MAX17524ATJ+ [MAXIM]

4.5V to 60V, 3A, Dual-Output, High-Efficiency,Synchronous Step-Down DC-DC Converter;
MAX17524ATJ+
型号: MAX17524ATJ+
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

4.5V to 60V, 3A, Dual-Output, High-Efficiency,Synchronous Step-Down DC-DC Converter

文件: 总24页 (文件大小:798K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MAX17524  
4.5V to 60V, 3A, Dual-Output, High-Efficiency,  
Synchronous Step-Down DC-DC Converter  
General Description  
Benefits and Features  
Reduces External Components and Total Cost  
• No Schottky - Synchronous Operation  
• Internal Compensation Components  
The MAX17524 dual-output, high-efficiency, high-voltage,  
synchronous step-down DC-DC converter with integrated  
high-side MOSFETs operates over an input-voltage range  
of 4.5V to 60V. The device can deliver up to 3A on each  
output and generates output voltages from 0.9V up to  
• All-Ceramic Capacitors, Compact Layout  
Reduces Number of DC-DC Regulators to Stock  
• Wide 4.5V to 60V Input  
90% of V . This device features internal compensation.  
IN  
• Adjustable Output Range from 0.9V up to 90% of  
The MAX17524 uses peak current-mode control, and can  
be operated in pulse-width modulation (PWM), pulse-fre-  
quency modulation (PFM), and discontinuous-conduction  
mode (DCM) to enable high efficiency under light-load  
conditions.  
V
IN  
• Delivers up to 3A on Each Output Over the Tem-  
perature Range  
• 100kHz to 1.1MHz Adjustable Frequency with  
External Clock Synchronization  
The feedback-voltage regulation accuracy is accurate to  
within ±1.4% over -40°C to +125°C. The device is avail-  
able in a 32-pin (5mm x 5mm) Thin QFN (TQFN) pack-  
age. Simulation models are available.  
• Available in a 32-Pin, 5mm x 5mm TQFN Package  
Independent Input-Voltage Pins for Each Output  
Reduces Power Dissipation  
Peak Efficiency of 90.3%  
Applications  
• PFM and DCM Modes Enable Enhanced Light-  
Load Efficiency  
• Auxiliary Bootstrap Supply (EXTVCC) for Improved  
Efficiency  
Industrial Control Power Supplies  
General-Purpose Point-of-Load  
Distributed Supply Regulation  
Base Station Power Supplies  
Wall Transformer Regulation  
High-Voltage Single-Board Systems  
5.2μA Shutdown Current  
Operates Reliably in Adverse Industrial Environments  
• Hiccup-Mode Overload Protection  
• Independent Adjustable Soft-Start Pin and Pro-  
grammable EN/UVLO Pin for Each Output  
• Monotonic Startup with Prebiased Output Voltage  
• Built-in Independent Output-Voltage Monitoring  
with RESET for Each Output  
Ordering Information appears at end of data sheet.  
• Overtemperature Protection  
• High Industrial -40°C to +125°C Ambient Operating  
Temperature Range / -40°C to +150°C Junction  
Temperature Range  
19-100201; Rev 0; 12/17  
MAX17524  
4.5V to 60V, 3A, Dual-Output, High-Efficiency,  
Synchronous Step-Down DC-DC Converter  
Absolute Maximum Ratings  
IN_  
V
to PGND_......................................................-0.3V to +65V  
DL_ to PGND_ ...........................................-0.3V to V  
+0.3V  
CC_  
PGND_ to SGND..................................................-0.3V to +0.3V  
EXTVCC_ to SGND ..............................................-0.3V to +26V  
EN/UVLO_ to SGND.............................................-0.3V to +65V  
LX_ Total RMS Current ........................................................4.8A  
Continuous Power Dissipation  
(Multilayer Board) (T = +70°C,  
A
FB_ , V  
to SGND ..............................................-0.3V to +6V  
derate 34.5mW/°C above +70°C.)..........................2758.6mW  
Output Short-Circuit Duration....................................Continuous  
Operating Temperature Range (Note 1)..............-40°C to 125°C  
Junction Temperature......................................................+150°C  
Storage Temperature Range............................ -65°C to +150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
Soldering Temperature (reflow).......................................+260°C  
CC_  
RESET_, SS_, MODE/SYNC_, CF_, RT to SGND ........-0.3V to  
V
+0.3V  
CC_  
BST_ to PGND_....................................................-0.3V to +70V  
BST_ to LX_............................................................-0.3V to +6V  
BST_ to V  
........................................................-0.3V to +65V  
CC_  
LX_ to PGND_............................................ -0.3V to V  
+ 0.3V  
IN_  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these  
or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect  
device reliability.  
Package Information  
PACKAGE TYPE: 32 TQFN  
Package Code  
T3255+4C  
21-0140  
90-0012  
Outline Number  
Land Pattern Number  
THERMAL RESISTANCE, FOUR-LAYER BOARD (Note 2)  
Junction to Ambient (θ  
)
23ºC/W  
1.7ºC/W  
JA  
Junction to Case (θ  
)
JC  
For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a “+”,  
“#”, or “-” in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing  
pertains to the package regardless of RoHS status.  
Note 1: Junction temperature greater than +125°C degrades operating lifetimes.  
Note 2: Package thermal resistances were obtained using the MAX17524 Evaluation Kit (EV kit).  
Maxim Integrated  
2  
www.maximintegrated.com  
MAX17524  
4.5V to 60V, 3A, Dual-Output, High-Efficiency,  
Synchronous Step-Down DC-DC Converter  
Electrical Characteristics  
(V = V  
= 24V, R = Open (f  
= 450 kHz), C  
= 2.2μF, V  
= V  
= V  
= V  
= 0V, V = 1V,  
EXTVCC FB  
IN  
EN/UVLO  
RT  
SW  
VCC  
MODE/SYNC  
SGND  
PGND  
LX = SS = RESET = Open, V  
to V = 5V, T = -40°C to 125°C, unless otherwise noted. Typical values are at T = +25°C. All volt-  
BST  
LX A A  
ages are referenced to SGND and the data is intended for both the converters, unless otherwise noted.) (Note 3)  
PARAMETER  
INPUT SUPPLY (IN)  
Input-Voltage Range  
Input-Shutdown Current  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
4.5  
60  
V
IN  
I
V
= 0V (shutdown mode)  
5.2  
1400  
1400  
1.36  
5
9.5  
μA  
IN-SH  
EN/UVLO  
MODE/SYNC = Open  
MODE/SYNC = Open, R = 22.1kΩ  
I
μA  
Q_PFM  
RT  
Input-Quiescent Current  
I
DCM Mode, V = 0.1V  
2
Q_DCM  
LX  
mA  
I
V
= 0.8V, EXTVCC = DL = Open  
Q_PWM  
FB  
ENABLE/UVLO (EN/UVLO)  
V
V
V
rising  
falling  
1.19  
1.216  
1.089  
1.245  
1.116  
ENR  
EN/UVLO  
EN/UVLO Threshold  
V
V
V
1.065  
ENF  
EN/UVLO  
V
(LDO)  
CC  
1mA ≤ I  
≤ 20mA  
4.75  
4.75  
50  
5
5
5.25  
5.25  
140  
0.4  
VCC  
V
Output-Voltage Range  
V
CC  
CC  
6V ≤ V ≤ 60V, I  
= 1mA  
IN  
VCC  
V
V
Current Limit  
Dropout  
I
V
V
V
V
= 4.3V, V = 6V  
90  
mA  
V
CC  
VCC(MAX)  
CC  
IN  
V
= 4.5V, I  
= 25mA  
CC  
CC-DO  
IN  
VCC  
V
rising  
falling  
4.09  
3.69  
4.2  
3.8  
4.29  
3.89  
CC_UVR  
CC  
CC  
V
UVLO  
V
CC  
V
CC_UVF  
EXTVCC  
EXTVCC Switchover Threshold  
V
rising  
4.56  
4.7  
4.84  
0.26  
V
V
EXTVCC  
EXTVCC Switchover Voltage  
Hysteresis  
0.205  
0.232  
HIGH-SIDE MOSFET AND LOW-SIDE DRIVER  
High-Side nMOS On-  
Resistance  
R
I
= 0.3A, sourcing  
85  
1
180  
+4  
mΩ  
μA  
DS-ONH  
LX  
V
= (V  
+1V) to (V - 1V),  
LX  
PGND IN  
LX Leakage Current  
I
-4  
4.7  
LX_LKG  
T = +25°C  
A
SOFT-START (SS)  
Charging Current  
FEEDBACK (FB)  
I
V
= 0.5V  
5
5.3  
μA  
SS  
SS  
MODE/SYNC = SGND or MODE/SYNC  
= V  
CC  
0.888  
0.9  
0.912  
FB Regulation Voltage  
FB Input-Bias Current  
V
V
FB-REG  
MODE/SYNC = Open  
0.9  
0.915  
0.943  
+100  
o
I
0 ≤ V ≤ 1V, T = 25 C  
-100  
nA  
FB  
FB  
A
Maxim Integrated  
3  
www.maximintegrated.com  
MAX17524  
4.5V to 60V, 3A, Dual-Output, High-Efficiency,  
Synchronous Step-Down DC-DC Converter  
Electrical Characteristics (continued)  
(V = V  
= 24V, R = Open (f  
= 450 kHz), C  
= 2.2μF, V  
= V  
= V  
= V  
= 0V, V = 1V,  
EXTVCC FB  
IN  
EN/UVLO  
RT  
SW  
VCC  
MODE/SYNC  
SGND  
PGND  
LX = SS = RESET = Open, V  
to V = 5V, T = -40°C to 125°C, unless otherwise noted. Typical values are at T = +25°C. All volt-  
BST  
LX A A  
ages are referenced to SGND and the data is intended for both the converters, unless otherwise noted.) (Note 3)  
PARAMETER  
MODE/SYNC  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
MODE/SYNC = V  
(DCM mode)  
V
- 0.6  
M-DCM  
CC  
CC  
MODE Threshold  
V
MODE/SYNC = Open (PFM mode)  
V
/2  
V
M-PFM  
CC  
V
MODE/SYNC = SGND (PWM mode)  
0.6  
M-PWM  
SYNC Frequency-Capture  
Range  
f
f
set by R  
1.1 x f  
1.4 x f  
SW  
SYNC  
SW  
RT  
SW  
SYNC Pulse Width  
50  
2
ns  
V
V
IH  
SYNC Threshold  
V
0.8  
IL  
Number of Pulses Required to  
Enter into SYNC Mode  
8
CURRENT LIMIT  
Peak Current-Limit Threshold  
I
4.2  
5.1  
4.6  
5.6  
5.1  
6.3  
A
A
PEAK-LIMIT  
Runaway Peak Current-Limit  
Threshold  
I
RUNAWAY-  
LIMIT  
PFM Peak Current-Limit  
Threshold  
I
MODE/SYNC = Open  
1.15  
A
PFM  
MODE/SYNC = OPEN OR MODE/SYNC  
= V  
CC  
-8  
0
+8  
60  
Negative Current-Limit  
Threshold  
V
mV  
NEG-LIM  
MODE/SYNC = SGND  
42  
50  
RT  
R
R
R
R
= 100kΩ  
= 22.1kΩ  
= 8.25kΩ  
= Open  
97.5  
430  
950  
420  
105  
454  
112.5  
478  
RT  
RT  
RT  
RT  
Switching Frequency  
f
kHz  
V
SW  
1100  
450  
1250  
480  
V
Undervoltage Trip Level to  
FB  
V
0.56  
0.58  
0.61  
FB-HICF  
Cause Hiccup  
HICCUP Timeout  
Minimum On-Time  
Minimum Off-Time  
LX Dead Time  
(Note 4)  
32768  
90  
Cycles  
ns  
t
140  
165  
ON-MIN  
t
140  
ns  
OFF-MIN  
LX  
22  
ns  
DT  
Maxim Integrated  
4  
www.maximintegrated.com  
MAX17524  
4.5V to 60V, 3A, Dual-Output, High-Efficiency,  
Synchronous Step-Down DC-DC Converter  
Electrical Characteristics (continued)  
(V = V  
= 24V, R = Open (f  
= 450 kHz), C  
= 2.2μF, V  
= V  
= V  
= V  
= 0V, V = 1V,  
EXTVCC FB  
IN  
EN/UVLO  
RT  
SW  
VCC  
MODE/SYNC  
SGND  
PGND  
LX = SS = RESET = Open, V  
to V = 5V, T = -40°C to 125°C, unless otherwise noted. Typical values are at T = +25°C. All volt-  
BST  
LX A A  
ages are referenced to SGND and the data is intended for both the converters, unless otherwise noted.) (Note 3)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
RESET  
RESET Output-Level Low  
V
110  
200  
100  
mV  
nA  
I
= 10mA  
RESETL  
RESET  
RESET Output-Leakage  
Current  
I
-100  
90.4  
93.4  
T = T = 25ºC, V  
= 5.5V  
RESETLKG  
A
J
RESET  
FB Threshold for RESET  
Assertion  
V
V
falling  
92.5  
95.5  
1024  
94.6  
97.7  
%
%
FB-OKF  
FB  
FB  
FB Threshold for RESET  
Deassertion  
V
V
rising  
FB-OKR  
RESET Delay after FB Reach-  
es 95% Regulation  
cycles  
THERMAL SHUTDOWN (TEMP)  
Thermal-Shutdown Threshold  
Thermal-Shutdown Hysteresis  
Temperature rising  
165  
10  
°C  
°C  
Note 3: Electrical specifications are production tested at T = +25ºC. Specifications over the entire operating temperature range are  
A
guaranteed by design and characterization.  
Note 4: See the Overcurrent Protection (OCP)/Hiccup Mode section for more details  
Maxim Integrated  
5  
www.maximintegrated.com  
MAX17524  
4.5V to 60V, 3A, Dual-Output, High-Efficiency,  
Synchronous Step-Down DC-DC Converter  
Typical Operating Characteristics  
(V  
= V  
= V  
= V  
= 24V, V  
= V  
= V  
= 0V, C  
= C  
= 2.2μF, C  
= C  
= 0.1μF,  
EN/UVLO1  
IN1  
EN/UVLO2  
IN2  
SGND  
PGND1  
PGND2  
VCC1  
VCC2  
BST1  
BST2  
C
= C  
= 5600pF, T = -40°C to +125°C, unless otherwise noted. Typical values are at T = +25°C. All voltages are referenced  
SS1  
SS2  
A
A
to SGND, unless otherwise noted.)  
MAX17524, 3.3V OUTPUT  
EFFICIENCY vs. LOAD CURRENT  
(PWM MODE, fSW = 450kHz)  
MAX17524, 5V OUTPUT  
EFFICIENCY vs. LOAD CURRENT  
(PWM MODE, fSW = 450kHz)  
MAX17524, 5V OUTPUT  
EFFICIENCY vs. LOAD CURRENT  
(PFM MODE, fSW = 450kHz)  
toc02  
toc03  
toc01  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
80  
VIN = 36V VIN = 48V  
VIN = 24V  
VIN = 12V  
VIN = 6.5V  
70  
60  
50  
40  
30  
20  
10  
0
V
IN = 48V  
VIN = 36V  
VIN = 24V  
VIN = 12V  
VIN = 4.5V  
VIN = 60V  
V
IN = 48V  
VIN = 36V  
VIN = 24V  
VIN = 12V  
VIN = 6.5V  
VIN = 60V  
VIN = 60V  
0.01  
0.01  
0
0.10  
LOAD CURRENT (A)  
1.00  
0
1
2
3
0
1
2
3
LOAD CURRENT (A)  
LOAD CURRENT (A)  
MAX17524, 3.3V OUTPUT  
EFFICIENCY vs. LOAD CURRENT  
(DCM MODE, fSW = 450kHz)  
MAX17524, 3.3V OUTPUT  
EFFICIENCY vs. LOAD CURRENT  
(PFM MODE, fSW = 450kHz)  
MAX17524, 5V OUTPUT  
EFFICIENCY vs. LOAD CURRENT  
(DCM MODE, fSW = 450kHz)  
toc06  
toc04  
toc05  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VIN = 60V  
VIN = 48V  
VIN = 36V  
VIN = 60V  
VIN = 48V  
VIN = 36V  
VIN = 24V  
VIN = 12V  
VIN = 4.5V  
VIN = 60V  
VIN = 48V  
VIN = 36V  
VIN = 24V  
VIN = 12V  
VIN = 4.5V  
VIN = 24V  
VIN = 12V  
VIN = 6.5V  
0.10  
1.00  
0.01  
0.10  
1.00  
0.01  
0.10  
1.00  
LOAD CURRENT (A)  
LOAD CURRENT (A)  
LOAD CURRENT (A)  
MAX17524, 5V OUTPUT  
MAX17524, 5V OUTPUT  
LOAD AND LINE REGULATION  
(PWM MODE, fSW = 450kHz)  
MAX17524, 3.3V OUTPUT  
LOAD AND LINE REGULATION  
(PWM MODE, fSW = 450kHz)  
LOAD AND LINE REGULATION  
(PFM MODE, fSW = 450kHz)  
toc09  
toc07  
toc08  
5.14  
4.99  
4.98  
4.97  
4.96  
4.95  
3.34  
3.33  
3.32  
3.31  
3.30  
3.29  
5.10  
5.06  
5.02  
4.98  
4.94  
VIN = 6.5V  
VIN = 12V  
VIN = 36V  
VIN = 12V  
VIN = 60V  
VIN = 36V  
VIN = 12V  
VIN = 60V  
VIN = 24V  
VIN = 36V  
VIN = 48V  
VIN = 60V  
VIN = 4.5V  
VIN = 24V  
VIN = 48V  
VIN = 6.5V  
VIN = 24V  
VIN = 48V  
1
2
3
0
1
2
3
0
1
2
3
LOAD CURRENT (A)  
LOAD CURRENT (A)  
LOAD CURRENT (A)  
Maxim Integrated  
6  
www.maximintegrated.com  
MAX17524  
4.5V to 60V, 3A, Dual-Output, High-Efficiency,  
Synchronous Step-Down DC-DC Converter  
Typical Operating Characteristics (continued)  
(V  
= V  
= V  
= V  
= 24V, V  
= V  
= V  
= 0V, C  
= C  
= 2.2μF, C  
= C  
= 0.1μF,  
EN/UVLO1  
IN1  
EN/UVLO2  
IN2  
SGND  
PGND1  
PGND2  
VCC1  
VCC2  
BST1  
BST2  
C
= C  
= 5600pF, T = -40°C to +125°C, unless otherwise noted. Typical values are at T = +25°C. All voltages are referenced  
SS1  
SS2 A A  
to SGND, unless otherwise noted.)  
MAX17524, 5V OUTPUT  
LOAD AND LINE REGULATION  
(DCM MODE, fSW = 450kHz)  
MAX17524, 3.3V OUTPUT  
LOAD AND LINE REGULATION  
(DCM MODE, fSW = 450kHz)  
MAX17524, 3.3V OUTPUT  
LOAD AND LINE REGULATION  
(PFM MODE, fSW = 450kHz)  
toc11  
toc12  
4.99  
4.98  
4.97  
4.96  
4.95  
3.34  
toc10  
3.44  
3.40  
3.36  
3.32  
3.28  
3.33  
3.32  
3.31  
3.30  
3.29  
VIN = 4.5V  
VIN = 12V  
VIN = 36V  
VIN = 60V  
VIN = 12V  
VIN = 60V  
VIN = 36V  
VIN = 12V  
VIN = 24V  
VIN = 36V  
VIN = 48V  
VIN = 60V  
VIN = 48V  
VIN = 24V  
VIN = 6.5V  
VIN = 6.5V  
VIN = 24V  
VIN = 48V  
0
1
2
3
0.0  
1.0  
2.0  
3.0  
0
1
2
3
LOAD CURRENT (A)  
LOAD CURRENT (A)  
LOAD CURRENT (A)  
MAX17524, 5V OUTPUT  
SOFT-START WITH PREBIAS VOLTAGE OF 2.5V  
MAX17524, 5V OUTPUT  
SOFT-START/SHUTDOWN FROM EN/UVLO  
(fSW = 450kHz, PWM MODE, 3A LOAD)  
MAX17524, 3.3V OUTPUT  
SOFT-START/SHUTDOWN FROM EN/UVLO  
(PWM MODE, 3A LOAD, fSW = 450kHz)  
(PWM MODE, 5mA LOAD, fSW = 450kHz)  
toc15  
toc14  
toc13  
VEN/UVLO  
5V/div  
VEN/UVLO  
VEN/UVLO  
5V/div  
2V/div  
5V/div  
2V/div  
VOUT  
VOUT  
2V/div  
5V/div  
1A/div  
VOUT  
ILX  
V
ILX  
2A/div  
5V/div  
RESET  
2A/div  
5V/div  
ILX  
V
V
RESET  
RESET  
1ms/div  
1ms/div  
1ms/div  
CONDITION: RESETIS PULLED UP TO VCC  
CONDITION: RESETIS PULLED UP TO VCC  
CONDITION: RESETIS PULLED UP TO VCC  
MAX17524, 3.3V OUTPUT  
SOFT-START WITH PREBIAS VOLTAGE OF 1.65V  
MAX17524, 5V OUTPUT  
STEADY STATE,  
(PWM MODE, 3A LOAD, fSW = 450kHz)  
MAX17524, 5V OUTPUT  
STEADY STATE  
(fSW = 450kHz, DCM MODE, 75mA LOAD)  
(PWM MODE, 5mA LOAD, fSW = 450kHz)  
toc17  
toc18  
toc16  
VOUT(AC)  
10mV/div  
20mV/div  
VOUT(AC)  
VEN/UVLO  
5V/div  
VLX  
VOUT  
10V/div  
2A/div  
10V/div  
VLX  
1V/div  
5V/div  
1A/div  
V
RESET  
ILX  
500mA/div  
ILX  
ILX  
2µs/div  
1ms/div  
2µs/div  
CONDITION: RESETIS PULLED UP TO VCC  
Maxim Integrated  
7  
www.maximintegrated.com  
MAX17524  
4.5V to 60V, 3A, Dual-Output, High-Efficiency,  
Synchronous Step-Down DC-DC Converter  
Typical Operating Characteristics (continued)  
(V  
= V  
= V  
= V  
= 24V, V  
= V  
= V  
= 0V, C  
= C  
= 2.2μF, C  
= C  
= 0.1μF,  
EN/UVLO1  
IN1  
EN/UVLO2  
IN2  
SGND  
PGND1  
PGND2  
VCC1  
VCC2  
BST1  
BST2  
C
= C  
= 5600pF, T = -40°C to +125°C, unless otherwise noted. Typical values are at T = +25°C. All voltages are referenced  
SS1  
SS2  
A
A
to SGND, unless otherwise noted.)  
MAX17524, 3.3V OUTPUT  
STEADY STATE  
(fSW = 450kHz, DCM MODE, 75mA LOAD)  
MAX17524, 3.3V OUTPUT  
STEADY STATE  
(fSW = 450kHz, PWM MODE, 3A LOAD)  
MAX17524, 5V OUTPUT  
STEADY STATE  
(fSW = 450kHz, PFM MODE, 25mA LOAD)  
toc21  
toc20  
toc19  
VOUT(AC)  
10mV/div  
100mV/div  
VOUT(AC)  
VOUT(AC)  
20mV/div  
20V/div  
VLX  
VLX  
VLX  
10V/div  
1A/div  
10V/div  
ILX  
ILX  
500mA/div  
ILX  
2A/div  
40µs/div  
2µs/div  
2µs/div  
MAX17524, 3.3V OUTPUT  
STEADY STATE  
(fSW = 450kHz, PFM MODE, 25mA LOAD)  
MAX17524, 5V OUTPUT  
LOAD TRANSIENT BETWEEN 0A AND 1.5A  
MAX17524, 5V OUTPUT  
LOAD TRANSIENT BETWEEN 1.5A AND 3A  
(fSW = 450kHz, PWM MODE)  
(fSW = 450kHz, PWM MODE)  
toc22  
toc23  
toc24  
VOUT(AC)  
50mV/div  
VOUT(AC)  
VOUT(AC)  
100mV/div  
100mV/div  
VLX  
10V/div  
1A/div  
ILX  
IOUT  
IOUT  
1A/div  
2A/div  
40µs/div  
100µs/div  
100µs/div  
MAX17524, 3.3V OUTPUT  
LOAD TRANSIENT BETWEEN 0A AND 1.5A  
MAX17524, 5V OUTPUT  
LOAD TRANSIENT BETWEEN 50mA AND 1.5A  
MAX17524, 5V OUTPUT  
LOAD TRANSIENT BETWEEN 50mA AND 1.5A  
(fSW = 450kHz, PWM MODE)  
(fSW = 450kHz, PFM MODE)  
(fSW = 450kHz, DCM MODE)  
toc27  
toc25  
toc26  
VOUT(AC)  
VOUT(AC)  
VOUT(AC)  
100mV/div  
200mV/div  
100mV/div  
IOUT  
IOUT  
1A/div  
1A/div  
IOUT  
1A/div  
100µs/div  
400µs/div  
400µs/div  
Maxim Integrated  
8  
www.maximintegrated.com  
MAX17524  
4.5V to 60V, 3A, Dual-Output, High-Efficiency,  
Synchronous Step-Down DC-DC Converter  
Typical Operating Characteristics (continued)  
(V  
= V  
= V  
= V  
= 24V, V  
= V  
= V  
= 0V, C  
= C  
= 2.2μF, C  
= C  
= 0.1μF,  
EN/UVLO1  
IN1  
EN/UVLO2  
IN2  
SGND  
PGND1  
PGND2  
VCC1  
VCC2  
BST1  
BST2  
C
= C  
= 5600pF, T = -40°C to +125°C, unless otherwise noted. Typical values are at T = +25°C. All voltages are referenced  
SS1  
SS2 A A  
to SGND, unless otherwise noted.)  
MAX17524, 3.3V OUTPUT  
LOAD TRANSIENT BETWEEN 50mA AND 1.5A  
MAX17524, 3.3V OUTPUT  
LOAD TRANSIENT BETWEEN 50mA AND 1.5A  
MAX17524, 3.3V OUTPUT  
LOAD TRANSIENT BETWEEN 1.5A AND 3A  
(fSW = 450kHz, DCM MODE)  
(fSW = 450kHz, PFM MODE)  
(fSW = 450kHz, PWM MODE)  
toc30  
toc29  
toc28  
VOUT(AC)  
VOUT(AC)  
100mV/div  
100mV/div  
VOUT(AC)  
100mV/div  
IOUT  
1A/div  
IOUT  
1A/div  
IOUT  
1A/div  
200µs/div  
400µs/div  
100µs/div  
MAX17524, 5V OUTPUT  
OVERLOAD PROTECTION  
(PWM MODE, fSW = 450kHz)  
MAX17524, 3.3V OUTPUT  
OVERLOAD PROTECTION  
(PWM MODE, fSW = 450kHz)  
MAX17524, 5V OUTPUT  
EXTERNAL CLOCK SYNCHRONIZATION WITH 495kHz  
(PWM MODE, 3A LOAD)  
toc31  
toc32  
toc33  
VOUT  
2V/div  
2A/div  
VOUT  
2V/div  
VLX  
20V/div  
VSYNC  
5V/div  
VOUT(AC)  
20mV/div  
ILX  
ILX  
2A/div  
ILX  
2A/div  
4µs/div  
20ms/div  
20ms/div  
MAX17524, 5V OUTPUT  
EXTERNAL CLOCK SYNCHRONIZATION WITH 630kHz  
(PWM MODE, 3A LOAD)  
MAX17524, 3.3V OUTPUT  
EXTERNAL CLOCK SYNCHRONIZATION WITH 495kHz  
(PWM MODE, 3A LOAD)  
toc34  
toc35  
VLX  
VLX  
20V/div  
20V/div  
VSYNC  
VSYNC  
5V/div  
5V/div  
VOUT(AC)  
VOUT(AC)  
20mV/div  
20mV/div  
ILX  
ILX  
2A/div  
2A/div  
4µs/div  
4µs/div  
Maxim Integrated  
9  
www.maximintegrated.com  
MAX17524  
4.5V to 60V, 3A, Dual-Output, High-Efficiency,  
Synchronous Step-Down DC-DC Converter  
Typical Operating Characteristics (continued)  
(V  
= V  
= V  
= V  
= 24V, V  
= V  
= V  
= 0V, C  
= C  
= 2.2μF, C  
= C  
= 0.1μF,  
EN/UVLO1  
IN1  
EN/UVLO2  
IN2  
SGND  
PGND1  
PGND2  
VCC1  
VCC2  
BST1  
BST2  
C
= C  
= 5600pF, T = -40°C to +125°C, unless otherwise noted. Typical values are at T = +25°C. All voltages are referenced  
SS1  
SS2  
A
A
to SGND, unless otherwise noted.)  
MAX17524, 5V OUTPUT  
CLOSED-LOOP BODE PLOT  
(PWM MODE, fSW = 450kHz, 3A LOAD)  
MAX17524, 3.3V OUTPUT  
EXTERNAL CLOCK SYNCHRONIZATION WITH 630kHz  
(PWM MODE, 3A LOAD)  
toc37  
50  
25  
120  
60  
toc36  
PHASE  
VLX  
20V/div  
0
0
VSYNC  
5V/div  
GAIN  
VOUT(AC)  
20mV/div  
-25  
-50  
-60  
-120  
CROSSOVER  
FREQUENCY = 44.5kHz  
PHASE MARGIN = 69.91°  
ILX  
2A/div  
1k  
10k  
100k  
4µs/div  
FREQUENCY (Hz)  
MAX17524, FIGURE 4  
STARTUP IN COINCIDENT TRACKING MODE  
MAX17524, 3.3V OUTPUT  
CLOSED-LOOP BODE PLOT  
(PWM MODE, fSW = 450kHz, 3A LOAD)  
(3A LOAD ON BOTH CONVERTERS)  
toc39  
toc38  
50  
25  
120  
60  
PHASE  
10V/div  
1V/div  
1V/div  
VIN1  
0
0
GAIN  
-25  
-50  
-60  
-120  
CROSSOVER  
VOUT1  
VOUT2  
FREQUENCY = 44.6kHz  
PHASE MARGIN = 64.91°  
400µs/div  
1k  
10k  
100k  
FREQUENCY (Hz)  
MAX17524, FIGURE 5  
MAX17524, FIGURE 6  
STARTUP IN RATIOMETRIC TRACKING MODE  
(3A LOAD ON BOTH CONVERTERS)  
toc40  
STARTUP IN SEQUENTIAL TRACKING MODE  
(3A LOAD ON BOTH CONVERTERS)  
toc41  
10V/div  
5V/div  
VOUT1  
1V/div  
1V/div  
VIN1  
5V/div  
2V/div  
V
V
RESET1  
VOUT2  
VOUT1  
VOUT2  
5V/div  
RESET2  
400µs/div  
400µs/div  
Maxim Integrated  
10  
www.maximintegrated.com  
MAX17524  
4.5V to 60V, 3A, Dual-Output, High-Efficiency,  
Synchronous Step-Down DC-DC Converter  
Pin Configuration  
TOP VIEW  
24  
PGND1  
PGND2  
1
2
3
4
5
6
7
8
23  
IN1  
IN1  
IN2  
22  
IN2  
21  
20  
19  
18  
V
V
CC2  
CC1  
MAX17524  
EN/UVLO2  
EXTCVCC2  
SS2  
EN/UVLO1  
EXTVCC1  
SS1  
EP  
17 CF2  
CF1  
13 14 15 16  
9
11 12  
10  
TQFN  
5mm x 5mm  
Pin Description  
PIN  
NAME  
FUNCTION  
Power Ground Pin of the Converter 1. Connect the PGND1 pin externally to the power-ground plane.  
1
PGND1  
Connect the SGND and PGND1 pins together at the ground return path of the V  
Refer to the MAX17524 EV kit data sheet for a layout example.  
bypass capacitor.  
CC1  
Power-Supply Input for Converter 1. 4.5V to 60V Input-Supply Range. Connect the IN1 pins together.  
Decouple to PGND1 with a 2.2μF capacitor; place the capacitor close to the IN1 and PGND1 pins. Refer  
to the MAX17524 EV kit data sheet for a layout example.  
2, 3  
4
IN1  
5V LDO Output for Converter 1. Bypass V  
with a 1μF ceramic capacitance to SGND. LDO does not  
CC1  
V
CC1  
support the external loading on V  
.
CC1  
Enable/Undervoltage Lockout Pin for Converter 1. Drive EN/UVLO1 high to enable the output of con-  
verter 1. Connect to the center of the resistor-divider between V and SGND to set the input voltage at  
IN1  
5
6
EN/UVLO1  
which converter 1 turns on. Connect to the V  
disabling the converter.  
pins for always-on operation. Pull lower than V  
for  
ENF  
IN1  
External Power-Supply Input for the Internal LDO of Converter 1. Applying a voltage between 4.84V and  
24V at the EXTVCC1 pin bypasses the internal LDO and improves the overall efficiency. Add a local by-  
EXTVCC1 passing cap (0.1μF) on EXTVCC1 pin to SGND and also, add a 4.7Ω resistor from buck converter output  
node to EXTVCC1 pin to limit V bypass-cap discharge current during an output short-circuit condi-  
CC1  
tion. When EXTVCC1 is not used, connect it to SGND.  
Maxim Integrated  
11  
www.maximintegrated.com  
MAX17524  
4.5V to 60V, 3A, Dual-Output, High-Efficiency,  
Synchronous Step-Down DC-DC Converter  
Pin Description (continued)  
PIN  
NAME  
FUNCTION  
7
SS1  
Soft-Start Input for Converter 1. Connect a capacitor from SS1 to SGND to set the soft-start time.  
Compensator Output for Converter 1. At switching frequencies, lower than 450kHz, connect a capacitor  
from CF1 to FB1. Leave CF1 open if the switching frequency is equal to, or more than 450kHz. See the  
Loop Compensation section for more details.  
8
9
CF1  
FB1  
Feedback Input for Converter 1. Connect FB1 to the center tap of an external resistor-divider from the  
output node of converter 1 to SGND to set the output voltage. See the Adjusting Output Voltage section  
for more details.  
Programmable Switching Frequency Input. Connect a resistor from RT to SGND to set the switching  
frequency of both the converters. Leave RT open for the default 450kHz frequency. See the Setting the  
Switching Frequency (RT) section for more details.  
10  
11  
RT  
Open-Drain RESET1 Output. The RESET1 output is driven low if FB1 drops below 92.5% of its set value.  
RESET1 goes high 1024 cycles after FB1 rises above 95.5% of its set value.  
RESET1  
Mode Selection and External Clock Synchronization Input for Converter 1. The MODE/SYNC1 Pin  
configures the converter 1 to operate either in PWM, PFM or DCM modes of operation. Leave MODE/  
SYNC1 unconnected for PFM operation (pulse skipping at light loads). Connect MODE/SYNC1 to SGND  
MODE/  
SYNC1  
12  
13  
14  
for constant-frequency PWM operation at all loads. Connect MODE/SYNC1 to V  
for DCM operation  
CC1  
at light loads. MODE/SYNC1 can also be used to synchronize the converter 1 to an external clock irre-  
spective of the operating condition of converter 2. See the Mode Selection and External Synchronization  
(MODE/SYNC) section for more details.  
SGND  
Analog Ground  
Mode Selection and External Clock Synchronization Input for Converter 2. The MODE/SYNC2 Pin  
configures the converter 2 to operate either in PWM, PFM or DCM modes of operation. Leave MODE/  
SYNC2 unconnected for PFM operation (pulse skipping at light loads). Connect MODE/SYNC2 to SGND  
MODE/  
SYNC2  
for constant-frequency PWM operation at all loads. Connect MODE/SYNC2 to V  
for DCM operation  
CC2  
at light loads. MODE/SYNC2 can also be used to synchronize the converter 2 to an external clock irre-  
spective of the operating condition of converter 1. See the Mode Selection and External Synchronization  
(MODE/SYNC) section for more details.  
Open-Drain RESET2 Output. The RESET2 output is driven low if FB2 drops below 92.5% of its set value.  
RESET2 goes high 1024 cycles after FB2 rises above 95.5% of its set value.  
15  
16  
RESET2  
Feedback Input for Converter 2. Connect FB2 to the center tap of an external resistor-divider from the  
output node of converter 2 to SGND to set the output voltage. See the Adjusting Output Voltage section  
for more details.  
FB2  
Compensator Output for Converter 2. At switching frequencies, lower than 450kHz, connect a capacitor  
from CF2 to FB2. Leave CF2 open if the switching frequency is equal to, or more than 450kHz. See the  
Loop Compensation section for more details.  
17  
18  
CF2  
SS2  
Soft-Start Input for Converter 2. Connect a capacitor from SS2 to SGND to set the soft-start time.  
External Power-Supply Input for the Internal LDO of Converter 2. Applying a voltage between 4.84V and  
24V at the EXTVCC2 pin bypasses the internal LDO and improves efficiency. Add a local bypassing cap  
19  
EXTVCC2 (0.1μF) on EXTVCC2 pin to SGND and also add a 4.7Ω resistor from the buck converter output node to  
the EXTVCC2 pin to limit V bypass-cap discharge current during an output short-circuit condition.  
CC2  
When EXTVCC2 is not used, connect it to SGND.  
Maxim Integrated  
12  
www.maximintegrated.com  
MAX17524  
4.5V to 60V, 3A, Dual-Output, High-Efficiency,  
Synchronous Step-Down DC-DC Converter  
Pin Description (continued)  
PIN  
NAME  
FUNCTION  
Enable/Undervoltage Lockout Pin for Converter 2. Drive EN/UVLO2 high to enable the output of con-  
verter 2. Connect to the center of the resistor-divider between V  
and SGND to set the input voltage at  
IN2  
20  
EN/UVLO2  
which converter 2 turns on. Connect to the V  
disabling the converter.  
pins for always-on operation. Pull lower than V  
for  
ENF  
IN2  
5V LDO Output for Converter 2. Bypass V  
with a 1μF ceramic capacitance to SGND. LDO does not  
CC2  
21  
V
CC2  
support the external loading on V  
.
CC2  
Power-Supply Input for Converter 2. 4.5V to 60V Input-Supply Range. Connect the IN2 pins together.  
Decouple to PGND2 with a 2.2μF capacitor; place the capacitor close to the IN2 and PGND2 pins. Refer  
to the MAX17524 EV kit data sheet for a layout example.  
22, 23  
IN2  
Power Ground Pin of the Converter 2. Connect the PGND2 pin externally to the power-ground plane.  
24  
25  
PGND2  
DL2  
Connect the SGND and PGND2 pins together at the ground return path of the V  
Refer to the MAX17524 EV kit data sheet for a layout example.  
bypass capacitor.  
CC2  
Low-Side Gate Driver Output for Converter 2. Use DL2 pin to drive the gate of the low-side external  
nMOSFET.  
26, 27  
28  
LX2  
BST2  
BST1  
LX1  
Switching Node of Converter 2. Connect LX2 pins to the switching side of the inductor.  
Boost Flying Capacitor of Converter 2. Connect a 0.1μF ceramic capacitor between BST2 and LX2.  
Boost Flying Capacitor of Converter 1. Connect a 0.1μF ceramic capacitor between BST1 and LX1.  
Switching Node of Converter 1. Connect LX1 pins to the switching side of the inductor.  
29  
30, 31  
Low-Side Gate Driver Output for Converter 1. Use DL1 pin to drive the gate of the low-side external  
nMOSFET.  
32  
DL1  
EP  
Exposed Pad. Always connect EP to the SGND pin of the IC. Also, connect EP to a large SGND plane  
with several thermal vias for best thermal performance. Refer to the MAX17524 EV kit data sheet for an  
example of the correct method for EP connection and thermal vias.  
Maxim Integrated  
13  
www.maximintegrated.com  
MAX17524  
4.5V to 60V, 3A, Dual-Output, High-Efficiency,  
Synchronous Step-Down DC-DC Converter  
Functional Diagram  
MAX17524  
LDO  
V
CC1  
BST1  
SELECT  
IN1  
INLDO  
EXTVCC1  
SGND1  
LDO  
ENOK1  
1.216V  
EN/UVLO1  
CF1  
LX1  
HICCUP1  
PWM/PFM/DCM  
HICCUP LOGIC  
V
CC1  
FB1  
ERROR AMPLIFIER  
DL1  
V
CC1  
/LOOP  
COMPEMSATION  
SWITCHOVER  
LOGIC  
5µA  
PGND1  
SS1  
ENOK1  
FB1  
MODE/  
SYNC1  
RESET  
LOGIC  
MODE  
SELECTION  
LOGIC  
HICCUP1  
RESET1  
RT  
CURRENT SENSE  
OSCILLATOR  
LDO  
SLOPE  
COMPENSATION  
V
CC2  
BST2  
IN2  
SELECT  
INLDO  
EXTVCC2  
SGND2  
LDO  
ENOK2  
1.216V  
EN/UVLO2  
CF2  
LX2  
HICCUP2  
PWM/PFM/DCM  
HICCUP LOGIC  
V
CC2  
FB2  
ERROR AMPLIFIER  
DL2  
V
CC2  
/LOOP  
COMPENSATION  
SWITCHOVER  
LOGIC  
5µA  
PGND2  
SS2  
MODE/  
SYNC2  
ENOK2  
FB2  
MODE  
SELECTION  
LOGIC  
RESET  
LOGIC  
HICCUP2  
RESET2  
Maxim Integrated  
14  
www.maximintegrated.com  
MAX17524  
4.5V to 60V, 3A, Dual-Output, High-Efficiency,  
Synchronous Step-Down DC-DC Converter  
switching frequency programmed by the resistor con-  
nected at the RT pin. The external clock signals on the  
Detailed Description  
The MAX17524 dual-output, high-voltage, synchronous  
step-down DC-DC converter with integrated high-side  
MOSFETs operates over an input-voltage range of 4.5V  
MODE/SYNC pins can have different frequency, but with  
in 1.1 × f and 1.4 × f When an external clock is  
SW  
SW.  
applied to MODE/SYNC pins, the internal oscillator fre-  
quency changes to external clock frequency (from the  
original frequency based on the RT setting) after detecting  
8 external clock edges. When the external clock is applied  
on-fly then the converter operates in PWM mode during  
synchronization operation irrespective of the initial mode.  
After the exit from external synchronization, the converter  
enters into its original mode, which was set before syn-  
chronization. Only if the initial mode is PFM, after the exit  
from external synchronization, the part enters into DCM  
mode initially and after 32 internal clock cycles, the part  
enters PFM mode. MODE/SYNC pin of one converter can  
be synchronized to the external clock irrespective of the  
MODE/SYNC condition of the other converter. The mini-  
mum external clock pulse-width high should be greater  
than 50ns. See the MODE/SYNC section in the Electrical  
Characteristics table for details.  
to 60V. Output voltages from 0.9 up to 90% of V can be  
IN  
generated, and 3A load on each output can be delivered  
by the device. Each converter features internal compen-  
sation. The feedback-voltage regulation accuracy is accu-  
rate to within ±1.4% over -40°C to +125°C.  
The MAX17524 features a peak-current-mode control  
architecture. Internal transconductance error amplifiers  
produce integrated-error voltages at two internal nodes,  
which set the duty cycle using PWM comparators, high-  
side current-sense amplifiers, and slope-compensation  
generators. At each rising edge of the clock, the high-side  
MOSFETs turn on and remain on until either the appropri-  
ate or maximum duty cycle is reached, or the peak current  
limit is detected. During the high-side MOSFETs' on-time,  
the inductor currents ramp up. During the second half of  
the switching cycle, high-side MOSFETs turn off and the  
low-side MOSFETs turn on. The inductors release the  
stored energy as their currents ramp down and provide  
current to the outputs.  
PWM Mode Operation  
In PWM mode, the inductor current is allowed to go nega-  
tive. PWM operation provides constant frequency opera-  
tion at all loads, and is useful in applications sensitive to  
switching frequency. However, the PWM mode of opera-  
tion gives lower efficiency at light loads compared to PFM  
and DCM modes of operation.  
The MAX17524 features a RT pin to program the switch-  
ing frequency and two MODE/SYNC pins to program  
the mode of operation and to synchronize to an external  
clock. The device also features independent adjustable-  
input undervoltage lockout, adjustable soft-start, open-  
drain RESET, and auxiliary bootstrap LDO for improved  
efficiency.  
PFM Mode Operation  
PFM mode of operation disables negative inductor cur-  
rent and additionally skips pulses at light loads for high  
efficiency. In PFM mode, the inductor current is forced to  
Mode Selection and External Synchronization  
(MODE/SYNC)  
The MAX17524 features two independent mode selec-  
tion pins for the two converters. The logic state of the  
a fixed peak of I  
(1.15A (typ)) every clock cycle until  
PFM  
the output rises to 103.5% of the set nominal output volt-  
age. Once the output reaches 103.5% of the set nominal  
output voltage, both the high-side and low-side FETs are  
turned off and the converter enters hibernate operation  
until the load discharges the output to 101% of the set  
nominal output voltage. Most of the internal blocks are  
turned off in hibernate operation to save quiescent cur-  
rent. After the output falls below 101% of the set nominal  
output voltage, the converters come out of hibernate  
operation, turn on all internal blocks, and again com-  
mence the process of delivering pulses of energy to the  
output until it reaches 103.5% of the set nominal output  
voltage. The advantage of the PFM mode is higher effi-  
ciency at light loads because of lower quiescent current  
drawn from supply. The disadvantage is that the output-  
voltage ripple is higher compared to PWM or DCM modes  
of operation and switching frequency is not constant at  
light loads.  
MODE/SYNC pin is latched when V  
and EN/UVLO  
CC  
voltages exceed the respective UVLO rising thresholds  
and all internal voltages are ready to allow LX switching.  
If the state of the MODE/SYNC pin is open at power-up,  
the converter operates in PFM mode at light loads. If the  
voltage at the MODE/SYNC pin is lower than V  
at  
M-PWM  
power-up, the converter operates in constant-frequency  
PWM mode at all loads. If the voltage at the MODE/SYNC  
pin is higher than V  
at power-up, the converter  
M-DCM  
operates in constant-frequency DCM mode at light loads.  
State changes on the MODE/SYNC pin are ignored dur-  
ing normal operation.  
The internal clocks of the MAX17524 can be synchro-  
nized to external clock signals on the MODE/SYNC  
pins. The external synchronization clock frequency must  
be between 1.1 × f  
and 1.4 × f , where f  
is the  
SW  
SW  
SW  
Maxim Integrated  
15  
www.maximintegrated.com  
MAX17524  
4.5V to 60V, 3A, Dual-Output, High-Efficiency,  
Synchronous Step-Down DC-DC Converter  
DCM Mode Operation  
Setting the Switching Frequency (RT)  
DCM mode of operation features constant frequency  
operation down to lighter loads than PFM mode, not  
by skipping pulses, but by disabling negative inductor  
current at light loads. DCM operation offers efficiency  
performance that lies between PWM and PFM modes.  
The output-voltage ripple in DCM mode is comparable to  
PWM mode and relatively lower compared to PFM mode.  
The switching frequency of both the converters can be  
programmed from 100kHz to 1.1MHz by using a resis-  
tor connected from the RT pin to SGND. The switching  
frequency (f ) is related to the resistor connected at the  
SW  
RT pin (R ) by the following equation:  
RT  
10500  
R
1.23  
RT  
f
SW  
Linear Regulator (V  
and EXTVCC)  
CC  
The MAX17524 has two internal LDO (Low-dropout)  
regulators for each converter that power V . One LDO  
Where R is in kΩ and f  
is in kHz. Leaving the RT pin  
RT  
SW  
open makes the converters operate at the default switch-  
ing frequency of 450kHz. See Table 1 for RT resistor  
values for a few common switching frequencies.  
CC  
is powered from V and the other LDO is powered  
IN  
from EXTVCC. Only one of the two LDOs is in opera-  
tion at a time depending on the voltage levels present  
Operating Input-Voltage Range  
at the EXTVCC pin. When V  
is above its UVLO and  
CC  
The minimum and maximum operating input voltages for  
a given output-voltage setting should be calculated as  
follows:  
if EXTVCC is greater than 4.7V (typ), internal V  
is  
CC  
powered by EXTVCC and LDO from V is disabled.  
IN  
If EXTVCC is less than 4.7V, V  
is powered up from  
CC  
V . Powering V  
IN  
from EXTVCC increases efficiency  
CC  
V
+ I  
× R  
+ R  
DCR(MAX) DS-ONL(MAX)  
at higher input voltages. EXTVCC voltage should not  
exceed 24V.  
(
)
)
OUT  
(
OUT MAX  
(
)
V
=
IN MIN  
(
)
1f  
× t  
(
)
SW MAX  
OFF-MIN MAX  
(
)
(
)
Typical V  
output voltage is 5V. Bypass V  
to SGND  
powers  
CC  
CC  
CC  
+ I  
× R  
-R  
with a 2.2μF low-ESR ceramic capacitor. V  
(
)
(
DS-ONH(MAX) DS-ONL(MAX)  
)
OUT MAX  
(
)
the internal blocks and the low-side MOSFET driver and  
recharges the external bootstrap capacitor. Both LDOs  
can source up to 90mA (typ). The MAX17524 employs  
an undervoltage-lockout circuit that forces both the con-  
V
OUT  
V
=
IN MAX  
(
)
f
× t  
SW MAX  
ON-MIN MAX  
(
)
(
)
verters off when V  
converter can be immediately re-enabled when V  
falls below V  
. The buck  
CC  
CC_UVF  
where:  
>
CC  
V
I
= Steady-state output voltage  
= Maximum load current  
OUT  
V
. The 400mV UVLO hysteresis prevents chat-  
CC_UVR  
tering on power-up and power-down.  
OUT(MAX)  
R
= Worst-case DC resistance of the inductor  
Add a local bypassing cap of 0.1μF on the EXTVCC pin  
to SGND. Also, add a 4.7Ω resistor from buck converter  
DCR(MAX)  
f
t
= Maximum switching frequency  
SW(MAX)  
output node to the EXTVCC pin to limit V  
bypass cap  
CC  
= Worst-case minimum switch off-time  
OFF-MIN(MAX)  
discharge current and to protect the EXTVCC pin from  
reaching its absolute maximum rating (-0.3V) during  
output short-circuit condition. In applications where the  
buck-converter output is connected to the EXTVCC pin,  
if the output is shorted to ground, then the transfer from  
EXTVCC to internal LDO happens seamlessly without  
any impact to the normal functionality. Connect EXTVCC  
pin to SGND when the pin is not being used.  
(165 ns)  
t
= Worst-case minimum switch on-time  
ON-MIN(MAX)  
(140 ns)  
R
and R  
= Worst-case on-  
DS-ONH(MAX)  
DS-ONL(MAX)  
state resistances of the external low-side and internal  
high-side MOSFETs, respectively.  
Table 1. Switching Frequency vs. RT Resistor  
SWITCHING FREQUENCY (kHz)  
RT RESISTOR (kΩ)  
100  
200  
105  
51.1  
450  
Open or 22.1  
8.25  
1100  
Maxim Integrated  
16  
www.maximintegrated.com  
MAX17524  
4.5V to 60V, 3A, Dual-Output, High-Efficiency,  
Synchronous Step-Down DC-DC Converter  
Overcurrent Protection (OCP)/Hiccup Mode  
Thermal-Shutdown Protection  
MAX17524 has a robust overcurrent-protection (OCP)  
scheme that protects the device under overload and out-  
put short-circuit conditions. A cycle-by-cycle peak current  
limit turns off the high-side MOSFET whenever the high-  
The MAX17524 features independent thermal-shutdown  
protection for both the converters to limit the junction tem-  
perature. When the junction temperature of the converter  
exceeds +165ºC, an on-chip thermal sensor shuts down  
the converter, allowing the converter to cool. The thermal  
sensor turns the converter on again after the junction  
temperature cools by 10ºC. Soft-start gets deasserted  
during thermal shutdown and it initiates the startup opera-  
tion when the converter recovers from thermal shutdown.  
Carefully evaluate the total power dissipation (see the  
Power Dissipation section) to avoid unwanted triggering  
of the thermal shutdown during normal operation.  
side switch current exceeds an internal limit of I  
PEAK-  
(4.6A (typ)). A runaway peak current limit on the  
LIMIT  
high-side switch current at I  
(5.6A (typ))  
RUNAWAY-LIMIT  
protects the device under high input voltage, short-circuit  
conditions when there is insufficient output voltage avail-  
able to restore the inductor current that built up during the  
on period of the step-down converter. One occurrence of  
the runaway current limit triggers a hiccup mode. In addi-  
tion, if, due to a fault condition, feedback voltage drops  
Applications Information  
to V  
any time after soft-start is complete and hic-  
FB-HICF  
cup mode is triggered. In hiccup mode, the converter is  
protected by suspending switching for a hiccup timeout  
period of 32,768 clock cycles of half the programmed  
switching frequency. Once the hiccup timeout period  
expires, soft-start is attempted again. Note that when soft-  
start is attempted under overload conditions, if feedback  
Input-Capacitor Selection  
The input filter capacitor reduces peak currents drawn  
from the power source and reduces noise and voltage  
ripple on the input caused by the circuit’s switching.  
The input capacitor RMS current requirement (I  
defined by the following equation:  
) is  
RMS  
voltage does not exceed V  
, the device continues  
FB-HICF  
to switch at half the programmed switching frequency for  
the time duration of the programmed soft-start time and  
1024 clock cycles. Hiccup mode of operation ensures low  
power dissipation under output short-circuit conditions.  
V
× ( V V  
OUT  
)
OUT  
IN  
I
= I  
×
OUT(MAX)  
RMS  
V
IN  
where, I  
is the maximum load current. I  
RMS  
has  
OUT(MAX)  
a maximum value when the input voltage equals twice the  
RESET Output  
output voltage (V = 2 x V  
), so  
IN  
OUT  
The MAX17524 includes two independent RESET com-  
parators to monitor the status of the output voltages of the  
two converters. The open-drain RESET output requires  
an external pullup resistor. RESET goes high (high  
impedance) 1024 switching cycles after the regulator  
output increases above 95% of the designed set nominal  
output voltage. RESET goes low when the regulator out-  
put voltage drops to below 92% of the nominal regulated  
voltage. RESET also goes low during thermal shutdown  
I
OUT MAX  
(
)
I
=
.
RMS MAX  
(
)
2
Choose an input capacitor that exhibits less than +10°C  
temperature rise at the RMS input current for optimal  
long-term reliability. Use low-ESR ceramic capacitors with  
high-ripple-current capability at the input. X7R capacitors  
are recommended in industrial applications for their tem-  
perature stability. Calculate the input capacitance using  
the following equation:  
or when the EN/UVLO pin goes below V  
.
ENF  
Prebiased Output  
I
When the converter starts into a prebiased output, both  
the high-side and the low-side switches are turned off so  
that the converter does not sink current from the output.  
High-side and low-side switches do not start switching  
until the PWM comparator commands the first PWM  
pulse, at which point switching commences. The output  
voltage is then smoothly ramped up to the target value in  
alignment with the internal reference.  
OUT(MAX)× D× 1D  
(
)
C
=
IN  
η× f  
× ∆V  
SW  
IN  
where:  
D = V  
/V is the duty ratio of the converter  
OUT IN  
f
= Switching frequency  
SW  
ΔV = Allowable input-voltage ripple  
IN  
η = Efficiency  
Maxim Integrated  
17  
www.maximintegrated.com  
MAX17524  
4.5V to 60V, 3A, Dual-Output, High-Efficiency,  
Synchronous Step-Down DC-DC Converter  
Select a low-loss inductor closest to the calculated value  
with acceptable dimensions and having the lowest pos-  
In applications where the source is located distant from  
the device input, an appropriate electrolytic capacitor  
should be added in parallel to the ceramic capacitor  
to provide necessary damping for potential oscillations  
caused by the inductance of the longer input power path  
and input ceramic capacitor.  
sible DC resistance. The saturation current rating (I  
)
SAT  
of the inductor must be high enough to ensure that  
saturation can occur only above the peak current-limit  
(I  
).  
PEAK-LIMIT  
Output-Capacitor Selection  
Low-Side MOSFET Selection  
X7R ceramic output capacitors are preferred due to their  
stability over temperature in industrial applications. The  
output capacitors are usually sized to support a step load  
of 50% of the maximum output current in the application,  
so the output-voltage deviation is contained to 3% of the  
output-voltage change. The minimum required output  
capacitance can be calculated as follows:  
The MAX17524 requires an external nMOSFET for each  
converter to operate and the low-side gate drive output DL  
pin drives the nMOSFET. The key selection parameters to  
select the nMOSFET include:  
Maximum Drain-Source Voltage (V  
)
DS-MAX  
Miller Plateau Voltage during all operating conditions  
< 3.5V  
I
× t  
RESPONSE  
1
2
STEP  
Low Drain-Source On-State Resistance (R  
)
C
=
×
DS(ON)  
OUT  
V  
OUT  
Total Gate Charge (Q )  
g
0.33  
Output Capacitance (C  
)
t
oss  
RESPONSE  
f
C
Power-Dissipation Rating and Package Thermal  
Resistance  
where:  
The nMOSFET must be of logic-level type with guaran-  
teed on-state resistance specification at V ≈ 4.5V. It  
is also important that the chosen nMOSFET has suitable  
dynamic parameters so that the MAX17524 is able to turn  
I
t
= Load current step  
STEP  
GS  
= Response time of the controller  
= Allowable output-voltage deviation  
RESPONSE  
ΔV  
OUT  
f
= Target closed-loop crossover frequency  
it on and off within the specified dead time (LX ). Ensure  
C
DT  
that the losses in the selected MOSFET do not exceed its  
power rating. Using a low body diode reverse recovery  
Select f to be 1/10th of f  
less than or equal to 500kHz. If the switching frequency is  
if the switching frequency is  
C
SW  
charge (Q ) MOSFET reduces the converter loss.  
rr  
more than 500kHz, select f to be 50kHz. Actual derating of  
C
ceramic capacitors with DC bias voltage must be considered  
while selecting the output capacitor. Derating curves are  
available from all major ceramic capacitor manufacturers.  
The negative current capability of the low-side MOSFET  
is limited by V  
. V  
translates to negative  
NEG-LIM NEG-LIM  
current limit (I ) by the following relation:  
NEG-LIM  
V
= I  
× R  
NEG-LIM  
NEG-LIM DS(ON)LS  
Adjusting Output Voltage  
where R  
side MOSFET.  
is the on-state resistance of the low-  
Set the output voltage of each converter with a resistive  
voltage-divider connected from the output-voltage node  
DS(ON)LS  
(V  
) to SGND (see Figure 1). Connect the center node  
OUT  
Inductor Selection  
Three key inductor parameters must be specified for  
operation with the device: inductance value (L), inductor  
of the divider to the FB pin. Use the following procedure  
to choose the resistive voltage-divider values:  
Calculate resistor R  
follows:  
from the output to the FB pin as  
TOP  
saturation current (I  
) and DC resistance (R  
). The  
SAT  
DCR  
switching frequency and output voltage determine the  
inductor value (L) in Henry as follows:  
3
301×10  
R
=
TOP  
f
x C  
OUT_SEL  
0.9× V  
OUT  
(
)
C
L =  
f
SW  
where:  
is in kΩ  
R
where V  
is the output voltage in V and f  
is the  
SW  
TOP  
OUT  
switching frequency in Hz.  
f
= Crossover frequency is in kHz  
C
Maxim Integrated  
18  
www.maximintegrated.com  
MAX17524  
4.5V to 60V, 3A, Dual-Output, High-Efficiency,  
Synchronous Step-Down DC-DC Converter  
The soft-start time (t ) is related to the capacitor con-  
SS  
V
OUT  
nected at SS (C ) by the following equation:  
SS  
C
SS  
R
TOP  
t
=
SS  
6  
5.55×10  
FB  
For example, to program a 1ms soft-start time, a 5.6nF  
capacitor should be connected from the SS pin to SGND.  
Note that during start-up, the device operates at half the  
programmed switching frequency until the output voltage  
reaches 67% of set output nominal voltage.  
R
BOT  
SGND  
Figure 1. Setting the Output Voltage  
Setting the Input Undervoltage-Lockout Level  
The MAX17524 features two independent EN/UVLO pins  
for the two converters. Each EN/UVLO pin has an adjust-  
able input undervoltage-lockout level. Set the voltage at  
which the converter turns on with a resistive voltage-divid-  
C
= Actual capacitance of the selected output  
OUT_SEL  
capacitor at DC-bias voltage in μF.  
Calculate resistor R  
follows:  
from the FB pin to SGND as  
BOT  
er connected from V to SGND as shown in Figure 2.  
IN  
R
V
× 0.9  
0.9  
Connect the center node of the divider to EN/UVLO.  
Choose R1 to be 3.3MΩ and then calculate R2 as follows:  
TOP  
OUT  
R
=
BOT  
(
)
R
is in kΩ.  
R1×1.216  
R2 =  
BOT  
V
1.216  
(
)
INU  
Loop Compensation  
The MAX17524 is internally loop compensated. However,  
if the switching frequency is less than 450kHz, connect a  
where V  
is the input-voltage level at which the con-  
INU  
verter is required to turn on. Ensure that V  
than 0.8 x V  
is higher  
INU  
0402 capacitor (C ) between the CF pin and the FB pin.  
F
to avoid hiccup during slow power up  
OUT  
Use Table 2 to select the value of C .  
F
(slower than soft-start)/power down. If the EN/UVLO pin is  
driven from an external signal source, a series resistance  
of minimum 1kΩ is recommended to be placed between  
the output pin of signal source and the EN/UVLO pin, to  
reduce voltage ringing on the line.  
Soft-Start Capacitor Selection  
The MAX17524 implements independent adjustable soft-  
start operation to reduce inrush currents for both the con-  
verters. A capacitor connected from the SS pin to SGND  
programs the soft-start time. The selected output capaci-  
tance (C ) and the output voltage (V ) deter-  
OUT_SEL OUT  
mine the minimum required soft-start capacitor as follows:  
V
IN  
6  
C
28×10 × C  
× V  
OUT_SEL OUT  
R1  
R2  
SS  
EN/UVLO  
Table 2. Selection of Capacitor C  
F
SWITCHING FREQUENCY  
C (pF)  
F
RANGE (kHz)  
SGND  
Figure 2. Setting the Input Undervoltage Lockout  
200 to 300  
2.2  
1.2  
300 to 450  
Maxim Integrated  
19  
www.maximintegrated.com  
MAX17524  
4.5V to 60V, 3A, Dual-Output, High-Efficiency,  
Synchronous Step-Down DC-DC Converter  
If the application has a thermal-management system that  
ensures that the exposed pad of the device is maintained  
Power Dissipation  
At a particular operating condition, the power losses that  
lead to temperature rise of the part are estimated as  
follows:  
at a given temperature (T ) by using proper heat  
EP(MAX)  
sinks, then the junction temperature of the device can be  
estimated at any given maximum ambient temperature as:  
P
= P  
IC_LOSS1  
+ P  
IC_LOSS2  
IC_LOSS  
T
= T  
+ θ ×P  
(
)
J(MAX)  
EP(MAX)  
JC  
IC_LOSS  
1
Note: Junction temperatures greater than +125°C  
degrades operating lifetimes.  
P
= P  
×
1  
IC_LOSS1  
OUT1  
ç1  
2
I  
× R  
P  
PCB Layout Guidelines  
)
(
OUT1  
DCR1  
ACLOSS_L1  
All connections carrying pulsed currents must be very  
short and as wide as possible. The inductance of these  
connections must be kept to an absolute minimum due to  
the high di/dt of the currents. Since inductance of a cur-  
rent-carrying loop is proportional to the area enclosed by  
the loop, if the loop area is made very small, inductance  
is reduced. Additionally, small-current loop areas reduce  
radiated EMI.  
2
I  
× R  
× 1D  
1
(
)
)
(
OUT1  
DS_ON1(LS)  
1
V  
×
Q
+ Q  
× f  
SW  
IN1  
oss1  
rr1  
2
P
= V  
×I  
OUT1 OUT1  
OUT1  
The expressions for P  
and P  
, where:  
are same as  
OUT2  
IC_LOSS2  
A ceramic input filter capacitor should be placed close  
to the IN pins of the IC. This eliminates as much trace  
inductance effects as possible and gives the IC a cleaner  
of P  
and P  
IC_LOSS1  
OUT1  
P
OUT_  
= Output power of the converter.  
voltage supply. A bypass capacitor at the V  
pin also  
CC  
η_ = Efficiency of the converter.  
should be placed close to the pin to reduce effects of trace  
impedance.  
R
= DC resistance of the inductor (see the Typical  
DCR_  
Operating Characteristics for more information on effi-  
When routing the circuitry around the IC, the analog small  
signal ground and the power ground for switching cur-  
rents must be kept separate. They should be connected  
together at a point where switching activity is minimum.  
This helps keep the analog ground quiet. The ground  
plane should be kept continuous (unbroken) as far as  
possible. No trace carrying high switching current should  
be placed directly over any ground plane discontinuity.  
ciency at typical operating conditions).  
P
= AC loss of the inductor.  
ACLOSS_L_  
R
= On-state resistance of the low side  
DS_ON_(LS)  
MOSFET.  
Q
rr_  
= Body-diode reverse-recovery charge of the low-  
side MOSFET.  
D = Duty cycle of the converter.  
_
PCB layout also affects the thermal performance of the  
design. A number of thermal throughputs that connect to a  
large ground plane should be provided under the exposed  
pad of the part, for efficient heat dissipation.  
Q
oss_  
= Output charge of the low side MOSFET.  
For a typical multilayer board, the thermal performance  
metrics for the package are given below:  
θ
= 23ºC/W  
= 1.7ºC/W  
For a sample layout that ensures first pass success, refer  
to the MAX17524 EV kit layout available at www.maximin-  
tegrated.com.  
JA  
θ
JC  
The junction temperature of the device can be estimated  
at any given maximum ambient temperature (T  
from the following equation:  
)
A(MAX)  
T
= T  
+ θ ×P  
(
)
J(MAX)  
A(MAX)  
JA  
IC_LOSS  
Maxim Integrated  
20  
www.maximintegrated.com  
MAX17524  
4.5V to 60V, 3A, Dual-Output, High-Efficiency,  
Synchronous Step-Down DC-DC Converter  
converter output. Figure 4 shows the coincident tracking  
of the converter outputs. Figure 5 shows the ratiometric  
tracking of the converter outputs. Figure 6 shows the out-  
put voltage sequencing where converter 1 is the master.  
Coincident/ Ratiometric Tracking and Output  
Voltage Sequencing  
The soft-start pins (SS1 and SS2) can be used to track  
the output voltages to that of another power supply at  
startup. Figure 3 shows the independent soft-start of each  
V
V
OUT1  
OUT2  
SS1  
MAX17524  
SS2  
TIME  
Figure 3. Independent Soft-Start of Each Converter Output  
L1  
V
OUT1  
R1  
LX1  
SS1  
FB1  
C3  
V
OUT1  
R2  
MAX17524  
V
OUT2  
V
OUT1  
L2  
R5  
LX2  
V
OUT2  
TIME  
SS2  
R3  
R6  
FB2  
C4  
R4  
R5 = R3/10  
R6 = R4/10  
Figure 4. Coincident Tracking of the Converter Outputs  
Maxim Integrated  
21  
www.maximintegrated.com  
MAX17524  
4.5V to 60V, 3A, Dual-Output, High-Efficiency,  
Synchronous Step-Down DC-DC Converter  
L1  
V
OUT1  
R1  
LX1  
SS1  
SS2  
FB1  
C3  
V
OUT1  
R2  
MAX17524  
V
OUT2  
L2  
LX2  
V
OUT2  
TIME  
R3  
FB2  
C4  
R4  
Figure 5. Ratiometric Tracking of the Converter Outputs  
EN/UVLO1  
L1  
V
OUT1  
R1  
LX1  
EN/UVLO1  
RESET1  
FB1  
C3  
V
OUT1  
R2  
MAX17524  
RESET1 = EN/UVLO2  
EN/UVLO2  
L2  
LX2  
V
OUT2  
RESET2  
R3  
FB2  
V
OUT2  
C4  
R4  
RESET2  
Figure 6. Output-Voltage Sequencing  
Maxim Integrated  
22  
www.maximintegrated.com  
MAX17524  
4.5V to 60V, 3A, Dual-Output, High-Efficiency,  
Synchronous Step-Down DC-DC Converter  
Typical Application Circuit  
RESET2  
RESET1  
V
IN2  
V
IN1  
IN1  
IN2  
24V  
24V  
C1  
C2  
2.2µF  
2.2µF  
V
BST1  
BST2  
OUT1  
V
OUT2  
C12  
C11  
5V, 3A  
3.3V, 3A  
L2  
L1  
10µH  
0.1µF  
0.1µF  
LX2  
DL2  
CF2  
LX1  
DL1  
CF1  
C4  
2x47µF  
C3  
2x22µF  
6.8µH  
R1  
140kΩ  
R3  
100kΩ  
Q1  
Q2  
MAX17524  
R4  
37.5kΩ  
R2  
30.9kΩ  
FB2  
EN/UVLO2  
EXTVCC2  
FB1  
V
OUT1  
EN/UVLO1  
EXTVCC1  
V
IN2  
V
IN1  
R5  
4.7Ω  
C9  
0.1µF  
PGND1  
PGND2  
f
= 450kHz  
SW  
MODE/SYNC1  
V
MODE/SYNC2  
V
SS2  
L1 = XAL6060-103ME  
L2 = XAL6060-682ME  
CC1  
SS1  
SGND  
CC2  
RT  
C1 = C2 = 2.2µF/X7R/100V/1210  
(GRM32ER72A225K)  
C3 = 2 x 22µF/X7R/10V/1210  
(GRM32ER71A226K)  
PGND1  
PGND2  
SGND  
C5  
2.2µF  
C7  
5.6nF  
C8  
5.6nF  
C6  
2.2µF  
C4 = 2 x 47µF/X7R/10V/1210  
(GRM32ER71A476KE15)  
Q1 = Q2 = SIS468DN  
MODE/SYNC2:  
CONNECT TO SGND FOR PWM MODE  
CONNECT TO V FOR DCM MODE  
MODE/SYNC1:  
CONNECT TO SGND FOR PWM MODE  
CONNECT TO V FOR DCM MODE  
CC2  
CC1  
OPEN FOR PFM MODE  
OPEN FOR PFM MODE  
Ordering Information  
PART NUMBER  
TEMP RANGE  
PIN-PACKAGE  
32 TQFN  
(5mm x 5mm)  
MAX17524ATJ+  
-40°C to +125°C  
+Denotes a lead(Pb)-free/RoHS compliant package.  
Maxim Integrated  
23  
www.maximintegrated.com  
MAX17524  
4.5V to 60V, 3A, Dual-Output, High-Efficiency,  
Synchronous Step-Down DC-DC Converter  
Revision History  
REVISION REVISION  
PAGES  
CHANGED  
DESCRIPTION  
NUMBER  
DATE  
0
12/17  
Initial release  
Corrected Document Control Identifcation number  
0.5  
1
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim Integrated’s website at www.maximintegrated.com.  
Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses  
are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits)  
shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.  
©
Maxim Integrated and the Maxim Integrated logo are trademarks of Maxim Integrated Products, Inc.  
2017 Maxim Integrated Products, Inc.  
24  

相关型号:

MAX17525

Robust, High-Power Protection Reduces System
MAXIM

MAX17525ATP+

Power Supply Support Circuit, Adjustable, 5 Channel, BICMOS, TQFN-20
MAXIM

MAX17525ATP+T

Robust, High-Power Protection Reduces System
MAXIM

MAX17526A

5.5V to 60V, 6A Current-Limiter with OV, UV, Reverse Protection, and Power Limit
MAXIM

MAX17526AATP+T

5.5V to 60V, 6A Current-Limiter with OV, UV, Reverse Protection, and Power Limit
MAXIM

MAX17526C

5.5V to 60V, 6A Current-Limiter with OV, UV, Reverse Protection, and Power Limit
MAXIM

MAX17528

1-Phase Quick-PWM Intel IMVP-6.5/GMCH Controllers
MAXIM

MAX17528GTJ+

1-Phase Quick-PWM Intel IMVP-6.5/GMCH Controllers
MAXIM

MAX17528GTJ+T

Switching Regulator/Controller, Current-mode, 600kHz Switching Freq-Max, BICMOS, PQCC32,
MAXIM

MAX17530

Reduces Power Dissipation
MAXIM

MAX17531

Reduces Power Dissipation
MAXIM

MAX17531AUB+

Switching Regulator, Current-mode, 0.123A, 2300kHz Switching Freq-Max, BICMOS, PDSO10, MICROMAX-10
MAXIM