MAX17605 [MAXIM]

4A Sink/Source Current, 12ns, Dual MOSFET Drivers;
MAX17605
型号: MAX17605
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

4A Sink/Source Current, 12ns, Dual MOSFET Drivers

文件: 总13页 (文件大小:1237K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
EVALUATION KIT AVAILABLE  
MAX17600–MAX17605  
4A Sink/Source Current,  
12ns, Dual MOSFET Drivers  
General Description  
Features  
The MAX17600–MAX17605 devices are high-speed  
MOSFET drivers capable of sinking /sourcing 4A peak  
currents. The devices have various inverting and non-  
inverting part options that provide greater flexibility in  
controlling the MOSFET. The devices have internal  
logic circuitry that prevents shoot-through during output-  
state changes. The logic inputs are protected against  
Dual Drivers with Enable Inputs  
+4V to +14V Single Power-Supply Range  
4A Peak Sink /Source Current  
Inputs Rated to +14V, Regardless of V  
Voltage  
DD  
Low 12ns Propagation Delay  
6ns Typical Rise and 5ns Typical Fall Times with  
voltage spikes up to +14V, regardless of V  
volt-  
DD  
1nF Load  
age. Propagation delay time is minimized and matched  
between the dual channels. The devices have very fast  
switching time, combined with short propagation delays  
(12ns typ), making them ideal for high-frequency circuits.  
The devices operate from a +4V to +14V single power  
supply and typically consume 1mA of supply current. The  
MAX17600/MAX17601 have standard TTL input logic  
levels, while the MAX17603 /MAX17604/MAX17605 have  
CMOS-like high-noise margin (HNM) input logic levels.  
The MAX17600/MAX17603 are dual inverting input driv-  
ers, the MAX17601/MAX17604 are dual noninverting  
input drivers, and the MAX17602/MAX17605 devices  
have one noninverting and one inverting input. These  
devices are provided with enable pins (ENA, ENB) for  
better control of driver operation.  
Matched Delays Between Channels  
Parallel Operation of Dual Outputs for Larger  
Driver Output Current  
TTL or HNM Logic-Level Inputs with Hysteresis for  
Noise Immunity  
Low Input Capacitance: 10pF (typ)  
Thermal Shutdown Protection  
● TDFN, μMAX, and SO Package Options  
-40°C to +125°C Operating Temperature Range  
Typical Operating Circuit  
These devices are available in 8-pin (3mm x 3mm) TDFN,  
8-pin (3mm x 5mm) µMAX , and 8-pin SO packages and  
operate over the -40°C to +125°C temperature range.  
ENA  
®
V
DD  
(UP TO +14V)  
V
DD  
OUTA  
ENB  
MAX17600  
MAX17601  
MAX17602  
MAX1760ꢀ  
MAX17604  
MAX17605  
Applications  
Power MOSFET Switching  
Switch-Mode Power Supplies  
DC-DC Converters  
Motor Control  
Power-Supply Modules  
INA  
INB  
OUTB  
GND  
Ordering Information appears at end of data sheet.  
μMAX is a registered trademark of Maxim Integrated  
Products, Inc.  
19-6177; Rev 2; 6/17  
MAX17600–MAX17605  
4A Sink/Source Current,  
12ns, Dual MOSFET Drivers  
Absolute Maximum Ratings  
V
, INA, INB, ENA, ENB to GND .......................-0.3V to +16V  
Operating Temperature Range......................... -40°C to +125°C  
Junction Temperature......................................................+150°C  
Storage Temperature Range............................ -65°C to +150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
Soldering Temperature (reflow).......................................+240°C  
DD  
OUTA, OUTB to GND............................................-0.3V to +16V  
Junction Operating Temperature Range .......... -40°C to +125°C  
Continuous Power Dissipation (T = +70°C)  
A
8-Pin TDFN (derate 23.8mW/°C above +70°C) ........1904mW  
8-Pin SO (derate 74mW/°C above +70°C)............. 588.2mW*  
8-Pin µMAX (derate 12.9mW/°C above +70°C).....1030.9mW  
*As per JEDEC 51 standard.  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these  
or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect  
device reliability.  
Package Information  
PACKAGE TYPE: 8 TDFN  
Package Code  
T833+2  
21-0137  
90-0059  
Outline Number  
Land Pattern Number  
THERMAL RESISTANCE, FOUR-LAYER BOARD  
Junction to Ambient (θ  
)
42°C/W  
8°C/W  
JA  
Junction to Case (θ  
)
JC  
PACKAGE TYPE: 8 SO  
Package Code  
S8+2  
Outline Number  
21-0041  
90-0096  
Land Pattern Number  
THERMAL RESISTANCE, FOUR-LAYER BOARD  
Junction to Ambient (θ  
)
136°C/W  
38°C/W  
JA  
Junction to Case (θ  
)
JC  
PACKAGE TYPE: 8 µMAX  
Package Code  
U8E+2  
Outline Number  
21-0107  
90-0145  
Land Pattern Number  
THERMAL RESISTANCE, FOUR-LAYER BOARD  
Junction to Ambient (θ  
)
77.6°C/W  
5°C/W  
JA  
Junction to Case (θ  
)
JC  
For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a “+”,  
“#”, or “-” in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing  
pertains to the package regardless of RoHS status.  
Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer board.  
For detailed information on package thermal considerations, refer to www.maximintegrated.com/thermal-tutorial.  
Maxim Integrated  
2  
www.maximintegrated.com  
MAX17600–MAX17605  
4A Sink/Source Current,  
12ns, Dual MOSFET Drivers  
Electrical Characteristics  
(V  
= 12V, C = 0F, at T = -40°C to +125°C, unless otherwise noted. Typical values are specified at T = +25°C. Parameters  
DD  
L
A
A
specified at V  
= 4V apply to the TTL versions only.) (Note 1)  
DD  
PARAMETER  
POWER SUPPLY (V  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
)
DD  
TTL versions  
HNM versions  
4
6
3
14  
14  
V
Operating Range  
V
V
DD  
DD  
V
V
V
Undervoltage Lockout  
UVLO Hysteresis  
UVLO  
V
rising  
3.5  
200  
120  
1
3.85  
V
DD  
DD  
DD  
DD  
mV  
µs  
UVLO to OUT_ Delay  
V
DD  
rising  
IDD_Q  
Not switching, V  
= 14V (Note 2)  
2
DD  
V
Supply Current  
mA  
DD  
V
= 4.5V, C = 1nF, both channels  
DD L  
IDD_SW  
12  
18  
switching at 1MHz  
DRIVER OUTPUT (SOURCE) (OUTA, OUTB)  
Peak Output Current (Sourcing)  
I
V
V
V
= 14V, C = 10nF (Note 2)  
4
A
PK-P  
DD  
DD  
DD  
L
= 14V, I  
= 100mA  
0.88  
0.91  
1.85  
1.95  
OUT_  
Driver Output Resistance Pulling Up  
(Note 3)  
R
ON-P  
= 4V, I  
= 100mA  
OUT_  
DRIVER OUTPUT (SINK) (OUTA, OUTB)  
Peak Output Current (Sinking)  
I
V
V
V
= 14V, C = 10nF (Note 2)  
4
A
PK-N  
DD  
DD  
DD  
L
= 14V, I  
= -100mA  
0.5  
0.95  
1
OUT_  
Driver Output Resistance Pulling  
Down (Note 3)  
R
ON-N  
= 4V, I  
= -100mA  
0.52  
OUT_  
LOGIC INPUT (INA, INB)  
MAX17600/1/2  
MAX17603/4/5  
MAX17600/1/2  
MAX17603/4/5  
MAX17600/1/2  
MAX17603/4/5  
2.1  
V
Logic-High Input Voltage  
Logic-Low Input Voltage  
V
V
V
V
IN_  
IN_  
IH  
4.25  
0.8  
2.0  
V
V
IL  
0.34  
0.9  
Logic Input Hysteresis  
V
HYS  
Logic Input Leakage Current  
Logic Input Bias Current  
Logic Input Capacitance  
I
V
V
= V  
= 0V or V (MAX17600/1/2)  
DD  
-1  
+0.02  
10  
+1  
µA  
µA  
pF  
LKG  
INA  
INB  
I
= V  
= 0V or V  
(MAX17603/4/5)  
BIAS  
INA  
INB  
DD  
C
(Note 2)  
10  
IN  
Maxim Integrated  
3  
www.maximintegrated.com  
MAX17600–MAX17605  
4A Sink/Source Current,  
12ns, Dual MOSFET Drivers  
Electrical Characteristics (continued)  
(V  
= 12V, C = 0F, at T = -40°C to +125°C, unless otherwise noted. Typical values are specified at T = +25°C. Parameters  
DD  
L
A
A
specified at V  
= 4V apply to the TTL versions only.) (Note 1)  
DD  
PARAMETER  
ENABLE (ENA, ENB)  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
MAX17600/1/2  
MAX17603/4/5  
MAX17600/1/2  
MAX17603/4/5  
MAX17600/1/2  
MAX17603/4/5  
MAX17600/1/2  
MAX17603/4/5  
EN_ rising  
2.1  
V
V
High Level Voltage  
Low Level Voltage  
V
V
EN_H  
4.25  
0.8  
2.0  
EN_L  
0.34  
0.9  
100  
200  
7
Enable Hysteresis  
EN_  
V
HYS  
50  
200  
400  
Enable Pullup Resistor to V  
R
kΩ  
ns  
DD  
pu  
100  
Propagation Delay from EN_ to OUT_  
(Note 2)  
t
pd  
EN_ falling  
7
SWITCHING CHARACTERISTICS (V  
= 14V) (Note 2)  
DD  
C = 1nF  
6
L
OUT_ Rise Time  
t
C = 4.7nF  
20  
40  
6
ns  
ns  
R
L
C = 10nF  
L
C = 1nF  
L
OUT_ Fall Time  
t
C = 4.7nF  
16  
25  
12  
12  
F
L
C = 10nF  
L
Turn-On Delay Time  
t
C = 1nF  
ns  
ns  
D-ON  
L
Turn-Off Delay Time  
t
C = 1nF  
L
D-OFF  
SWITCHING CHARACTERISTICS (V  
= 4.5V) (Note 2)  
DD  
C = 1nF  
5
L
OUT_ Rise Time  
OUT_ Fall Time  
t
C = 4.7nF  
15  
28  
5
ns  
ns  
R
L
C = 10nF  
L
C = 1nF  
L
t
C = 4.7nF  
10  
18  
12  
12  
F
L
C = 10nF  
L
Turn-On Delay Time  
Turn-Off Delay Time  
t
C = 1nF  
ns  
ns  
D-ON  
L
t
C = 1nF  
L
D-OFF  
MATCHING CHARACTERISTICS (Note 2)  
Matching Propagation Delays  
Between Channel A and Channel B  
V
= 14V, C = 10nF  
8
ns  
DD  
L
Note 1: All devices are production tested at T = +25°C. Limits over temperature are guaranteed by design.  
A
Note 2: Design guaranteed by bench characterization. Limits are not production tested.  
Note 3: For SOIC, μMAX package options, these are only Typ parameters.  
Maxim Integrated  
4  
www.maximintegrated.com  
MAX17600–MAX17605  
4A Sink/Source Current,  
12ns, Dual MOSFET Drivers  
Typical Operating Characteristics  
(C = 1nF, T = +25°C, unless otherwise noted.)  
L
A
RISE TIME vs. SUPPLY VOLTAGE  
(C = 1nF)  
FALL TIME vs. SUPPLY VOLTAGE  
(C  
OUT_  
= 1nF)  
OUT_  
6.0  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
T
A
= +85°C  
T
= +85°C  
A
T = +125°C  
A
T
A
= +125°C  
T
= +25°C  
T = +25°C  
A
A
T
A
= -40°C  
12  
T
A
= 0°C  
T
= -40°C  
12  
A
T
A
= 0°C  
4
6
8
10  
14  
4
6
8
10  
14  
SUPPLY VOLTAGE, V (V)  
SUPPLY VOLTAGE, V (V)  
DD  
DD  
PROPAGATION DELAY TIME (LOW TO HIGH)  
PROPAGATION DELAY TIME (HIGH TO LOW)  
vs. SUPPLY VOLTAGE (C  
= 1nF)  
vs. SUPPLY VOLTAGE (C  
= 1nF)  
OUT_  
OUT_  
18  
16  
14  
12  
10  
8
18  
16  
14  
12  
10  
8
T
A
= +125°C  
T
A
= +125°C  
T
= +85°C  
A
T
= +85°C  
A
T
A
= +25°C  
T
= +25°C  
A
T
6
= 0°C  
A
T
A
= -40°C  
T
= 0°C  
A
T
= -40°C  
A
4
6
8
10  
12  
14  
4
8
10  
12  
14  
SUPPLY VOLTAGE, V (V)  
SUPPLY VOLTAGE, V (V)  
DD  
DD  
SUPPLY CURRENT vs. SUPPLY VOLTAGE  
(C = 0nF)  
SUPPLY CURRRENT vs. LOAD CAPACITANCE  
(V = 12V, C  
= 0nF)  
OUT_  
DD  
OUTB  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
140  
130  
120  
110  
100  
90  
80  
70  
60  
50  
1MHz  
500kHz  
500kHz  
1MHz  
100kHz  
40  
30  
20  
10  
NO  
SWITCHING  
100kHz  
NO SWITCHING  
0
4
6
8
10  
12  
14  
0
1
2
3
4
5
6
7
8
9
10  
SUPPLY VOLTAGE, V (V)  
LOAD CAPACITANCE (nF)  
DD  
Maxim Integrated  
5  
www.maximintegrated.com  
MAX17600–MAX17605  
4A Sink/Source Current,  
12ns, Dual MOSFET Drivers  
Typical Operating Characteristics (continued)  
(C = 1nF, T = +25°C, unless otherwise noted.)  
L
A
INPUT THRESHOLD VOLTAGE  
SUPPLY CURRENT vs. TEMPERATURE  
SUPPLY CURRENT vs. LOGIC INPUT  
vs. SUPPLY VOLTAGE (C  
= 0nF)  
(V = 12V, C  
DD  
= 0nF)  
VOLTAGE (V = 12V, C  
= 0nF)  
OUT_  
OUT_  
DD  
OUT_  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
1.3  
1.2  
1.1  
1.0  
0.9  
0.8  
0.7  
0.6  
1MHz  
RISING  
500kHz  
RISING  
FALLING  
FALLING  
100kHz  
NO SWITCHING  
4
6
8
10  
12  
14  
-40 -20  
0
20 40 60 80 100 120  
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14  
SUPPLY VOLTAGE, V (V)  
DD  
AMBIENT TEMPERATURE (°C)  
LOGIC INPUT VOLTAGE (V)  
LOGIC INPUT VOLTAGE  
LOGIC INPUT VOLTAGE  
LOGIC INPUT VOLTAGE  
vs. OUTPUT VOLTAGE (MAX17601)  
(V = +4V, C = 4.7nF)  
vs. OUTPUT VOLTAGE (MAX17601)  
vs. OUTPUT VOLTAGE (MAX17601)  
(V = +4V, C = 4.7nF)  
MAX17600 toc12  
(V = +4V, C  
= 10nF)  
DD  
OUTA  
DD  
OUTA  
DD  
OUTA  
MAX17600 toc10  
MAX17600 toc11  
INA  
INA  
2V/div  
2V/div  
INA  
2V/div  
OUTA  
2V/div  
OUTA  
2V/div  
OUTA  
2V/div  
20ns/div  
20ns/div  
20ns/div  
LOGIC INPUT VOLTAGE  
LOGIC INPUT VOLTAGE  
LOGIC INPUT VOLTAGE  
vs. OUTPUT VOLTAGE (MAX17601)  
vs. OUTPUT VOLTAGE (MAX17601)  
vs. OUTPUT VOLTAGE (MAX17601)  
(V = +4V, C  
DD  
= 10nF)  
(V = +14V, C  
DD  
= 4.7nF)  
(V = +14V, C  
DD  
= 10nF)  
OUTA  
MAX17600 toc15  
OUTA  
OUTA  
MAX17600 toc13  
MAX17600 toc14  
INA  
INA  
5V/div  
5V/div  
INA  
2V/div  
OUTA  
5V/div  
OUTA  
5V/div  
OUTA  
2V/div  
20ns/div  
20ns/div  
20ns/div  
Maxim Integrated  
6  
www.maximintegrated.com  
MAX17600–MAX17605  
4A Sink/Source Current,  
12ns, Dual MOSFET Drivers  
Typical Operating Characteristics (continued)  
(C = 1nF, T = +25°C, unless otherwise noted.)  
L
A
LOGIC INPUT VOLTAGE  
LOGIC INPUT VOLTAGE  
LOGIC INPUT VOLTAGE  
vs. OUTPUT VOLTAGE (MAX17601)  
vs. OUTPUT VOLTAGE (MAX17601)  
vs. OUTPUT VOLTAGE (MAX17604)  
(V = +14V, C  
DD  
= 4.7nF)  
(V = +14V, C  
DD  
= 10nF)  
(V = +14V, C  
DD  
= 4.7nF)  
OUTA  
MAX17600 toc18  
OUTA  
OUTA  
MAX17600 toc16  
MAX17600 toc17  
INA  
5V/div  
INA  
INA  
5V/div  
5V/div  
OUTA  
5V/div  
OUTA  
5V/div  
OUTA  
5V/div  
20ns/div  
20ns/div  
20ns/div  
LOGIC INPUT VOLTAGE  
vs. OUTPUT VOLTAGE (MAX17604)  
(V = +14V, C = 10nF)  
LOGIC INPUT VOLTAGE  
vs. OUTPUT VOLTAGE (MAX17604)  
(V = +14V, C = 4.7nF)  
DD  
OUTA  
DD  
OUTA  
MAX17600 toc19  
MAX17600 toc20  
INA  
5V/div  
INA  
5V/div  
OUTA  
5V/div  
OUTA  
5V/div  
20ns/div  
20ns/div  
LOGIC INPUT VOLTAGE  
vs. OUTPUT VOLTAGE (MAX17604)  
LOGIC OUTPUT vs. ENABLE  
(V = +14V, C = 0nF)  
(V = +14V, C  
= 10nF)  
DD  
OUTA  
DD  
OUTA  
MAX17600 toc21  
MAX17600 toc22  
V
DD  
5V/div  
ENA  
5V/div  
INA  
5V/div  
INA  
5V/div  
OUTA  
5V/div  
OUTA  
10V/div  
20ns/div  
4µs/div  
Maxim Integrated  
7  
www.maximintegrated.com  
MAX17600–MAX17605  
4A Sink/Source Current,  
12ns, Dual MOSFET Drivers  
Pin Configurations  
TOP VIEW  
ENB OUTA  
8
V
OUTB  
5
DD  
TOP VIEW  
7
6
TOP VIEW  
ENA  
INA  
1
2
3
4
8
7
6
5
ENB  
MAX17600  
MAX17601  
MAX17602  
MAX1760ꢁ  
MAX17604  
MAX17605  
+
MAX17600  
MAX17600  
MAX17601  
MAX17602  
MAX1760ꢁ  
MAX17604  
MAX17605  
ENA  
INA  
1
2
3
4
8
7
6
5
ENB  
MAX17601  
MAX17602  
MAX1760ꢁ  
MAX17604  
MAX17605  
OUTA  
OUTA  
GND  
INB  
V
DD  
OUTB  
GND  
INB  
V
DD  
ꢃMAX  
OUTB  
1
2
3
4
SO  
ENA INA GND INB  
TDFꢂ  
Pin Description  
PIN  
NAME  
FUNCTION  
Enable Input for Driver A. Internally pulled to V  
always-on operation. Connect to GND for disabling the corresponding channel.  
through a 100kΩ resistor. Leave unconnected for  
DD  
1
ENA  
2
3
4
INA  
GND  
INB  
Logic Input for Channel A  
Ground  
Logic Input for Channel B  
Channel B Driver Output. Sources and sinks current for channel B to turn the external MOSFET at OUTB  
on or off.  
5
6
7
OUTB  
V
Power-Supply Input. Bypass to GND with one or more low-ESR 0.1µF ceramic capacitors.  
DD  
Channel A Driver Output. Sources and sinks current for channel A to turn the external MOSFET at OUTA  
on or off.  
OUTA  
Enable Input for Driver B. Internally pulled to V  
always-on operation. Connect to GND for disabling the corresponding channel.  
through a 100kΩ resistor. Leave unconnected for  
DD  
8
ENB  
EP  
Exposed Pad (TDFN Only). Internally connected to GND. Do not use the EP as the only ground connection.  
Maxim Integrated  
8  
www.maximintegrated.com  
MAX17600–MAX17605  
4A Sink/Source Current,  
12ns, Dual MOSFET Drivers  
Functional Diagram  
INA  
V
IH  
V
IL  
CHANNEL B  
GND  
OUTA  
90%  
10%  
t
t
IN LOGIC  
LEVEL SHIFT DOWN  
D-ON  
D-OFF  
PREDRIVER  
t
t
R
F
INB  
V
L
= 5V  
OUTB  
INB  
BBM  
V
IH  
ENB  
V
IL  
OUTB  
90%  
IN LOGIC  
LEVEL SHIFT UP  
PREDRIVER  
10%  
t
t
D-ON  
D-OFF  
V
- 5V  
DD  
BG + UVLO +  
TSHDN  
t
t
R
F
V
DD  
Figure 1. Timing Diagram for the MAX17601/MAX17604  
BG + UVLO +  
TSHDN  
V
DD  
- 5V  
INA  
IN LOGIC  
LEVEL SHIFT UP  
V
IH  
PREDRIVER  
V
IL  
ENA  
INA  
OUTA  
90%  
OUTA  
BBM  
10%  
D-ON  
t
t
D-OFF  
V
L
= 5V  
t
t
F
R
IN LOGIC  
LEVEL SHIFT DOWN  
PREDRIVER  
INA  
V
IH  
V
IL  
GND  
CHANNEL A  
OUTB  
90%  
10%  
t
t
D-ON  
D-OFF  
t
t
R
F
Figure 2. Timing Diagram for the MAX17602/MAX17605  
Maxim Integrated  
9  
www.maximintegrated.com  
MAX17600–MAX17605  
4A Sink/Source Current,  
12ns, Dual MOSFET Drivers  
Detailed Description  
INA  
The MAX17600–MAX17605 are high-speed MOSFET  
drivers capable of sinking/sourcing 4A peak currents.  
The devices have various inverting and noninverting part  
options that provide greater flexibility in controlling the  
MOSFET. The devices have internal logic circuitry that  
prevents shoot-through during output-state changes.  
The logic inputs are protected against voltage spikes  
V
IH  
V
IL  
OUTA  
90%  
10%  
t
t
D-OFF  
D-ON  
t
t
F
R
up to +16V, regardless of V  
voltage. Propagation  
DD  
delay time is minimized and matched between the dual  
channels. The devices have very fast switching time,  
combined with short propagation delays (12ns typ),  
making them ideal for high-frequency circuits. The  
devices operate from a +4V to +14V single power  
supply and typically consume 1mA of supply current.  
The MAX17600/MAX17601/MAX17602 have standard  
TTL input logic levels, while the MAX17603/MAX17604/  
MAX17605 have CMOS-like high-noise margin (HNM)  
input logic levels. The MAX17600/MAX17603 are dual  
inverting input drivers, the MAX17601/MAX17604 are  
dual noninverting input drivers, and the MAX17602/  
MAX17605 have one noninverting and one inverting  
input. These devices are provided with enable pins  
(ENA and ENB) for better control of driver operation.  
INB  
V
IH  
V
IL  
OUTB  
90%  
10%  
t
t
D-OFF  
D-ON  
t
t
F
R
Figure 3. Timing Diagram for the MAX17600/MAX17603  
ENA  
INA  
ENB  
MAX17600  
MAX17601  
MAX17602  
MAX1760ꢀ  
MAX17604  
MAX17605  
Logic Inputs  
OUTA  
The MAX17600/MAX17601/MAX17602 have standard  
TTL input logic levels, while the MAX17603/MAX17604/  
MAX17605 have CMOS-like HNM input logic levels (see  
the Electrical Characteristics table). Table 1 gives the truth  
table for various part options.  
C
OUTA  
V
DD  
GND  
INB  
V
DD  
OUTB  
C
OUTB  
Figure 4. Test Circuit for the Timing Diagrams  
Table 1. Truth Table  
ENABLE  
INPUTS  
LOGIC  
INPUTS  
DUAL NONINVERTING  
DRIVER  
DUAL INVERTING  
DRIVER  
ONE INVERTING AND ONE  
NONINVERTING DRIVER  
ENA  
ENB  
H
INA  
INB  
H
OUTA  
OUTB  
OUTA  
OUTB  
OUTA  
OUTB  
H
H
H
H
L
H
H
L
H
H
L
H
L
L
L
L
H
L
L
L
H
L
H
L
H
H
H
L
H
H
L
H
H
L
H
L
H
L
L
L
H
L
L
X
X
L
L
L
L = Logic-low, H = Logic-high.  
Maxim Integrated  
10  
www.maximintegrated.com  
MAX17600–MAX17605  
4A Sink/Source Current,  
12ns, Dual MOSFET Drivers  
The quiescent current is 1mA typical. The current required  
to charge and discharge the internal nodes is frequency  
dependent (see the Typical Operating Characteristics).  
The devices’ power dissipation when driving a ground  
referenced resistive load is:  
Undervoltage Lockout (UVLO)  
When V  
is below the UVLO threshold, the output  
DD  
stage n-channel device is on and the p-channel is off,  
independent of the state of the inputs. This holds the  
outputs low. The UVLO is typically 3.6V with 200mV  
typical hysteresis to avoid chattering. A typical falling  
delay of 2µs makes the UVLO immune to narrow negative  
transients in noisy environments.  
P = D x R  
(MAX) x I 2 per channel  
LOAD  
ON  
where D is the fraction of the period the devices’ output  
pulls high, R (MAX) is the maximum pullup on-resis-  
ON  
tance of the device with the output high, and I  
output load current of the devices.  
is the  
LOAD  
Driver Outputs  
The devices feature 4A peak sourcing/sinking capabilities  
to provide fast rise and fall times of the MOSFET gate.  
Add a resistor in series with OUT_ to slow the corre-  
sponding rise/fall time of the MOSFET gate.  
For capacitive loads, the power dissipation is:  
P = C  
x (V )2 x FREQ per channel  
DD  
LOAD  
where C  
is the capacitive load, V  
is the supply  
DD  
LOAD  
voltage, and FREQ is the switching frequency.  
Applications Information  
Layout Information  
Supply Bypassing, Device  
Grounding, and Placement  
Ample supply bypassing and device grounding are  
The devices’ MOSFET drivers source and sink large  
currents to create very fast rise and fall edges at the  
gate of the switching MOSFET. The high di/dt can cause  
unacceptable ringing if the trace lengths and  
impedances are not well controlled. The following PCB  
layout guidelines are recommended when designing with  
the devices:  
e
xtremely important because when large external  
capacitive loads are driven, the peak current at the V  
pin can approach 4A, while at the GND pin, the peak  
DD  
current can approach 4A. V drops and ground shifts  
DD  
are forms of negative feedback for inverters and, if  
excessive, can cause multiple switching when the  
inverting input is used and the input slew rate is low. The  
device driving the input should be referenced to the devic-  
es’ GND pin, especially when the inverting input is used.  
Ground shifts due to insufficient device grounding can  
disturb other circuits sharing the same AC ground return  
Place at least one 2.2µF decoupling ceramic capaci-  
tor from V  
to GND as close as possible to the IC.  
DD  
At least one storage capacitor of 10µF (min) should  
be located on the PCB with a low-resistance path  
to the V  
pin of the devices. There are two AC  
DD  
current loops formed between the IC and the gate of  
the MOSFET being driven. The MOSFET looks like  
a large capacitance from gate to source when the  
gate is being pulled low. The active current loop is  
from OUT_ of the devices to the MOSFET gate to the  
MOSFET source and to GND of the devices. When  
the gate of the MOSFET is being pulled high, the  
active current loop is from OUT_ of the devices to the  
MOSFET gate to the MOSFET source to the GND ter-  
minal of the decoupling capacitor to the V  
of the decoupling capacitor and to the V  
the devices. While the charging current loop is impor-  
tant, the discharging current loop is also critical. It is  
important to minimize the physical distance and the  
impedance in these AC current paths.  
path. Any series inductance in the V , OUT_, and/or  
DD  
GND paths can cause oscillations due to the very high  
di/dt that results when the devices are switched with any  
capacitive load. A 2.2µF or larger value ceramic  
capacitor is recommended, bypassing V  
to GND and  
DD  
placed as close as possible to the pins. When driving very  
large loads (e.g., 10nF) at minimum rise time, 10µF or  
more of parallel storage capacitance is recommended. A  
ground plane is highly recommended to minimize ground  
return resistance and series inductance. Care should be  
taken to place the devices as close as possible to the  
external MOSFET being driven to further minimize board  
inductance and AC path resistance.  
terminal  
terminal of  
DD  
DD  
Power Dissipation  
In a multilayer PCB, the component surface layer  
surrounding the devices should consist of a ground  
plane containing the discharging and charging current  
loops.  
P
ower dissipation of the devices consists of three  
components, caused by the quiescent current, capacitive  
charge and discharge of internal nodes, and the output  
current (either capacitive or resistive load). The sum of  
these components must be kept below the maximum  
power-dissipation limit.  
Maxim Integrated  
11  
www.maximintegrated.com  
MAX17600–MAX17605  
4A Sink/Source Current,  
12ns, Dual MOSFET Drivers  
Ordering Information/Selector Guide  
PART  
PIN-PACKAGE  
8 TDFN-EP* (3mm x 3mm)  
8 SO  
CONFIGURATION  
Dual/Inverting  
LOGIC LEVELS  
TTL  
TOP MARK  
+BOJ  
+
MAX17600ATA+  
MAX17600ASA+  
MAX17600AUA+  
MAX17601ATA+  
MAX17601ASA+  
MAX17601AUA+  
MAX17602ATA+  
MAX17602ASA+  
MAX17602AUA+  
MAX17603ATA+  
MAX17603ASA+  
MAX17603AUA+  
MAX17604ATA+  
MAX17604ASA+  
MAX17604AUA+  
MAX17605ATA+  
MAX17605ASA+  
MAX17605AUA+  
Dual/Inverting  
TTL  
8 µMAX-EP*  
Dual/Inverting  
TTL  
+AACI  
+BOK  
+
8 TDFN-EP* (3mm x 3mm)  
8 SO  
Dual/Noninverting  
Dual/Noninverting  
Dual/Noninverting  
Inverting/Noninverting  
Inverting/Noninverting  
Inverting/Noninverting  
Dual/Inverting  
TTL  
TTL  
8 µMAX-EP*  
TTL  
+AACJ  
+BOL  
+
8 TDFN-EP* (3mm x 3mm)  
8 SO  
TTL  
TTL  
8 µMAX-EP*  
TTL  
+AACK  
+BOM  
+
8 TDFN-EP* (3mm x 3mm)  
8 SO  
HNM  
HNM  
HNM  
HNM  
HNM  
HNM  
HNM  
HNM  
HNM  
Dual/Inverting  
8 µMAX-EP*  
Dual/Inverting  
+AACL  
+BON  
+
8 TDFN-EP* (3mm x 3mm)  
8 SO  
Dual/Noninverting  
Dual/Noninverting  
Dual/Noninverting  
Inverting/Noninverting  
Inverting/Noninverting  
Inverting/Noninverting  
8 µMAX-EP*  
+AACM  
+BOO  
+
8 TDFN-EP* (3mm x 3mm)  
8 SO  
8 µMAX-EP*  
+AACN  
Note: All devices are specified over the -40°C to +125°C temperature range. Optional 8-pin 2mm x 3mm TDFN package is available.  
Contact your Maxim sales representative for more information.  
+Denotes a lead(Pb)-free/RoHS-compliant package.  
*EP = Exposed pad.  
Chip Information  
PROCESS: BiCMOS  
Maxim Integrated  
12  
www.maximintegrated.com  
MAX17600–MAX17605  
4A Sink/Source Current,  
12ns, Dual MOSFET Drivers  
Revision History  
REVISION REVISION  
PAGES  
CHANGED  
DESCRIPTION  
NUMBER  
DATE  
0
1
1/12  
Initial release  
5/12  
Added the MAX17600  
1–12  
Updated Electrical Characteristics table OUT_ Rise Time for Switching Characteristics  
(V = 14V and V = 4.5V) units from pF to nF.  
2
6/17  
3–4  
DD  
DD  
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim Integrated’s website at www.maximintegrated.com.  
Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses  
are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits)  
shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.  
©
Maxim Integrated and the Maxim Integrated logo are trademarks of Maxim Integrated Products, Inc.  
2017 Maxim Integrated Products, Inc.  
13  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY