20A  
= 39A  
= 36A  
= 23A  
= 20A  
SENSE  
SENSE  
SENSE  
SENSE  
SENSE  
SENSE  
SENSE  
SENSE  
SENSE  
SENSE  
SENSE  
SENSE  
SENSE  
SENSE  
SENSE  
SENSE  
MAXB  
MAXB  
MAXB  
MAXB  
MAXB  
MAXB  
MAXB  
MAXB  
MAXB  
MAXB  
MAXB  
MAXB  
MAXB  
MAXB  
MAXB  
MAXB  
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
= 0.65mI, I  
= 0.65mI, I  
= 0.65mI, I  
= 0.75mI, I  
= 0.75mI, I  
= 0.75mI, I  
= 0.75mI, I  
= 0.85mI, I  
= 0.85mI, I  
= 0.85mI, I  
= 0.85mI, I  
= 0.95mI, I  
= 0.95mI, I  
= 0.95mI, I  
= 0.95mI, I  
V
V
V
- V  
= 3V or  
= 5V,  
,
CSP_  
CSN_  
SR  
Valley Current-Limit  
Threshold Voltage (Positive)  
SR  
V
ILIMB  
mV  
exclude  
one-phase  
operaton  
Current-Limit Threshold  
Voltage (Zero Crossing)  
V
ZERO  
V
GND  
- V  
LX_  
1
mV  
mV  
Current-Balance Offset  
Voltage  
-1.5  
+1.5  
CSPAAVE, CSPBAVE, CSP_,  
Input Current  
T
= +25NC  
-0.12  
+0.12  
14  
FA  
FA  
V
A
CSN_ Pulldown Current  
7
3
V
-
CC  
Phase Disable Threshold  
CSPB2, CSPB1, CSPA3, CSPA2, CSPA1  
V
CC  
- 1  
0.4  
FB_ Droop Amplifier (GMD)  
Offset  
(V  
- V  
) at I = 0mA  
FB_  
-1.0  
591  
+1.0  
609  
mV  
CSP_AVE  
CSN_  
FB_ Droop Amplifier (GMD)  
Transconductance  
DI  
FB_  
/D(V  
- V ),  
CSN_  
CSP_AVE  
600  
FS  
V
- V  
= -15mV to +15mV  
CSP_AVE  
CSN_  
_______________________________________________________________________________________  
7
Dual-Output, 3-/2-/1-Phase + 2-/1-Phase  
Quick-PWM Controllers for VR12/IMVP7  
ELECTRICAL CHARACTERISTICS (continued)  
(Circuits of Figures 1 and 2. V = 10V, V  
= V  
= V  
= 5V, EN = V , V  
= 0V, V  
= V  
= V  
= V  
CSP_ CSN_  
IN  
CC  
DDA  
DDB  
CC GNDS_  
FB_  
CSP_AVE  
= 1V; [SerialVID = 1.00, FPWM MODE]; T = ±°C to +8.°C, unless otherwise noted. Typical values are at T = +25NC. All devices  
A
A
100% tested at T = +25NC. Limits over temperature guaranteed by design.)  
A
PARAMETER  
IMAX_ LOGIC  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
13.65 O  
Threshold 0, fault  
V /50  
CC  
Threshold 1, R  
= 0.65mI,  
14.20 O  
14.65 O  
/50  
SENSE  
I
= 39A  
V /50  
CC  
V
CC  
MAX  
15.20 O  
/50  
15.65 O  
/50  
Threshold 2, R  
Threshold 3, R  
= 0.65mI, I  
= 0.65mI,  
= 36A  
SENSE  
MAX  
V
V
CC  
CC  
16.20 O  
/50  
16.65 O  
/50  
SENSE  
I
= 30A/23A  
V
CC  
V
CC  
MAXA/B  
Threshold 4, R  
= 0.65mI,  
17.20 O  
/50  
17.65 O  
/50  
SENSE  
I
= 26A/20A  
V
V
CC  
MAXA/B  
CC  
18.20 O  
/50  
18.65 O  
/50  
Threshold 5, R  
Threshold 6, R  
Threshold 7, R  
Threshold 8, R  
Threshold 9, R  
= 0.75mI, I  
= 0.75mI, I  
= 0.75mI, I  
= 0.75mI, I  
= 0.85mI, I  
= 39A  
SENSE  
SENSE  
SENSE  
SENSE  
SENSE  
MAX  
MAX  
MAX  
MAX  
MAX  
V
CC  
V
CC  
19.20 O  
/50  
19.65 O  
/50  
= 36A  
V
CC  
V
CC  
20.20 O  
/50  
20.65 O  
/50  
= 30A/23A  
= 26A/20A  
= 39A  
V
CC  
V
CC  
21.20 O  
/50  
21.65 O  
/50  
V
CC  
V
CC  
V
IMAX_ Detection Thresholds  
22.20 O  
/50  
22.65 O  
/50  
V
CC  
V
CC  
23.20 O  
/50  
23.65 O  
/50  
Threshold 10, R  
Threshold 11, R  
= 0.85mI, I  
= 36A  
MAX  
SENSE  
V
V
CC  
CC  
= 0.85mI,  
24.20 O  
/50  
24.65 O  
/50  
SENSE  
I
= 30A/23A  
V
CC  
V
CC  
MAXA/B  
Threshold 12, R  
= 0.85mI,  
= 0.95mI,  
25.20 O  
/50  
25.65 O  
/50  
SENSE  
I
= 26A/20A  
V
V
CC  
MAXA/B  
CC  
Threshold 13, R  
= 39A  
26.20 O  
/50  
26.65 O  
/50  
SENSE  
I
V
CC  
V
CC  
MAX  
27.20 O  
/50  
27.65 O  
/50  
Threshold 14, R  
Threshold 15, R  
= 0.95mI, I  
= 36A  
MAX  
SENSE  
V
V
CC  
CC  
= 0.95mI,  
28.20 O  
/50  
28.65 O  
/50  
SENSE  
I
= 30A/23A  
V
CC  
V
CC  
MAXA/B  
Threshold 16, R  
= 0.95mI,  
29.20 O  
/50  
29.65 O  
/50  
SENSE  
I
= 26A/20A  
V
V
CC  
MAXA/B  
CC  
30.20 O  
/50  
Threshold 17, fault  
V
CC  
8
______________________________________________________________________________________  
Dual-Output, 3-/2-/1-Phase + 2-/1-Phase  
Quick-PWM Controllers for VR12/IMVP7  
ELECTRICAL CHARACTERISTICS (continued)  
(Circuits of Figures 1 and 2. V = 10V, V  
= V  
= V  
= 5V, EN = V , V  
= 0V, V  
= V  
= V  
= V  
CSP_ CSN_  
IN  
CC  
DDA  
DDB  
CC GNDS_  
FB_  
CSP_AVE  
= 1V; [SerialVID = 1.00, FPWM MODE]; T = ±°C to +8.°C, unless otherwise noted. Typical values are at T = +25NC. All devices  
A
A
100% tested at T = +25NC. Limits over temperature guaranteed by design.)  
A
PARAMETER  
GATE DRIVERS  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
High state (pullup)  
Low state (pulldown)  
0.9  
0.7  
2.5  
2.0  
2.0  
0.7  
DH_ Gate-Driver  
On-Resistance  
R
BST_ - LX_ forced to 5V  
I
I
I
A
ON(DH)  
High state (pullup)  
0.7  
DL_ Gate-Driver  
On-Resistance  
R
ON(DL)  
Low state (pulldown)  
0.25  
Internal BST_ Switch On-  
Resistance  
BSTA1 to V  
, BSTA2 to V  
, BSTB to V  
,
DDA  
DDA  
DDB  
R
BST  
10  
2.2  
2.7  
2.7  
8
20  
V
DD_  
= 5V  
DH_ Gate-Driver Source  
Current  
I
DH_ forced to 2.5V, BST_ - LX_ forced to 5V  
DH_ forced to 2.5V, BST_ - LX_ forced to 5V  
DL_ forced to 2.5V  
DH(SRC)  
DH_ Gate-Driver Sink  
Current  
I
A
DH(SINK)  
DL_ Gate-Driver Source  
Current  
I
A
DL(SRC)  
DL(SINK)  
DL_ Gate-Driver Sink  
Current  
I
DL_ forced to 2.5V  
A
DH_ low to DL_ high  
DL_ low to DH_ high  
30  
30  
20  
20  
20  
20  
Driver Propagation Delay  
DL_ Transition Time  
DH_ Transition Time  
ns  
ns  
ns  
V
DL_ falling, C = 3nF  
DL  
DL_ rising, C = 3nF  
DL  
DH_ falling, C  
= 3nF  
= 3nF  
DH  
DH  
DH_ rising, C  
DRVPWMA, DRVPWMB  
Logic-High Voltage  
V
DD_  
- 0.4  
I
I
= 3mA  
SOURCE  
DRVPWMA, DRVPWMB  
Logic-Low Voltage  
= 3mA  
0.4  
V
SINK  
LOGIC AND I/O  
Enable Input High Voltage  
Enable Input Low Voltage  
Enable Input Current  
V
0.67  
-1  
V
V
EN_IH  
V
0.33  
+1  
EN_IL  
T
= +25NC  
FA  
A
SERIALVID INTERFACE (per Intel SerialVID Specification—see the Detailed Description)  
SerialVID Input Low Voltage  
(CLK, VDIO)  
V
-0.1  
+0.45  
V
V
V
V
IL  
SerialVID Input High Voltage  
(CLK, VDIO)  
V
TT  
+
V
IH  
0.65  
1V  
SerialVID Output High  
Voltage (VDIO, ALERT#)  
V
OH  
Open-drain pullup to V  
V
TT  
TT  
SerialVID Output Low Level  
(VDIO, ALERT#)  
V
Open-drain pullup to V , R = 50I  
0.36  
OL  
TT PU  
_______________________________________________________________________________________  
9
Dual-Output, 3-/2-/1-Phase + 2-/1-Phase  
Quick-PWM Controllers for VR12/IMVP7  
ELECTRICAL CHARACTERISTICS (continued)  
(Circuits of Figures 1 and 2. V = 10V, V  
= V  
= V  
= 5V, EN = V , V  
= 0V, V  
= V  
= V  
= V  
CSP_ CSN_  
IN  
CC  
DDA  
DDB  
CC GNDS_  
FB_  
CSP_AVE  
= 1V; [SerialVID = 1.00, FPWM MODE]; T = ±°C to +8.°C, unless otherwise noted. Typical values are at T = +25NC. All devices  
A
A
100% tested at T = +25NC. Limits over temperature guaranteed by design.)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
SerialVID Open-Drain  
Output On-Resistance  
(VDIO, ALERT#, VRHOT#)  
R
I
= 30mA  
SINK  
4
13  
I
ON  
SerialVID Logic-Input  
Leakage Current  
(CLK, VDIO)  
T
T
= +25NC  
-1  
+1  
FA  
A
A
ALERT# Deasserted  
Leakage Current  
= +25NC, V  
= 3.3V  
1
FA  
ALERT#  
SerialVID Logic Slew Rate  
(CLK, VDIO, ALERT#)  
0.5  
2.0  
V/ns  
SerialVID Input Capacitance  
CLK Frequency  
C
4
pF  
PAD  
f
13  
-5  
25  
33.3  
MHz  
CLK  
CLK Absolute Min/Max  
Period  
Specified as a percentage of f  
+5  
%
CLK  
CLK High Time  
CLK Low Time  
Rise Time  
t
Specified as a percentage of t  
Specified as a percentage of t  
period  
period  
45  
45  
%
%
HIGH  
CLK  
t
LOW  
CLK  
t
0.25  
0.25  
45  
2.5  
2.5  
ns  
ns  
%
RISE  
FALL  
Fall Time  
t
Duty Cycle  
55  
SerialVID Inactivity Timeout  
t
0.14  
0.40  
Fs  
RSTNA  
ELECTRICAL CHARACTERISTICS  
(Circuits of Figures 1 and 2. V = 10V, V  
= V  
= V  
= 5V, EN = V , V  
= 0V, V  
= V  
= V  
= V  
=
CSN_  
IN  
CC  
DDA  
DDB  
CC GNDS_  
FB_  
CSP_AVE  
CSP_  
1V; [SerialVID = 1.00, FPWM MODE]; T = -4±°C to +1±.°C, unless otherwise noted. Specifications to -40NC and +105NC are guar-  
A
anteed by design, not production tested.)  
PARAMETER  
PWM CONTROLLER  
Input Voltage Range  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
, V  
, V  
4.5  
5.5  
V
CC DDA DDB  
DAC codes from 1.000V  
to 1.520V  
-0.8  
+0.8  
%
Measured at FB_  
with respect to  
GNDS_; includes load  
regulation error  
(Note 2)  
DC Output Voltage  
Accuracy  
DAC codes from 0.800V  
to 0.995V  
-8  
-8  
+8  
+8  
mV  
DAC codes from 0.250 to  
0.795V  
Upward transitions  
-15  
5
-5  
V
BIT Accuracy  
mV  
SETTLED  
Downward transitions  
15  
GNDS_ Input Range  
GNDS_ Gain  
-200  
0.97  
1.091  
0.892  
+200  
1.03  
1.109  
0.908  
mV  
V/V  
A
V
DV  
/DV  
OUT GNDS_  
GNDS  
MAX17511N only, Reg A and Reg B  
MAX17511C only, Reg B only  
Boot Voltage  
V
BOOT  
1± _____________________________________________________________________________________  
Dual-Output, 3-/2-/1-Phase + 2-/1-Phase  
Quick-PWM Controllers for VR12/IMVP7  
ELECTRICAL CHARACTERISTICS (continued)  
(Circuits of Figures 1 and 2. V = 10V, V  
= V  
= V  
= 5V, EN = V , V  
= 0V, V  
= V  
= V  
= V  
=
CSN_  
IN  
CC  
DDA  
DDB  
CC GNDS_  
FB_  
CSP_AVE  
CSP_  
1V; [SerialVID = 1.00, FPWM MODE]; T = -4±°C to +1±.°C, unless otherwise noted. Specifications to -40NC and +105NC are guar-  
A
anteed by design, not production tested.)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Measured at DHA_ (600kHz - 10%),  
R
TON  
= 96.7kI (MAX17411 only), R  
= 48.35K  
157  
213  
TON  
(MAX17511/MAX17511C/MAX17511N/MAX17511T)  
Measured at DHA_, V = 12V (300kHz - 10%),  
IN  
R
= 200kI (MAX17411 only), R  
= 100kI  
276  
470  
338  
638  
TON  
TON  
DHA_ On-Time (Note 3)  
t
ns  
ONA  
(MAX17511/MAX17511C/MAX17511N/MAX17511T)  
Measured at DHA_ (200kHz - 10%),  
R
= 303.3kI (MAX17411 only), R  
=
TON  
TON  
151.65kI (MAX17511/MAX17511C/MAX17511N/  
MAX17511T)  
Measured at DHB (600kHz + 10%),  
R
= 96.7kI (MAX17411 only), R  
=
TON  
TON  
128  
226  
174  
277  
48.35kI (MAX17511/MAX17511C/MAX17511N/  
MAX17511T)  
Measured at DHB, V = 12V (300kHz + 10%),  
R
(MAX17511/MAX17511C/MAX17511N/  
MAX17511T)  
IN  
= 200kI (MAX17411 only), R  
= 100kI  
TON  
TON  
DHB On-Time (Note 3)  
t
ns  
ns  
ONB  
Measured at DHB (200kHz + 10%),  
R
= 303.3kI (MAX17411 only), R  
=
TON  
TON  
385  
150  
521  
250  
151.65kI (MAX17511/MAX17511C/MAX17511N/  
MAX17511T)  
Minimum Off-Time  
(Note 3)  
t
Measured at DH_  
OFF(MIN)  
BIAS CURRENTS  
Quiescent Supply Current  
Measured at V , SKIP mode, FB_ forced above  
CC  
the regulation point  
I
10  
30  
mA  
BIAS  
(V  
CC  
)
Shutdown Supply Current  
(V  
Measured at V , EN = GND  
FA  
CC  
)
CC  
SLEW-RATE CONTROL  
Slew-Rate Accuracy  
Soft-Start Slew Rate  
SetVID - fast slew rate =  
10mV/Fs (min)  
10  
2.5  
20  
V
V
= 0V or V = 5V  
SR  
SR  
SetVID - slow slew rate  
= 2.5mV/Fs (min)  
mV/Fs  
SetVID - fast slew rate =  
20mV/Fs (min)  
= 3V or V = 1.5V  
SR  
SR  
SetVID - slow slew rate  
= 5mV/Fs (min)  
5
Non-zero V  
Low  
2.5  
mV/Fs  
BOOT  
0.4  
Mid-low  
Mid-high  
High  
1.2  
2.2  
1.8  
SR Four-Level Logic  
Thresholds  
V
V
- 1.2V  
CC  
V
- 0.4V  
CC  
______________________________________________________________________________________ 11  
Dual-Output, 3-/2-/1-Phase + 2-/1-Phase  
Quick-PWM Controllers for VR12/IMVP7  
ELECTRICAL CHARACTERISTICS (continued)  
(Circuits of Figures 1 and 2. V = 10V, V  
= V  
= V  
= 5V, EN = V , V  
= 0V, V  
= V  
= V  
= V  
=
CSN_  
IN  
CC  
DDA  
DDB  
CC GNDS_  
FB_  
CSP_AVE  
CSP_  
1V; [SerialVID = 1.00, FPWM MODE]; T = -4±°C to +1±.°C, unless otherwise noted. Specifications to -40NC and +105NC are guar-  
A
anteed by design, not production tested.)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
FAULT PROTECTION  
Upper POK_ (MAX17411/  
MAX17511/MAX17511N/  
MAX17511T) and Output  
Overvoltage Protection Trip  
Threshold (MAX17411/  
MAX17511/MAX17511C/  
MAX17511N)  
SKIP mode after output reaches the regulation  
voltage or PWM mode; measured at FB_ with  
respect to the voltage target set by the VID code  
(see Table 3)  
200  
300  
mV  
V
OVP  
Soft-start, SKIP mode, and output has not reached  
the regulation voltage, measured at FB_  
1.72  
-300  
100  
1.82  
-200  
V
Lower POK_ and Output  
Undervoltage Protection  
Trip Threshold  
Measured at FB_ with respect to unloaded output  
voltage  
V
mV  
UVP  
UVP  
Output Undervoltage  
Propagation Delay  
t
FB_ forced 25mV below trip threshold  
350  
0.3  
Fs  
V
POK_ Output Low Voltage  
I
= 4mA  
SINK  
V
Undervoltage Lockout  
Rising edge, 50mV typical hysteresis, controller  
disabled below this level  
CC  
V
UVLO  
4.05  
49.5  
4.45  
V
Threshold  
THERMAL PROTECTION  
Measured at THERM_ with respect to V  
falling  
CC  
VR_HOT# Trip Threshold  
edge; specify as % error for all TEMP MAX DAC  
code settings; typical hysteresis = 100mV  
50.5  
%
%
Thermal zone comparator trip points, measured  
with respect to V , voltage threshold  
CC  
corresponding to TMAX O(1 - N%), N = 0, 3, 6, 9,  
12, 15, 18, 25  
49 +  
24 O  
N/31  
51 +  
24 O  
N/31  
Thermal Zone Registers  
Trip Points  
VALLEY CURRENT LIMIT AND DROOP  
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
= 0.65mI, I  
= 0.65mI, I  
= 0.65mI, I  
= 0.65mI, I  
= 0.75mI, I  
= 0.75mI, I  
= 0.75mI, I  
= 0.75mI, I  
= 0.85mI, I  
= 0.85mI, I  
= 0.85mI, I  
= 0.85mI, I  
= 0.95mI, I  
= 0.95mI, I  
= 0.95mI, I  
= 0.95mI, I  
= 39A  
= 36A  
= 30A  
= 26A  
= 39A  
= 36A  
= 30A  
= 26A  
= 39A  
= 36A  
= 30A  
= 26A  
= 39A  
= 36A  
= 30A  
= 26A  
22.5  
21.5  
17.0  
15.0  
27.0  
25.0  
20.0  
17.0  
30.0  
28.0  
22.5  
20.0  
33.5  
31.0  
25.0  
21.5  
28.5  
27.5  
23.0  
21.0  
33.0  
31.0  
26.0  
23.0  
36.0  
34.0  
28.5  
26.0  
39.5  
37.0  
31.0  
27.5  
SENSE  
SENSE  
SENSE  
SENSE  
SENSE  
SENSE  
SENSE  
SENSE  
SENSE  
SENSE  
SENSE  
SENSE  
SENSE  
SENSE  
SENSE  
SENSE  
MAXA  
MAXA  
MAXA  
MAXA  
MAXA  
MAXA  
MAXA  
MAXA  
MAXA  
MAXA  
MAXA  
MAXA  
MAXA  
MAXA  
MAXA  
MAXA  
V
V
V
- V  
= 0V,  
= 1.5V,  
,
CSP_  
CSN_  
SR  
Valley Current-Limit  
Threshold Voltage (Positive)  
SR  
V
mV  
ILIMA  
or one-phase  
operation  
12 _____________________________________________________________________________________  
Dual-Output, 3-/2-/1-Phase + 2-/1-Phase  
Quick-PWM Controllers for VR12/IMVP7  
ELECTRICAL CHARACTERISTICS (continued)  
(Circuits of Figures 1 and 2. V = 10V, V  
= V  
= V  
= 5V, EN = V , V  
= 0V, V  
= V  
= V  
= V  
=
CSN_  
IN  
CC  
DDA  
DDB  
CC GNDS_  
FB_  
CSP_AVE  
CSP_  
1V; [SerialVID = 1.00, FPWM MODE]; T = -4±°C to +1±.°C, unless otherwise noted. Specifications to -40NC and +105NC are guar-  
A
anteed by design, not production tested.)  
PARAMETER  
SYMBOL  
CONDITIONS  
= 0.65mI, I  
MIN  
29.0  
28.0  
22.0  
19.5  
35.0  
32.5  
26.0  
22.0  
39.0  
36.5  
29.0  
26.0  
43.5  
40.0  
32.5  
28.0  
22.5  
21.5  
13.0  
11.0  
27.0  
25.0  
15.0  
13.0  
30.0  
28.0  
17.0  
15.0  
33.5  
31.0  
20.0  
17.0  
TYP  
MAX  
37.0  
36.0  
30.0  
27.5  
43.0  
40.5  
33.8  
30.0  
47.0  
44.5  
37.0  
34.0  
51.5  
48.0  
40.5  
36.0  
28.5  
27.5  
19.0  
17.0  
33.0  
31.0  
21.0  
19.0  
36.0  
34.0  
23.0  
21.0  
39.5  
37.0  
26.0  
23.0  
UNITS  
R
= 39A  
= 36A  
= 30A  
= 26A  
= 39A  
= 36A  
= 30A  
= 26A  
= 39A  
= 36A  
= 30A  
= 26A  
= 39A  
= 36A  
= 30A  
= 26A  
= 39A  
= 36A  
= 23A  
= 20A  
= 39A  
= 36A  
= 23A  
= 20A  
= 39A  
= 36A  
= 23A  
= 20A  
= 39A  
= 36A  
= 23A  
= 20A  
SENSE  
SENSE  
SENSE  
SENSE  
SENSE  
SENSE  
SENSE  
SENSE  
SENSE  
SENSE  
SENSE  
SENSE  
SENSE  
SENSE  
SENSE  
SENSE  
SENSE  
SENSE  
SENSE  
SENSE  
SENSE  
SENSE  
SENSE  
SENSE  
SENSE  
SENSE  
SENSE  
SENSE  
SENSE  
SENSE  
SENSE  
SENSE  
MAXA  
MAXA  
MAXA  
MAXA  
MAXA  
MAXA  
MAXA  
MAXA  
MAXA  
MAXA  
MAXA  
MAXA  
MAXA  
MAXA  
MAXA  
MAXA  
MAXB  
MAXB  
MAXB  
MAXB  
MAXB  
MAXB  
MAXB  
MAXB  
MAXB  
MAXB  
MAXB  
MAXB  
MAXB  
MAXB  
MAXB  
MAXB  
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
= 0.65mI, I  
= 0.65mI, I  
= 0.65mI, I  
= 0.75mI, I  
= 0.75mI, I  
= 0.75mI, I  
= 0.75mI, I  
= 0.85mI, I  
= 0.85mI, I  
= 0.85mI, I  
= 0.85mI, I  
= 0.95mI, I  
= 0.95mI, I  
= 0.95mI, I  
= 0.95mI, I  
= 0.65mI, I  
= 0.65mI, I  
= 0.65mI, I  
= 0.65mI, I  
= 0.75mI, I  
= 0.75mI, I  
= 0.75mI, I  
= 0.75mI, I  
= 0.85mI, I  
= 0.85mI, I  
= 0.85mI, I  
= 0.85mI, I  
= 0.95mI, I  
= 0.95mI, I  
= 0.95mI, I  
= 0.95mI, I  
V
V
or V  
5V, exclude  
one-phase  
operation  
- V  
= 3V  
=
,
CSP_  
CSN_  
SR  
Valley Current-Limit  
Threshold Voltage (Positive)  
SR  
V
mV  
ILIMA  
V
V
V
- V  
,
CSP_  
CSN_  
= 0V,  
= 1.5V,  
SR  
Valley Current-Limit  
Threshold Voltage (Positive)  
SR  
V
ILIMB  
mV  
or one-phase  
operation  
______________________________________________________________________________________ 13  
Dual-Output, 3-/2-/1-Phase + 2-/1-Phase  
Quick-PWM Controllers for VR12/IMVP7  
ELECTRICAL CHARACTERISTICS (continued)  
(Circuits of Figures 1 and 2. V = 10V, V  
= V  
= V  
= 5V, EN = V , V  
= 0V, V  
= V  
= V  
= V  
=
CSN_  
IN  
CC  
DDA  
DDB  
CC GNDS_  
FB_  
CSP_AVE  
CSP_  
1V; [SerialVID = 1.00, FPWM MODE]; T = -4±°C to +1±.°C, unless otherwise noted. Specifications to -40NC and +105NC are guar-  
A
anteed by design, not production tested.)  
PARAMETER  
SYMBOL  
CONDITIONS  
= 0.65mI, I  
MIN  
29.0  
28.0  
17.0  
14.0  
35.0  
32.5  
19.5  
17.0  
39.0  
36.5  
22.0  
19.5  
43.5  
40.0  
26.0  
22.0  
TYP  
MAX  
37.0  
36.0  
25.0  
22.0  
43.0  
40.5  
27.5  
25.0  
47.0  
44.5  
30.0  
27.5  
51.5  
48.0  
34.0  
30.0  
UNITS  
R
= 39A  
= 36A  
= 23A  
= 20A  
= 39A  
= 36A  
= 23A  
= 20A  
= 39A  
= 36A  
= 23A  
= 20A  
= 39A  
= 36A  
= 23A  
= 20A  
SENSE  
SENSE  
SENSE  
SENSE  
SENSE  
SENSE  
SENSE  
SENSE  
SENSE  
SENSE  
SENSE  
SENSE  
SENSE  
SENSE  
SENSE  
SENSE  
MAXB  
MAXB  
MAXB  
MAXB  
MAXB  
MAXB  
MAXB  
MAXB  
MAXB  
MAXB  
MAXB  
MAXB  
MAXB  
MAXB  
MAXB  
MAXB  
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
= 0.65mI, I  
= 0.65mI, I  
= 0.65mI, I  
= 0.75mI, I  
= 0.75mI, I  
= 0.75mI, I  
= 0.75mI, I  
= 0.85mI, I  
= 0.85mI, I  
= 0.85mI, I  
= 0.85mI, I  
= 0.95mI, I  
= 0.95mI, I  
= 0.95mI, I  
= 0.95mI, I  
V
V
or V  
5V, exclude  
one-phase  
operation  
- V  
= 3V  
=
,
CSP_  
CSN_  
SR  
SR  
Valley Current-Limit  
Threshold Voltage (Positive)  
V
mV  
ILIMB  
Current-Balance Offset  
Voltage  
-1.5  
3
+1.5  
mV  
V
V
CC  
-
Phase Disable Threshold  
CSPB2, CSPB1, CSPA3, CSPA2, CSPA1  
0.4  
FB_ Droop Amplifier (G  
Offset  
)
)
MD  
V
- V  
at I  
= 0mA  
-1.0  
588  
+1.0  
612  
mV  
FS  
CSP_AVE  
CSN_  
FB_  
FB_ Droop Amplifier (G  
Transconductance  
DI  
/D(V  
FB_  
- V  
),  
MD  
CSP_AVE  
CSN_  
V
- V  
= -15mV to +15mV  
CSP_AVE  
CSN_  
14 _____________________________________________________________________________________  
Dual-Output, 3-/2-/1-Phase + 2-/1-Phase  
Quick-PWM Controllers for VR12/IMVP7  
ELECTRICAL CHARACTERISTICS (continued)  
(Circuits of Figures 1 and 2. V = 10V, V  
= V  
= V  
= 5V, EN = V , V  
= 0V, V  
= V  
= V  
= V  
=
CSN_  
IN  
CC  
DDA  
DDB  
CC GNDS_  
FB_  
CSP_AVE  
CSP_  
1V; [SerialVID = 1.00, FPWM MODE]; T = -4±°C to +1±.°C, unless otherwise noted. Specifications to -40NC and +105NC are guar-  
A
anteed by design, not production tested.)  
PARAMETER  
IMAX_ LOGIC  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
13.65 O  
Threshold 0, fault  
V /50  
CC  
14.20 O  
14.65 O  
/50  
Threshold 1, R  
= 0.65mI, I  
= 39A  
= 36A  
SENSE  
MAX  
MAX  
V /50  
CC  
V
CC  
15.20 O  
/50  
15.65 O  
/50  
Threshold 2, R  
Threshold 3, R  
= 0.65mI, I  
= 0.65mI,  
SENSE  
V
CC  
V
CC  
16.20 O  
/50  
16.65 O  
/50  
SENSE  
I
= 30A/23A  
V
CC  
V
CC  
MAXA/B  
Threshold 4, R  
= 0.65mI,  
17.20 O  
/50  
17.65 O  
/50  
SENSE  
I
= 26A/20A  
V
V
CC  
MAXA/B  
CC  
18.20 O  
/50  
18.65 O  
/50  
Threshold 5, R  
Threshold 6, R  
Threshold 7, R  
Threshold 8, R  
Threshold 9, R  
= 0.75mI, I  
= 0.75mI, I  
= 0.75mI, I  
= 0.75mI, I  
= 0.85mI, I  
= 39A  
SENSE  
SENSE  
SENSE  
SENSE  
SENSE  
MAX  
MAX  
MAX  
MAX  
MAX  
V
V
CC  
CC  
19.20 O  
/50  
19.65 O  
/50  
= 36A  
V
CC  
V
CC  
20.20 O  
/50  
20.65 O  
/50  
= 30A/23A  
= 26A/20A  
= 39A  
V
CC  
V
CC  
21.20 O  
/50  
21.65 O  
/50  
V
CC  
V
CC  
IMAX_ Detection  
Thresholds  
V
22.20 O  
/50  
22.65 O  
/50  
V
CC  
V
CC  
23.20 O  
/50  
23.65 O  
/50  
Threshold 10, R  
Threshold 11, R  
= 0.85mI, I  
= 0.85mI,  
= 36A  
SENSE  
MAX  
V
V
CC  
CC  
24.20 O  
/50  
24.65 O  
/50  
SENSE  
I
= 30A/23A  
V
CC  
V
CC  
MAXA/B  
Threshold 12, R  
= 0.85mI,  
25.20 O  
/50  
25.65 O  
/50  
SENSE  
I
= 26A/20A  
V
V
CC  
MAXA/B  
CC  
26.20 O  
/50  
26.65 O  
/50  
Threshold 13, R  
= 0.95mI, I  
= 39A  
= 36A  
SENSE  
MAX  
MAX  
V
V
CC  
CC  
27.20 O  
/50  
27.65 O  
/50  
Threshold 14, R  
Threshold 15, R  
= 0.95mI, I  
= 0.95mI,  
SENSE  
V
V
CC  
CC  
28.20 O  
/50  
28.65 O  
/50  
SENSE  
I
= 30A/23A  
V
CC  
V
CC  
MAXA/B  
Threshold 16, R  
= 0.95mI,  
29.20 O  
/50  
29.65 O  
/50  
SENSE  
I
= 26A/20A  
V
V
CC  
MAXA/B  
CC  
30.20 O  
/50  
Threshold 17, fault  
V
CC  
GATE DRIVERS  
High state (pullup)  
2.5  
DH_ Gate-Driver On-  
Resistance  
BST_ - LX_ forced  
to 5V  
R
I
I
ON(DH)  
Low state (pulldown)  
2.0  
2.0  
0.7  
High state (pullup)  
DL_ Gate-Driver On-  
Resistance  
R
ON(DL)  
Low state (pulldown)  
______________________________________________________________________________________ 1.  
Dual-Output, 3-/2-/1-Phase + 2-/1-Phase  
Quick-PWM Controllers for VR12/IMVP7  
ELECTRICAL CHARACTERISTICS (continued)  
(Circuits of Figures 1 and 2. V = 10V, V  
= V  
= V  
= 5V, EN = V , V  
= 0V, V  
= V  
= V  
= V  
=
CSN_  
IN  
CC  
DDA  
DDB  
CC GNDS_  
FB_  
CSP_AVE  
CSP_  
1V; [SerialVID = 1.00, FPWM MODE]; T = -4±°C to +1±.°C, unless otherwise noted. Specifications to -40NC and +105NC are guar-  
A
anteed by design, not production tested.)  
PARAMETER  
SYMBOL  
CONDITIONS  
, BSTA2 to V , BSTB to V  
DDB  
MIN  
TYP  
MAX  
UNITS  
Internal BST_ Switch On-  
Resistance  
BSTA1 to V  
DDA  
DDA  
R
20  
I
BST  
V
DD_  
= 5V  
DRVPWMA, DRVPWMB  
Logic-High Voltage  
V
DD_  
- 0.4  
I
= 3mA  
V
V
SOURCE  
DRVPWMA, DRVPWMB  
Logic-Low Voltage  
I
= 3mA  
0.4  
SINK  
LOGIC AND I/O  
Enable Input High Voltage  
Enable Input Low Voltage  
V
0.67  
V
V
EN_IH  
V
0.33  
EN_IL  
SERIALVID INTERFACE (per Intel SerialVID specification—see the Detailed Description)  
SerialVID Input Low  
Voltage (CLK, VDIO)  
V
-0.1  
+0.45  
V
V
V
IL  
SerialVID Input High  
Voltage (CLK, VDIO)  
V
TT  
+
V
IH  
0.65  
1V  
SerialVID Output Low Level  
(VDIO, ALERT#)  
V
OL  
Open-drain pullup to V , R = 50I  
0.36  
13  
TT PU  
SerialVID Open-Drain  
Output On-Resistance  
(VDIO, ALERT#, VRHOT#)  
R
I
= 30mA, T = 0°C to +105°C  
4
I
ON  
SINK  
A
SerialVID Logic Slew Rate  
(CLK, VDIO, ALERT#)  
0.5  
2.0  
V/ns  
SerialVID Input Capacitance  
CLK Frequency  
C
4
pF  
PAD  
f
13  
-5  
33.3  
MHz  
CLK  
CLK Absolute Min/Max  
Period  
Specified as a percentage of f  
+5  
%
CLK  
CLK High Time  
CLK Low Time  
Rise Time  
t
Specified as a percentage of t  
Specified as a percentage of t  
period  
period  
45  
45  
%
%
HIGH  
CLK  
t
LOW  
CLK  
t
0.25  
0.25  
45  
2.5  
2.5  
ns  
ns  
%
RISE  
FALL  
Fall Time  
t
Duty Cycle  
55  
SerialVID Inactivity Timeout  
t
0.14  
0.40  
Fs  
RSTNA  
Note 2: The equation for the target voltage V  
is:  
TARGET  
V
= the slew-rate-controlled version of either V  
DAC  
TARGET  
where V  
= 0V for shutdown, V  
= V  
during startup, otherwise V = V (the V voltages for all possible  
DAC ID ID  
DAC  
DAC  
BOOT  
VID codes are given in Table 3 and V  
= the negative or positive offset to the output voltage based on the voltage  
OFFSET  
set from the offset register and the mode of operation (startup, shutdown, deeper sleep, or normal operation), as defined  
elsewhere in this document.  
Note 3: On-time and minimum off-time specifications are measured from 50% to 50% at the DH_ pin, with LX_ forced to 0V, BST_  
forced to 5V, and a 500pF capacitor from DH_ to LX_ to simulate external MOSFET gate capacitance. Actual in-circuit  
times may be different due to MOSFET switching speeds.  
16 _____________________________________________________________________________________  
Dual-Output, 3-/2-/1-Phase + 2-/1-Phase  
Quick-PWM Controllers for VR12/IMVP7  
Typical Operating Characteristics  
(T = +25NC, unless otherwise noted.)  
A
REG A EFFICIENCY vs. LOAD CURRENT  
IN PS0 STATE (SVID = 1V)  
REG A EFFICIENCY vs. LOAD CURRENT  
IN PS1 AND PS2 STATES (SVID = 0.65V)  
REG A OUTPUT VOLTAGE vs. LOAD  
CURRENT IN PS0 STATE (SVID = 1V)  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
1.050  
1.000  
0.950  
0.900  
0.850  
0.800  
7V  
7V  
7V  
12V  
12V  
12V  
20V  
20V  
PS2 STATE  
PS1 STATE  
20V  
0.1  
1
10  
100  
0.1  
1
10  
100  
0
10 20 30 40 50 60 70 80 90 100  
LOAD CURRENT (A)  
LOAD CURRENT (A)  
LOAD CURRENT (A)  
REG A OUTPUT VOLTAGE  
vs. LOAD CURRENT IN PS1 AND  
PS2 STATES (SVID = 0.65V)  
REG B EFFICIENCY vs. LOAD CURRENT  
IN PS0 STATE (SVID = 1.25V)  
(MAX17511/C/N/T ONLY)  
REG B EFFICIENCY vs. LOAD CURRENT  
IN PS1 AND PS2 STATES (SVID = 0.65V)  
(MAX17511/C/N/T ONLY)  
0.66  
0.65  
0.64  
0.63  
0.62  
0.61  
0.60  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
7V  
7V  
12V  
12V  
PS2 STATE  
20V  
PS1 STATE  
20V  
PS2 STATE  
PS1 STATE  
0
5
10  
15  
20  
25  
0.1  
1
10  
100  
0.1  
1
10  
100  
LOAD CURRENT (A)  
LOAD CURRENT (A)  
LOAD CURRENT (A)  
REG B OUTPUT VOLTAGE vs. LOAD  
CURRENT IN PS0 STATE (SVID = 1.25V)  
(MAX17511/C/N/T ONLY)  
REG B OUTPUT VOLTAGE vs. LOAD CURRENT IN PS1  
AND PS2 STATES (SVID = 0.65V)  
(MAX17511/C/N/T ONLY)  
0.66  
1.26  
1.24  
1.22  
1.20  
1.18  
1.16  
1.14  
1.12  
1.10  
0.65  
0.64  
0.63  
0.62  
0.61  
0.60  
0.59  
0.58  
0.57  
PS2 STATE  
PS1 STATE  
0
5
10  
LOAD CURRENT (A)  
15  
20  
0
10  
20  
30  
40  
LOAD CURRENT (A)  
______________________________________________________________________________________ 17  
Dual-Output, 3-/2-/1-Phase + 2-/1-Phase  
Quick-PWM Controllers for VR12/IMVP7  
Typical Operating Characteristics (continued)  
(T = +25NC, unless otherwise noted.)  
A
REG B SWITCHING FREQUENCY  
vs. LOAD CURRENT (SVID = 0.65V)  
(MAX17511/C/N/T ONLY)  
REG A SWITCHING FREQUENCY  
vs. LOAD CURRENT (SVID = 0.65V)  
400  
350  
300  
250  
200  
150  
100  
50  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
7V  
7V  
20V  
12V  
20V  
12V  
PS1 STATE  
PS1 STATE  
PS2 STATE  
PS2 STATE  
0
0
0.1  
1
10  
100  
0.1  
1
10  
100  
LOAD CURRENT (A)  
LOAD CURRENT (A)  
NON-ZERO V  
STARTUP WAVEFORMS (V  
, 1.05V)  
BOOT  
BOOT  
(MAX17511/MAX17511T ONLY)  
SHUTDOWN WAVEFORMS  
MAX17411 toc11  
MAX17411 toc12  
V
V
, 5V/div  
EN  
V
, 5V/div  
EN  
0V  
1V  
, 500mV/div  
OUTA  
0V  
V
, 1V/div  
POKA  
0V  
0V  
V
V
, 500mV/div  
, 1V/div  
OUTA  
0V  
0V  
1V  
POKA  
V
V
, 500mV/div  
, 1V/div  
OUTB  
V
OUTB  
, 500mV/div  
, 1V/div  
0V  
0V  
POKB  
0V  
0V  
V
V
POKB  
V
, 1V/div  
ALERT#  
, 1V/div  
ALERT#  
0V  
0V  
200µs/div  
THERMA = THERMB = GND  
200µs/div  
V
= 12V  
V
= 12V  
V
= 5A  
V
= 5A  
IN  
IN  
LOADA  
LOADB  
REG B LOAD-TRANSIENT RESPONSE  
REG A LOAD-TRANSIENT RESPONSE  
(MAX17511/C/N/T ONLY)  
MAX17411 toc13  
MAX17411 toc14  
94A  
28A  
33A  
10A  
I
I
LOADA  
LOADB  
V
, 50mV/div  
OUTB  
V
OUTA  
, 50mV/div  
400µs/div  
400µs/div  
18 _____________________________________________________________________________________  
Dual-Output, 3-/2-/1-Phase + 2-/1-Phase  
Quick-PWM Controllers for VR12/IMVP7  
Pin Configurations  
TOP VIEW  
TOP VIEW  
35 34 33 32 31 30 29 28 27  
36  
26  
25  
30 29 28 27 26 25 24 23 22 21  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
DRVPWMA 37  
POKA  
CLK  
20  
31  
32  
33  
BSTA1  
DRVPWMA  
SR  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
SR  
THERMA  
THERMB  
CSPAAVE  
CSPA1  
19 POKA  
18 CLK  
ALERT#  
VDIO  
THERMA  
17 ALERT#  
THERMB 34  
AGND  
16  
15  
14  
VDIO  
35  
36  
37  
38  
39  
40  
+
CSPAAVE  
CSPA1  
CSNA  
MAX17511  
MAX17511C  
MAX17511N  
MAX17511T  
V
DDB  
V
DDB  
MAX17411  
CSNA  
DLB  
DLB  
CSPA2  
PGNDB  
DHB  
13 DHB  
12  
CSPA2  
CSPA3  
EP = GND  
CSPA3  
LXB  
11 BSTB  
V
LXB  
CC  
V
CC  
EP  
EN  
BSTB  
+
1
2
3
4
5
6
7
8
9
10  
TONA  
DRVPWMB  
2
3
4
5
6
7
8
9
10  
1
11  
12  
TQFN  
TQFN  
Pin Description  
PIN  
MAX17.11/  
MAX17.11C/  
MAX17.11N/  
MAX17.11T  
NAME  
FUNCTION  
MAX17411  
Switching Frequency Adjustment Input for Regulator B. An external resistor  
between the input power source and TONB sets the switching period (per phase)  
for regulator B according to the following equation:  
1
TONB  
t
= (R  
+ 6.5kI) x 14.6pF  
SWB  
TONB  
where f  
= 1/t  
is the nominal switching frequency.  
SWB  
SWB  
TONB is high-impedance in shutdown. If REG B is disabled, connect TONB to GND or  
V
.
CC  
Switching Frequency Adjustment Input for Both Regulators. An external resistor  
between the input power source and TON sets the switching period (per phase)  
according to the following equations:  
t
t
= (2 x R  
= (2 x R  
+ 6.5kI) x 17.9pF  
+ 6.5kI) x 14.6pF  
SWA  
TON  
2
TON  
SWB  
TON  
where f  
= 1/t  
is the nominal switching frequency.  
SW  
SW  
If REG B is disabled:  
t
= (R  
+ 6.5kI) x 17.9pF  
SWA  
TON  
TON is high-impedance in shutdown.  
______________________________________________________________________________________ 19  
Dual-Output, 3-/2-/1-Phase + 2-/1-Phase  
Quick-PWM Controllers for VR12/IMVP7  
Pin Description (continued)  
PIN  
MAX17.11/  
MAX17.11C/  
MAX17.11N/  
MAX17.11T  
NAME  
FUNCTION  
MAX17411  
Ground Remote-Sense Input for Regulator A. Connect GNDSA to the ground-sense  
pin of the CPU located directly at the point of load. GNDSA internally connects to an  
internal transconductance amplifier that adjusts the output voltage to compensate for  
voltage drops between the controller analog ground and the load ground.  
2
3
GNDSA  
Feedback Remote-Sense Input and Voltage Positioning Transconductance (VPS)  
Amplifier Output for Regulator A. Connect a resistor (R ) between FBA and the  
FBA  
positive side of the feedback remote sense (the CPU output remote sense (V  
_
CC  
)) to set the DC steady-state droop based on the voltage-positioning gain  
SENSE  
requirement.  
R
FBA  
= (N x R  
)/(R  
x G  
)
PH  
DROOP  
SENSEA  
MD  
where R  
is the desired voltage-positioning slope, G  
= 600FS (typ), and  
DROOP  
MD  
R
is the current-sense resistance with respect to the CSPAAVE to CSNA  
SENSEA  
3
4
FBA  
current-sense inputs. See the CSP_AVE - CSN_ Inputs section. FBA is internally  
connected to the input of an error comparator and an integrator that corrects for  
output ripple, error comparator offsets, and the ground-sense offset of regulator A  
as shown in Figure 5.  
Shorting FBA directly to the output disables voltage positioning, but impacts the  
stability requirements. Designs that disable voltage positioning require a higher  
minimum output capacitance ESR to maintain stability (see the Output Capacitor  
Selection section). FBA enters a high-impedance state in shutdown.  
Open-Drain Output of the Thermal Comparators that monitor THERMA and  
THERMB. These comparators are wire-ORed with output at VR_HOT#. This output  
is required as backup to the temperature zone register in the event of an SVID bus  
failure. The comparator responds to the temperature threshold voltage of 2.5V at  
THERMA OR THERMB. This threshold is equivalent to the 100% threshold defined  
in the Temperature-Zone register (12h).  
4
5
VR_HOT#  
AGND  
5, 20  
Analog Ground  
2± _____________________________________________________________________________________  
Dual-Output, 3-/2-/1-Phase + 2-/1-Phase  
Quick-PWM Controllers for VR12/IMVP7  
Pin Description (continued)  
PIN  
MAX17.11/  
MAX17.11C/  
MAX17.11N/  
MAX17.11T  
NAME  
FUNCTION  
MAX17411  
Feedback Remote-Sense Input and Voltage Positioning Transconductance (VPS)  
Amplifier Output for Regulator B. Connect a resistor (R ) between FBB and the  
FBB  
positive side of the feedback remote sense to set the DC steady-state droop based  
on the voltage-positioning gain requirement.  
R
FBB  
= (N x R  
)/(R  
x G  
)
PH  
DROOP  
SENSEB  
MD  
where R  
is the desired voltage-positioning slope, G  
= 600FS (typ), and  
DROOP  
MD  
R
is the current-sense resistance with respect to the CSPBAVE to CSNB  
SENSEB  
(MAX17411) or CSPB1 - CSNB (MAX17511/MAX17511C/MAX17511N/MAX17511T)  
current-sense inputs. See the CSP_AVE – CSN_ Inputs section. FBB is internally  
connected to the input of an error comparator and an integrator that corrects for  
output ripple, error comparator offsets, and the ground-sense offset of regulator B  
as shown in Figures 6 and 7.  
6
6
FBB  
Shorting FBB directly to the output disables voltage positioning, but impacts the  
stability requirements. Designs that disable voltage positioning require a higher  
minimum output capacitance ESR to maintain stability (see the Output Capacitor  
Selection section).  
FBB enters a high-impedance state in shutdown.  
Ground Remote-Sense Input for Regulator B. Connect GNDSB to the ground-sense  
pin of the GFX located directly at the point of load. GNDSB internally connects to an  
internal transconductance amplifier that adjusts the output voltage to compensate  
for voltage drops between the controller analog ground and the load ground.  
7
8
7
GNDSB  
Positive Current-Sense Average Input for Regulator B. Connect CSPBAVE to the  
positive side of the differential output of external current-sense averaging network.  
The averaging is achieved by using a resistive summation and current-sense  
resistors, or by using a parallel DCR sense network with a single NTC thermistor for  
thermal compensation (see Figure 9). The average current-sense input is used for  
the load-line and current monitor.  
CSPBAVE  
Positive Current-Sense Input for Regulator B. Connect CSPB1 to the positive side of  
the current-sense resistor or the DCR sense filter capacitor of regulator B as shown  
in Figure 8.  
9
8
9
CSPB1  
CSNB  
To completely disable Regulator B, Connect CSPB1 and CSPB2 to V  
Also leave  
CC.  
BSTB, DHB, LXB, DLB, CSPBAVE, and CSNB unconnected. Address 1 is disabled  
from the SVID bus.  
Negative Current-Sense Input of Regulator B. Connect CSNB to the negative side  
of the current-sense element as shown in Figure 8. An internal 20Idischarge  
MOSFET between CSNB and ground is enabled under an input UVLO or shutdown  
condition. A bypass capacitor between CSNB and GND in the range of 1nF to  
0.1µF is recommended.  
10  
______________________________________________________________________________________ 21  
Dual-Output, 3-/2-/1-Phase + 2-/1-Phase  
Quick-PWM Controllers for VR12/IMVP7  
Pin Description (continued)  
PIN  
MAX17.11/  
MAX17.11C/  
MAX17.11N/  
MAX17.11T  
NAME  
FUNCTION  
MAX17411  
Positive Current-Sense Input for Second Phase of Regulator B. Connect CSPB2 to  
the positive side of the current-sense element of the second phase of regulator B  
11  
CSPB2  
as shown in Figure 8.Connect CSPB2 to V  
disable the second phase of Regulator B.  
and leave DRVPWMB unconnected to  
CC  
Open-Drain Power-Good Output for Regulator B. During soft-start and shutdown,  
POKB stays low. At the end of soft-start, approximately 20Fs (typ) after FBB  
reaches the output voltage set by the VID code, POKB becomes high-impedance  
and remains high-impedance as long as FBB is in regulation.  
POKB is blanked high-impedance when the slew-rate controller for regulator B is  
active (VID transition occurs). In pulse-skipping mode, the upper POKB threshold is  
blanked during downward transitions until the output voltage reaches its regulation  
value.POKB is forced low in shutdown (EN = GND) and after any fault condition is  
detected on either regulator.To obtain a logic signal, pull up POKB with an external  
resistor connected to a positive logic supply of +5V and lower.  
12  
10  
POKB  
Direct-Drive PWM Output for Controlling the External Second Phase Driver for  
13  
14  
15  
11  
12  
DRVPWMB Regulator B. DRVPWMB is three-stated in shutdown when the controller detects an  
output overvoltage fault condition on regulator B.  
Boost Flying Capacitor Connection for High-Side Gate Voltage for the First Phase of  
BSTB  
LXB  
Regulator B. Connect a ceramic capacitor between BSTB and LXB. See the Boost  
Capacitors section.  
Inductor Connection for the First Phase of Regulator B. LXB serves as the lower  
supply rail for the DHB high-side gate driver. LXB is also used as an input to the  
zero-crossing comparator for regulator B.  
High-Side Gate-Driver Output for Regulator B. DHB output voltage swings from  
16  
17  
13  
DHB  
V
to V . DHB is pulled low in shutdown.  
LXB  
BSTB  
PGNDB  
Power Ground of the Low-Side Driver of Regulator B  
Low-Side Gate-Driver Output for the First Phase of Regulator B. DLB output voltage  
swings from V  
to GND. DLB is forced high when the controller detects an  
DDB  
18  
14  
DLB  
output overvoltage fault condition on regulator B. DLB is forced low in shutdown  
and in pulse-skipping mode when an inductor current zero crossing (LXB - GND) is  
detected.  
Driver-Supply Voltage Input for Regulator B. V  
provides power for the low-side  
DDB  
driver of regulator B and is used to recharge the BSTB flying capacitor during the  
on-time of DLB. Connect V to the 4.5V to 5.5V system supply voltage. Bypass  
19  
15  
V
DDB  
DDB  
V
to power ground with a 1FF or greater ceramic capacitor.  
DDB  
21  
22  
23  
16  
17  
18  
VDIO  
ALERT#  
CLK  
Serial VID Input/Output  
Serial VID Alert Output. ALERT# is in the high state in shutdown.  
Serial VID Clock Input  
22 _____________________________________________________________________________________  
Dual-Output, 3-/2-/1-Phase + 2-/1-Phase  
Quick-PWM Controllers for VR12/IMVP7  
Pin Description (continued)  
PIN  
MAX17.11/  
MAX17.11C/  
MAX17.11N/  
MAX17.11T  
NAME  
FUNCTION  
MAX17411  
Open-Drain Power-Good Output for Regulator A. During soft-start and shutdown,  
POKA stays low. At the end of soft-start, approximately 20Fs (typ) after FBA  
reaches the output voltage set by the VID code, POKA becomes high-impedance  
and remains high-impedance as long as FBA is in regulation.  
POKA is blanked high-impedance when the slew-rate controller for regulator A is  
active (VID transition occurs). In pulse-skipping mode, the upper POKA threshold is  
blanked during downward transitions until the output voltage reaches its regulation  
value.  
POKA is forced low in shutdown (EN = GND) and after any fault condition is  
detected on either regulator.  
To obtain a logic signal, pull up POKA with an external resistor connected to a  
positive logic supply of +5V and lower.  
24  
25  
19  
POKA  
Boost Flying Capacitor Connection for High-Side Gate Voltage for the First Phase  
of Regulator A. Connect a ceramic capacitor between BSTA1 and LXA1. See the  
Boost Capacitors section.  
20  
BSTA1  
Inductor Connection for the First Phase of Regulator A. LXA1 serves as the lower  
supply rail for the DHA1 high-side gate driver. LXA1 is also used as an input to the  
zero-crossing comparator for regulator A.  
26  
27  
21  
22  
LXA1  
High-Side Gate-Driver Output for the First Phase of Regulator A. DHA1 output  
DHA1  
voltage swings from V  
to V . DHA1 is pulled low in shutdown.  
LXA1  
BSTA1  
Low-Side Gate-Driver Output for the First Phase of Regulator A. DLA1 output  
voltage swings from V to V . DLA1 is forced high when the controller  
DDA  
GND  
28  
23  
DLA1  
detects an output overvoltage fault condition on regulator A. DLA1 is forced low  
in shutdown and in pulse-skipping mode when an inductor current zero crossing  
(LXA1 - GND) is detected.  
Driver Supply Voltage Input for Regulator A. V  
is the driver supply voltage  
DDA  
used for the DLA_ low-side drivers, and to recharge the BSTA_ flying capacitors  
when the corresponding DLA_s are high. Connect V to the 4.5V to 5.5V system  
29  
30  
24  
V
DDA  
DDA  
supply voltage. Bypass V  
capacitor.  
to power ground with a 1FF or greater ceramic  
DDA  
PGNDA  
DLA2  
Power Ground of the Low-Side Drivers of Regulator A.  
Low-Side Gate-Driver Output for the Second Phase of Regulator A. DLA2 Output  
Voltage swings from V  
to V . DLA2 is forced high when the controller  
GND  
DDA  
31  
25  
detects an output overvoltage fault condition on regulator A. DLA2 is forced low  
in shutdown and in pulse-skipping mode when an inductor current zero crossing  
(LXA2 - GND) is detected.  
High-Side Gate-Driver Output for the Second Phase of Regulator A. DHA2 Output  
32  
33  
26  
27  
DHA2  
LXA2  
Voltage swings from V  
to V . DHA2 is pulled low in shutdown.  
LXA2  
BSTA2  
Inductor Connection for the Second Phase of Regulator A. LXA2 serves as the  
lower supply rail for the DHA2 high-side gate driver. LXA2 is also used as an input  
to the zero crossing comparator for Regulator A.  
______________________________________________________________________________________ 23  
Dual-Output, 3-/2-/1-Phase + 2-/1-Phase  
Quick-PWM Controllers for VR12/IMVP7  
Pin Description (continued)  
PIN  
MAX17.11/  
MAX17.11C/  
MAX17.11N/  
MAX17.11T  
NAME  
FUNCTION  
MAX17411  
Boost Flying Capacitor Connection for High-Side Gate Voltage for the Second  
Phase of Regulator A. Connect a ceramic capacitor between BSTA2 and LXA2. See  
the Boost Capacitors section.  
34  
28  
BSTA2  
Maximum Current Threshold for Regulator A. This multivalued logic input sets  
the valley current limit and compensates for inductor DCR. The maximum output  
current value in register 21h is determined by the number of phases times the  
maximum output current per phase set by IMAXA. If the voltage applied to IMAXA  
is not within the defined threshold, the MAX17411/MAX17511/MAX17511C/  
MAX17511N/MAX17511T detect a fault and latch off. See Table 6 for more details.  
35  
29  
IMAXA  
IMAXB  
Maximum Current Threshold for Regulator B. This multivalued logic input sets  
the valley current limit and compensates for inductor DCR. The maximum output  
current value in register 21h is determined by the number of phases times the  
maximum output current per phase set by IMAXB. If the voltage applied to IMAXB  
is not within the defined threshold, the MAX17411/MAX17511/MAX17511C/  
MAX17511N/MAX17511T detect a fault and latch off. See Table 6 for more details.  
36  
37  
30  
31  
Direct-Drive PWM Output for Controlling the External Third Phase Driver for  
DRVPWMA Regulator A. DRVPWMA is three-stated in shutdown when the controller detects an  
output overvoltage fault condition on regulator A.  
Fast Slew-Rate Adjustment for Both Regulators. The SR setting determines the  
value stored in the Slew Rate Fast (24h) and Slew Rate Slow (25h) registers. The  
input uses a four-level voltage sense to determine the slew rate setting upon power-  
up and if NTC are used for the CSP_ signals. The SR values in the registers (24h  
and 25h) change accordingly.  
SR  
38  
32  
SR THRESHOLD (V)  
SR (min) (mV/Fs)  
NTC  
Yes  
Yes  
No  
0
1.5  
3
10  
20  
20  
10  
V
CC  
No  
Thermal-Sense Input for Regulator A. Connect THERMA to a resistor/thermistor-  
divider network between V and THERMA to analog ground. The VR_HOT# is  
CC  
39  
40  
33  
34  
THERMA  
THERMB  
pulled low when the voltage at THERMA or THERMB drops below 0.5 x V  
.
CC  
If THERMA is held low at startup, REG A is forced in to non-zero V  
an output voltage of 1.05V (MAX17411/MAX17511/MAX17511T).  
mode with  
BOOT  
Thermal-Sense Input for Regulator B. Connect THERMB to a resistor/thermistor-  
divider network between V and THERMB to analog ground. The VR_HOT# is  
CC  
pulled low when the voltage at THERMA or THERMB drops below 0.5 x V  
.
CC  
If THERMB is held low at startup, REG B is forced in to non-zero V  
a output voltage of 1.05V (MAX17411/MAX17511/MAX17511T).  
mode with  
BOOT  
Positive Current-Sense Average Input for Regulator A. Connect CSPAAVE to the  
positive side of the differential output of external current-sense averaging network.  
The averaging is achieved by using a resistive summation and current-sense  
resistors, or by using a parallel DCR sense network with a single NTC thermistor for  
thermal compensation (see Figures 1, 2, and 3). The average current-sense input is  
used for the load-line and current monitor.  
41  
35  
CSPAAVE  
24 _____________________________________________________________________________________  
Dual-Output, 3-/2-/1-Phase + 2-/1-Phase  
Quick-PWM Controllers for VR12/IMVP7  
Pin Description (continued)  
PIN  
MAX17.11/  
MAX17.11C/  
MAX17.11N/  
MAX17.11T  
NAME  
CSPA1  
CSNA  
FUNCTION  
MAX17411  
Positive Current-Sense Input for the First Phase of Regulator A. Connect CSPA1 to  
the positive side of the current-sense resistor or the DCR sense filter capacitor of  
regulator A as shown in Figure 8.  
To completely disable Regulator A, connect CSPA1, CSPA2, and CSPA3 to V  
and leave BSTA1, DHA1, LXA1, DLA1, CSPAAVE, and CSNA unconnected.  
Address 0 is also disabled from the SVID bus.  
42  
36  
37  
CC  
Negative Current-Sense Input of Regulator A. Connect CSNA to the negative side  
of the current-sense element as shown in Figure 8. An internal 20Idischarge  
MOSFET between CSNA and ground is enabled under an input UVLO or shutdown  
condition. A bypass capacitor between CSNA and GND in the range of 1nF to  
0.1µF is recommended.  
43  
44  
Positive Current-Sense Input for the Second Phase of Regulator A. Connect CSPA2  
to the positive side of the current-sense resistor or the DCR sense filter capacitor of  
regulator A as shown in Figure 8.  
38  
CSPA2  
CSPA3  
To completely disable Regulator A, connect CSPA1, CSPA2, and CSPA3 to V  
CC.  
Address 0 is also disabled from the SVID bus.  
When Phase 2 is disabled, leave BSTA2, DHA2, LXA2, and DLA2 unconnected. If  
phase 2 is disabled, phase 3 must be disabled as well.  
Positive Current-Sense Input for Third Phase of Regulator A. Connect CSPA3 to  
the positive side of the current-sense element of the third phase of regulator A as  
shown in Figure 8.  
45  
46  
39  
40  
Connect CSPA3 to V  
and leave DRVPWMA unconnected to disable the third  
CC  
phase of Regulator A.  
Analog Supply Voltage. Connect to a filtered 4.5V to 5.5V source. Bypass V  
to  
CC  
V
CC  
AGND with a 1FF or greater ceramic capacitor.  
Controller Enable Input. Pull EN high or connect EN to V  
for normal operation.  
CC  
Connect to ground to put the controller into its 30FA (max) shutdown state. During  
soft-start, the controller slowly ramps the output voltage up to the boot voltage  
with a 2.5mV/Fs (min) slew rate. During the transition from normal operation to  
shutdown, the output is discharged through a 20Iinternal CSN_ FET.  
47  
48  
1
EN  
Toggling EN resets the fault latches. EN cannot withstand the battery voltage.  
Switching Frequency Adjustment Input for Regulator A. An external resistor between  
the input power source and TONA sets the switching period (per phase) for regulator  
A according to the following equation:  
TONA  
t
= (R  
+ 6.5kI) x 17.9pF  
SWA  
TONA  
where f  
= 1/t  
is the nominal switching frequency.  
SWA  
SWA  
TONA is high-impedance in shutdown. If REG A is disabled, connect TONA to GND.  
PAD  
(AGND)  
EP  
Exposed Pad. Connect EP to the ground plane with thermally enhanced vias.  
PAD  
(GND)  
Exposed Pad. Connect EP to the ground plane with thermally enhanced vias. Power  
ground pads and analog ground pads are all internally connected to the exposed pad.  
EP  
______________________________________________________________________________________ 2.  
Dual-Output, 3-/2-/1-Phase + 2-/1-Phase  
Quick-PWM Controllers for VR12/IMVP7  
10I  
5V BIAS  
2.2µF  
29  
V
46  
DDA  
V
CC  
19  
2.2µF  
V
DDB  
2.2µF  
V
IN  
R
TONA  
48  
27  
25  
26  
28  
30  
7V TO 20V  
INPUT  
TONA  
DHA  
V
0.1µF  
C
IN  
IN  
OPTIONAL  
N
H1  
0I  
C
1µF  
8
IN  
BSTA1  
0.22µF  
LA1  
5
LXA1  
DLA1  
VDD  
LXA3  
OUTPUTA  
N
H3  
DH  
N
L1  
D
L1  
1
SENSE  
BST  
PGNDA  
0.22µF  
LA3  
MAX17491  
7
4
3
42  
LX  
DL  
CSPA1  
V
DD  
6
2
LXA3  
SENSE SENSE  
LXA2  
D
N
L3  
L3  
SKIP  
37  
45  
GND  
PWM  
DRVPWMA  
CSPA3  
41  
43  
CSNA  
CSPAAVE  
CSNA  
OUTPUTA  
V
BIAS SUPPLY  
TT  
3.3V  
V
IN  
C
OUTA  
MAX17411  
44  
10kI  
10kI  
75I  
CSPA2  
4
24  
12  
C
IN  
32  
34  
VR_HOT#  
VRA_READY  
VRB_READY  
VR_ENABLE  
VR_HOT#  
POKA  
POKB  
EN  
DHA2  
N
H2  
0I  
BSTA2  
0.22µF  
LA2  
33  
31  
47  
21  
LXA2  
DLA2  
10I  
10I  
VDIO  
N
L2  
D
L2  
SVID  
INPUTS  
1.05V LOGIC  
LXA2  
SENSE  
23  
22  
CLK  
ALERT#  
CPU GND  
SENSE  
10I  
R
R
THERMA  
2
3
GNDSA  
FBA  
V
CC  
R
NTCA  
39  
40  
CPU V  
CC  
THERMA  
THERMB  
R
FBA  
SENSE  
10I  
THERMB  
R
NTCB  
V
IN  
R
TONB  
1
7V TO 20V  
INPUT  
TONB  
DHB  
C13  
0.1µF  
C
IN  
16  
N
HB1  
V
V
DD  
IN  
0I  
OPTIONAL  
14  
15  
18  
17  
BSTB  
LXB  
C
1µF  
8
IN  
LB1  
0.22µF  
OUTPUTB  
5
C
OUTB  
VDD  
DLB  
N
LB1  
D
LB1  
LXB2  
SENSE  
OUTPUTB  
N
HB2  
DH  
1
BST  
PGNDB  
0.22µF  
9
LB2  
MAX17491  
CSPB1  
7
4
3
LX  
V
DD  
6
LXA2  
SENSE  
D
LB2  
N
LB2  
DL  
SKIP  
2
13  
11  
GND  
PWM  
DRVPWMB  
CSPB2  
10I  
10I  
8
CSPBAVE  
CSNB  
10  
CSNB  
38  
35  
SR  
V
V
V
CC  
AXG GND  
SENSE  
10I  
7
6
GNDSB  
FBB  
IMAXA  
CC  
CC  
AXG  
SENSE  
R
FBB  
10I  
36  
17  
IMAXB  
PGNDB  
POWER GROUND  
ANALOG GROUND  
5
AGND  
AGND  
20  
EP  
Figure 1. MAX17411 Typical CPU Core Application Circuit  
26 _____________________________________________________________________________________  
Dual-Output, 3-/2-/1-Phase + 2-/1-Phase  
Quick-PWM Controllers for VR12/IMVP7  
5V BIAS  
10I  
2.2µF  
24  
V
DDA  
40  
15  
V
V
CC  
IN  
V
DDB  
7V TO 20V  
INPUT  
2.2µF  
2.2µF  
0.1µF  
C
IN  
22  
20  
DHA1  
N
H1  
0I  
BSTA1  
V
IN  
LA1  
OPTIONAL  
0.22µF  
21  
23  
LXA1  
DLA1  
C
1µF  
8
IN  
N
L1  
D
L1  
5
VDD  
OUTPUTA  
N
H3  
DH  
1
LXA3  
SENSE  
BST  
36  
CSPA1  
0.22µF  
LXA3  
LXA2  
SENSE SENSE  
LA3  
MAX17491  
7
4
3
MAX17511  
MAX17511C  
MAX17511N  
MAX17511T  
LX  
DL  
V
6
DD  
D
N
L3  
L3  
SKIP  
2
31  
39  
GND  
PWM  
DRVPWMA  
35  
37  
CSPAAVE  
CSNA  
CSPA3  
OUTPUTA  
CSNA  
V
IN  
V
IN  
C
OUTA  
R
TON  
38  
2
CSPA2  
TON  
C
IN  
26  
28  
DHA2  
N
H2  
V
TT  
BIAS SUPPLY  
0I  
3.3V  
BSTA2  
0.22µF  
LA2  
10kI  
10kI  
75I  
27  
25  
LXA2  
DLA2  
5
19  
10  
10I  
10I  
LXA2  
SENSE  
VR_HOT#  
VRA_READY  
VRB_READY  
VR_ENABLE  
VR_HOT#  
POKA  
POKB  
EN  
N
L2  
D
L2  
CPU GND  
SENSE  
1
10I  
10I  
3
4
GNDSA  
FBA  
16  
VDIO  
SVID  
INPUTS  
1.05V LOGIC  
CPU V  
SENSE  
CC  
18  
17  
CLK  
R
FBA  
ALERT#  
V
IN  
V
CC  
7V TO 20V  
INPUT  
R
R
THERMA  
C13  
0.1µF  
R
NTCA  
C
IN  
13  
11  
DHB  
N
HB1  
33  
THERMA  
0I  
BSTB  
LB1  
THERMB  
0.22µF  
OUTPUTB  
12  
14  
LXB  
DLB  
R
NTCB  
C
OUTB  
N
LB1  
D
LB1  
34  
32  
THERMB  
SR  
V
CC  
8
9
CSPB1  
CSNB  
10I  
10I  
29  
30  
IMAXA  
IMAXB  
V
V
CC  
CC  
AXG GND  
SENSE  
10I  
10I  
7
6
GNDSB  
FBB  
AXG  
SENSE  
R
FBB  
POWER GROUND  
EP  
ANALOG GROUND  
Figure 2. MAX17511 Typical Application Circuit (3-Phase + 1-Phase)  
______________________________________________________________________________________ 27  
Dual-Output, 3-/2-/1-Phase + 2-/1-Phase  
Quick-PWM Controllers for VR12/IMVP7  
R
VCC  
10I  
5V BIAS  
C
C
24  
VDDA  
2.2µF  
VDDB  
2.2µF  
V
DDA  
V
CC  
40  
15  
2
V
V
DDB  
CC  
V
C
VCC  
1.0µF  
IN  
R
TON  
7V TO 20V  
INPUT  
TON  
DHA1  
C
IN  
31  
39  
C
0.1µF  
INA1  
22  
20  
DRVPWMA  
CSPA3  
N
HA1  
CONNECT CSPA3 TO V  
TO DISABLE REGA PHASE 3  
CC  
R
BSTA1  
0I  
V
CC  
1
BSTA1  
VR_ENABLE  
EN  
C
BSTA1  
0.22µF  
LA1  
16  
21  
23  
VDIO  
LXA1  
DLA1  
OUTPUT A  
OUTA  
NTC  
CSA  
18  
17  
SVID INPUTS  
(1.05V LOGIC)  
C
CLK  
N
LA1  
R
LXA1  
ALERT#  
R
R
CSA2  
CSA1  
38  
35  
CSPA1  
R20  
10  
V
BIAS SUPPLY  
3.3V  
TT  
CSPAAVE  
R
CSA3  
C
CSA  
37  
4
CSNA  
FBA  
R21  
10Ω  
R
R
R
C
POKA  
10kI  
POKB  
RVHOT  
75I  
SNA  
10nF  
CPU V  
SENSE  
R10  
10I  
CC  
10kI  
R
FBA  
5
19  
10  
VR_HOT#  
VRA_READY  
VRB_READY  
VR_HOT#  
POKA  
C
FBA  
4.7nF  
R
GNDSA  
10I  
3
POKB  
CPU GND  
SENSE  
GNDSA  
C
GNDSA  
4.7nF  
V
IN  
V
CC  
7V TO 20V  
INPUT  
C
INB1  
0.1µF  
R
R
THERMB  
THERMA  
THERMA  
C
INB  
33  
34  
32  
29  
30  
13  
11  
THERMA  
THERMA  
THERMB  
SR  
DHB  
N
HB  
R
BSTB  
0I  
THERMB  
THERMB  
SR  
BSTB  
C
BSTB  
0.22µF  
R
R
NTCB  
NTCA  
LB1  
12  
14  
IMAXA  
IMAXB  
IMAXA  
IMAXB  
LXB  
DLB  
OUTPUT B  
C
OUTB  
N
LB  
D
LB1  
R
LXB  
V
CC  
R
CSB  
R
R
R
SR1  
IMAXA1  
IMAXB1  
C
CSB  
MAX17511N  
R23  
10Ω  
SR  
IMAXA  
IMAXB  
8
9
CSPB1  
CSNB  
R24  
10Ω  
R
R
R
IMAXB2  
C
SR2  
IMAXA2  
FFB  
C
10nF  
SNB  
R11  
10I  
R
FBB  
38  
28  
26  
27  
25  
6
7
CONNECT CSPA2 TO V  
TO DISABLE REGA PHASE 2  
CC  
FBB  
V
CSPA2  
BSTA2  
DHA2  
LXA2  
CC  
C
FBB  
4.7nF  
AXG V  
CC  
SENSE  
AXG GND  
SENSE  
GNDSB  
C
GNDSB  
R
GNDSB  
10I  
POWER GROUND  
ANALOG GROUND  
4.7nF  
DLA2  
EP  
Figure 3. MAX17511N Typical Application Circuit (1-Phase + 1-Phase)  
28 _____________________________________________________________________________________  
Dual-Output, 3-/2-/1-Phase + 2-/1-Phase  
Quick-PWM Controllers for VR12/IMVP7  
Table 10 Regulator A Typical Component Values (refer to the MAX17411/MAX17.11  
Evaluation Kit)  
VR12/IMVP-7  
ATOM CPU, TDC = 303A/  
VR12/IMVP-7 SV CPU  
TDC = 36A/  
VR12/IMVP-7 XE CPU  
TDC = .2A/  
COMPONENT  
REF  
QTY  
I
= 6A  
I
= .3A  
I
= 94A  
CCMAX  
CCMAX  
CCMAX  
41±kHz OPERATION  
(Figure 3)  
32.kHz OPERATION  
(Figures 1 and 2)  
32.kHz OPERATION  
(Figures 1 and 2)  
V
IN  
= 7V to 20V,  
SVID = 1.1V  
V
IN  
= 7V to 20V,  
SVID = 1.05V  
V
IN  
= 7V to 20V,  
SVID = 0.9V  
3
Conditions  
Phases  
1
2
Fairchild FDMS7680  
Vishay (Siliconix)  
SiR462DP  
Fairchild FDMS7680  
Vishay (Siliconix)  
SiR462DP  
High-Side FET  
Low-Side FET  
Schottky Diode  
Sense Resistor  
N
1 per phase  
2 per phase  
Fairchild FDMS7602S  
H_  
Fairchild FDMS7670AS  
Vishay (Siliconix)  
Sir158DP  
Fairchild FDMS7670AS  
Vishay (Siliconix)  
Sir158DP  
Fairchild FDMS76702S  
1 per phase  
N
D
L_  
L_  
None; most  
applications do  
not use Schottkys  
None  
None  
None  
None; most  
applications use  
DCR sensing  
0.75mI, 1%, 1W  
Cyntec Co. RL1632L4-  
0R75m-FNH  
0.75mI, 1%, 1W  
Cyntec Co. RL1632L4-  
0R75m-FNH  
0.75mI, 1%, 1W  
Cyntec Co. RL1632L4-  
0R75m-FNH  
R
SENSE_  
L_  
0.36FH, 36A, 0.82mI  
power inductor  
Panasonic  
0.36FH, 36A, 0.82mI  
power inductor  
Panasonic  
1.5FH, 8A, 4.5mIpower  
inductor  
TOKO FDVE0630-1R5M  
Inductor  
1 per phase  
ETQP4LR36AFC  
ETQP4LR36AFC  
4O470FF, 2V, 4.5mIlow- 4O470FF, 2V, 4.5mIlow-  
ESR polymer capacitor  
(D case)  
ESR polymer capacitor  
(D case)  
1O470FF, 2V, 4.5mI  
low-ESR  
Output  
Capacitors  
Panasonic  
Panasonic  
C
OUT_  
Total  
Panasonic  
EEFSX0D471E4  
EEFSX0D471E4 or  
Sanyo 2TPW470M4R  
+18 x 22FF + 10 x 10FF  
ceramic  
EEFSX0D471E4 or  
Sanyo 2TPW470M4R  
+18 x 22FF + 10 x 10FF  
ceramic  
10FF, 25V, X5R ceramic  
capacitors  
10FF, 25V, X5R ceramic  
capacitors  
Input  
Capacitors  
10FF, 25V, X5R ceramic  
C
Total  
1
IN_  
capacitor  
3 per phase  
3 per phase  
180kI, 1% (300kHz) for  
the MAX17411, 82.5kI,  
1% (325kHz) for the  
(MAX17511/MAX17511C/ (MAX17511/MAX17511C/  
MAX17511N/MAX17511T) MAX17511N/MAX17511T)  
180kI, 1% (300kHz) for  
the MAX17411, 82.5kI,  
1% (325kHz) for the  
64.9kI, 1% (410kHz)  
for the (MAX17511/  
MAX17511C/  
Switching  
Frequency  
R
TON  
MAX17511N/MAX17511T)  
V
SR  
= 5V  
V
= 5V  
V
SR  
= 5V  
SR  
Slew Rate  
1
10mV/Fs  
10mV/Fs  
10mV/Fs  
FB_ Droop  
Setting  
2.15kI, 1%  
(droop = -5.9mV/A)  
8.66kI, 1%  
(droop = -1.9mV/A)  
13kI, 1%  
(droop = -1.9mV/A)  
R
FBA  
______________________________________________________________________________________ 29  
Dual-Output, 3-/2-/1-Phase + 2-/1-Phase  
Quick-PWM Controllers for VR12/IMVP7  
Table 10 Regulator A Typical Component Values (refer to the MAX17411/MAX17.11  
Evaluation Kit) (continued)  
VR12/IMVP-7  
ATOM CPU, TDC = 303A/  
VR12/IMVP-7 SV CPU  
TDC = 36A/  
VR12/IMVP-7 XE CPU  
TDC = .2A/  
COMPONENT  
REF  
QTY  
I
= 6A  
I
= .3A  
I
= 94A  
CCMAX  
CCMAX  
CCMAX  
41±kHz OPERATION  
(Figure 3)  
32.kHz OPERATION  
(Figures 1 and 2)  
32.kHz OPERATION  
(Figures 1 and 2)  
5.62kI, 1% + 100kI,  
5% NTC thermistor  
B = 4250 (0603)  
5.62kI, 1% +100kI,  
5% NTC thermistor  
B = 4250 (0603),  
Murata  
5.62kI, 1% + 100kI,  
5% NTC thermistor  
B = 4250 (0603)  
THERMA  
Setting  
R
,
Murata  
Murata  
THERMA  
R
NTC  
NCP18WF104J03RB  
TDK NTCG163JF104J  
(0402) or  
NCP18WF104J03RB,  
TDK NTCG163JF104J  
(0402) or Panasonic ERT-  
J1VR104J  
NCP18WF104J03RB  
TDK NTCG163JF104J  
(0402) or  
Panasonic ERT-J1VR104J  
Panasonic ERT-J1VR104J  
Table 20 Regulator B Typical Component Values (refer to the MAX17411/MAX17.11  
Evaluation Kit)  
VR12/IMVP-7 GT; TDC  
= 104A/ I = 20.A;  
.±±kHz OPERATION  
(MAX17.11/MAX17.11C/ (MAX17.11/MAX17.11C/  
MAX17.11N/MAX17.11T) MAX17.11N/MAX17.11T)  
(Figure 3)  
VR12/IMVP-7 GT; TDC =  
210.A/; I = 33A;  
4±±kHz OPERATION  
VR12/IMVP-7 GT;  
TDC = 4±A/;  
CCMAX  
CCMAX  
COMPONENT  
REF  
QTY  
I
= 66A;  
CCMAX  
37±kHz OPERATION  
(MAX17411) (Figure 1)  
(Figure 2)  
V
= 7V to 20V  
V
= 7V to 20V  
V
= 7V to 20V  
IN  
IN  
IN  
Conditions  
Phases  
SVID = 1.23V  
SVID = 1.23V  
SVID = 1.23V  
1
1
2
Fairchild FDMS7680  
Vishay (Siliconix)  
SiR462DP  
Fairchild FDMS7680  
Vishay (Siliconix)  
SiR462DP  
High-Side FET  
N
H_  
1 per phase  
Fairchild FDMC8200  
Fairchild FDMS7670AS  
Vishay (Siliconix)  
Sir158DP  
Fairchild FDMS7670AS  
Vishay (Siliconix) Sir158DP  
2 per phase  
Fairchild FDMC8200  
1 per phase  
Low-Side FET  
N
L_  
L_  
2 per phase  
None; most  
applications  
do not use  
Schottkys  
Schottky  
Diode  
3A, 40V Schottky diode  
Diodes Inc. B340LB-13-F  
3A, 40V Schottky diode  
Diodes Inc B340LB-13-F  
3A, 40V Schottky diode  
Diodes Inc B340LB-13-F  
D
None; most  
applications  
use DCR  
0.75mI, 1%, 1W  
Cyntec Co. RL1632L4-  
0R75m-FNH  
0.75mI, 1%, 1W  
Cyntec Co. RL1632L4-  
0R75m-FNH  
0.75mI, 1%, 1W  
Cyntec Co. RL1632L4-  
0R75m-FNH  
Sense Resistor  
Inductor  
R
SENSE_  
L_  
sensing  
0.36FH, 36A, 0.82mI  
power inductor  
Panasonic  
0.36µH, 36A, 0.82mW  
power inductor  
Panasonic  
3.3µH, 5.5A, 29.6mW  
TOKO: FDV0530-3R3M  
1 per phase  
ETQP4LR36AFC  
ETQP4LR36AFC  
3± _____________________________________________________________________________________  
Dual-Output, 3-/2-/1-Phase + 2-/1-Phase  
Quick-PWM Controllers for VR12/IMVP7  
Table 20 Regulator B Typical Component Values (refer to the MAX17411/MAX17.11  
Evaluation Kit) (continued)  
VR12/IMVP-7 GT; TDC =  
104A/I = 20.A;  
.±±kHz OPERATION  
(MAX17.11/MAX17.11C/ (MAX17.11/MAX17.11C/  
MAX17.11N/MAX17.11T) MAX17.11N/MAX17.11T)  
(Figure 3)  
VR12/IMVP-7 GT; TDC =  
210.A; I = 33A;  
4±±kHz OPERATION  
VR12/IMVP-7 GT  
TDC = 4±A/I  
CCMAX  
CCMAX  
=
CCMAX  
COMPONENT  
REF  
QTY  
66A  
37±kHz OPERATION  
(MAX17411) (Figure 1)  
(Figure 2)  
3 × 470µF, 2V, 4.5mW  
low-ESR polymer  
capacitor (D case)  
Panasonic  
EEFSX0D471E4 or  
NEC/TOKIN  
2 O470µF, 2V, 4.5mW low-  
ESR polymer capacitor  
(D case) Panasonic  
EEFSX0D471E4 or NEC/  
TOKIN PSGV0E477M4.5  
+14 x 22µF ceramic  
Output  
Capacitors  
C
Total  
Total  
1 × 100µF + 47µF ceramic  
OUT_  
PSGV0E477M4.5  
+14 x 22µF ceramic  
3 × 10µF, 25V, X5R  
ceramic capacitors per  
phase  
Input  
Capacitors  
4 O10FF, 25V, X5R  
ceramic capacitors  
C
10µF, 25V, X5R ceramic  
IN_  
Switching  
Frequency  
R
TON  
1
64.9kI, 1% (500kHz)  
82.5kI, 1% (400kHz)  
180kI, 1% (370kHz)  
Slew Rate  
V
= 5V, 10mV/Fs  
V
SR  
= 5V, 10mV/Fs  
V
SR  
= 5V, 10mV/Fs  
SR  
100I, C  
(no DC droop, AC couple  
signal)  
= 0.1µF  
FFB  
FB_ Droop  
Setting  
8.66kI,  
1% (droop = -3.9mV/A)  
17.4kI,  
1% (droop = 3.9mV/A)  
R
1
FBB  
5.62kI, 1% + 100kW,  
5% NTC thermistor B  
= 4250 (0603) Murata  
NCP18WF104J03RB  
TDK NTCG163JF104J  
(0402) or  
5.62kI, 1% +100kI,  
5% NTC thermistor B  
= 4250 (0603) Murata  
NCP18WF104J03RB  
TDK NTCG163JF104J  
(0402) or  
5.62kI, 1% + 100kW,  
5% NTC thermistor B  
= 4250 (0603) Murata  
NCP18WF104J03RB  
TDK NTCG163JF104J  
(0402) or  
THERMB  
Setting  
R
,
THERMB  
R
NTC  
Panasonic ERT-  
Panasonic ERT-J1VR104J  
Panasonic ERT-J1VR104J  
J1VR104J  
______________________________________________________________________________________ 31  
Dual-Output, 3-/2-/1-Phase + 2-/1-Phase  
Quick-PWM Controllers for VR12/IMVP7  
ANALOG BLOCKS  
DRVPWMA  
EN  
POKA  
PHASE 2  
DACS AND  
SETVID  
CIRCUITS A  
REG A  
3-PHASE  
CONSTANT  
ON-TIME  
CONTROLLER  
STATUS A  
PHASE 1  
MAX17411  
MAX17511  
MAX17511C  
MAX17511N  
MAX17511T  
FBA  
CSPA_  
CSNA  
CURRENT  
MONITOR A  
CSPAAVE  
DIGITAL BLOCKS  
COMMON-  
BIAS  
CIRCUITRY  
THERMA  
REGISTER  
FILE A  
THERM  
AMPA  
ALERT#  
CLK  
MUX  
SVID  
INTERFACE  
THERMB  
THERM  
AMPB  
3-BIT ADC  
VDIO  
REGISTER  
FILE B  
CSPB2*  
CSPB1  
CURRENT  
MONITOR B  
CSNB  
CSPBAVE*  
VR_HOT#  
STATUS B  
FBB  
DRVPWMB*  
REG B  
1-/2-PHASE  
CONSTANT  
ON-TIME  
DACs AND  
SETVID  
CIRCUITS B  
PHASE 1  
CONTROLLER  
POKB  
*MAX17411 ONLY  
Figure 4. MAX17411/MAX17511/MAX17511C/MAX17511N/MAX17511T High-Level Block Diagram  
32 _____________________________________________________________________________________  
Dual-Output, 3-/2-/1-Phase + 2-/1-Phase  
Quick-PWM Controllers for VR12/IMVP7  
ILIMA  
IMAXA  
DRVPWMA  
4-BIT DAC  
PHASE-3 CONTROL  
CSNA  
Q
TRIG  
CSPA3  
CSNA  
CSPA3  
CSPA1  
G
m(CCI2)  
PHASE#3  
ONE-SHOT  
ON-TIME  
ILIMA  
ILIMA  
CSNA  
G
m(CCI)  
BSTA2  
DHA2  
LXA2  
CSPA2  
CSNA  
PHASE-2 DRIVERS  
DLA2  
PGND  
MAX17411  
MAX17511  
MAX17511C  
MAX17511N  
MAX17511T  
TRIG2  
CSPA1  
CSNA  
CSNA  
Q
TRIG  
PHASE#2  
ONE-SHOT  
ON-TIME  
ILIMA  
CSPA2  
CSPA1  
3-PHASE  
G
m(CCI1)  
MINIMUM  
OFF-TIME  
TRIG3  
V
CC  
CSNA  
G
m(CCI)  
Q
TRIG  
REF (2.0V)  
ONE-SHOT  
AGND  
SR  
FBA  
PHASE#1  
ONE-SHOT  
ON-TIME  
DAC  
TON (TONA)*  
SVID  
TARGET  
DAC  
I(SRA)  
TRIG1  
Q
TRIG  
BSTA1  
EN  
R
S
MAIN PHASE DRIVERS  
Q
DHA1  
LXA1  
FAULT  
TARGET  
3
2 1  
S
R
PGND  
LXA  
PHASE  
SELECT  
TRIG  
Q
REF  
1mV  
SKIP  
CCVA  
G
m(CCV)  
V
DDA  
FBA  
DLA1  
CSPAAVE  
CSNA  
PGND  
POKA  
SLOPE  
Gm(FB)  
FBA  
FAULT  
REGA FAULT BLOCK  
GNDSA  
TARGET  
N
BLANK  
PHASE CONTROL  
SVID  
PSI(3)  
TO ADC  
CSPAAVE - CSNA  
CURRENT MONITOR  
*() FOR THE MAX17411 ONLY.  
Figure 5. Regulator A Block Diagram with SVID Functions  
______________________________________________________________________________________ 33  
Dual-Output, 3-/2-/1-Phase + 2-/1-Phase  
Quick-PWM Controllers for VR12/IMVP7  
CSPB2  
CSNB  
DRVPWMB  
PHASE-2  
CONTROL  
ILIMB  
MAX17411  
2-PHASE  
Q
TRIG  
CSPB1  
PHASE#2  
CSNB  
ONE-SHOT  
CSPB1  
ILIMB  
ON-TIME  
TONB TRIG2  
TRIG2  
MINIMUM  
OFF-TIME  
CSNB  
G
m(CCI)  
TRIG  
CSPB2  
Q
V
CC  
ONE-SHOT  
CSNB  
FBB  
REF (2.0V)  
G
m(CCI)  
PHASE#1  
ONE-SHOT  
TONB  
SR  
ON-TIME  
DAC  
Q
SVID  
TARGET  
TRIG1  
TRIG  
I(SRB)  
DAC  
BSTB  
EN  
MAIN PHASE  
DRIVERS  
R
S
Q
DHB  
LXB  
FAULT  
TARGET  
2
1
S
R
PHASE  
SELECT  
TRIG  
Q
REF  
PGND  
LXB  
CCVB  
1mV  
G
m(CCV)  
SKIP  
V
DDB  
DLB  
FBB  
PGND  
FBB  
FAULT  
CSPBAVE  
CSNB  
ILIMB  
IMAXB  
4-BIT  
DAC  
SLOPE  
N
REGB FAULT  
BLOCK  
POKB  
G
m(FB)  
PHASE  
CONTROL  
TARGET  
SKIP  
GNDSB  
BLANK  
PHASE  
CONTROL  
CURRENT  
MONITOR  
TO ADC  
CSPBAVE - CSNB  
SVID  
PSI (2)  
Figure 6. MAX17411 Regulator B Block Diagram with SVID Function  
34 _____________________________________________________________________________________  
Dual-Output, 3-/2-/1-Phase + 2-/1-Phase  
Quick-PWM Controllers for VR12/IMVP7  
CSPB1  
CSNB  
MINIMUM  
OFF-TIME  
ILIMB  
Q
TRIG  
ILIMB  
IMAXB  
4-BIT DAC  
ONE-SHOT  
V
CC  
FBB  
TON  
REF (2.0V)  
PHASE#1  
ON-TIME  
GND  
SR  
EN  
ONE-SHOT  
TRIG  
DAC 2  
SVID  
TARGET  
TRIG1  
Q
BSTB  
DAC  
I(SRB)  
R
S
MAIN PHASE DRIVERS  
Q
DHB  
LXB  
S
R
FAULT  
REF  
PGND  
LXB  
Q
TARGET  
1mV  
SKIP  
CCVB  
V
SKIP  
DDB  
G
m(CCV)  
DLB  
FBB  
CSPB1  
CSNB  
SLOPE  
POKB  
FBB  
TARGET  
FAULT  
REGB FAULT BLOCK  
G
m(FB)  
GNDSB  
MAX17511  
MAX17511C  
MAX17511N  
MAX17511T  
TO ADC  
CSPB1-CSNB  
CURRENT MONITOR  
Figure 7. MAX17511/MAX17511C/MAX17511N/MAX17511T Regulator B Block Diagram with SVID Function  
______________________________________________________________________________________ 3.  
Dual-Output, 3-/2-/1-Phase + 2-/1-Phase  
Quick-PWM Controllers for VR12/IMVP7  
Free-Running Constant On-Time PWM  
Detailed Description  
Controller with Input Feed-Forward  
The Quick-PWM control architecture is a pseudo-fixed  
frequency, constant on-time, current-mode regulator  
with voltage feed-forward (Figures 5, 6, and 7). The con-  
trol algorithm is simple: the high-side switch on-time is  
determined solely by a one-shot whose period is inverse-  
ly proportional to input voltage, and directly proportional  
to output voltage or the difference between the main and  
secondary inductor currents (see the On-Time One-Shot  
section). Another one-shot sets a minimum off-time. The  
on-time one-shot triggers when the error comparator  
goes low, the inductor current of the selected phase is  
below the valley current-limit threshold, and the minimum  
off-time one-shot times out. Regulator A maintains 120N  
out-of-phase operation by alternately triggering the three  
phases after the error comparator drops below the out-  
put voltage set point. Two-phase controller (regulator B,  
MAX17411) maintains 180N out-of-phase operation by  
alternately triggering the two phases after the error com-  
parator drops below the output-voltage set point.  
The MAX17411/MAX17511/MAX17511C/MAX17511N/  
MAX17511T are dual-output, step-down, constant on-  
time controllers for VR12/IMVP-7 CPU core supplies.  
The controllers consist of two high-current SMPSs for the  
CPU and GFX cores. The CPU regulator (regulator A,  
ADDR0) is a three-phase constant on-time architecture.  
The optional third phase is configured with an external  
MAX17491 driver. The second GFX regulator (regulator  
B, ADDR1) is a single-phase (MAX17511/MAX17511C/  
MAX17511N/MAX17511T) or two-phase (MAX17411)  
constant on-time architecture. The three-phase CPU  
core regulator runs 120° out-of-phase for true interleaved  
operation, minimizing input capacitance. Figure 4 is the  
high-level block diagram. Table 1 lists typical component  
values for regulator A, and Table 2 lists typical compo-  
nent values for regulator B.  
CPU and GFX outputs are controlled independently by  
writing the appropriate data into a function-mapped  
register file. Output voltages are dynamically changed  
through a 3-wire serial VID interface (3-wire SVID:  
clock, data, ALERT#), allowing the switching regulators  
to be individually programmed to different voltages.  
The MAX17411/MAX17511/MAX17511C/MAX17511N/  
MAX17511T generate well-controlled technologies  
between VID codes and automatically soft-start for non-  
Triple 120° Out-Of-Phase Operation  
The three phases in the MAX17411/MAX17511/  
MAX17511C/MAX17511N/MAX17511T operate 120°  
out-of-phase to minimize input and output filtering  
requirements, reduce electromagnetic interference  
(EMI), and improve efficiency. This effectively low-  
ers component count—reducing cost, board space,  
and component power requirements—making these  
devices ideal for high-power, cost-sensitive applications.  
The MAX17411/MAX17511/MAX17511C/MAX17511N/  
MAX17511T share the current between three phases that  
operate 120N out-of-phase, so the high-side MOSFETs  
never turn on simultaneously during normal opera-  
tion. The instantaneous input current of each phase is  
effectively reduced, resulting in reduced input voltage  
ripple, ESR power loss, and RMS ripple current (see the  
Input Capacitor Selection section). Therefore, the same  
performance can be achieved with fewer or less-  
expensive input capacitors.  
zero V  
operation. The SVID interface also allows  
BOOT  
each regulator to be individually set into a low-power  
pulse-skipping state. Individual phases can be shut  
down based on the processors’ operating conditions (1-  
or 3-phase operation is possible under software control).  
Transient-phase overlap mode improves the current  
delivery response time of regulator A, which reduces the  
total output capacitance. Both regulators include active  
overshoot suppression to reduce the required output  
decoupling capacitance.  
The devices include output overvoltage (MAX17411/  
MAX17511/MAX17511C/MAX17511N), output under-  
voltage, and thermal protections. When any of these  
protection features detects a fault, the controller shuts  
down both channels. True differential current sensing  
improves load-line and current-limit accuracy. Both  
regulators A and B feature programmable switching  
frequency, allowing 200kHz to 600kHz per phase  
operation. VR12/IMVP-7 requires temperature measure-  
ments for the individual outputs. For this reason, an ADC  
with MUX is included to digitize the analog variables of  
interest. A thermistor-based temperature sensor pro-  
vides a programmable thermal-fault output (VR_HOT#).  
Dual 180° Out-Of-Phase Operation  
(MAX17411 Only)  
The two phases in the MAX17411 operate 180° out-of-  
phase to minimize input and output filtering requirements,  
reduce EMI, and improve efficiency. This effectively lowers  
component count—reducing cost, board space, and com-  
ponent power requirements—making this device ideal for  
high-power, cost-sensitive applications. The MAX17411  
shares the current between two phases that operate 180°  
36 _____________________________________________________________________________________  
Dual-Output, 3-/2-/1-Phase + 2-/1-Phase  
Quick-PWM Controllers for VR12/IMVP7  
out-of-phase, so the high-side MOSFETs never turn on  
TON Open-Circuit Protection  
The TON inputs include open-circuit protection to avoid  
long, uncontrolled on-times that could result in an overvolt-  
age condition on the output. The MAX17411/MAX17511/  
MAX17511C/MAX17511N/MAX17511T detect an open-  
circuit fault if the TON current drops below 10FA for any  
simultaneously during normal operation. The instanta-  
neous input current of each phase is effectively reduced,  
resulting in reduced input-voltage ripple, ESR power  
loss, and RMS ripple current (see the Input Capacitor  
Selection section). Therefore, the same performance can  
be achieved with fewer or less-expensive input capacitors.  
reason—the TON resistor (R ) is unpopulated, a high  
TON  
resistancevalueisused, theinputvoltageislow, etc. Under  
these conditions, the MAX17411/MAX17511/MAX17511C/  
MAX17511N/MAX17511T stop switching (DH_ and DL_  
pulledlow)andimmediatelysetthefaultlatchforbothregu-  
+5V Bias Supply (V , V  
, and V  
)
CC  
DDA  
DDB  
The Quick-PWM controllers require an external 5V bias  
supply in addition to the battery. Typically, this +5V bias  
supply is the notebook’s 95% efficient 5V system supply.  
lator A and regulator B. Toggle EN or cycle the V  
power  
CC  
The +5V bias supply must provide V  
(PWM control-  
CC  
supply below 0.5V to clear the fault latch and reactivate  
the controller.  
ler) and V  
and V  
(gate-drive power). V  
and  
DDA  
DDB  
DDA  
V
can be shorted together on the PCB. The maxi-  
DDB  
mum current drawn from the 5V bias supply is:  
= I + f (Q + Q ) | +  
G(HIGH) REGA  
On-Time One-Shot  
Regulator A and regulator B contain fast, low-jitter,  
adjustable one-shots that set the respective high-side  
MOSFETs on-time. The one-shot timing is shared among  
the operating phases. The one-shot for the main phase  
varies the on-time in response to the input and feedback  
voltages. The main high-side switch on-time is inversely  
I
BIAS  
CC  
SW G(LOW)  
f
(Q  
+ Q  
) |  
SW G(LOW)  
G(HIGH) REGB  
where I  
is provided in the Electrical Characteristics  
CC  
table, f  
and Q  
is the switching frequency, and Q  
SW  
G(LOW)  
are the MOSFET data sheet’s total  
G(HIGH)  
gate-charge specification limits at V = 5V. V , V  
,
GS  
CC DDA  
proportional to the input voltage as measured by the V ,  
IN  
and V  
can be connected together if the input power  
DDB  
and proportional to the feedback voltage (V  
):  
FB_  
source is a fixed 4.5V to 5.5V supply. If the 5V bias sup-  
ply is powered up prior to the battery supply, the enable  
signal (EN going from low to high) must be delayed until  
the battery voltage is present to ensure startup.  
t
(V  
+ 0.075V)  
SW FB_  
t
=
ON  
V
IN  
The one-shot for the second phase and third phase  
varies the on-time in response to the input voltage  
and the difference between the main and the other  
inductor currents. Two identical transconductance  
amplifiers integrate the difference between the master  
and each slave’s current-sense signals. The respective  
Switching Frequency (TON)  
For the MAX17411, connect two resistors (R  
and  
TONA  
R
) between TONA and V and TONB and V to  
TONB  
IN IN  
set the switching period t  
= 1/f , per phase:  
SW  
SW_  
t
= C  
x (R  
+ 6.5kI)  
SW_  
TON_  
TON_  
error signals are used to correct the t  
of the high-side  
ON  
where C  
= 17.9pF for regulator A and C  
=
TON_  
TON_  
MOSFETs for the 2nd and 3rd phase.  
14.6pF for regulator B.  
For the MAX17511/MAX17511C/MAX17511N/MAX17511T,  
connect a resistor (R ) between TON and V to set the  
During phase overlap, t is calculated based on the  
ON  
on-time requirements of the first phase, but reduced  
by 33% when operating with three phases. For a three-  
phase regulator, the third phase cannot be enabled  
until the other two phases have completed their on-  
time and the minimum off-times have expired. As  
TON  
IN  
switching period t  
= 1/f , per phase for both regulator  
SW  
SW  
A and regulator B:  
t
t
= (2 x R  
= (2 x R  
+ 6.5kI) x 17.9pF  
+ 6.5kI) x 14.6pF  
SWA  
SWB  
TON  
such, the minimum period is limited by 3 x (t  
+
ON  
TON  
t
). The maximum t  
OFF(MIN)  
is dependent on the  
ON  
If the MAX17511 regulator B is disabled, then  
= (R + 6.5kI) x 17.9pF  
minimum input and maximum output voltage:  
= N × (t + t )  
OFF(MIN)  
t
SWA  
TON  
t
SW(MIN)  
PH  
ON(MAX)  
High-frequency (600kHz) operation optimizes the  
application for the smallest component size, trading off  
efficiency due to higher switching losses. Low-frequency  
(200kHz) operation offers the best overall efficiency at  
the expense of component size and board space.  
where:  
V
FB_(MAX)  
t
=
× t  
SW(MIN)  
ON(MAX)  
V
IN(MIN)  
and N = total number of active phases.  
PH  
______________________________________________________________________________________ 37  
Dual-Output, 3-/2-/1-Phase + 2-/1-Phase  
Quick-PWM Controllers for VR12/IMVP7  
So:  
where V  
is the sum of the parasitic voltage drops  
DIS  
in the inductor discharge and charge paths, includ-  
ing MOSFET, inductor, and PCB resistances; V is  
the sum of the parasitic voltage drops in the inductor  
charge path, including high-side switch, inductor, and  
t
OFF(MIN)  
CHG  
t
=
SW(MIN)  
1/ N V  
/V  
PH  
FB_(MAX) IN(MIN)  
Hence, for a 7V input and 1.1V output, the maximum  
switching frequency is 700kHz. Running at this limit  
is not desirable since there is no room to allow the  
regulator to make adjustments without triggering phase  
overlap. For a three-phase, high-current application with  
minimum 8V input, the practical switching frequency is  
300kHz. On-times translate only roughly to switching  
frequencies. The on-times guaranteed in the Electrical  
Characteristics table are influenced by parasitics in the  
conduction paths and propagation delays. For loads  
above the critical conduction point, where the dead-time  
effect (LX flying high and conducting through the high-  
side FET body diode) is no longer a factor, the actual  
switching frequency (per phase) is:  
PCB resistances, and t  
above.  
is the on-time as determined  
ON  
Current Sense  
The MAX17411/MAX17511/MAX17511C/MAX17511N/  
MAX17511T sense the output current of each phase,  
allowing the use of current-sense resistors or inductor  
DCR as the current-sense element. Low-offset amplifiers  
are used for current balance, voltage-positioning gain,  
and current limit. Using the DC resistance (R  
) of  
DCR  
the output inductor allows higher efficiency. The initial  
tolerance and temperature coefficient of the inductor’s  
DCR must be accounted for in the output-voltage droop-  
error budget and current monitor. This current-sense  
method uses an RC filter network to extract the current  
information from the output inductor (see Figure 8).  
(V  
+ V  
)
OUT  
DIS  
f
=
SW  
t
(V + V  
+ V  
)
ON IN  
DIS  
CHG  
INPUT (V  
)
IN  
N
C
IN  
H
DH_  
R2  
INDUCTOR  
R
R
=
R
CS  
DCR  
+
R1 + R2  
R
DCR  
MAX17411  
MAX17511  
MAX17511C  
MAX17511N  
MAX17511T  
L
L
1
1
LX_  
DL_  
=
DCR  
C
R1  
R2  
EQ  
N
L
C
OUT  
D
L
FOR THERMAL COMPENSATION:  
R1  
R2  
R SHOULD CONSIST OF AN NTC RESISTOR  
IN SERIES WITH A STANDARD THIN-FILM RESISTOR  
2
PGND  
CSP_  
CSN_  
C
EQ  
A) LOSSLESS INDUCTOR SENSING  
INPUT (V  
)
IN  
N
C
IN  
H
DH_  
SENSE RESISTOR  
MAX17411  
R
L
L
SENSE  
ESL  
L
ESL  
C
R
=
MAX17511  
EQ EQ  
LX_  
R
SENSE  
MAX17511C  
N
L
C
OUT  
MAX17511N  
DL_  
D
L
MAX17511T  
C
EQ  
R
EQ  
PGND  
CSP_  
CSN_  
B) OUTPUT SERIES RESISTOR SENSING  
Figure 6. Current-Sense Methods  
38 _____________________________________________________________________________________  
Dual-Output, 3-/2-/1-Phase + 2-/1-Phase  
Quick-PWM Controllers for VR12/IMVP7  
The RC network should match the time constant of the  
where R  
and V  
is the equivalent DCR sense resistance  
is the current-balance offset specification  
SENSE  
OS(IBAL)  
inductor (L/R ):  
DCR  
in the Electrical Characteristics table. The worst-case cur-  
rent mismatch occurs immediately after a load transient  
due to inductor value mismatches, resulting in different di/  
dt for the two phases. The time it takes for the current-bal-  
ance loop to correct the transient imbalance depends on  
the mismatch between the inductor values and switching  
frequency.  
R2  
R1+ R2  
R
=
R
CS  
DCR  
and:  
L
1
1
R
=
+
DCR  
C
R1 R2  
EQ  
where R  
and R  
is the required current-sense resistance,  
is the inductor’s series DC resistance. Use  
the typical inductance and R  
the inductor manufacturer. To minimize the current-  
sense error due to the bias current of the current-sense  
), choose R1R2 to be less  
than 2kI and use the above equation to determine the  
sense capacitance (C ). Choose capacitors with 5%  
tolerance and resistors with 1% tolerance specifications.  
Temperature compensation is recommended for this  
current-sense method. See the Voltage Positioning sec-  
tion for detailed information.  
CS  
DCR  
Current Limit  
The current-limit circuit employs a “valley” current-sens-  
ing algorithm that senses the voltage across the current-  
sense resistors or inductor DCR at the current-sense  
inputs (CSP_ to CSN_). If the current-sense signal of  
the selected phase is above the current-limit threshold,  
the PWM controller does not initiate a new cycle until  
the inductor current of the selected phase drops below  
the valley current-limit threshold. When any one phase  
exceeds the current limit, all phases are effectively  
current limited since the interleaved controller does  
not initiate a cycle with the next phase. Since only the  
valley current is actively limited, the actual peak current  
is greater than the current-limit threshold by an amount  
equal to the inductor ripple current. Therefore, the exact  
current-limit characteristic and maximum load capability  
are functions of the current-sense resistance, inductor  
value, and battery voltage. The positive valley current-  
limit threshold voltage at CSP_ to CSN_ is preset using  
the IMAX_ and SR multivalue logic inputs.  
values provided by  
DCR  
inputs (I  
and I  
CSP_  
CSN_  
EQ  
When using a current-sense resistor for accurate output-  
voltage positioning, the circuit requires a differential RC  
filter to eliminate the AC voltage step caused by the  
equivalent series inductance (L  
resistor (see Figure 8). The ESL-induced voltage step  
might affect the average current-sense voltage. The time  
constant of the RC filter should match the L  
time constant formed by the parasitic inductance of the  
current-sense resistor:  
) of the current-sense  
ESL  
/R  
ESL SENSE  
Carefully observe the PCB layout guidelines to ensure  
that noise and DC errors do not corrupt the current-  
sense signals seen by the current-sense inputs (CSP_,  
CSN_).  
L
ESL  
= C  
R
EQ EQ  
R
SENSE  
where L  
is the equivalent series inductance of the  
ESL  
current-sense resistor, R  
is the current-sense  
SENSE  
Feedback Adjustment Amplifier  
resistance value, and C  
and R  
are the time-con-  
EQ  
EQ  
Voltage-Positioning Amplifier (Steady-State Droop)  
Regulators A and B include transconductance ampli-  
fiers for adding gain to the voltage-positioning sense  
path. The input of the amplifier is generated by summing  
the current-sense voltage inputs, which differentially  
sense the voltage across either current-sense resistors  
or the inductor’s DCR. The output of the droop ampli-  
stant matching components.  
Current Balance  
Regulator A integrates the difference between the current-  
sense voltages and adjusts the on-time of the second and  
third phases to maintain current balance. The current bal-  
ance relies on the accuracy of the current-sense signals  
across the current-sense resistor or inductor DCR. With  
active current balancing, the current mismatch is deter-  
mined by the current-sense resistor or inductor DCR values  
and the offset voltage of the transconductance amplifiers:  
fier, G  
connects directly to the voltage-positioned  
m(FB_)  
feedback input (FB_) of the regulator, so the resistance  
between FB_ and the output-voltage sense point deter-  
mines the voltage-positioning gain:  
V
= V  
– (R  
I
)
OUT  
TARGET  
FB O FB_  
V
OS(IBAL)  
I
= I  
I  
=
where the target voltage (V  
Nominal Output Voltage Selection section, and the  
) is defined in the  
OS(IBAL)  
LMAIN LSEC  
TARGET  
R
SENSE  
______________________________________________________________________________________ 39  
Dual-Output, 3-/2-/1-Phase + 2-/1-Phase  
Quick-PWM Controllers for VR12/IMVP7  
G
output current I  
. I is determined by the  
FB_ FB_  
The DCR circuit network is the divider of the actual induc-  
tor DCR. Hence the effective resistance at CSPAAVE -  
CSNA will be lower than the DCR resistance.  
m(FB_)  
sum of the current-sense voltages:  
I
= G × V  
FB_  
m(FB)_  
CSX  
Since there are more unknowns than the equations in  
the current-sense network, the component values must  
be calculated by iteration. A spreadsheet helps as the  
variation over temperature should also be checked. The  
following steps provide some initial values to work with.  
where V  
= V  
- V  
or V  
= V  
-
CSX  
CSP_AVE  
CSN_  
CSX  
CSPB1  
V
(for regulator B of the MAX17511/MAX17511C/  
CSNB  
MAX17511N/MAX17511T) is the differential current-  
sense voltage, and G is 600Fs (typ) as defined  
in the Electrical Characteristics table. The controller  
uses the V or the V input to get the aver-  
m(FB_)  
1) Use typical L and DCR values in the calculations.  
CSP_AVG  
CSPB1  
2) For inductors with low DCR less than 1mI, add  
about 0.015mIto the DCR value to compensate for  
parasitic resistances due to layout and assembly.  
age inductor current from the positive current-sense  
averaging network. Since the feedback voltage (FB_) is  
regulated, the output voltage changes in response to the  
feedback current I  
defined by the characteristics of R  
to create a load line with accuracy  
FB_  
3) Choose C  
first since capacitor choices are  
CSPAAVE  
and G  
.
FB_  
m(FB_)  
limited. A good value to start with is 0.22FF. It is  
good to add a small capacitor position in parallel to  
When the inductor’s DCR is used as the current-sense  
element (R = R ), the current-sense inputs  
C
to fine tune the total capacitance.  
CSPAAVE  
SENSE  
DCR  
should include an NTC thermistor to minimize the tem-  
perature dependence of the voltage-positioning slope.  
4) Larger C  
Smaller R  
results in smaller R  
values are required to reduce the error  
values.  
LX_  
CSPAAVE  
LX_  
due to pin leakages. As a rule, the R  
parallel should be about 2kI or less.  
resistors in  
LX_  
CSP_AVE - CSN_ Inputs  
The current-sense information across all phases are  
averaged together at the CSP_AVE - CSN_ or the  
CSPB1 - CSNB (MAX17511/MAX17511C/MAX17511N/  
MAX17511T) inputs. This signal contains both the  
DC average current information and the AC ripple  
information. The MAX17411/MAX17511/MAX17511C/  
MAX17511N/MAX17511T use the DC information to gen-  
erate the load line, and the AC information for stability.  
5) Select R  
start with a value between 1kI  
CSPAAVE2  
and 4kI.  
6) Select R . Large values like 20kIto 100kI  
CSPAAVE1  
are recommended. R  
may even not be  
CSPAAVE1  
populated. Generally, R  
helps to reduce  
CSPAAVE1  
the variation over temperature.  
7) Use a 10kI NTC with a beta of 3435k. The beta  
of 3435k is easier to keep effective DCR flat over  
temperature.  
CSPAAVE - CSNA Design Using  
Inductor DCR Sensing  
When the inductor DCR is used as the current-sense  
element, a DCR circuit network shown in Figure 9 is used  
to generate the average current signal for the MAX17411/  
MAX17511/MAX17511C/MAX17511N/MAX17511T.  
8) Calculate R  
assuming just one phase is used.  
LXA_  
After this value is determined, scale the actual R  
by the number of active phases in the design.  
LXA_  
R
R
R
LXA1  
Ln  
LXA1  
SENSE  
1
3
2
4
CSPAAVE  
LXAn  
V
OUT  
LXAn  
SENSE  
C
R
STEP  
CSPAAVE  
LXA2  
LXA3  
LXA2  
SENSE  
CSNA  
R
CSNA1  
R
R
CSPAAVE2  
CSPAAVE1  
MAX17411  
MAX17511  
MAX17511C  
MAX17511N  
MAX17511T  
LXA3  
SENSE  
CSNA  
L
DCR  
= R x C  
EQ  
CSPAAVE  
WHERE R = R  
//R  
//R  
// (R  
+ R  
// R  
)
NTC  
EQ  
LXA1 LXA2 LXA3  
CSPAAVE2  
CSPAAVE1  
R
NTC  
Figure 9. CSPAAVE - CSNA DCR Network  
4± _____________________________________________________________________________________  
Dual-Output, 3-/2-/1-Phase + 2-/1-Phase  
Quick-PWM Controllers for VR12/IMVP7  
Differential Remote Sense  
Both regulators A and B include differential, remote-  
sense inputs to eliminate the effects of voltage drops  
along the PCB traces and through the power pins of the  
processor. The feedback-sense node connects to the  
ler. To provide fast transient response, regulator A and  
regulator B support phase-overlap mode, which allows  
the dual and triple regulators to operate in-phase when  
heavy load transients are detected, effectively reducing  
the response time. After any high-side MOSFET turns  
off, if the output voltage does not exceed the regulation  
voltage when the minimum off-time expires, the controller  
simultaneously turns on all high-side MOSFETs with the  
same on-time during the next on-time cycle. The phases  
remain overlapped until the output voltage exceeds the  
regulation voltage after the minimum off-time expires.  
The on-time for each phase is based on the input volt-  
age to FB_ ratio (i.e., follows the master on-time), but  
reduced by 33% in a three-phase configuration, and not  
reduced in a two-phase configuration. This maximizes  
the total inductor current slew rate. After the phase-  
overlap mode ends, the controller automatically begins  
with the next phase. For example, if phase 2 provides  
the last on-time pulse before overlap operation begins,  
the controller starts switching with phase 3 when overlap  
operation ends.  
voltage-positioning resistor (R  
). The ground-sense  
FB_  
(GNDS_) input connects to an amplifier that adds an  
offset directly to the target voltage, effectively adjusting  
the output voltage to counteract the voltage drop in the  
ground path. Connect the voltage-positioning resistor  
(R  
FB_  
) and ground-sense (GNDS_) input directly to  
the remote-sense outputs of the processor as shown in  
Figure 1. The correction range is bounded to less than  
Q200mV. The remote-sense lines draw less than Q0.5FA  
to minimize offset errors.  
Integrator Amplifier  
Regulators A and B utilize internal integrator amplifiers  
that force the DC average of the FB_ voltage to equal the  
target voltage, allowing accurate DC output voltage reg-  
ulation regardless of the output voltage. The MAX17411/  
MAX17511/MAX17511C/MAX17511N/MAX17511T dis-  
able the integrators by connecting the amplifier inputs  
together at the beginning of all VID transitions done in  
pulse-skipping mode (PS2, PS3). The integrators remain  
disabled until the transition is completed (the internal  
target settles) and the output is in regulation (edge  
detected on the error comparator).  
Nominal Output Voltage Selection  
The nominal no-load output voltage (V  
) is defined  
TARGET  
by the selected voltage reference (SVID DAC), plus the  
remote ground-sense adjustment (V  
the following equation:  
) as defined in  
GNDS  
V
= V  
= V + V  
DAC GNDS  
TARGET  
FB_  
Transient-Phase Overlap Operation  
When a transient occurs, the response time of the  
controller depends on how quickly it can slew the induc-  
tor current. Multiphase controllers that remain 180N or  
120N out-of-phase when a transient occurs actually  
respond slower than an equivalent single-phase control-  
where V  
is the selected SVID voltage. On startup,  
DAC  
the MAX17411/MAX17511/MAX17511C/MAX17511N/  
MAX17511T slew the target voltage from ground to the  
preset boot voltage. Table 3* lists the SVID code set for  
VR12/IMVP7.  
*Table 30 VR12/IMVP-7 8-Bit DAC Code SVID[7:±]  
DAC SET POINT  
LINE  
VID7  
VID6  
VID.  
VID4  
VID3  
VID2  
VID1  
VID±  
HEX1  
HEX±  
VOLTAGE (V)  
ACCURACY  
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
1
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
1
2
3
4
5
6
7
8
9
A
0
0.2500  
0.2550  
0.2600  
0.2650  
0.2700  
0.2750  
0.2800  
0.2850  
0.2900  
0.2950  
8mV  
2
8mV  
3
8mV  
4
8mV  
5
8mV  
6
8mV  
7
8mV  
8
8mV  
9
8mV  
10  
8mV  
______________________________________________________________________________________ 41  
Dual-Output, 3-/2-/1-Phase + 2-/1-Phase  
Quick-PWM Controllers for VR12/IMVP7  
Table 30 VR12/IMVP-7 8-Bit DAC Code SVID[7:±] (continued)  
DAC SET POINT  
VOLTAGE (V)  
LINE  
VID7  
VID6  
VID.  
VID4  
VID3  
VID2  
VID1  
VID±  
HEX1  
HEX±  
ACCURACY  
8mV  
8mV  
8mV  
8mV  
8mV  
8mV  
8mV  
8mV  
8mV  
8mV  
8mV  
8mV  
8mV  
8mV  
8mV  
8mV  
8mV  
8mV  
8mV  
8mV  
8mV  
8mV  
8mV  
8mV  
8mV  
8mV  
8mV  
8mV  
8mV  
8mV  
8mV  
8mV  
8mV  
8mV  
8mV  
8mV  
8mV  
8mV  
8mV  
8mV  
8mV  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
3
3
3
3
B
C
D
E
F
0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
0
1
2
3
0.3000  
0.3050  
0.3100  
0.3150  
0.3200  
0.3250  
0.3300  
0.3350  
0.3400  
0.3450  
0.3500  
0.3550  
0.3600  
0.3650  
0.3700  
0.3750  
0.3800  
0.3850  
0.3900  
0.3950  
0.4000  
0.4050  
0.4100  
0.4150  
0.4200  
0.4250  
0.4300  
0.4350  
0.4400  
0.4450  
0.4500  
0.4550  
0.4600  
0.4650  
0.4700  
0.4750  
0.4800  
0.4850  
0.4900  
0.4950  
0.5000  
42 _____________________________________________________________________________________  
Dual-Output, 3-/2-/1-Phase + 2-/1-Phase  
Quick-PWM Controllers for VR12/IMVP7  
Table 30 VR12/IMVP-7 8-Bit DAC Code SVID[7:±] (continued)  
DAC SET POINT  
VOLTAGE (V)  
LINE  
VID7  
VID6  
VID.  
VID4  
VID3  
VID2  
VID1  
VID±  
HEX1  
HEX±  
ACCURACY  
8mV  
8mV  
8mV  
8mV  
8mV  
8mV  
8mV  
8mV  
8mV  
8mV  
8mV  
8mV  
8mV  
8mV  
8mV  
8mV  
8mV  
8mV  
8mV  
8mV  
8mV  
8mV  
8mV  
8mV  
8mV  
8mV  
8mV  
8mV  
8mV  
8mV  
8mV  
8mV  
8mV  
8mV  
8mV  
8mV  
8mV  
8mV  
8mV  
8mV  
8mV  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
3
3
3
3
3
3
3
3
3
3
3
3
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
5
5
5
5
5
5
5
5
5
5
5
5
5
4
5
6
7
8
9
A
B
C
D
E
F
0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
0
1
2
3
4
5
6
7
8
9
A
B
C
0.5050  
0.5100  
0.5150  
0.5200  
0.5250  
0.5300  
0.5350  
0.5400  
0.5450  
0.5500  
0.5550  
0.5600  
0.5650  
0.5700  
0.5750  
0.5800  
0.5850  
0.5900  
0.5950  
0.6000  
0.6050  
0.6100  
0.6150  
0.6200  
0.6250  
0.6300  
0.6350  
0.6400  
0.6450  
0.6500  
0.6550  
0.6600  
0.6650  
0.6700  
0.6750  
0.6800  
0.6850  
0.6900  
0.6950  
0.7000  
0.7050  
______________________________________________________________________________________ 43  
Dual-Output, 3-/2-/1-Phase + 2-/1-Phase  
Quick-PWM Controllers for VR12/IMVP7  
Table 30 VR12/IMVP-7 8-Bit DAC Code SVID[7:±] (continued)  
DAC SET POINT  
VOLTAGE (V)  
LINE  
VID7  
VID6  
VID.  
VID4  
VID3  
VID2  
VID1  
VID±  
HEX1  
HEX±  
ACCURACY  
8mV  
8mV  
8mV  
8mV  
8mV  
8mV  
8mV  
8mV  
8mV  
8mV  
8mV  
8mV  
8mV  
8mV  
8mV  
8mV  
8mV  
8mV  
5mV  
5mV  
5mV  
5mV  
5mV  
5mV  
5mV  
5mV  
5mV  
5mV  
5mV  
5mV  
5mV  
5mV  
5mV  
5mV  
5mV  
5mV  
5mV  
5mV  
5mV  
5mV  
5mV  
93  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
5
5
5
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
8
8
8
8
8
8
D
E
F
0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
0
1
2
3
4
5
0.7100  
0.7150  
0.7200  
0.7250  
0.7300  
0.7350  
0.7400  
0.7450  
0.7500  
0.7550  
0.7600  
0.7650  
0.7700  
0.7750  
0.7800  
0.7850  
0.7900  
0.7950  
0.8000  
0.8050  
0.8100  
0.8150  
0.8200  
0.8250  
0.8300  
0.8350  
0.8400  
0.8450  
0.8500  
0.8550  
0.8600  
0.8650  
0.8700  
0.8750  
0.8800  
0.8850  
0.8900  
0.8950  
0.9000  
0.9050  
0.9100  
94  
95  
96  
97  
98  
99  
100  
101  
102  
103  
104  
105  
106  
107  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
128  
129  
130  
131  
132  
133  
44 _____________________________________________________________________________________  
Dual-Output, 3-/2-/1-Phase + 2-/1-Phase  
Quick-PWM Controllers for VR12/IMVP7  
Table 30 VR12/IMVP-7 8-Bit DAC Code SVID[7:±] (continued)  
DAC SET POINT  
LINE  
VID7  
VID6  
VID.  
VID4  
VID3  
VID2  
VID1  
VID±  
HEX1  
HEX±  
VOLTAGE (V)  
ACCURACY  
5mV  
134  
135  
136  
137  
138  
139  
140  
141  
142  
143  
144  
145  
146  
147  
148  
149  
150  
151  
152  
153  
154  
155  
156  
157  
158  
159  
160  
161  
162  
163  
164  
165  
166  
167  
168  
169  
170  
171  
172  
173  
174  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
8
8
8
8
8
8
8
8
8
8
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
6
7
8
9
A
B
C
D
E
F
0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
0.9150  
0.9200  
0.9250  
0.9300  
0.9350  
0.9400  
0.9450  
0.9500  
0.9550  
0.9600  
0.9650  
0.9700  
0.9750  
0.9800  
0.9850  
0.9900  
0.9950  
1.0000  
1.0050  
1.0100  
1.0150  
1.0200  
1.0250  
1.0300  
1.0350  
1.0400  
1.0450  
1.0500  
1.0550  
1.0600  
1.0650  
1.0700  
1.0750  
1.0800  
1.0850  
1.0900  
1.0950  
1.1000  
1.1050  
1.1100  
1.1150  
5mV  
5mV  
5mV  
5mV  
5mV  
5mV  
5mV  
5mV  
5mV  
5mV  
5mV  
5mV  
5mV  
5mV  
5mV  
5mV  
0.5%  
0.5%  
0.5%  
0.5%  
0.5%  
0.5%  
0.5%  
0.5%  
0.5%  
0.5%  
0.5%  
0.5%  
0.5%  
0.5%  
0.5%  
0.5%  
0.5%  
0.5%  
0.5%  
0.5%  
0.5%  
0.5%  
0.5%  
0.5%  
______________________________________________________________________________________ 4.  
Dual-Output, 3-/2-/1-Phase + 2-/1-Phase  
Quick-PWM Controllers for VR12/IMVP7  
Table 30 VR12/IMVP-7 8-Bit DAC Code SVID[7:±] (continued)  
DAC SET POINT  
VOLTAGE (V)  
LINE  
VID7  
VID6  
VID.  
VID4  
VID3  
VID2  
VID1  
VID±  
HEX1  
HEX±  
ACCURACY  
0.5%  
0.5%  
0.5%  
0.5%  
0.5%  
0.5%  
0.5%  
0.5%  
0.5%  
0.5%  
0.5%  
0.5%  
0.5%  
0.5%  
0.5%  
0.5%  
0.5%  
0.5%  
0.5%  
0.5%  
0.5%  
0.5%  
0.5%  
0.5%  
0.5%  
0.5%  
0.5%  
0.5%  
0.5%  
0.5%  
0.5%  
0.5%  
0.5%  
0.5%  
0.5%  
0.5%  
0.5%  
0.5%  
0.5%  
0.5%  
0.5%  
175  
176  
177  
178  
179  
180  
181  
182  
183  
184  
185  
186  
187  
188  
189  
190  
191  
192  
193  
194  
195  
196  
197  
198  
199  
200  
201  
202  
203  
204  
205  
206  
207  
208  
209  
210  
211  
212  
213  
214  
215  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
A
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
D
D
D
D
D
D
D
D
F
0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
0
1
2
3
4
5
6
7
1.1200  
1.1250  
1.1300  
1.1350  
1.1400  
1.1450  
1.1500  
1.1550  
1.1600  
1.1650  
1.1700  
1.1750  
1.1800  
1.1850  
1.1900  
1.1950  
1.2000  
1.2050  
1.2100  
1.2150  
1.2200  
1.2250  
1.2300  
1.2350  
1.2400  
1.2450  
1.2500  
1.2550  
1.2600  
1.2650  
1.2700  
1.2750  
1.2800  
1.2850  
1.2900  
1.2950  
1.3000  
1.3050  
1.3100  
1.3150  
1.3200  
46 _____________________________________________________________________________________  
Dual-Output, 3-/2-/1-Phase + 2-/1-Phase  
Quick-PWM Controllers for VR12/IMVP7  
Table 30 VR12/IMVP-7 8-Bit DAC Code SVID[7:±] (continued)  
DAC SET POINT  
VOLTAGE (V)  
LINE  
VID7  
VID6  
VID.  
VID4  
VID3  
VID2  
VID1  
VID±  
HEX1  
HEX±  
ACCURACY  
0.5%  
0.5%  
0.5%  
0.5%  
0.5%  
0.5%  
0.5%  
0.5%  
0.5%  
0.5%  
0.5%  
0.5%  
0.5%  
0.5%  
0.5%  
0.5%  
0.5%  
0.5%  
0.5%  
0.5%  
0.5%  
0.5%  
0.5%  
0.5%  
0.5%  
0.5%  
0.5%  
0.5%  
0.5%  
0.5%  
0.5%  
0.5%  
0.5%  
0.5%  
0.5%  
0.5%  
0.5%  
0.5%  
0.5%  
0.5%  
216  
217  
218  
219  
220  
221  
222  
223  
224  
225  
226  
227  
228  
229  
230  
231  
232  
233  
234  
235  
236  
237  
238  
239  
240  
241  
242  
243  
244  
245  
246  
247  
248  
249  
250  
251  
252  
253  
254  
255  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
D
D
D
D
D
D
D
D
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
8
9
A
B
C
D
E
F
0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
1.3250  
1.3300  
1.3350  
1.3400  
1.3450  
1.3500  
1.3550  
1.3600  
1.3650  
1.3700  
1.3750  
1.3800  
1.3850  
1.3900  
1.3950  
1.4000  
1.4050  
1.4100  
1.4150  
1.4200  
1.4250  
1.4300  
1.4350  
1.4400  
1.4450  
1.4500  
1.4550  
1.4600  
1.4650  
1.4700  
1.4750  
1.4800  
1.4850  
1.4900  
1.4950  
1.5000  
1.5050  
1.5100  
1.5150  
1.5200  
*The output voltage accuracy in Table 3 is specified for T = 0°C to +85°C. See the Electrical Characteristics table for output volt-  
A
age accuracy over T = -40°C to +105°C temperature range.  
A
______________________________________________________________________________________ 47  
Dual-Output, 3-/2-/1-Phase + 2-/1-Phase  
Quick-PWM Controllers for VR12/IMVP7  
waveforms to constantly be the complement of the  
Output Voltage Transient Timing  
At the beginning of an output voltage transition, the  
MAX17411/MAX17511/MAX17511C/MAX17511N/  
MAX17511T blank both power-good thresholds, prevent-  
ing the POK_ open-drain outputs from changing states  
during the transition. The controller enables the lower  
power-good threshold approximately 20Fs after the  
slew-rate controller reaches the target output voltage,  
but the upper threshold is enabled only if the controller  
remains in forced-PWM operation. If the controller enters  
pulse-skipping operation, the upper threshold remains  
blanked until an LX pulse is required.  
high-side gate-drive waveforms. This keeps the switch-  
ing frequency constant and allows the inductor current  
to reverse under light loads, providing fast, accurate  
negative output voltage transitions by quickly discharg-  
ing the output capacitors. Forced-PWM operation comes  
at a cost: the no-load +5V bias supply current remains  
between 10mA to 50mA per phase, depending on the  
external MOSFETs and switching frequency. To maintain  
high efficiency under light-load conditions, the processor  
can switch the controller to a low-power pulse-skipping  
control scheme by entering PS2 or PS3.  
The MAX17411/MAX17511/MAX17511C/MAX17511N/  
MAX17511T automatically control the current to the mini-  
mum level required to complete the transition. The total  
transition time depends on the SR input setting, the par-  
ticular SETVID command (fast, slow) and the voltage dif-  
ference, and the accuracy of the slew-rate controller (see  
the Slew-Rate Accuracy in the Electrical Characteristics  
table). The slew rate is not dependent on the total output  
capacitance, as long as the surge current is less than the  
current limit. For dynamic SVID transitions, the transition  
Light-Load Pulse-Skipping  
Operation (PS2, PS3)  
When the SVID bus master issues a SetPS command  
to PS2 or PS3, the MAX17411/MAX17511/MAX17511C/  
MAX17511N/MAX17511T immediately disable phases 2  
and 3 (DH_2, DL_2 forced low, DRVPWM_ three-state),  
and enters pulse-skipping operation. The pulse-skipping  
mode enables the zero-crossing comparator of the  
driver, so the controller pulls DL_ low when its current-  
sense inputs detect “zero” inductor current. This keeps  
the inductor from discharging the output capacitors  
and forces the controller to skip pulses under light-load  
conditions to avoid overcharging the output. If the VIDs  
are set to a lower voltage setting, the output drops at a  
rate determined by the load and the output capacitance.  
The internal target still ramps as before, and POK_  
remains blanked high impedance until 20Fs after the  
output voltage reaches the internal target. Once this  
time expires, POK_ monitors only the lower threshold.  
Upon entering pulse-skipping operation, the MAX17411/  
MAX17511/MAX17511C/MAX17511N temporarily set the  
OVP threshold to 1.77V (typ), preventing false OVP faults  
when the transition to pulse-skipping operation coincides  
with an SVID code change. Once the VR_Settled com-  
parator detects that the output voltage is in regulation,  
the OVP threshold tracks the selected SVID DAC code.  
The MAX17411/MAX17511/MAX17511C/MAX17511N/  
MAX17511T automatically use forced-PWM operation  
during soft-start, regardless of the SetPS command.  
time (t ) is given by:  
TRAN  
V
V  
NEW  
OLD  
/dt)  
t
=
TRAN  
(dV  
TARGET  
where dV  
/dt is the slew rate set with the SR  
TARGET  
input and the SetVID command, V  
is the original  
OLD  
output voltage, and V  
is the new target voltage. The  
NEW  
maximum programmable slew rate is 20mV/Fs.  
For non-zero V , the soft-start slew rate is fixed at  
BOOT  
2.5mV/Fs (minimum). The average inductor current per  
phase required to make an output voltage transition is:  
C
OUT  
I
=
×(dV  
/dt)  
TARGET  
L
N
TOTAL  
where dV /dt is the required slew rate, C  
TARGET  
is  
OUT  
the total output capacitance, and N  
of active phases.  
is the number  
TOTAL  
Forced-PWM Operation (PS0, PS1)  
During startup and normal operation, when the CPU is  
actively running (PS0, PS1) the MAX17411/MAX17511/  
MAX17511C/MAX17511N/MAX17511T operate with  
the low-noise, forced-PWM control scheme. Forced-  
PWM operation disables the zero-crossing comparators  
of all active phases, forcing the low-side gate-drive  
Automatic Pulse-Skipping Switchover  
In SKIP mode (PS2, PS3), an inherent automatic  
switchover to PFM takes place at light loads (Figure 10).  
This switchover is affected by a comparator that trun-  
cates the low-side switch on-time at the inductor current’s  
zero crossing. The zero-crossing comparator senses the  
48 _____________________________________________________________________________________  
Dual-Output, 3-/2-/1-Phase + 2-/1-Phase  
Quick-PWM Controllers for VR12/IMVP7  
circuitry inhibits switching until V  
rises above 4.25V.  
CC  
The controller powers up the reference once the system  
enables the controller, V is above 4.25V, and EN is  
CC  
driven high. With the reference in regulation, the control-  
ler ramps the output voltage to the programmed boot  
I  
t  
V
IN - VOUT  
L
=
voltage at the command slew rate for zero V  
or the  
BOOT  
slow slew rate for non-zero V  
.
BOOT  
I
PEAK  
V
BOOT  
t
=
TRAN(START)  
(dV  
/dt)  
I
= I  
/2  
TARGET  
LOAD PEAK  
where dV /dt is the slew rate.  
TARGET  
The soft-start circuitry does not use a variable current  
limit, so full output current is available immediately.  
0
ON-TIME  
TIME  
Note the IMAX_ and SR multivalued logic inputs are  
sampled after POR and the data latched into the  
respective registers. These values cannot be changed  
without driving the MAX17411/MAX17511/MAX17511C/  
MAX17511N/MAX17511T through another POR cycle.  
Figure 10. Pulse Skipping/Discontinuous Crossover Point  
inductor current across the low-side MOSFETs. Once V  
LX_  
drops below the zero-crossing comparator threshold (see  
the Electrical Characteristics table), the comparator forces  
DL_ low. This mechanism causes the threshold between  
pulse-skipping PFM and non-skipping PWM operation  
to coincide with the boundary between continuous and  
discontinuous inductor-current operation. The PFM/PWM  
crossover occurs when the load current of each phase is  
equal to 1/2 the peak-to-peak ripple current, which is a  
function of the inductor value. For a battery input range of  
7V to 20V, this threshold is relatively constant, with only a  
minor dependence on the input voltage due to the typi-  
cally low duty cycles. The total load current at the PFM/  
The startup sequence is as follows:  
1) TheMAX17411/MAX17511/MAX17511C/MAX17511N/  
MAX17511T have power and IC V  
is > UVLO.  
CC  
2) EN goes high.  
3) TheMAX17411/MAX17511/MAX17511C/MAX17511N/  
MAX17511T’s SVID buses are active and idle.  
4) If V  
register = 00h, the MAX17411/MAX17511/  
BOOT  
MAX17511T wait at 0V, POK_ is deasserted and  
ALERT# remains deasserted and hold until the SVID  
command. If V  
register is programmed to a  
BOOT  
PWM crossover threshold (I ) is approximately:  
LOAD(SKIP)  
VID setting other than zero (V  
= 1.1V for the  
BOOT  
MAX17511N), the device ramps to the programmed  
voltage, asserts POK_ and ALERT#, and hold until  
the SVID command.  
t
V
V
V  
OUT  
SW OUT  
IN  
I
=
LOAD(SKIP)  
2L  
V
IN  
Power-Up Sequence (POR, UVLO)  
5) CPU initiates the SVID clock.  
The MAX17411/MAX17511/MAX17511C/MAX17511N/  
MAX17511T are enabled when EN is driven high (Figures  
11 and 12). The reference powers up first. Once the  
internal reference exceeds its UVLO threshold, the inter-  
nal analog blocks are turned on and masked by a 50Fs  
one-shot delay. The startup ADC then begins to detect  
the voltage applied to IMAX_ and SR inputs to set the  
current limits and slew rate as well as the contents of the  
ICC_MAX (21h), SR_Fast (24h), and SR_Slow (25h) reg-  
isters. After this initialization, the PWM controller begins  
6) CPU sends out the SetVID_Slow command to pro-  
gram the initial output voltage.  
7) TheMAX17411/MAX17511/MAX17511C/MAX17511N/  
MAX17511T acknowledge and ramp to the voltage in  
the SetVID_Slow command at the slow slew rate,  
toggle status bit VR_Settled.  
8) TheMAX17411/MAX17511/MAX17511C/MAX17511N/  
MAX17511T assert POK_ for that rail.  
9) Steps 4, 5, 6, 7, and 8 are repeated for regulator B.  
switching. Power-on reset (POR) occurs when V  
rises  
CC  
If V  
drops below 4.25V after POR, the MAX17411/  
CC  
above approximately 2V, resetting the fault latch and  
preparing the controller for operation. The V UVLO  
MAX17511/MAX17511C/MAX17511N/MAX17511T  
set the fault latch and turn off.  
CC  
______________________________________________________________________________________ 49  
Dual-Output, 3-/2-/1-Phase + 2-/1-Phase  
Quick-PWM Controllers for VR12/IMVP7  
V
CC  
SETVID COMMAND  
EN  
VID (D0–D7) = 0V  
IGNORE SVID  
IGNORE SVID  
SET SLEW  
RATE  
PASSIVE  
SHUTDOWN  
V
CORE  
INTERNAL  
PWM CONTROL  
POKA  
t
BLANK  
t
BLANK  
20µs  
Figure 11. Startup Sequence for Zero V  
BOOT  
V
CC  
SETVID COMMAND  
EN  
VID (D0–D7) = BOOT VID  
IGNORE SVID  
IGNORE SVID  
SOFT-START  
(2.5mV/µs(min))  
PASSIVE  
SHUTDOWN  
V
CORE  
INTERNAL  
PWM CONTROL  
POKA  
t
BLANK  
t
BLANK  
t
20µs  
20µs  
BLANK  
Figure 12. Startup Sequence for Non-Zero V  
BOOT  
.± _____________________________________________________________________________________  
Dual-Output, 3-/2-/1-Phase + 2-/1-Phase  
Quick-PWM Controllers for VR12/IMVP7  
Shutdown Control  
Temperature Comparator (VR_HOT#)  
The MAX17411/MAX17511/MAX17511C/MAX17511N/  
MAX17511T feature two independent comparators with  
inputs at THERMA and THERMB. These comparators  
have accurate thresholds matching the appropriate ther-  
mal levels required for the Temperature Zone register  
(12h). Since these thresholds are nonlinear, it is essential  
to use the correct resistor and thermistor values speci-  
fied in Figures 1 and 2. When the maximum temperature  
is exceeded at either THERMA or THERMB, VR_HOT#  
is pulled low. For each regulator, place the thermistor  
as close to the MOSFETs and inductors as possible.  
The MAX17411/MAX17511/MAX17511C/MAX17511N/  
MAX17511T EV kits provide good examples of thermistor  
placement.  
WhenENgoeslow,theMAX17411/MAX17511MAX17511C/  
MAX17511N/MAX17511Tenterlow-powershutdownmode.  
POK_ is pulled low immediately, and the output voltage  
ramps down through an internal 20Idischarge resistor.  
AfterENgoeslow,theMAX17411/MAX17511/MAX17511C/  
MAX17511N/MAX17511T shut down completely—the  
drivers are disabled (DL_ and DH_ driven low, and DRVP-  
WM_ is three-state), the reference turns off, and the sup-  
ply current drops below 30FA. When an undervoltage fault  
condition activates the shutdown sequence, the protec-  
tion circuitry sets the fault latch to prevent the controller  
from restarting. To clear the fault latch and reactivate the  
controller, toggle EN or cycle V  
power below 0.5V.  
CC  
The EN input controls both regulator A and regulator B  
outputs. EN is active-high and is compatible with 1V log-  
Fault Protection (Latched)  
Output Overvoltage Protection (OVP) (MAX17411/  
ic. When EN is asserted, with V  
is active within 200Fs and enters an idle state, waiting for  
= 0V, the SVID bus  
BOOT  
MAX17511/MAX17511C/MAX17511N Only)  
The OVP circuit is designed to protect the load against  
a shorted high-side MOSFET by drawing high cur-  
rent and activating the adapter or battery protec-  
tion circuits. The MAX17411/MAX17511/MAX17511C/  
MAX17511N continuously monitor each output for an  
overvoltage fault. An OVP fault is detected if the out-  
put voltage exceeds the SVID DAC voltage by more  
than 200mV (min), or the fixed 1.77V (typ) threshold  
during a downward VID transition in SKIP mode. During  
pulse-skipping operation (PS2, PS3), the OVP thresh-  
old tracks the SVID DAC voltage as soon as the out-  
put is in regulation; otherwise, the fixed 1.77V (typ)  
threshold is used. When the OVP circuit detects an  
overvoltage fault while in multiphase mode (PS0), the  
MAX17411/MAX17511/MAX17511C/MAX17511N imme-  
diately force DL_ high, three-state DRVPWM_, and pull  
DH_ low. This action turns on the synchronous-rectifier  
MOSFETs with 100% duty cycle and, in turn, rapidly  
discharges the output filter capacitor and forces the  
output low. If the condition that caused the overvoltage  
(such as a shorted high-side MOSFET) persists, the  
battery fuse blows or the high-current protection acti-  
first commands and initial voltage target. For non-zero  
V
, the SVID interface can accept commands after  
BOOT  
the output voltage reaches its target value.  
Regulator A or regulator B can be independently placed  
in non-zero V  
mode by connecting THERMA or  
BOOT  
THERMB to ground at startup (MAX17411/MAX17511/  
MAX17511T).  
Power-Good (POKA, POKB)  
Regulator  
A
and regulator  
B
have independent  
power-good signals (POKA, POKB). These active-high  
outputs indicate the startup sequence is complete  
and the respective output voltage has moved to the  
programmed SVID value. These signals are used for  
system sequencing for other voltage regulators, the clock,  
and microprocessor reset. POK_ remains asserted during  
normal DC-DC operation and deasserts under any fault or  
shutdown condition.  
POKA and POKB continuously monitor the output voltage for  
undervoltageandovervoltagefaultconditions. Iftheregulator  
enters current limit, the respective POK_ signal will not go low  
until the UVP threshold is reached. POK_ is actively held low  
in shutdown (EN = GND) and during soft-start and shutdown.  
Approximately 20Fs (typ) after the soft-start terminates, POK_  
becomes high impedance as long as the feedback voltage  
is above the UVP threshold (VID - 250mV) and below the  
OVP threshold (VID + 250mV). POK_ goes low if the feed-  
back voltage drops -200mV (max) below the target voltage  
or rises 200mV (min) above the target voltage, or the SMPS  
controller shuts down. POK_ must use an external pullup  
vates. Toggle EN or cycle the V  
power supply below  
CC  
0.5V to clear the fault latch and reactivate the control-  
ler. When an overvoltage fault occurs, the MAX17411/  
MAX17511/MAX17511C/MAX17511N immediately force  
DL_high, pull DH_low and three-states DRVPWM_.  
Output Undervoltage Protection (UVP)  
If the output voltage on regulator A or B is 200mV (max)  
below the target voltage and stays below this level  
for 200Fs (typ), the controller activates the shutdown  
sequence. The regulator turns on a 20Idischarge resis-  
resistor between POK_ and V  
level output.  
to deliver a valid logic-  
CC  
______________________________________________________________________________________ .1  
Dual-Output, 3-/2-/1-Phase + 2-/1-Phase  
Quick-PWM Controllers for VR12/IMVP7  
tor and sets the fault latch. DL_ and DH_ are forced low,  
and DRVPWM goes to the three-state output defined in  
the Electrical Characteristics table. Toggle EN or cycle  
board parasitics should not exceed the following mini-  
mum threshold to prevent shoot-through currents:  
C
RSS  
the V  
power supply below 0.5V to clear the fault latch  
CC  
V
> V  
IN(MAX)  
GS(TH)  
C
and reactivate the controller.  
ISS  
Adding a 4700pF between DL_ and power ground (C  
NL  
Thermal-Fault Protection  
in Figure 13), close to the low-side MOSFET greatly  
reduces coupling. Do not exceed 22nF of total gate  
capacitance to prevent excessive turn-off delays. Shoot-  
through currents can also be caused by a combination  
of fast high-side MOSFET and slow low-side MOSFET.  
If the turn-off delay time of the low-side MOSFET is  
too long, the high-side MOSFET can turn on before the  
low-side MOSFET has actually turned off. Adding a  
resistor less than 5I in series with BST_ slows down the  
high-side MOSFET turn-on time, eliminating the  
shoot-through currents without degrading the turn-off  
In addition to VR_HOT#, the MAX17411/MAX17511/  
MAX17511C/MAX17511N/MAX17511T feature internal  
thermal-fault-protection circuits for regulator A and regu-  
lator B. When the junction temperature rises above  
+160NC, a thermal sensor sets the fault latch and forces  
the DL_ and DH_ low, and three-states DRVPWM_.  
Toggle EN or cycle the V  
power supply below 0.5V to  
CC  
clear the fault latch and reactivate the controller after the  
junction temperature cools by 15NC (typ).  
MOSFET Gate Drivers  
The DH_ and DL_ drivers are optimized for driving  
moderate-sized high-side and larger low-side power  
MOSFETs. This is consistent with the low duty fac-  
time (R  
in Figure 13). Slowing down the high-side  
BST  
MOSFET also reduces the LX_ node rise time, thereby  
reducing EMI and high-frequency coupling responsible  
for switching noise.  
tor seen in notebook applications, where a large V  
IN  
- V  
differential exists. The high-side gate driv-  
OUT  
ers (DH_) source 2.2A and sink 2.7A, and the low-  
side gate drivers (DL_) source 2.7A and sink 8A. This  
ensures robust gate drive for high-current applications.  
The DH_ high-side MOSFET drivers are powered by  
internal boost switch charge pumps at BST_, while the  
DL_ synchronous-rectifier drivers are powered directly  
MAX17411  
MAX17511  
MAX17511C  
MAX17511N  
MAX17511T  
(R )*  
BST  
by the 5V bias supply (V  
). Adaptive dead-time  
DD_  
BST  
INPUT (V  
)
IN  
circuits monitor the DL_ and DH_ drivers and prevent  
either MOSFET from turning on until the other is fully off.  
The adaptive driver dead-time allows operation without  
shoot-through with a wide range of MOSFETs, minimiz-  
ing delays and maintaining efficiency. A low-resistance,  
low-inductance path from the DL_ and DH_ drivers to the  
MOSFET gates is required for the adaptive dead-time  
circuits to work properly; otherwise, the sense circuitry  
in the MAX17411/MAX17511/MAX17511C/MAX17511N/  
MAX17511T may interpret the MOSFET gates as “off”  
while significant charge is still present.  
C
BST  
DH  
LX  
N
H
L
C
BYP  
V
DD  
DL  
N
L
(C )**  
Use very short, wide traces (50mils to 100mils wide if  
the MOSFET is 1in from the driver). The DL_ low on-  
resistance of 0.25I (typ) helps prevent DL_ from being  
pulled up due to capacitive coupling from the drain to  
the gate of the low-side MOSFET when the inductor  
NL  
PGND  
(R )* OPTIONAL—THE RESISTOR LOWERS EMI BY DECREASING  
BST  
switching node (LX_) transitions from ground to V . The  
IN  
THE SWITCHING NODE RISE TIME.  
capacitive coupling between LX_ and DL_ created by  
(C )** OPTIONAL—THE CAPACITOR REDUCES LX TO DL CAPACITIVE  
NL  
COUPLING THAT CAN CAUSE SHOOTTHROUGH CURRENTS.  
the MOSFET’s gate-to-drain capacitance (C ), gate-  
RSS  
to-source capacitance (C  
- C  
), and additional  
RSS  
ISS  
Figure 13. Gate-Drive Circuit  
.2 _____________________________________________________________________________________  
Dual-Output, 3-/2-/1-Phase + 2-/1-Phase  
Quick-PWM Controllers for VR12/IMVP7  
REGISTERED FILE B  
REGISTERED FILE A  
MAX17411  
MAX17511  
MAX17511C  
MAX17511N  
MAX17511T  
DATA  
8
ADDR  
2
LATCH  
ENABLE  
DATA-ACQUISITION SYSTEM  
VR_HOT#  
STATE  
MACHINE  
THERMA  
THERMB  
3
3-BIT DAC  
2 TO 1  
MUX  
Figure 14. Data-Acquisition System Block Diagram  
the system is alerted to an overtemperature fault in the event  
of SVID bus failure.  
External Drivers and Disabling Phases  
The MMAX17411/MAX17511/MAX17511C/MAX17511N/  
MAX17511T support an external driver, MAX17491, for  
three-phase operation in regulator A. The MAX17411  
also supports an external driver for two-phase operation  
of regulator B. The DRVPWM_ output provides the signal  
Serial VID Interface, Commands,  
Registers, and Digital Control  
A simplified block diagram of the SVID interface for  
the MAX17411/MAX17511/MAX17511C/MAX17511N/  
MAX17511T is shown in Figure 15. The interface consists  
of a high-speed transceiver, control logic, and two inde-  
pendent, identically configured register files for regula-  
tors A and B. Refer to Intel’s VR12/IMVP-7 SVID protocol  
documentation for complete details on the interface and  
the required configuration of SVID data packets.  
to trigger the driver. Connecting CSPA3/CSPB2 to V  
CC  
disables phase 3 of regulator A and phase 2 of regulator  
B, respectively. Similarly, phase 2 can be disabled for  
single-phase operation by connecting CSPA2 to V  
.
CC  
Data-Acquisition System  
The MAX17411/MAX17511/MAX17511C/MAX17511N/  
MAX17511T include current and thermal-monitoring func-  
tions. A simplified data-acquisition system is employed  
to convert the analog signals from the current-sense and  
THERM_ inputs to 8-bit and 3-bit values in the ICC_MAX and  
Temperature Zone registers, respectively (see Figure 14). An  
independent VR_HOT# output is available to make certain  
Regulator Addressing  
The MAX17411/MAX17511/MAX17511C/MAX17511N/  
MAX17511T do not feature programmable addressing.  
Regulator A is hard coded to be SVID bus address 0, and  
regulator B is hard coded to be SVID bus address 1.  
______________________________________________________________________________________ .3  
Dual-Output, 3-/2-/1-Phase + 2-/1-Phase  
Quick-PWM Controllers for VR12/IMVP7  
REGISTER FILE B  
SAME CHARACTERISTICS  
AS REGISTER FILE A  
REGISTER FILE A  
VENDOR  
DATA  
00h TO 06h  
REGISTER  
00h  
REGISTER  
06h  
SVID INTERFACE  
V
DD  
LEVEL-SHIFT  
STAGE  
REGULATOR  
STATUS AND  
MONITORING  
DATA  
STATUS  
REGISTER 10h  
FROM REGULATOR  
LOGIC  
ALERT#  
ALERT#  
VDIN  
10h TO 1Ch  
TMONA  
REGISTER  
1Ch  
VDIO  
CLK  
VDOUT  
VCLK  
DATA  
SVID  
LOGIC  
VID MAX  
REGISTER 30h  
(2 x 34h)  
ADDRESS  
LATCH  
#ACTIVE  
PHASES AND  
SKIP MODE  
PWR STATE  
REGISTER 32h  
ENABLE  
RSTNA  
IMAXA, TMAX....  
NO CLOCK  
MONITOR  
TRANSACTION  
IN PROGRESS  
V
BOOT  
REGISTER 26h  
FROM  
REGULATOR LOGIC  
OUPUT  
VOLTAGE  
AND PHASE  
CONTROL  
21h TO 34h  
VID  
RSTNA = RESET NO ACTIVITY  
REGISTER 31h  
V
OUT  
SETPOINT  
8-BIT  
DAC  
ADDER  
OFFSET  
REGISTER 33h  
REGISTER  
34h  
Figure 15. SVID Interface Block Diagram  
SetVID_Fast (01h)  
Serial VID Commands  
The MMAX17411/MAX17511/MAX17511C/MAX17511N/  
MAX17511T support the following commands  
(Table 4) and registers according to Intel’s VR12/  
IMVP-7 protocol specification. Note the MAX17411/  
MAX17511/MAX17511C/MAX17511N/MAX17511T sup-  
port ALL CALL commands according to Intel specifica-  
tion. For ALL CALL commands write 1111b or 1110b in  
the address command bit.  
The SetVID_Fast command contains the target SVID in the  
payload byte. The output voltage range is defined in Table  
3. The MAX17411/MAX17511/MAX17511C/MAX17511N/  
MAX17511T drive the respective output voltages to the new  
VID setting with a fast slew rate as defined in the SR_Fast reg-  
ister (24h). This register is programmed with the SR pin. The  
default fast slew rate is 10mV/Fs.  
.4 _____________________________________________________________________________________  
Dual-Output, 3-/2-/1-Phase + 2-/1-Phase  
Quick-PWM Controllers for VR12/IMVP7  
MAX17511T reset the ALERT# line after the ACK and start  
moving the output voltage to the new target. For the case of  
back-to-back SetVID commands to the same voltage, the VR  
asserts ALERT# immediately since there is no settling time.  
The SetVID_Fast command is preemptive. If the SVID bus  
master interrupts current transition and attempts to move the  
output to a new VID, the regulator responds immediately after  
registering the new command. With back-to-back SetVID com-  
mands, the MAX17411/MAX17511/MAX17511C/MAX17511N/  
Table 40 Serial VID Commands  
MASTER  
PAYLOAD  
SLAVE  
PAYLOAD  
COMMAND  
DESCRIPTION  
Extended  
Command  
Index  
00h  
01h  
Extended  
Not supported  
Command sets the new SVID target (up or down) at the fast slew rate  
programmed by the SR input. When the MAX17411/MAX17511/  
MAX17511C/MAX17511N/MAX17511T receive an SVID code for an  
upward transition, they exit all low-power states to PS0 to ensure the  
fastest slew to the new voltage. When the output reaches the new VID  
target, the VR_Settled bit is set and ALERT# goes low.  
SetVID-Fast  
SetVID-Slow  
VID Code  
N/A  
Command sets the new SVID target (up or down) at the slow slew rate  
equal to 1/4 the fast slew rate programmed by the SR input. When the  
MAX17411/MAX17511/MAX17511C/MAX17511N/MAX17511T receive an  
SVID code for an upward transition, it exits all low-power states to PS0 to  
ensure the fastest slew to the new voltage. When the output reaches the  
new VID target, the VR_Settled bit is set and ALERT# goes low.  
02h  
03h  
VID Code  
VID Code  
N/A  
Command sets the new SVID target but does not control the slew  
rate. The output is allowed to decay at a rate defined by the load. This  
command is used for only high-to-low output transitions. When the  
output reaches the new VID target, The VR_Settled bit is set but ALERT#  
does not go low.  
SetVID-  
Decay  
N/A  
N/A  
Command sets the power state PS_ of the MAX17411/MAX17511/  
MAX17511C/MAX17511N/MAX17511T so they can enable the correct  
number of phases and control SKIP mode for optimized operation. See  
the Power States (PS) section.  
Byte Indicating  
Power Status  
of CPU  
04h  
05h  
SetPS  
Address of the  
Index in the  
Register File,  
see Table 5  
Command sets the address pointer in the data register table. Typically,  
the next command, SetRegDAT, is the payload that gets loaded into  
this address. However, for multiple writes to the same address, only one  
SetRegADR is needed.  
SetRegADR  
N/A  
N/A  
New Data  
Register  
Contents  
Command writes the contents to the data register that was previously  
identified by the address pointer with SetRegADR.  
06h  
07h  
SetRegDAT  
GetReg  
Specified Command returns the contents of the specified register as the payload.  
Register See the Data and Configuration Registers section for a description of  
Contents supported registers.  
Define Which  
Register  
08h  
TestMode  
Reserved  
09h–1Fh  
N/A  
______________________________________________________________________________________ ..  
Dual-Output, 3-/2-/1-Phase + 2-/1-Phase  
Quick-PWM Controllers for VR12/IMVP7  
SetVID_Slow (02h)  
The SetVID_Slow command contains the target SVID in  
the payload byte. The output voltage range is defined  
in Table 3. The MAX17411/MAX17511/MAX17511C/  
MAX17511N/MAX17511T drive the respective output  
voltage to the new VID setting with a slow slew rate  
as defined in the SR_Slow register (25h). SetVID_Slow  
transitions occur at 1/4 the fast slew rate. The  
SetVID_Slow command is preemptive. If the SVID bus  
master interrupts current transition and attempts to move  
the output to a new VID, the regulator responds imme-  
diately after registering the new command. With back-  
to-back SetVID commands, the MAX17411/MAX17511/  
MAX17511C/MAX17511N/MAX17511T reset the ALERT#  
line after the ACK and start moving the output voltage  
to the new target. For the case of back-to-back SetVID  
commands to the same voltage, the VR asserts ALERT#  
immediately since there is no settling time.  
If the SVID bus master attempts to program a power  
state that is not supported, the MAX17411/MAX17511/  
MAX17511C/MAX17511N/MAX17511T acknowledge  
with NAK (01b) and enter the lowest power state that  
is supported. The MAX17411/MAX17511/MAX17511C/  
MAX17511N/MAX17511T enter the new power state  
after sending back the ACK of the SetPS command.  
If the devices are in low-power states and receive a  
SetVID_ command (either up or down), the target regu-  
lators exit the low-power state to normal mode (PS0)  
to move the voltage up at the requested slew rate and  
reset the power-state register to 00h when they acknowl-  
edge the SetVID (UP) command. The microprocessor  
must reissue a low-power state command if it is in a low-  
current condition at the new higher voltage.  
The SetPS command is not preemptive; the MAX17411/  
MAX17511/MAX17511C/MAX17511N/MAX17511T wait  
until it has completed the previous command or the out-  
put has settled, then they change power state. If the VR  
receives a SetPS command while it is still slewing from the  
previous SetVID command, the MAX17411/MAX17511/  
MAX17511C/MAX17511N/MAX17511T reject (11b) the  
SetPS command, indicating they cannot carry out the  
command. These devices enter the new power state after  
they send back the ACK of the SetPS command.  
SetVID_Decay (03h)  
The SetVID_Decay command contains the target SVID in  
the payload byte. The range of voltage is defined in Table  
3. It is used for VID down transitions. The MAX17411/  
MAX17511/MAX17511C/MAX17511N/MAX17511T do  
not control the slew rate, instead the output voltage  
decays at a rate defined by the output load current.  
If the VR receives a SetPS command while it is still slewing  
down from a SetVID_Decay command, then the VR enters  
the new power state, slewing down with the decay rate.  
The SetVID_Decay command is preemptive for  
positive-going SetVID_Fast or SetVID_Slow commands.  
If the SVID bus master interrupts current transition  
and attempts to move the output to a new VID, the  
regulator responds immediately after registering the new  
command. The ALERT# line remains high during  
the SetVID_Decay transition. The SVID bus master  
normally does not issue a SetVID_Decay with target  
voltage higher than current setting. If this occurs, the  
MAX17411/MAX17511/MAX17511C/MAX17511N/  
MAX17511T reject the command (Acknowledge = 11b)  
and remain at the same voltage setting.  
SetRegADR (05h), SetRegDAT (06h),  
and GetReg (07h)  
Accessing the register files of the MAX17411/MAX17511/  
MAX17511C/MAX17511N/MAX17511T is accomplished  
with three commands: SetRegADR, SetRegDAT, and  
GetReg. SetRegADR sets the target register address,  
SetRegDAT writes data to the specified register, and  
GetReg retrieves data from the specified register. To  
program a register, two commands must be executed in  
order. SetRegADR chooses the address in Table 5 and  
then the next command is a SetRegDAT to write or set  
the data into the previously defined address. For multiple  
writes to the same address, only one SetRegADR com-  
mand is sent, followed by multiple SetRegDAT commands.  
SetPS_ Set Power State (04h)  
The SetPS command sends a byte that is encoded as to  
the power state of the CPU. Based on the power-state  
command, the MAX17411/MAX17511/MAX17511C/  
MAX17511N/MAX17511T can change their configura-  
tion to meet the processor’s power needs with greater  
efficiency. See the Power States (PS) section. The format  
of the SetPS command payload is:  
All the telemetry data from the MAX17411/MAX17511/  
MAX17511C/MAX17511N/MAX17511T is accessed  
through the GetReg command. The payload byte in the  
command contains an index into the data register file. A  
slave device that receives the GetReg command must  
insert the contents of the indexed data register into the  
payload of the response.  
B7  
B6  
B.  
B4  
B3  
B2  
B1  
B±  
PS7  
PS6  
PS5  
PS4  
PS3  
PS2  
PS1  
PS0  
.6 _____________________________________________________________________________________  
Dual-Output, 3-/2-/1-Phase + 2-/1-Phase  
Quick-PWM Controllers for VR12/IMVP7  
If SVID bus master issues a SetRegADR or GetReg  
Access definitions for these registers are as follows:  
command that contains a nonsupported address, the  
MAX17411/MAX17511/MAX17511C/MAX17511N/  
MAX17511T respond with the REJECT (11b) acknowl-  
edge. If SVID bus master issues an ALL CALL  
SetRegADR, SetRegDAT, or GetReg, the MAX17411/  
MAX17511/MAX17511C/MAX17511N/MAX17511T  
respond with the not NAK (01b).  
•ꢀ RO = Read only.  
•ꢀ RW = Read write.  
•ꢀ R-M = Read by SVID bus master (CPU).  
•ꢀ W-PWM = Written by the MAX17411/MAX17511/  
MAX17511C/MAX17511N/MAX17511T only.  
•ꢀ HC = Hard coded into the MAX17411/MAX17511/  
MAX17511C/MAX17511N/MAX17511T.  
Data and Configuration Registers  
The MAX17411/MAX17511/MAX17511C/MAX17511N/  
MAX17511T support the data and configuration regis-  
ters listed in Table 5. The registers retain data as long as  
•ꢀ Platform = Programmed at PCB assembly using pin  
strapping—cannot be overwritten by master.  
•ꢀ Master = Programmed by the SVID bus master through  
V
CC  
is powered up and in regulation. During hard reset  
the SVID bus with the SetRegADR, SetRegDAT.  
(EN = low) or power cycle, all data is lost and registers  
return to default contents. Regulator A and regulator B  
include separate, independent register files.  
•ꢀ PWM = Programmed by the MAX17411/MAX17511/  
MAX17511C/MAX17511N/MAX17511T during opera-  
tion for reporting information to the master.  
Table .0 Data and Configuration Register File Definition  
INDEX  
REGISTER NAME  
DESCRIPTION  
ACCESS  
DEFAULT  
The vendor ID is unique to Maxim and is assigned  
by Intel  
RO  
HC  
00h  
Vendor ID  
17h  
RO  
HC  
01h  
02h  
Product ID  
Uniquely identifies the MAX17411/MAX17511 products  
01h  
01h  
Uniquely identifies the revision or stepping of the  
MAX17411/MAX17511/MAX17511C/MAX17511N/  
MAX17511T  
RO  
HC  
Product Revision  
Vendor Product Date  
Code (Year/Month)  
03h  
04h  
Not supported  
Not supported  
N/A  
N/A  
Lot Code  
Identifies what version of SVID protocol is supported by  
the MAX17411/MAX17511/MAX17511C/MAX17511N/  
MAX17511T  
RO  
HC  
05h  
Protocol ID  
01h  
RO  
HC  
06h  
07h–0Eh  
0Fh  
Capability  
Not Used  
SVID capability register  
01h  
Vendor Product Date  
Code (Day/Time)  
Not supported  
N/A  
Data register containing the Status1 data. This  
register is read after the ALERT# signal is asserted. It  
communicates the status of the MAX17411/MAX17511.  
Status1 is cleared after a GetReg(10h) command.  
R-M  
W-PWM  
10h  
11h  
Status1  
Status2  
00h  
00h  
Data register containing the Status2 data (SerialVID  
Errors). Status2 is cleared after a GetReg(11h)  
command.  
R-M  
W-PWM  
______________________________________________________________________________________ .7  
Dual-Output, 3-/2-/1-Phase + 2-/1-Phase  
Quick-PWM Controllers for VR12/IMVP7  
Table .0 Data and Configuration Register File Definition (continued)  
INDEX  
REGISTER NAME  
DESCRIPTION  
ACCESS  
DEFAULT  
Data register containing the measurement data from the  
THERM_ input.  
R-M  
W-PWM  
12h  
Temperature Zone  
00h  
13h  
14h  
15h  
16h  
17h  
18h  
19h  
1Ah  
1Bh  
Current Zone  
Reserved  
Not supported  
N/A  
Output Current  
Output Voltage  
Temperature  
Output Power  
Input Current  
Input Voltage  
Input Power  
Not supported  
Not supported  
Not supported  
Not supported  
Not supported  
Not supported  
Not supported  
00h  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
This register contains a copy of the Status2 data that  
was last read with the GetReg(Status2) command. In  
the case of a communications error or parity error, when  
the MAX17411/MAX17511/MAX17511C/  
MAX17511N/MAX17511T send the payload back to  
the SVID bus master, the master can read the Status2_  
LastRead register so the alert data is not lost.  
R-M  
W-PWM  
1Ch  
Status2_LastRead  
Not Used  
00h  
1Dh–20h  
21h  
ICC_MAX (Maximum Data register containing the maximum output current  
Based on the  
IMAX_ logic voltage  
level input  
RO  
Platform  
Output Current  
Capability)  
limit that the regulator supports. The register uses a  
binary format in amps, e.g., 64h = 100A.  
Data register containing the temperature max the  
platform supports and the level VR_HOT# asserts. This  
register contains a fixed value of +100NC. Binary format  
in NC, e.g., 64h = +100NC.  
RO  
HC  
22h  
23h  
24h  
Temp MAX  
DC Load-Line  
SR_Fast  
64h  
N/A  
Not supported  
Data register containing the fast slew-rate capability of  
the MAX17411/MAX17511/MAX17511C/MAX17511N/  
MAX17511T programmed at the SR input. Register  
format is in mV/Fs, e.g., 0Ah = 10mV/Fs.  
RO  
Platform  
0Ah = (10mV/Fs)  
Data register containing the slow slew-rate capability of  
the MAX17411/MAX17511/MAX17511C/MAX17511N/  
MAX17511T. This value is 1/4 the rate programmed at  
the SR input. Register format is in mV/Fs, e.g., 02h =  
2.5mV/Fs.  
RO  
Platform  
25h  
26h  
SR_Slow  
02h = (2.5mV/Fs)  
83h (0.9V) for Reg  
B of MAX17511C.  
ABh (1.1V) for  
MAX17511N,  
Data register containing the boot voltage. The register  
uses SVID data format, e.g., 97h = 1.0V.  
V
RO HC  
BOOT  
00h (0V) for other  
devices  
.8 _____________________________________________________________________________________  
Dual-Output, 3-/2-/1-Phase + 2-/1-Phase  
Quick-PWM Controllers for VR12/IMVP7  
Table .0 Data and Configuration Register File Definition (continued)  
INDEX  
27h  
REGISTER NAME  
VR tolerance  
DESCRIPTION  
ACCESS  
DEFAULT  
N/A  
Not supported  
Not supported  
Not supported  
28h  
Current Offset  
Temperature Offset  
Not Used  
N/A  
29h  
N/A  
2Ah–2Fh  
This register is programmable by the master and  
sets the maximum VID the MAX17411/ MAX17511/  
MAX17511C/ MAX17511N/MAX17511T support.  
If a higher VID code is received, the MAX17411/  
MAX17511/MAX17511C/MAX17511N/MAX17511T  
respond with “not supported” acknowledge. The  
register uses SVID data format. This register must be  
programmed by MASTER during boot-up sequence.  
RW  
Master  
FBh  
(1.5V)  
30h  
V
_MAX  
OUT  
Data register containing currently programmed VID  
voltage. The register uses SVID data format.  
RW  
Master  
31h  
32h  
VID Setting  
Power State  
00h  
00h  
RW  
Master  
W-PWM  
Register containing the current programmed  
power state.  
This register contains an offset added to the  
programmed SVID data. Data format is the number  
of SVID steps. Negative offsets are in the two’s-  
complement format. See the Offset Register (33h)  
section.  
VID Offset (Voltage  
Margining)  
RW  
Master  
33h  
34h  
00h  
00h  
Multi-VR  
Configuration  
This register contains the bit-mapped data for  
configuring multiple regulators that utilize the SVID bus.  
RW  
Master  
This register is a scratchpad register for temporarily  
storing the SetRegADR payload. The data is  
the address pointer for subsequent SetRegDAT  
commands.  
RW  
Master  
35h  
SerRegADR  
Not Used  
00h  
36h–6Fh  
______________________________________________________________________________________ .9  
Dual-Output, 3-/2-/1-Phase + 2-/1-Phase  
Quick-PWM Controllers for VR12/IMVP7  
Status1 Register (10h)  
The data in the Status1 register answers the following questions: Is the output voltage in regulation? Is the regulator  
temperature approaching the thermal limit? Is the regulator’s output current approaching current limit? Also, should  
the SVID bus master check the MAX17411/MAX17511/MAX17511C/MAX17511N/MAX17511T for SVID data errors in  
the Status2 register? When there are any bit changes in Status1, the MAX17411/MAX17511/MAX17511C/MAX17511N/  
MAX17511T assert the ALERT# to notify the SVID bus master to start the polling process of reading the status from  
each address on the bus.  
Bit 0 in Status1 indicates that a SetVID command is completed and the output voltage has transitioned to within Q10mV  
(max) of the final target voltage. During VR slewing/transitioning, the VR_Settled bit is “0”. Bit 1 indicates that the VR  
temperature (in Temperature Zone register value (12h)) has reached 97% of the maximum temperature set in the Temp  
MAX register (22h). Bit 2 indicates an overcurrent condition. The ICC MAX Alert bit (bit 2) is latched when it sets high.  
A GetReg (Status1) command updates this latched bit. Bit 7 indicates that a Status2 register change was recorded.  
When either bit 0, 1, 2, or 7 changes, the respective registers should be read to take further action. The format of the  
Status1 register is:  
B7  
B6  
B.  
B4  
B3  
B2  
B1  
B±  
ICC MAX  
Alert  
(Latched)  
RSV  
0b  
RSV  
0b  
RSV  
0b  
RSV  
0b  
Read Status2  
Therm Alert  
VR_Settled  
The bit values in the Status1 register reflect the most current status and a GetReg (Status1) command does not clear  
them.  
Status2 Register (11h)  
Parity and data frame errors are recorded in the Status2 register. When the SVID bus master reads Status2, the  
MAX17411/MAX17511/MAX17511C/MAX17511N/MAX17511T copy the contents into Status2_LastRead register (1Ch),  
then clear the contents of the Status2 register. In the case of a parity error in the payload, the master can read the  
Status2_LastRead register to get the status prior to reset.  
The format of Status2 register is:  
B7  
B6  
B.  
B4  
B3  
B2  
B1  
B±  
RSV  
0b  
RSV  
0b  
RSV  
0b  
RSV  
0b  
RSV  
0b  
RSV  
0b  
SVID Data  
Frame Error  
SVID Parity  
Error  
Temperature Zone Register (12h)  
The digitized measurements from the thermistor bridges at THERMA and THERMB are recorded in the Temperature  
Zone register. The required thresholds of the Temperature Zone register are nonlinear, but equate to increments listed  
below. It is essential to use the correct resistor and thermistor values specified in Figures 1, 2, and 3. When 97%  
TMAX (bit 6) for either is exceeded at either THERMA or THERMB, bit 1 of Status1 register (10h) is set and ALERT#  
asserts low. When 100% TMAX bit (bit 7) for either regulator is set, VR_HOT# is pulled low. For each regulator, place  
the thermistor as close to the MOSFETs and inductors as possible. The MAX17411/MAX17511 EV kits provide good  
examples of thermistor placement.  
The Temperature Zone register and VR_HOT# functions are independent. In the event of an SVID bus problem, the  
VR_HOT# signal always responds correctly to force thermal throttling to prevent the CPU from catastrophically over-  
heating. The format of the Temperature Zone Register is:  
THERMISTOR  
ALERT  
COMPARATOR TRIP POINTS AND EXAMPLE TEMPERATURES  
VR_HOT#  
SCALED TO +1±±NC = 1±±%  
B7  
B6  
B.  
B4  
B3  
B2  
B1  
B±  
100%  
97%  
94%  
91%  
88%  
85%  
82%  
75%  
EXAMPLE REGISTER CONTENTS FOR +9.NC  
0
0
1
1
1
1
1
1
6± _____________________________________________________________________________________  
Dual-Output, 3-/2-/1-Phase + 2-/1-Phase  
Quick-PWM Controllers for VR12/IMVP7  
Status2_LastRead (1Ch)  
This register contains a copy of the Status2 data that  
was last read with the GetReg (Status2) command. In  
the case of a communications error or parity error, when  
the MAX17411/MAX17511/MAX17511C/MAX17511N/  
MAX17511T send the payload back to the SVID bus  
master, the master can read the Status2_LastRead reg-  
ister so the alert data is not lost.  
number of active phases in the regulator to determine  
the data in the ICC_MAX register. If the voltage applied  
to the IMAX_ input is not within the defined threshold  
(e.g., IMAX shorted to ground or V ) the respective  
CC  
regulator is disabled. The data in this register is 8-bit  
binary format in amps (1A/LSB), e.g., 4Bh = 75A. See  
Table 6.  
SR Fast (24h)  
This register contains the guaranteed minimum fast  
slew-rate data programmed at the SR multivalued logic  
input. The default slew rate is 10mV/Fs (min). The data  
is in 8-bit binary format in dV/dt, e.g., 10mV/Fs = 0Ah.  
See Table 7.  
Temp Max (22h)  
This register contains the maximum temperature the VR  
supports prior to issuing a thermal alert or VR_HOT#.  
Temp MAX is set to +100NC.  
The single-temperature threshold applies to both regulators  
A and B. The data in this register is in 8-bit binary format in  
degrees C, e.g., 64h = +100NC.  
If NTC is used in the current-sensing network (CSP_,  
CSN_), set V at 1.5V for 20mV/Fs and 0V for 10mV/Fs  
SR  
fastslewrate. Otherwise, V =3Vsetsthefastslewrateat  
SR  
Platform Performance Registers  
These registers are programmed on the platform PCB  
during manufacturing. The data tells the SVID bus master  
the performance capability of the MAX17411/MAX17511/  
MAX17511C/MAX17511N/MAX17511T. Multivalued logic  
inputs are used to set the data in these registers.  
20mV/Fs and V = V  
sets it at 10mV/Fs.  
SR  
CC  
SR Slow (25h)  
This register contains the guaranteed minimum slow  
slew-rate data, which is 1/4 the value programmed at the  
SR input. The data is in 8-bit binary format in dV/dt, e.g.,  
2mV/Fs = 02h. See Table 7.  
ICC_MAX (21h)  
This register contains information on the maximum  
current the motherboard VR supports. ICC_MAX is  
programmed with the IMAX_ multivalue logic input. The  
current limit computed from IMAX_ is multiplied by the  
If NTC is used in the current-sensing network (CSP_,  
CSN_), set V at 1.5V for 5mV/Fs and 0V for 2.5mV/Fs  
SR  
slow slew rate. Otherwise, V  
= 3V sets the slow slew  
SR  
rate at 5mV/Fs and V = V  
sets it at 2.5mV/Fs.  
SR  
CC  
Table 60 Current-Limit Setting (V  
= ±V or V  
= 10.V)  
SR  
SR  
REG A  
MINMUM  
REG A  
REG A  
PHASE  
ICC_MAX  
REPORT (A)  
REG B  
MiINIMUM PHASE OCP  
REG B  
REG B  
PHASE  
ICC_MAX  
REPORT (A)  
IMAX_  
LEVEL  
NO0  
VOLTAGE  
LEVEL (V)  
R
(mI)  
PHASE OCP  
CURRENT  
(A)  
SENSE  
V
V
CURRENT  
(A)  
SENSE  
(mV)  
SENSE  
(mV)  
< 13.65 O  
0
Latched Off  
Latched Off  
V
/50  
CC  
1
2
14.5 OV /50  
0.65  
0.65  
0.65  
0.65  
0.75  
0.75  
0.75  
0.75  
0.85  
0.85  
0.85  
22.5  
21.5  
17.0  
15.0  
27.0  
25.0  
20.0  
17.0  
30.0  
28.0  
22.5  
39  
36  
30  
26  
39  
36  
30  
26  
39  
36  
30  
35  
33  
27  
22  
35  
33  
27  
22  
35  
33  
27  
22.5  
21.5  
13.0  
11.0  
27.0  
25.0  
15.0  
13.0  
30.0  
28.0  
17.0  
39  
36  
23  
20  
39  
36  
23  
20  
39  
36  
23  
35  
33  
22  
17  
35  
33  
22  
17  
35  
33  
22  
CC  
15.5 OV /50  
CC  
3
16.5 OV /50  
CC  
4
17.5 OV /50  
CC  
5
18.5 OV /50  
CC  
6
19.5 OV /50  
CC  
7
20.5 OV /50  
CC  
8
21.5 OV /50  
CC  
9
22.5 OV /50  
CC  
10  
11  
23.5 OV /50  
CC  
24.5 OV /50  
CC  
______________________________________________________________________________________ 61  
Dual-Output, 3-/2-/1-Phase + 2-/1-Phase  
Quick-PWM Controllers for VR12/IMVP7  
Table 60 Current-Limit Setting (V  
= ±V or V  
= 10.V) (continued)  
SR  
SR  
REG A  
MINMUM  
REG A  
PHASE OCP  
CURRENT  
(A)  
REG A  
PHASE  
ICC_MAX  
REG B  
MiINIMUM PHASE OCP  
REG B  
REG B  
PHASE  
ICC_MAX  
REPORT (A)  
IMAX_  
LEVEL  
NO0  
VOLTAGE  
LEVEL (V)  
R
(mI)  
SENSE  
V
V
CURRENT  
(A)  
SENSE  
(mV)  
SENSE  
(mV)  
REPORT (A)  
12  
13  
14  
15  
16  
25.5 OV /50  
0.85  
0.95  
0.95  
0.95  
0.95  
20.0  
33.5  
31.0  
25.0  
21.5  
26  
39  
36  
30  
26  
22  
35  
33  
27  
22  
15.0  
33.5  
31.0  
20.0  
17.0  
20  
39  
36  
23  
20  
17  
35  
33  
22  
17  
CC  
26.5 OV /50  
CC  
27.5 OV /50  
CC  
28.5 OV /50  
CC  
29.5 OV /50  
CC  
> 30.2 O  
Latched  
Off  
17  
Latched Off  
V
/50  
CC  
See the Electrical Characteristics table for minimum V  
for V = 3V or V = 5V.  
SR SR  
SENSE  
Table 70 Programmed Slew-Rate Data  
NTC for CSP_  
SIGNALS  
FAST SLEW RATE  
(MIN) (mV/µs)  
MINIMUM VALUE  
REPORTED IN 24h  
SLOW SLEW RATE  
(MIN) (±mV/µs)  
MINIMUM VALUE  
REPORTED IN 2.h  
V
SR  
(V)  
0
Yes  
Yes  
No  
10  
20  
20  
10  
0Ah  
14h  
14h  
0Ah  
2.5  
5
02h  
04h  
04h  
02h  
1.5  
3
5
V
No  
2.5  
CC  
V
BOOT  
(26h)  
This register is programmed by the platform designer and contains the boot voltage value. The VID Setting of 00h  
sets the boot voltage as 0V. With this setting, the output voltage does not ramp up at power-up until the MAX17411/  
MAX17511/MAX17511T receive a SetVID command. If V  
is set to any other code, the output voltage ramps to  
BOOT  
the selected VID DAC setting on assertion of enable (EN = high). The output voltage maintains its value until a SetVID  
command sets a new target. The default value for V register is 00h for the MAX17411/MAX17511/MAX17511T and  
BOOT  
Reg A of the MAX17511C. The default value for the V  
register is ABh for the MAX17511N. It is programmed in an  
BOOT  
8-bit binary format. The default value for the V  
register is 83h for Reg B of the MAX17511C  
BOOT  
.
V _MAX (30h)  
OUT  
This register is programmed by the CPU or SVID bus master to the maximum output voltage the CPU load can support.  
Any attempts to set the SVID above V _MAX are blanked and ignored. The MAX17411/MAX17511/MAX17511C/  
OUT  
MAX17511N/MAX17511T respond with “not-supported” acknowledge. The default value is FBh (1.5V).  
VID Setting (31h)  
This register contains a copy of the currently programmed SVID data. The default value is 00h.  
62 _____________________________________________________________________________________  
Dual-Output, 3-/2-/1-Phase + 2-/1-Phase  
Quick-PWM Controllers for VR12/IMVP7  
Power State PS_ (32h)  
The PS register contains information on the CPU’s power-consumption status. The MAX17411/MAX17511/MAX17511C/  
MAX17511N/MAX17511T support states PS0 through PS3. See the Power States (PS) section for a complete descrip-  
tion of these states and the resulting operating mode change in the MAX17411/MAX17511/MAX17511C/MAX17511N/  
MAX17511T. If a power state is requested that is not supported by these devices, they acknowledge with command  
rejected (11b) back to the SVID bus master. The PS_ register format is:  
B7  
B6  
B.  
B4  
B3  
B2  
B1  
B±  
PS7  
PS6  
PS5  
PS4  
PS3  
PS2  
PS1  
PS0  
Offset Register (33h)  
This register contains an offset, which is added to the programmed SVID data. The format of this data is the number  
of SVID steps/LSBs. For negative offsets, the value is the two’s complement of the number of SVID steps. The format  
of the Offset register is:  
OFFSET OR VOLTAGE MARGIN  
B7  
B6  
B.  
B4  
B3  
B2  
B1  
B±  
Sign  
0 = +  
1 = -  
SVID6  
SVID5  
SVID4  
SVID3  
SVID2  
SVID1  
SVID0  
Default = 00h = no offset.  
Bit 7 = Sign bit.  
00000001 = 01h = +1 LSB Offset.  
00000011 = 03h = +3 LSB Offset.  
10000001 = 81h = -127 LSB Offset.  
Multi-VR Configuration Register (34h)  
This register contains the bit-mapped data for configuring multiple regulators that utilize the SVID bus.  
Bit 0 (POK 0V) changes the response of the POK_ power-good output. Writing a 0 (default) to this bit enables the  
standard definition for POK_ response. When a SetVID (0.0V) command is issued, the respective regulator turns off  
and POK_ deasserts to 0V. Writing a 1 to bit 0 causes POK_ to remain high when SetVID (0.0V) is issued and POK_  
only goes low under fault conditions or when the regulator is powered down using EN or the input supplies turn off.  
Bit 1 (LOCK VID/PS) controls a lock function for the SVID code and power state PS. When bit 1 is a 0, the MAX17411/  
MAX17511/MAX17511C/MAX17511N/MAX17511T are in normal mode and the SVID and PS are NOT locked. When  
bit 1 is a 1, the MAX17411/MAX17511/MAX17511C/MAX17511N/MAX17511T lock the SVID and PS data and reject  
all SetVID and SetPS commands. Bit 1 must be changed back to 0 before the MAX17411/MAX17511/MAX17511C/  
MAX17511N/MAX17511T accept new commands. The format of the Multi-VR register is:  
MULTI-VR CONFIGURATION (34h)  
B7  
B6  
B.  
B4  
B3  
B2  
B1  
B±  
RSV 0b  
RSV 0b  
RSV 0b  
RSV 0b  
RSV 0b  
RSV 0b  
LOCK VID/PS  
POK 0V  
______________________________________________________________________________________ 63  
Dual-Output, 3-/2-/1-Phase + 2-/1-Phase  
Quick-PWM Controllers for VR12/IMVP7  
SetRegADR Register (35h)  
This register is a scratchpad register for temporarily  
storing the SetRegADR payload. The data is the address  
pointer for subsequent SetRegDAT commands.  
After exiting a low-power state, the CPU waits 3.3Fs  
prior to entering the full-power mode. Regulators A and  
B respond identically to the PS_ commands described  
in Table 8. Regulator B controls phase 1 (MAX17411/  
MAX17511/MAX17511C/MAX17511N/MAX17511T) and  
phase 2 (MAX17411).  
Critical VR12/IMVP-7 Functions  
Voltage-Settled Function  
The MAX17411/MAX17511/MAX17511C/MAX17511N/  
MAX17511T include an auxiliary bank of comparators that  
detect when the SVID transition is complete and the output  
voltage is within Q10mV (2 LSB) of the new target VID set-  
ting. After the output has settled, the MAX17411/MAX17511/  
MAX17511C/MAX17511N/MAX17511T set the VR_Settled  
bit in the Status1 register and assert the ALERT# line.  
Multiphase Quick-PWM  
Design Procedure  
Firmly establish the input voltage range and maximum  
load current before choosing a switching frequency  
and inductor operating point (ripple-current ratio). The  
primary design trade-off lies in choosing a good switch-  
ing frequency and inductor operating point, and the  
following four factors dictate the rest of the design:  
Power States (PS)  
The SVID bus can be used to place the MAX17411/  
MAX17511/M17511C/MAX17511N/MAX17511T into mul-  
tiple operating states to optimize the efficiency and  
power delivery capability. These states are entered by  
issuing a SetPS command and the programmed state  
is reflected in the power-state register (32h). The power  
states are listed in order of power savings:  
Input Voltage Range: The maximum value (V  
)
IN(MAX)  
must accommodate the worst-case high AC adapter  
voltage. The minimum value (V ) must account for  
IN(MIN)  
the lowest input voltage after drops due to connectors,  
fuses, and battery selector switches. If there is a choice  
at all, lower input voltages result in better efficiency.  
Maximum Load Current: There are two values to  
PS0 = Represents full power or active mode.  
consider. The peak load current (I  
)
LOAD(MAX)  
PS1 = Used in active mode or sleep mode and it  
represents a low-current state.  
determines the instantaneous component stresses and  
filtering requirements, and thus drives output capaci-  
tor selection, inductor saturation rating, and the design  
of the current-limit circuit. The continuous load current  
PS2 = Used in sleep mode and it represents a low-  
voltage state and lower current state than PS1.  
(I  
) determines the thermal stresses and thus drives  
LOAD  
PS3 = Ultra-low-power sleep mode.  
PS4–PS7 are not defined.  
the selection of the input capacitors, MOSFETs, and other  
critical heat-contributing components. Modern notebook  
The SVID code and power states are independent  
and can change at any time as determined by the  
CPU operating state. When the MAX17411/MAX17511/  
MAX17511C/MAX17511N/MAX17511T exit any low-  
power state, they automatically enter PS0 for any SVID  
command (SetVID_Fast/SetVID_Slow) that causes the  
output to change from the previous value. Note the  
SVID bus master must reissue a low-power state com-  
mand to return the MAX17411/MAX17511/MAX17511C/  
MAX17511N/MAX17511T to a low-current condition at  
the new higher voltage.  
CPUs generally exhibit I  
= 0.8 x I  
. For  
LOAD  
LOAD(MAX)  
multiphase systems, each phase supports a fraction of  
the load, depending on the current balancing. When  
properly balanced, the load current is evenly distributed  
among each phase:  
I
LOAD  
I
=
LOAD(PHASE)  
N
TOTAL  
where N  
is the total number of active phases.  
TOTAL  
Table 80 Power State (PS) Control of Regulator Operation  
PS_  
0
PHASE 1  
PHASE 2  
PHASE 3  
SKIP  
COMMENTS  
Full-power FPWM mode  
1-phase FPWM  
1-phase SKIP  
1
1
1
0
1
0
0
0
1
2
1
0
0
1
3
1
0
0
1
1-phase SKIP  
4–7  
Not used  
64 _____________________________________________________________________________________  
Dual-Output, 3-/2-/1-Phase + 2-/1-Phase  
Quick-PWM Controllers for VR12/IMVP7  
Switching Frequency: This choice determines the  
V
STEP  
LOAD(MAX)  
(R  
+ R  
) ≤  
PCB  
basic trade-off between size and efficiency. The optimal  
frequency is largely a function of maximum input voltage  
due to MOSFET switching losses that are proportional  
ESR  
I  
The output-voltage ripple of a step-down controller  
equals the total inductor ripple current multiplied by the  
output-capacitor’s ESR. When operating multiphase out-  
of-phase systems, the peak inductor currents of each  
phase are staggered, resulting in lower output ripple  
voltage by reducing the total inductor ripple current. For  
multiphase operation, the maximum ESR to meet ripple  
requirements is:  
to frequency and V 2. The optimum frequency is also a  
IN  
moving target due to rapid improvements in MOSFET  
technology that is making higher frequencies more  
practical.  
Inductor Operation Point: This choice provides trade-  
offs between size vs. efficiency and transient responses  
vs. output noise. Low inductor values provide better  
transient response and smaller physical size, but also  
result in lower efficiency and higher output noise due to  
increased ripple current. The minimum practical induc-  
tor value is one that causes the circuit to operate at the  
edge of critical conduction (where the inductor current  
just touches zero with every cycle at maximum load).  
Inductor values lower than this grant no further size-  
reduction benefit. The optimum operating point is usually  
between 30% and 50% ripple current. For a multiphase  
core regulator, select an LIR value of ~0.4.  
V
× f  
×L  
IN SW  
R
V
RIPPLE  
ESR  
V
N  
(
× V  
V
OUT  
)
)
(
IN  
TOTAL  
OUT  
where NTOTAL is the total number of active phases and  
is the switching frequency per phase.  
f
SW  
The actual capacitance value required relates to the  
physical size needed to achieve low ESR, as well as  
to the chemistry of the capacitor technology. Thus, the  
capacitor is usually selected by ESR and voltage rat-  
ing rather than by capacitance value (this is true for  
polymer types). When using low-capacity ceramic filter  
capacitors, capacitor size is usually determined by the  
Inductor Selection  
The switching frequency and operating point (% ripple  
current or LIR) determine the inductor value as follows:  
capacity needed to prevent V  
and V  
from caus-  
SAG  
SOAR  
ing problems during load transients. Generally, once  
enough capacitance is added to meet the overshoot  
requirement, undershoot at the rising load edge is no  
V
V  
V
OUT  
IN  
OUT  
L = N  
TOTAL  
f
×I  
×LIR  
V
SW LOAD(MAX)  
IN   
longer a problem (see the V  
and V  
equations in  
SAG  
SOAR  
where N  
is the total number of phases. Find a low-  
TOTAL  
the Transient Response section).  
loss inductor having the lowest possible DC resistance  
that fits in the allotted dimensions. The core must not  
Output Capacitor Stability Considerations  
For Quick-PWM controllers, stability is determined by the  
value of the ESR zero relative to the switching frequency.  
The boundary of instability is given by the following  
equation:  
saturate at the peak-inductor current (I  
):  
PEAK  
I
LIR  
2
LOAD(MAX)  
I
=
1+  
PEAK  
N
TOTAL  
Output Capacitor Selection  
f
SW  
π
f
ESR  
Output capacitor selection is determined by the control-  
ler stability and the transient soar and sag requirements  
of the application.  
where:  
and:  
1
Output Capacitor ESR  
The output-filter capacitor must have low enough effec-  
tive series resistance (ESR) to meet output ripple and  
load-transient requirements, yet have high-enough ESR  
f
=
ESR  
2π ×R  
× C  
EFF  
OUT  
to satisfy stability requirements. In CPU V  
convert-  
CORE  
R
= R  
+ R  
+ R  
PCB  
ers and other applications where the output is subject to  
large-load transients, the size of the output capacitor typ-  
ically depends on how much ESR is needed to prevent  
the output from dipping too low under a load transient.  
Ignoring the sag due to finite capacitance:  
EFF  
ESR  
DROOP  
where C  
is the total output capacitance, R  
is  
ESR  
is the  
OUT  
the total equivalent series resistance, R  
voltage-positioning gain, and R  
DROOP  
is the parasitic board  
PCB  
______________________________________________________________________________________ 6.  
Dual-Output, 3-/2-/1-Phase + 2-/1-Phase  
Quick-PWM Controllers for VR12/IMVP7  
resistance between the output capacitors and sense  
resistors.  
Low inductor values allow the inductor current to slew  
faster, replenishing charge removed from the output filter  
capacitors by a sudden load step. The amount of output  
sag is also a function of the maximum duty factor, which  
can be calculated from the on-time and minimum off-  
time. For a multiphase controller, the worst-case output  
sag voltage can be determined by:  
For a standard 300kHz application, the ESR zero fre-  
quency must be well below 95kHz, preferably below  
50kHz. Tantalum, SANYO POSCAP, and Panasonic SP  
capacitors are widely used and have typical ESR zero  
frequencies below 50kHz. In the standard application  
circuit, the ESR needed to support a 30mV  
ripple is  
P-P  
2
L(I  
)
t
LOAD(MAX)  
30mV/(40A x 0.3) = 2.5mI. Four 470FF/2.5V Panasonic  
SP (type SX) capacitors in parallel provide 1.5mI (max)  
ESR. With a 2mI droop and 0.5mI PCB resistance,  
the typical combined ESR results in a zero at 30kHz.  
Ceramic capacitors have a high-ESR zero frequency, but  
applications with significant voltage positioning can take  
advantage of their size and low ESR. When using only  
MIN  
t  
V
×
SAG  
2N  
× C  
× V  
Kt  
[
]
TOTAL  
OUT  
OUT  
SW  
MIN  
and:  
t
= t  
+ t  
OFF(MIN)  
MIN  
ON  
where t  
is the minimum off-time (see the Electrical  
OFF(MIN)  
Characteristics table), Kt  
ceramic output capacitors, output overshoot (V  
)
SOAR  
is the programmed switch-  
SW  
typically determines the minimum output capacitance  
requirement. Their relatively low capacitance value  
favors high-switching-frequency operation with small  
inductor values to minimize the energy transferred  
from inductor to capacitor during load-step recovery.  
Unstable operation manifests itself in two related but  
distinctly different ways: double pulsing and feedback  
loop instability.  
ing period, and N  
phases. K = 66% when N  
is the total number of active  
TOTAL  
= 3, and K = 100% when  
PH  
N
PH  
= 2. V  
must be less than the transient droop  
SAG  
DI  
x R  
. The capacitive soar voltage  
DROOP  
LOAD(MAX)  
due to stored inductor energy can be calculated as:  
2
(I  
) L  
LOAD(MAX)  
V
SOAR  
2N  
× C  
× V  
OUT OUT  
TOTAL  
Double-Pulsing and Feedback Loop Instability  
Double pulsing occurs due to noise on the output or  
because the ESR is so low that there is not enough volt-  
age ramp in the output-voltage signal. This “fools” the  
error comparator into triggering a new cycle immediately  
after the minimum off-time period has expired. Double  
pulsing is more annoying than harmful, resulting in noth-  
ing worse than increased output ripple. However, it can  
indicate the possible presence of loop instability due to  
insufficient ESR. Loop instability can result in oscillations  
at the output after line or load steps. Such perturbations  
are usually damped, but can cause the output voltage  
to rise above or fall below the tolerance limits. The easi-  
est method for checking stability is to apply a very fast  
10% to 90% max load transient and carefully observe  
the output-voltage ripple envelope for overshoot and  
ringing. It can help to simultaneously monitor the induc-  
tor current with an AC current probe. Do not allow more  
than one cycle of ringing after the initial step-response  
under/overshoot.  
The actual peak of the soar voltage depends on the  
time where the decaying ESR step and rising capaci-  
tive soar are at their maximum. This is best simulated or  
measured.  
Input Capacitor Selection  
The input capacitor must meet the ripple-current require-  
ment (I  
) imposed by the switching currents. The  
RMS  
multiphase Quick-PWM controllers operate out-of phase,  
reducing the RMS input. The I requirements can be  
RMS  
determined by the following equation:  
I
LOAD  
I
=
×
RMS  
N
× V  
TOTAL  
IN  
N
× V  
V
N  
(
× V  
TOTAL OUT  
)
)
(
TOTAL  
OUT IN  
where N  
is the total number of out-of-phase switch-  
TOTAL  
ing regulators. The worst-case RMS current requirement  
occurs when operating with V = 2(N O V ).  
IN  
TOTAL  
OUT  
Therefore, the above equation simplifies to I  
= 0.5 x  
RMS  
Transient Response  
(I  
/N  
). Choose an input capacitor that exhibits  
LOAD TOTAL  
The inductor ripple current impacts transient-response  
less than +10NC temperature rise at the RMS input cur-  
rent for optimal circuit longevity.  
performance, especially at low V - V  
differentials.  
IN  
OUT  
66 _____________________________________________________________________________________  
Dual-Output, 3-/2-/1-Phase + 2-/1-Phase  
Quick-PWM Controllers for VR12/IMVP7  
and cause the fault latch to trip. To protect against this  
possibility, the circuit can be overdesigned to tolerate:  
Power MOSFET Selection  
Most of the following MOSFET guidelines focus on the  
challenge of obtaining high-load-current capability when  
using high-voltage AC adapters.  
I  
INDUCTOR  
2
I
= N  
I
+
LOAD  
TOTAL VALLEY(MAX)  
High-Side MOSFET Power Dissipation  
The conduction loss in the high-side MOSFET (NH) is a  
function of the duty factor, with the worst-case power dis-  
sipation occurring at the minimum input voltage:  
I
×LIR  
LOAD(MAX)  
2
= N  
I
+
TOTAL VALLEY(MAX)  
where I  
is the maximum valley current  
VALLEY(MAX)  
2
allowed by the current-limit circuit, including threshold  
tolerance and on-resistance variation. The MOSFET must  
have a good-size heatsink to handle the overload power  
dissipation. Choose a low-side MOSFET that has the  
  
  
V
I
OUT  
LOAD  
P (NH Resistive) =  
R
DS(ON)  
D
V
N
IN  TOTAL   
where N  
is the total number of phases. Calculating  
TOTAL  
lowest possible on-resistance (R  
), comes in a  
DS(ON)  
the switching losses in the NH is difficult since it  
must allow for difficult quantifying factors that influence  
the turn-on and turn-off times. These factors include the  
internal gate resistance, gate charge, threshold voltage,  
source inductance, and PCB layout characteristics.  
The following switching-loss calculation provides only a  
very rough estimate and is no substitute for breadboard  
evaluation, preferably including verification using a ther-  
mocouple mounted on NH:  
moderate-sized package (i.e., one or two thermally  
enhanced 8-pin SO packages), and is reasonably  
priced. Make sure that the DL_ gate driver can supply  
sufficient current to support the gate charge and the  
current injected into the parasitic gate-to-drain capaci-  
tor caused by the high-side MOSFET turning on; other-  
wise, cross-conduction problems might occur (see the  
MOSFET Gate Drivers section). The optional Schottky  
diode (from DL to ground) should have a low forward  
voltage and be able to handle the load current per phase  
during the dead times.  
V
xI  
N
x f  
Q
G(SW)  
I
   
IN LOAD SW  
P (NHSwitching) =  
D
   
   
TOTAL  
GATE  
Boost Capacitor  
2
C
x V  
x f  
SW  
OSS  
IN  
+
The boost capacitors (C  
) must be selected large  
BST  
2
enough to handle the gate-charging requirements of the  
high-side MOSFET. Select the boost capacitors to avoid  
discharging the capacitor more than 200mV while charg-  
ing the gate of the high-side MOSFET:  
where C  
is the output capacitance of the high-side  
OSS  
MOSFET, Q  
is the charge needed to turn on the  
G(SW)  
NH MOSFET, and I  
is the peak gate-drive source/  
GATE  
sink current. The optimum high-side MOSFET trades  
the switching losses with the conduction (R  
N× Q  
200mV  
)
GATE  
DS(ON)  
C
=
BST  
losses over the input voltage range. Ideally, the losses at  
should be roughly equal to losses at V  
V
,
IN(MAX)  
IN(MIN)  
where N is the number of high-side MOSFETs used for  
one regulator, and Q is the gate charge specified in  
the data sheet of the MOSFET. For example, assume one  
FDS6298 n-channel MOSFET is used on the high side.  
According to the manufacturer’s data sheet, a single  
FDS6298 has a maximum gate charge of 10nC (V  
= 5V). Using the above equation, the required boost  
capacitance would be:  
with lower losses in between. If V does not vary over  
IN  
GATE  
a wide range, the minimum power dissipation occurs  
where the resistive losses equal the switching losses.  
Low-Side MOSFET Power Dissipation  
For the low-side MOSFET (NL), the worst-case power  
dissipation always occurs at maximum input voltage:  
GS  
2
V
I
OUT  
LOAD  
P (NLResistive) = 1−   
R
DS(ON)  
D
1×10nC  
200mV  
V
N
C
=
= 0.05µF  
IN(MAX)  
TOTAL  
BST  
The worst case for MOSFET power dissipation occurs  
under heavy overloads that are greater than I  
but are not quite high enough to exceed the current limit  
Selecting the closest standard value, this example  
requires a 0.1FF ceramic capacitor.  
LOAD(MAX)  
______________________________________________________________________________________ 67  
Dual-Output, 3-/2-/1-Phase + 2-/1-Phase  
Quick-PWM Controllers for VR12/IMVP7  
network (CSP_, CSN_), set V at 1.5V for 20mV/Fs and  
Current Limit (IMAX)  
The MAX17411/MAX17511/MAX17511C/MAX17511N/  
MAX17511T have a current limit that is programmed in  
discrete increments using multivalue logic inputs, IMAX_  
and SR. The regulator’s maximum current limit, which is  
the current limit per phase times the maximum number of  
active phases, is reflected in the ICC_MAX register (21h)  
for the respective regulator. The IMAX_ voltage deter-  
mines the valley current-sense threshold. See Table 6.  
SR  
0V for 10mV/Fs fast slew rate. Otherwise, V = 3V sets  
SR  
the fast slew rate at 20mV/Fs and V  
10mV/Fs.  
= V  
sets it at  
SR  
CC  
Voltage Positioning  
Voltage positioning dynamically lowers the output volt-  
age in response to the load current, reducing the  
output capacitance and processor’s power-dissipation  
requirements. The MAX17411/MAX17511/MAX17511C/  
The valley of the inductor current occurs at I  
minus half the ripple current; therefore:  
LOAD(MAX)  
MAX17511N/MAX17511T use  
a transconductance  
amplifier to set the transient and DC output-voltage  
droop (Figures 5, 6, and 7) as a function of the load.  
This adjustability allows flexibility in the selected current-  
sense resistor value or inductor DCR, and allows smaller  
current-sense resistance to be used, reducing the over-  
all power dissipated.  
LIR  
2
I
> I  
1−  
VALLEY  
LOAD(MAX)  
where:  
V
Steady-State Voltage Positioning  
SENSE  
SENSE  
I
=
VALLEY  
Connect a resistor (R  
) between FB_ and V  
to  
FB_  
OUT  
R
set the DC steady-state droop (load-line) based on the  
required voltage-positioning slope (R  
):  
DROOP  
×N  
PH  
where R  
tor DCR.  
is the sensing resistor or effective induc-  
SENSE  
R
DROOP  
R
=
FB_  
To set the current limit:  
R
G
SENSE m(FB_)  
1) Select the inductor (see the Inductor Selection section)  
where the effective current-sense resistance (R  
)
SENSE  
2) Based on the current-sensing element (sense resis-  
tor or DCR sensing), calculate CSP_ - CSN_ sensed  
resistance value. See the Current Sense section.  
Then, use a divider to normalize this value to one of  
depends on the current-sense method (see the Current  
Sense section), and the transconductance (G ) of  
m(FB_)  
the voltage-positioning amplifier is typically 600FS as  
defined in the Electrical Characteristics table. When the  
inductors’ DCR is used as the current-sense element,  
each current-sense input should include an NTC therm-  
istor to minimize the temperature dependence of the  
voltage-positioning slope.  
the four R  
values in Table 6.  
SENSE  
3) Select ICC_MAX for the calculated R  
value.  
SENSE  
Then, program the IMAX_ pin to its specified voltage  
level in Table 6.  
4) SR setting also scales the current limit. Set V  
to  
SR  
one of the four voltages in Table 7 based on using  
NTC or not using NTC in the current-sensing net-  
work. See the Electrical Characteristics table.  
Applications Information  
PCB Layout Guidelines  
Careful PCB layout is critical to achieve low switching  
losses and clean, stable operation. The switching power  
stage requires particular attention. If possible, mount  
all the power components on the top side of the board  
with their ground terminals flush against one another.  
The layouts of the MAX17411/MAX17511/MAX17511N/  
MAX17511C/MAX17511T are intimately related to the  
layout of the CPU. The high-current output paths from  
the regulator must flow cleanly into the high-current  
inputs on the processor. For VR12/IMVP-7 processors,  
these inputs are orthogonal. This arrangement effectively  
forces the regulator to be located diagonally with respect  
to the processor. Refer to the MAX17411/MAX17511/  
Slew-Rate Control  
The MAX17411/MAX17511/MAX17511C/MAX17511N/  
MAX17511T have a slew-rate control programmed in  
discrete increments using a multivalue logic-input SR.  
Connect SR to a voltage level as defined in Table 7  
to set the fast slew rate. The MAX17411/MAX17511/  
MAX17511C/MAX17511N/MAX17511T digitize the volt-  
age at SR to set one of two discrete slew rates. The regu-  
lator’s slow slew rate is set automatically relative to the  
fast slew rate (SR_Slow = 1/4 SR_Fast). The selected fast  
and slow slew rates are reflected in registers 24h and  
25h, respectively. If NTC is used in a current-sensing  
68 _____________________________________________________________________________________  
Dual-Output, 3-/2-/1-Phase + 2-/1-Phase  
Quick-PWM Controllers for VR12/IMVP7  
MAX17511C/MAX17511N/MAX17511T Evaluation Kits'  
specifications for layout examples and follow these  
guidelines for good PCB layout:  
•ꢀ Keep the high-current, gate-driver traces (DL_, DH_,  
LX_, and BST_) short and wide to minimize trace  
resistance and inductance. This is essential for high-  
power MOSFETs that require low-impedance gate  
drivers to avoid shoot-through currents. CSP_ and  
CSN_ connections for current limiting and voltage  
positioning must be made using Kelvin-sense con-  
nections to guarantee the current-sense accuracy.  
•ꢀ Keep the high-current paths short, especially at the  
ground terminals. This is essential for stable, jitter-  
free operation.  
•ꢀ Connect all analog grounds to a separate solid cop-  
per plane, which connects to the ground pin of the  
•ꢀ When trade-offs in trace lengths must be made, it is  
preferable to allow the inductor charging path to be  
made longer than the discharge path. For example,  
it is better to allow some extra distance between  
the input capacitors and the high-side MOSFET  
than to allow distance between the inductor and the  
low-side MOSFET or between the inductor and the  
output filter capacitor.  
Quick-PWM controller. This includes the V  
capacitor, FB_, and GNDS bypass capacitors.  
bypass  
CC  
•ꢀ Keep the power traces and load connections short.  
This is essential for high efficiency. The use of thick  
copper PCB (2oz vs. 1oz) can enhance full-load  
efficiency by 1% or more. Correctly routing PCB  
traces is a difficult task that must be approached  
in terms of fractions of centimeters, where a single  
mIof excess trace resistance causes a measurable  
efficiency penalty.  
•ꢀ Route high-speed switching nodes away from sensi-  
tive analog areas (FB_, CSP_, CSN_, etc.).  
Layout Procedure  
COMPONENT  
DESCRIPTION  
The general rule is that capacitors take priority over resistors since they provide a filtering function.  
The list below is in order of priority.  
1) V  
, V  
, and V  
Capacitors  
DDA DDB  
CC  
Place these near the IC pins with wide traces and good connection to PGND.  
2) CSP_AVE - CSN_ Differential Filter  
Place the capacitor and the step resistor near the IC pins. This input is most critical because it is  
used for regulation and load line.  
Capacitors  
3) CSP_ - CSN_ Differential Filter Capacitors  
Place these after placing the CSP_AVE - CSN_ capacitor and step resistor. This input is less critical  
because it is only used for current limit and current balance.  
4) Common-Mode Capacitors  
The capacitors to AGND take the next priority.  
.) FB_ and GNDS_ Capacitors  
The FB_ capacitor will be slightly further from the IC since the FB_ resistor has priority to be closer to  
the IC.  
FB_  
The FB_ resistor should be near the respective pin. Keep the trace short to reduce any inductance.  
IMAX_ and SR resistors can be a little further from the IC. The voltages are sampled during the  
IC initialization time.  
IMAX_ and SR  
DCR Network  
The resistor network for CSP_AVE - CSN_ or CSP_ - CSN_ must be placed near the inductors.  
Use Kelvin sense connection to the sense element (inductor or sense resistor).  
Route CSP_AVE-_ as a differential pair as the first priority. Route CSP_ traces near CSN_ as a  
second priority. Avoid any switching signals, especially DH and LX when routing these current-  
sensing signals.  
Current Sense  
Thermistors  
The NTC for CSP_AVE - CSN_ and CSPB1 - CSNB (MAX17511/MAX17511C/MAX17511N/  
MAX17511T) sensing must be placed near the Phase 1 inductor to properly sense the temperature.  
The NTC for THERM_ sensing should be placed near the power components of the first phase.  
______________________________________________________________________________________ 69  
Dual-Output, 3-/2-/1-Phase + 2-/1-Phase  
Quick-PWM Controllers for VR12/IMVP7  
Layout Procedure (continued)  
COMPONENT  
Catch Resistors  
DESCRIPTION  
Catch resistors should be placed near the CPU so that the output voltage trace does not need to  
route back to the IC. But the GND catch resistor is less critical as it only requires a via to connect to  
the GND plane.  
Remote Sense  
Gate Drive  
Route together in a quiet layer, avoiding any switching signals, especially DH and LX.  
Keep the gate-drive traces short and wide. Use double vias especially for DL. Use 40mil to 50mil  
traces for DL and 30mil to 40mil traces for DH and LX.  
DH and LX are a pair, and should run side by side, or one above the other. DL and GND are the  
other pair. Route DL next to the GND layer.  
Keep DH and LX away from DL to avoid cross coupling. Also keep DH and LX away from any  
sensitive signal traces.  
The DL capacitor should be placed near the low-side MOSFET gate-source pins, and not near the  
IC DL pins.  
Snubbers should be placed at the LX node near the MOSFET or inductor, and not near the IC LX  
pins.  
Snubbers  
BST  
BST components should be placed near the IC, connecting to LX near the IC pin.  
Pullups do not need to be near the IC and can be placed further to make space for other more  
important components near the IC.  
VRHOT#, POKA, POKB  
Use 10kIpullup to +3.3V for POKA and POKB.  
Use 75Ipullup to +1.05V for VRHOT#.  
Refer to Intel specifications for final pullup resistor value and voltage.  
Pullups for VDIO, VCLK, and ALERT# do not need to be too close to the IC and can be placed  
further to make space for other more important components near the IC.  
Refer to Intel specifications for final pullup resistor value and voltage.  
SVID  
Place a small 0.1FF decoupling capacitor for the +1.05V near the pullup resistors.  
Keep the AGND polygon just large enough to cover AGND components. Do not make it any larger  
than necessary. The AGND polygon should not run under any gate-drive traces since all AGND  
connections should be on the other side of the IC, away from the driver pins.  
AGND  
AGND - PGND connection should be done away from the PGND pins so as not to be in the path of  
AGND - PGND  
the gate-drive currents. A good location is near to the V  
pin.  
CC  
MAX17511/  
MAX174511C/  
MAX17511N/MAX17511T  
Exposed Pad  
Although the exposed pad is both AGND and PGND, it is better to define the exposed pad in the  
schematics as PGND. This allows the exposed pad vias to connect to the PGND plane, providing a  
low-impedance path for the gate-drive currents.  
Place the power components close to keep the current loop small. Avoid large LX nodes. Use  
multiple vias to keep the impedance low and to carry the high currents.  
Power Components  
7± _____________________________________________________________________________________  
Dual-Output, 3-/2-/1-Phase + 2-/1-Phase  
Quick-PWM Controllers for VR12/IMVP7  
Ordering Information (continued)  
PART  
TEMP RANGE  
PIN-PACKAGE  
FEATURE  
3-/2-/1-Phase + 1-Phase, 0V V  
for Reg A,  
3-/2-/1-Phase + 1-Phase, 1.1V V  
BOOT  
BOOT  
MAX17.11CGTL+  
-40NC to +105NC  
40 TQFN-EP*  
0.9V V  
for Reg B  
BOOT  
MAX17.11NGTL+  
MAX17.11TGTL+  
-40NC to +105NC  
-40NC to +105NC  
40 TQFN-EP*  
40 TQFN-EP*  
3-/2-/1-Phase + 1-Phase, OVP Disabled  
+Denotes a lead(Pb)-free/RoHS-compliant package.  
*EP = Exposed pad.  
Package Information  
Chip Information  
For the latest package outline information and land patterns  
(footprints), go to www0maxim-ic0com/packages. Note that a  
“+”, “#”, or “-” in the package code indicates RoHS status only.  
Package drawings may show a different suffix character, but  
the drawing pertains to the package regardless of RoHS status.  
PROCESS: BiCMOS  
PACKAGE  
TYPE  
PACKAGE  
CODE  
OUTLINE  
NO0  
LAND  
PATTERN NO0  
40 TQFN-EP  
48 TQFN-EP  
T4055+2  
T4866+1  
21-±14±  
21-±141  
9±-±±±2  
9±-±±.7  
______________________________________________________________________________________ 71  
Dual-Output, 3-/2-/1-Phase + 2-/1-Phase  
Quick-PWM Controllers for VR12/IMVP7  
Revision History  
REVISION REVISION  
PAGES  
CHANGED  
DESCRIPTION  
NUMBER  
DATE  
0
1/11  
Initial release  
1, 2, 4, 5, 6,  
7, 10, 12, 13,  
14, 19, 20, 21,  
Added the MAX17511C to the data sheet; updated the Absolute Maximum Ratings  
1
7/11  
to include Package Thermal Characteristics; changed the conditions in the Electrical 25,27, 28, 32,  
Characteristics for the Valley Current-Limit Threshold Voltage sections.  
33, 35, 38, 40,  
49, 52, 53, 58,  
62, 64  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied.  
Maxim reserves the right to change the circuitry and specifications without notice at any time.  
72  
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
2011 Maxim Integrated Products Maxim is a registered trademark of Maxim Integrated Products, Inc.  
©

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY