MAX17633AATP [MAXIM]

4.5V to 36V, 3.5A, High Efficiency, Synchronous Step-Down, DC-DC Converter;
MAX17633AATP
型号: MAX17633AATP
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

4.5V to 36V, 3.5A, High Efficiency, Synchronous Step-Down, DC-DC Converter

文件: 总23页 (文件大小:1472K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
EVALUATION KIT AVAILABLE  
Click here to ask about the production status of specific part numbers.  
MAX17633  
4.5V to 36V, 3.5A, High Efficiency,  
Synchronous Step-Down, DC-DC Converter  
General Description  
Benefits and Features  
Reduces External Components and Total Cost  
• No Schottky - Synchronous Operation  
• Internal Compensation Components  
The Himalaya series of voltage regulator ICs, power mod-  
ules, and chargers enable cooler, smaller, and simpler  
power supply solutions. The MAX17633 is a high-effi-  
ciency, high-voltage, Himalaya synchronous step-down  
DC-DC converter with integrated MOSFETs operating  
over an input voltage range of 4.5V to 36V. It can deliver  
up to 3.5A current. The MAX17633 is available in three  
variants MAX17633A, MAX17633B, and MAX17633C.  
The MAX17633A and MAX17633B are the fixed 3.3V and  
fixed 5V output voltage parts, respectively. MAX17633C  
is an adjustable output voltage (from 0.9V up to 90% of  
• All-Ceramic Capacitors, Compact Layout  
Reduces Number of DC-DC Regulators to Stock  
• Wide 4.5V to 36V Input  
• Adjustable Output Range from 0.9V up to 90% of V  
• Delivers up to 3.5A Over the Temperature Range  
• 400kHz to 2.2MHz Adjustable Frequency with  
External Clock Synchronization  
IN  
• Available in a 20-Pin, 4mm × 4mm TQFN Package  
V ) part. Built-in compensation across the output voltage  
IN  
Reduces Power Dissipation  
Peak Efficiency > 93%  
range eliminates the need for external components.  
The MAX17633 features peak-current-mode control archi-  
tecture. The device can be operated in forced pulse-width  
modulation (PWM), pulse-frequency modulation (PFM),  
or discontinuous-conduction mode (DCM) to enable high  
efficiency under full-load and light-load conditions.  
• PFM and DCM Modes Enable Enhanced Light-  
Load Efficiency  
• Auxiliary Bootstrap Supply (EXTVCC) for Improved  
Efficiency  
2.8μA Shutdown Current  
The feedback-voltage-regulation accuracy over -40°C  
to +125°C for the MAX17633A, MAX17633B, and  
MAX17633C is ±1.3%. Simulation models are available.  
Operates Reliably in Adverse Industrial Environments  
• Hiccup-Mode Overload Protection  
• Adjustable and Monotonic Startup with Prebiased  
Output Voltage  
Applications  
• Built-in Output-Voltage Monitoring with RESET  
• Programmable EN/UVLO Threshold  
• Overtemperature Protection  
Industrial Control Power Supplies  
General-Purpose Point-of-Load  
Distributed Supply Regulation  
Base-Station Power Supplies  
Wall Transformer Regulation  
High-Voltage Single-Board systems  
• CISPR 22 Class B Compliant  
• Wide -40°C to +125°C Ambient Operating Temper-  
ature Range / -40°C to +150°C Junction Tempera-  
ture Range  
Ordering Information appears at end of data sheet.  
Typical Application Circuit  
V
IN  
6.5V TO 36V  
C1  
2 x 2.2µF  
RT  
IN  
EN/UVLO  
BST  
LX  
MODE/SYNC  
C5  
0.1µF  
L1  
V
OUT  
INTVCC  
6.8µH  
C3  
2.2µF  
C4  
2 x 22µF  
5V,3.5A  
MAX17633B  
SGND  
EXTVCC  
SS  
FB  
C2  
EP  
5600pF  
PGND  
RESET  
19-100305; Rev 2; 7/20  
MAX17633  
4.5V to 36V, 3.5A, High Efficiency,  
Synchronous Step-Down, DC-DC Converter  
Absolute Maximum Ratings  
IN to PGND ...........................................................-0.3V to +40V  
PGND to SGND....................................................-0.3V to +0.3V  
LX Total RMS Current .............................................................4A  
Output Short-Circuit Duration....................................Continuous  
Continuous Power Dissipation (Multilayer Board)  
EN/UVLO to SGND....................................-0.3V to (V + 0.3V)  
LX to PGND................................................-0.3V to (V + 0.3V)  
IN  
IN  
EXTVCC to SGND ...............................................-5.5V to +6.5V  
BST to PGND.....................................................-0.3V to +46.5V  
BST to LX.............................................................-0.3V to +6.5V  
BST to INTVCC.....................................................-0.3V to +40V  
FB to SGND (MAX17633A & MAX17633B).........-5.5V to +6.5V  
FB to SGND (MAX17633C) .................................-0.3V to +6.5V  
SS, MODE/SYNC, RESET, INTVCC,  
(T = +70°C, derate 30.3mW/°C above +70°C.)....2424.2mW  
A
Operating Temperature Range (Note1)...............-40°C to 125°C  
Junction Temperature....................................... -40°C to +150°C  
Storage Temperature Range............................ -65°C to +150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
Soldering Temperature (reflow).......................................+260°C  
RT to SGND .....................................................-0.3V to +6.5V  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these  
or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect  
device reliability.  
Package Information  
PACKAGE TYPE: 20-Pin TQFN  
Package Code  
T2044+4C  
21-100172  
90-0409  
Outline Number  
Land Pattern Number  
THERMAL RESISTANCE, FOUR-LAYER BOARD (Note 2)  
Junction to Ambient (θ  
)
26°C/W  
2°C/W  
JA  
Junction to Case (θ  
)
JC  
For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a “+”,  
“#”, or “-” in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing  
pertains to the package regardless of RoHS status.  
Note 1: Junction temperature greater than +125°C degrades operating lifetimes.  
Note 2: Package thermal resistances were obtained using the MAX17633 Evaluation Kit with no airflow.  
Maxim Integrated  
2  
www.maximintegrated.com  
MAX17633  
4.5V to 36V, 3.5A, High Efficiency,  
Synchronous Step-Down, DC-DC Converter  
Electrical Characteristics  
(V = V  
= 24V, R = unconnected (f  
= 500 kHz), C  
= 2.2μF, V  
= V  
= V  
= V = 0V;  
EXTVCC  
IN  
EN/UVLO  
RT  
SW  
INTVCC  
SGND  
PGND  
MODE/SYNC  
V
= 3.67V (MAX17633A), V = 5.5V (MAX17633B), V  
= 1V (MAX17633C), LX = SS = RESET = OPEN, V  
to V = 5V,  
FB  
FB  
FB  
BST  
LX  
T = -40°C to 125°C, unless otherwise noted. Typical values are at T = +25°C. All voltages are referenced to SGND, unless otherwise  
A
A
noted.) (Note 3)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
IN  
Input-Voltage Range  
V
4.5  
36  
V
IN  
Input-Shutdown Current  
I
V
= 0V (Shutdown mode)  
2.8  
96  
4.5  
μA  
IN_SH  
EN/UVLO  
MODE/SYNC = OPEN, V  
= 5V  
EXTVCC  
I
μA  
R
V
= 40.2kΩ, MODE/SYNC = OPEN,  
Q_PFM  
RT  
106  
= 5V  
Input-Quiescent Current  
EXTVCC  
I
DCM Mode, V = 0.1V  
LX  
1.2  
11  
1.8  
Q_DCM  
mA  
I
Normal switching mode; V  
= 5V  
EXTVCC  
Q_PWM  
EN/UVLO  
V
V
V
V
rising  
falling  
1.19  
1.068  
-50  
1.215  
1.09  
0
1.26  
1.131  
+50  
ENR  
EN/UVLO  
EN/UVLO  
EN/UVLO  
EN Threshold  
V
V
ENF  
EN Input-Leakage Current  
I
= 0V, T = +25ºC  
A
nA  
EN  
INTVCC  
1mA ≤ I  
≤ 25mA  
4.75  
4.75  
30  
5
5
5.25  
5.25  
INTVCC Output-Voltage  
Range  
INTVCC  
V
V
INTVCC  
6V ≤ V ≤ 36V, I  
= 1mA  
IN  
INTVCC  
INTVCC Current Limit  
INTVCC Dropout  
I
V
V
V
V
= 4.5V, V = 7.5V  
mA  
V
INTVCC_MAX  
INTCC  
IN  
V
= 4.5V, I = 10mA  
INTVCC  
0.3  
4.3  
3.9  
INTCC_DO  
IN  
V
rising  
4.05  
3.65  
4.2  
3.8  
INTVCC Undervoltage  
Lockout  
INTVCC_UVR  
INTVCC  
INTVCC  
V
V
falling  
INTVCC_UVF  
EXTVCC  
V
V
rising  
falling  
4.56  
4.3  
4.7  
4.84  
4.6  
EXTVCC Switchover  
Threshold  
EXTVCC  
V
4.43  
EXTVCC  
POWER MOSFET  
High-Side nMOS  
On-Resistance  
R
I
I
= 0.3A, sourcing  
= 0.3A, sinking  
65  
40  
125  
80  
3
mΩ  
mΩ  
μA  
DS_ONH  
LX  
LX  
Low-Side nMOS  
On-Resistance  
R
DS_ONL  
LX_LKG  
V
= (V  
+ 1)V to (V - 1)V,  
LX  
PGND IN  
LX Leakage Current  
I
-2  
T = +25°C  
A
Maxim Integrated  
3  
www.maximintegrated.com  
MAX17633  
4.5V to 36V, 3.5A, High Efficiency,  
Synchronous Step-Down, DC-DC Converter  
Electrical Characteristics (continued)  
(V = V  
= 24V, R = unconnected (f  
= 500 kHz), C  
= 2.2μF, V  
= V  
= V  
= V = 0V;  
EXTVCC  
IN  
EN/UVLO  
RT  
SW  
INTVCC  
SGND  
PGND  
MODE/SYNC  
V
= 3.67V (MAX17633A), V = 5.5V (MAX17633B), V  
= 1V (MAX17633C), LX = SS = RESET = OPEN, V  
to V = 5V,  
FB  
FB  
FB  
BST  
LX  
T = -40°C to 125°C, unless otherwise noted. Typical values are at T = +25°C. All voltages are referenced to SGND, unless otherwise  
A
A
noted.) (Note 3)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
SS  
Charging Current  
I
4.7  
5
5.3  
μA  
SS  
FB  
MODE/SYNC = SGND or MODE/SYNC =  
INTVCC (MAX17633A)  
3.256  
4.94  
3.3  
5
3.344  
5.06  
MODE/SYNC = SGND or MODE/SYNC =  
INTVCC (MAX17633B)  
MODE/SYNC = SGND or MODE/SYNC =  
INTVCC (MAX17633C)  
FB Regulation Voltage  
V
V
FB_REG  
0.888  
0.9  
0.912  
MODE/SYNC = OPEN (MAX17633A)  
MODE/SYNC = OPEN (MAX17633B)  
MODE/SYNC = OPEN (MAX17633C)  
For MAX17633A  
3.256  
4.94  
3.36  
5.09  
0.915  
33  
3.44  
5.21  
0.888  
0.938  
μA  
FB Input-Bias Current  
MODE/SYNC  
I
For MAX17633B  
33  
FB  
For MAX17633C, T = +25°C  
A
-50  
+50  
nA  
V
MODE/SYNC = INTVCC (DCM Mode)  
MODE/SYNC = OPEN (PFM Mode)  
MODE/SYNC = SGND (PWM Mode)  
V
- 0.65  
M_DCM  
IN_VCC  
V
MODE Threshold  
V
/2  
V
M_PFM  
IN_VCC  
V
0.75  
M_PWM  
SYNC Frequency-Capture  
Range  
f
f
set by R  
1.1 × f  
1.4 × f  
SW  
kHz  
ns  
SYNC  
SW  
RT  
SW  
SYNC Pulse Width  
SYNC Threshold  
CURRENT LIMIT  
50  
V
2.1  
IH  
V
V
0.8  
6.2  
IL  
Peak Current-Limit  
Threshold  
I
4.6  
5.4  
6.4  
1.2  
A
A
A
PEAK_LIMIT  
Runaway Current-Limit  
Threshold  
I
5.35  
7.35  
RUNAWAY_LIMIT  
PFM Current-Limit  
Threshold  
I
MODE/SYNC = OPEN  
PFM  
MODE/SYNC = OPEN or MODE/SYNC =  
INTVCC  
-0.28  
0
+0.28  
Valley Current-Limit  
Threshold  
I
A
VALLEY_LIMIT  
MODE/SYNC = GND  
2.5  
Maxim Integrated  
4  
www.maximintegrated.com  
MAX17633  
4.5V to 36V, 3.5A, High Efficiency,  
Synchronous Step-Down, DC-DC Converter  
Electrical Characteristics (continued)  
(V = V  
= 24V, R = unconnected (f  
= 500 kHz), C  
= 2.2μF, V  
= V  
= V  
= V = 0V;  
EXTVCC  
IN  
EN/UVLO  
RT  
SW  
INTVCC  
SGND  
PGND  
MODE/SYNC  
V
= 3.67V (MAX17633A), V = 5.5V (MAX17633B), V  
= 1V (MAX17633C), LX = SS = RESET = OPEN, V  
to V = 5V,  
FB  
FB  
FB  
BST  
LX  
T = -40°C to 125°C, unless otherwise noted. Typical values are at T = +25°C. All voltages are referenced to SGND, unless otherwise  
A
A
noted.) (Note 3)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
kHz  
V
RT  
R
R
R
R
= 50.8kΩ  
= 40.2kΩ  
= OPEN  
= 8.06kΩ  
380  
475  
400  
500  
420  
525  
RT  
RT  
RT  
RT  
Switching Frequency  
f
SW  
460  
500  
540  
1950  
2.03  
3.07  
0.55  
2200  
2.13  
3.22  
0.58  
32768  
52  
2450  
2.22  
3.37  
0.605  
MAX17633A  
MAX17633B  
MAX17633C  
(Note 4)  
V
V
FB_HICF  
V
Hiccup Threshold  
FB  
FB_HICF  
HICCUP Timeout  
Minimum On-Time  
Minimum Off-Time  
LX Dead TIme  
Cycles  
ns  
t
80  
ON(MIN)  
t
140  
160  
ns  
OFF(MIN)  
LX  
5
ns  
DT  
RESET  
RESET Output-Level Low  
V
400  
100  
mV  
nA  
I
= 10mA  
RESETL  
RESET  
RESETOutput-Leakage  
Current  
I
-100  
93.8  
90.5  
T = T = 25ºC, V  
= 5.5V  
RESETLKG  
A
J
RESET  
FB Threshold for RESET  
Deassertion  
V
V
rising  
95  
92  
97.8  
94.6  
%
%
FB_OKR  
FB  
FB  
FB Threshold for RESET  
Assertion  
V
V
falling  
FB_OKF  
RESET Delay after FB  
Reaches 95% Regulation  
1024  
Cycles  
THERMAL SHUTDOWN  
Thermal-Shutdown  
Threshold  
Temperature rising  
165  
10  
°C  
°C  
Thermal-Shutdown  
Hysteresis  
Note 3: Electrical specifications are production tested at T = +25ºC. Specifications over the entire operating temperature range are  
A
guaranteed by design and characterization.  
Note 4: See the Overcurrent Protection/Hiccup Mode section for more details  
Maxim Integrated  
5  
www.maximintegrated.com  
MAX17633  
4.5V to 36V, 3.5A, High Efficiency,  
Synchronous Step-Down, DC-DC Converter  
Typical Operating Characteristics  
(V  
= V = 24V, V  
= V  
= 0V, C  
= 2.2μF, C  
= 0.1μF, C = 5600pF, T = -40°C to +125°C, unless otherwise  
EN/UVLO  
IN  
SGND  
PGND  
INTVCC  
BST SS A  
noted. Typical values are at T = +25°C. All voltages are referenced to SGND, unless otherwise noted.)  
A
MAX17633A  
EFFICIENCY vs. LOAD CURRENT  
FIGURE 5 CIRCUIT  
MAX17633A  
EFFICIENCY vs. LOAD CURRENT  
FIGURE 5 CIRCUIT  
MAX17633A  
EFFICIENCY vs. LOAD CURRENT  
FIGURE 5 CIRCUIT  
toc01  
toc02  
toc03  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VIN = 12V  
VIN = 24V  
VIN = 36V  
VIN = 4.5V  
VIN = 24V  
VIN = 24V  
VIN = 4.5V  
VIN = 36V  
VIN = 4.5V  
VIN = 36V  
VIN = 12V  
VIN = 12V  
0
500 1000 1500 2000 2500 3000 3500  
LOAD CURRENT (mA)  
CONDITIONS: FIXED 3.3V OUTPUT, PWM MODE  
10  
10  
0
100  
1000  
50  
500  
LOAD CURRENT (mA)  
CONDITIONS: FIXED 3.3V OUTPUT, DCM MODE  
5000  
LOAD CURRENT (mA)  
CONDITIONS: FIXED 3.3V OUTPUT, PFM MODE  
MAX17633B  
EFFICIENCY vs. LOAD CURRENT  
MAX17633B  
EFFICIENCY vs. LOAD CURRENT  
FIGURE 6 CIRCUIT  
MAX17633B  
EFFICIENCY vs. LOAD CURRENT  
FIGURE 6 CIRCUIT  
FIGURE 6 CIRCUIT  
toc05  
toc06  
toc04  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VIN = 12V  
VIN = 24V  
VIN = 36V  
VIN = 12V  
VIN = 6.5V  
VIN = 36V  
VIN = 24V  
VIN = 6.5V  
VIN = 6.5V  
VIN = 36V  
VIN = 24V  
VIN = 12V  
0
500 1000 1500 2000 2500 3000 3500  
LOAD CURRENT (mA)  
CONDITIONS: FIXED 5V OUTPUT, PWM MODE  
100  
LOAD CURRENT (mA)  
1000  
50  
500  
5000  
LOAD CURRENT (mA)  
CONDITIONS: FIXED 5V OUTPUT, PFM MODE  
CONDITIONS: FIXED 5V OUTPUT, DCM MODE  
MAX17633A  
LINE AND LOAD REGULATION  
FIGURE 5 CIRCUIT  
MAX17633A  
LINE AND LOAD REGULATION  
MAX17633A  
LINE AND LOAD REGULATION  
FIGURE 5 CIRCUIT  
FIGURE 5 CIRCUIT  
toc09  
toc08  
toc07  
3.310  
3.305  
3.300  
3.295  
3.290  
3.285  
3.280  
3.310  
3.305  
3.300  
3.295  
3.290  
3.285  
3.280  
VIN = 36V  
VIN = 36V  
3.39  
3.37  
3.35  
3.33  
3.31  
3.29  
3.27  
3.25  
VIN = 24V  
VIN = 24V  
VIN = 12V  
VIN = 36V  
VIN = 24V  
VIN = 12V  
VIN = 4.5V  
VIN = 4.5V  
VIN = 12V  
VIN = 4.5V  
500 1000 1500 2000 2500 3000 3500  
LOAD CURRENT (mA)  
CONDITIONS: FIXED 3.3V OUTPUT, PFM MODE  
0
500 1000 1500 2000 2500 3000 3500  
0
500 1000 1500 2000 2500 3000 3500  
LOAD CURRENT (mA)  
CONDITIONS: FIXED 3.3V OUTPUT, PWM MODE  
LOAD CURRENT (mA)  
CONDITIONS: FIXED 3.3V OUTPUT, DCM MODE  
Maxim Integrated  
6  
www.maximintegrated.com  
MAX17633  
4.5V to 36V, 3.5A, High Efficiency,  
Synchronous Step-Down, DC-DC Converter  
Typical Operating Characteristics (continued)  
(V  
= V = 24V, V  
= V  
= 0V, C  
= 2.2μF, C  
= 0.1μF, C = 5600pF, T = -40°C to +125°C, unless otherwise  
EN/UVLO  
IN  
SGND  
PGND  
INTVCC  
BST SS A  
noted. Typical values are at T = +25°C. All voltages are referenced to SGND, unless otherwise noted.)  
A
MAX17633B  
MAX17633B  
MAX17633B  
LINE AND LOAD REGULATION  
FIGURE 6 CIRCUIT  
LINE AND LOAD REGULATION  
FIGURE 6 CIRCUIT  
LINE AND LOAD REGULATION  
FIGURE 6 CIRCUIT  
toc10  
toc12  
toc11  
5.05  
5.04  
5.03  
5.02  
5.01  
5.00  
4.99  
4.98  
4.97  
4.96  
4.95  
5.05  
5.04  
5.03  
5.02  
5.01  
5.00  
4.99  
4.98  
5.20  
5.15  
5.10  
5.05  
5.00  
4.95  
VIN = 36V  
VIN = 24V  
VIN = 24V  
VIN = 12V  
VIN = 12V  
VIN = 36V  
VIN = 12V  
VIN = 24V  
VIN = 6.5V  
V
IN = 6.5V  
VIN = 6.5V  
VIN = 36V  
0
500 1000 1500 2000 2500 3000 3500  
LOAD CURRENT (mA)  
CONDITIONS: FIXED 5V OUTPUT, PWM MODE  
0
500 1000 1500 2000 2500 3000 3500  
LOAD CURRENT (mA)  
CONDITIONS: FIXED 5V OUTPUT, DCM MODE  
0
500 1000 1500 2000 2500 3000 3500  
LOAD CURRENT (mA)  
CONDITIONS: FIXED 5V OUTPUT, PFM MODE  
MAX17633B  
MAX17633A  
MAX17633B  
SOFT-START/SHUTDOWN FROM EN/UVLO  
SOFT-START/SHUTDOWN FROM EN/UVLO  
SOFT-START WITH PRE-BIAS OF VOLTAGE 2.5V  
FIGURE 6 CIRCUIT  
FIGURE 5 CIRCUIT  
FIGURE 6 CIRCUIT  
toc14  
toc13  
toc15  
VEN/UVLO  
V
EN/UVLO  
V
5V/div  
5V/div  
EN/UVLO  
5V/div  
VOUT  
V
V
2V/div  
OUT  
2V/div  
OUT  
2V/div  
2A/div  
I
LX  
ILX  
2A/div  
5V/div  
2A/div  
5V/div  
I
LX  
V
V
V
RESET  
RESET  
RESET  
5V/div  
2ms/div  
1ms/div  
2ms/div  
CONDITIONS: FIXED 5V OUTPUT, PWM MODE, 35mA LOAD  
CONDITIONS: FIXED 5V OUTPUT, PWM MODE, 3.5A LOAD  
CONDITIONS: FIXED 3.3V OUTPUT, PWM MODE, 3.5A LOAD  
MAX17633A  
STEADY STATE PERFORMANCE  
MAX17633A  
STEADY STATE PERFORMANCE  
MAX17633A  
SOFT-START WITH PRE-BIAS OF VOLTAGE 1.65V  
FIGURE 5 CIRCUIT  
FIGURE 5 CIRCUIT  
FIGURE 5 CIRCUIT  
toc18  
toc17  
toc16  
V
LX  
20V/div  
20V/div  
V
V
LX  
EN/UVLO  
5V/div  
V
V
OUT (AC-  
OUT (AC-  
10mV/div  
0.5A/div  
20mV/div  
V
2V/div  
2A/div  
OUT  
COUPLED)  
COUPLED)  
I
LX  
I
I
LX  
LX  
2A/div  
V
RESET  
5V/div  
1µs/div  
2µs/div  
CONDITIONS: 35mA LOAD CURRENT,  
FIXED 3.3V OUTPUT, DCM MODE  
2ms/div  
CONDITIONS: FIXED 3.3V OUTPUT, PWM MODE, 35mA LOAD  
CONDITIONS: 3.5A LOAD CURRENT,  
FIXED 3.3V OUTPUT, PWM MODE  
Maxim Integrated  
7  
www.maximintegrated.com  
MAX17633  
4.5V to 36V, 3.5A, High Efficiency,  
Synchronous Step-Down, DC-DC Converter  
Typical Operating Characteristics (continued)  
(V  
= V = 24V, V  
= V  
= 0V, C  
= 2.2μF, C  
= 0.1μF, C = 5600pF, T = -40°C to +125°C, unless otherwise  
EN/UVLO  
IN  
SGND  
PGND  
INTVCC  
BST SS A  
noted. Typical values are at T = +25°C. All voltages are referenced to SGND, unless otherwise noted.)  
A
MAX17633B  
MAX17633A  
MAX17633B  
STEADY STATE PERFORMANCE  
FIGURE 6 CIRCUIT  
STEADY STATE PERFORMANCE  
FIGURE 5 CIRCUIT  
STEADY STATE PERFORMANCE  
FIGURE 6 CIRCUIT  
toc19  
toc20  
toc21  
V
VLX  
20V/div  
V
LX  
20V/div  
LX  
20V/div  
V
V
OUT (AC-  
OUT (AC-  
VOUT (AC-  
COUPLED)  
20mV/div  
50mV/div  
100mV/div  
COUPLED)  
COUPLED)  
I
2A/div  
I
LX  
LX  
ILX  
1A/div  
2A/div  
2µs/div  
40µs/div  
100µs/div  
CONDITIONS: 3.5A LOAD CURRENT,  
FIXED 5V OUTPUT, PWM MODE  
CONDITIONS: 35mA LOAD CURRENT,  
FIXED 3.3V OUTPUT, PFM MODE  
CONDITIONS: 35mA LOAD CURRENT,  
FIXED 5V OUTPUT, PFM MODE  
MAX17633C  
STEADY STATE PERFORMANCE  
FIGURE 4 CIRCUIT  
MAX17633B  
STEADY STATE PERFORMANCE  
FIGURE 6 CIRCUIT  
MAX17633C  
STEADY STATE PERFORMANCE  
FIGURE 4 CIRCUIT  
toc22  
toc23  
toc24  
V
VLX  
LX  
20V/div  
V
LX  
20V/div  
20V/div  
VOUT (AC-  
COUPLED)  
V
OUT (AC-  
V
10mV/div  
OUT (AC-  
50mV/div  
20mV/div  
COUPLED)  
COUPLED)  
I
LX  
I
0.2A/div  
LX  
1A/div  
ILX  
2A/div  
1µs/div  
40µs/div  
CONDITIONS: 3.5A LOAD CURRENT,  
FIXED 5V OUTPUT, DCM MODE  
1µs/div  
CONDITIONS: 35mA LOAD CURRENT, 5V OUTPUT, PFM MODE  
CONDITIONS: 3.5A LOAD CURRENT, 5V OUTPUT, PWM MODE  
MAX17633C  
STEADY STATE PERFORMANCE  
FIGURE 4 CIRCUIT  
MAX17633A  
LOAD TRANSIENT BETWEEN 0A AND 1.75A  
MAX17633A  
LOAD TRANSIENT BETWEEN 1.75A AND 3.5A  
FIGURE 5 CIRCUIT  
FIGURE 5 CIRCUIT  
toc26  
toc25  
toc27  
V
OUT (AC-  
V
OUT (AC-  
V
LX  
100mV/div  
20V/div  
100mV/div  
COUPLED)  
COUPLED)  
V
OUT (AC-  
10mV/div  
COUPLED)  
I
I
OUT  
2A/div  
OUT  
1A/div  
I
0.5A/div  
LX  
200µs/div  
CONDITIONS: FIXED 3.3V OUTPUT, PWM MODE  
100µs/div  
1µs/div  
CONDITIONS: FIXED 3.3V OUTPUT, PWM MODE  
CONDITIONS: 35mA LOAD CURRENT, 5V OUTPUT, DCM MODE  
Maxim Integrated  
8  
www.maximintegrated.com  
MAX17633  
4.5V to 36V, 3.5A, High Efficiency,  
Synchronous Step-Down, DC-DC Converter  
Typical Operating Characteristics (continued)  
(V  
= V = 24V, V  
= V  
= 0V, C  
= 2.2μF, C  
= 0.1μF, C = 5600pF, T = -40°C to +125°C, unless otherwise  
EN/UVLO  
IN  
SGND  
PGND  
INTVCC  
BST SS A  
noted. Typical values are at T = +25°C. All voltages are referenced to SGND, unless otherwise noted.)  
A
MAX17633C  
LOAD TRANSIENT BETWEEN 0A AND 1.75A  
MAX17633A  
MAX17633A  
LOAD TRANSIENT BETWEEN 0.035A AND 1.75A  
LOAD TRANSIENT BETWEEN 0.035A AND 1.75A  
FIGURE 4 CIRCUIT  
FIGURE 5 CIRCUIT  
FIGURE 5 CIRCUIT  
toc28  
toc29  
toc30  
VOUT (AC-  
VOUT (AC-  
V
OUT (AC-  
COUPLED)  
100mV/div  
COUPLED)  
100mV/div  
100mV/div  
COUPLED)  
IOUT  
1A/div  
IOUT  
I
OUT  
1A/div  
1A/div  
400µs/div  
200µs/div  
200µs/div  
CONDITIONS: FIXED 3.3V OUTPUT, PFM MODE  
CONDITIONS: FIXED 3.3V OUTPUT, DCM MODE  
CONDITIONS: 5V OUTPUT, PWM MODE  
MAX17633C  
LOAD TRANSIENT BETWEEN 1.75A AND 3.5A  
MAX17633B  
LOAD TRANSIENT BETWEEN 0A AND 1.75A  
MAX17633B  
LOAD TRANSIENT BETWEEN 1.75A AND 3.5A  
FIGURE 4 CIRCUIT  
FIGURE 6 CIRCUIT  
FIGURE 6 CIRCUIT  
toc33  
toc31  
toc32  
V
OUT (AC-  
V
V
OUT (AC-  
OUT (AC-  
100mV/div  
100mV/div  
COUPLED)  
100mV/div  
COUPLED)  
COUPLED)  
I
I
OUT  
OUT  
I
2A/div  
1A/div  
OUT  
2A/div  
100µs/div  
100µs/div  
200µs/div  
CONDITIONS: FIXED 5V OUTPUT, PWM MODE  
CONDITIONS: FIXED 5V OUTPUT, PWM MODE  
CONDITIONS: 5V OUTPUT, PWM MODE  
MAX17633B  
LOAD TRANSIENT BETWEEN 0.035A AND 1.75A  
FIGURE 6 CIRCUIT  
toc34  
VOUT (AC-  
COUPLED)  
200mV/div  
IOUT  
1A/div  
200µs/div  
CONDITIONS: FIXED 5V OUTPUT, PFM MODE  
Maxim Integrated  
9  
www.maximintegrated.com  
MAX17633  
4.5V to 36V, 3.5A, High Efficiency,  
Synchronous Step-Down, DC-DC Converter  
Typical Operating Characteristics (continued)  
(V  
= V = 24V, V  
= V  
= 0V, C  
= 2.2μF, C  
= 0.1μF, C = 5600pF, T = -40°C to +125°C, unless otherwise  
EN/UVLO  
IN  
SGND  
PGND  
INTVCC  
BST SS A  
noted. Typical values are at T = +25°C. All voltages are referenced to SGND, unless otherwise noted.)  
A
MAX17633B  
MAX17633B  
EXTERNAL CLOCK SYNCHRONIZATION  
LOAD TRANSIENT BETWEEN 0.035A AND 1.75A  
FIGURE 6 CIRCUIT  
FIGURE 6 CIRCUIT  
toc35  
toc36  
V
OUT (AC-  
COUPLED)  
100mV/div  
VSYNC  
VOUT (AC-  
COUPLED)  
5V/div  
20mV/div  
VLX  
20V/div  
5A/div  
I
OUT  
1A/div  
ILX  
4µs/div  
100µs/div  
CONDITIONS: FIXED 5V OUTPUT, PWM MODE,  
3.5A LOAD CURRENT, fSW = 550kHz  
CONDITIONS: FIXED 5V OUTPUT, DCM MODE  
MAX17633B  
EXTERNAL CLOCK SYNCHRONIZATION  
MAX17633A  
EXTERNAL CLOCK SYNCHRONIZATION  
FIGURE 6 CIRCUIT  
toc37  
FIGURE 5 CIRCUIT  
toc38  
VSYNC  
VOUT (AC-  
COUPLED)  
5V/div  
VSYNC  
VOUT (AC-  
COUPLED)  
5V/div  
20mV/div  
20mV/div  
VLX  
20V/div  
5A/div  
VLX  
20V/div  
5A/div  
ILX  
ILX  
4µs/div  
4µs/div  
CONDITIONS: FIXED 5V OUTPUT, PWM MODE,  
3.5A LOAD CURRENT, fSW = 700kHz  
CONDITIONS: FIXED 3.3V OUTPUT, PWM MODE,  
3.5A LOAD CURRENT, fSW = 550kHz  
MAX17633B  
OVER LOAD PROTECTION  
MAX17633A  
EXTERNAL CLOCK SYNCHRONIZATION  
FIGURE 6 CIRCUIT  
FIGURE 5 CIRCUIT  
toc39  
toc40  
VSYNC  
VOUT (AC-  
COUPLED)  
VOUT  
5V/div  
100mV/div  
20mV/div  
20V/div  
5A/div  
VLX  
ILX  
2A/div  
ILX  
4µs/div  
20ms/div  
CONDITIONS: FIXED 3.3V OUTPUT, PWM MODE,  
3.5A LOAD CURRENT, fSW = 700kHz  
CONDITIONS: FIXED 5 OUTPUT, PWM MODE  
Maxim Integrated  
10  
www.maximintegrated.com  
MAX17633  
4.5V to 36V, 3.5A, High Efficiency,  
Synchronous Step-Down, DC-DC Converter  
Typical Operating Characteristics (continued)  
(V  
= V = 24V, V  
= V  
= 0V, C  
= 2.2μF, C  
= 0.1μF, C = 5600pF, T = -40°C to +125°C, unless otherwise  
EN/UVLO  
IN  
SGND  
PGND  
INTVCC  
BST SS A  
noted. Typical values are at T = +25°C. All voltages are referenced to SGND, unless otherwise noted.)  
A
MAX17633A  
OVER LOAD PROTECTION  
MAX17633B  
CLOSED LOOP BODE PLOT  
FIGURE 5 CIRCUIT  
FIGURE 6 CIRCUIT  
toc41  
toc42  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
40  
30  
VOUT  
100mV/div  
20  
10  
0
-10  
ILX  
2A/div  
-20  
-30  
-40  
CROSSOVER  
FREQUENCY = 49.1kHz  
PHASE MARGIN = 67.2°  
20ms/div  
CONDITIONS: FIXED 3.3V OUTPUT, PWM MODE  
1k  
10k  
100k  
FREQUENCY (Hz)  
CONDITIONS: 5V FIXED OUTPUT, 3.5A LOAD CURRENT, PWM MODE  
MAX17633C  
CLOSED LOOP BODE PLOT  
MAX17633A  
CLOSED LOOP BODE PLOT  
FIGURE 5 CIRCUIT  
FIGURE 4 CIRCUIT  
toc43  
toc44  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
40  
30  
40  
90  
80  
70  
60  
50  
40  
30  
30  
20  
20  
10  
10  
0
0
-10  
-20  
-30  
-40  
-10  
-20  
-30  
-40  
CROSSOVER  
FREQUENCY = 47.8kHz  
PHASE MARGIN = 69.1°  
CROSSOVER  
FREQUENCY = 56.4kHz  
PHASE MARGIN = 61.9°  
1k  
10k  
100k  
1k  
10k  
100k  
FREQUENCY (Hz)  
CONDITIONS: 5V ADJUSTABLEOUTPUT, 3.5A LOAD CURRENT, PWM MODE  
FREQUENCY (Hz)  
CONDITIONS: 3.3V FIXED OUTPUT, 3.5A LOAD CURRENT, PWM MODE  
MAX17633C, 5V OUTPUT, 3.5A LOAD CURRENT  
RADIATED EMI CURVE  
toc46  
70  
60  
50  
40  
CISPR-22 CLASS B QP LIMIT  
30  
VERTICAL  
20  
SCAN  
10  
0
HORIZONTAL  
SCAN  
-10  
30  
100  
FREQUENCY (MHz)  
CONDITION: MEASURED ON THE MAX17633CEVKIT#  
1000  
Maxim Integrated  
11  
www.maximintegrated.com  
MAX17633  
4.5V to 36V, 3.5A, High Efficiency,  
Synchronous Step-Down, DC-DC Converter  
Pin Configuration  
BST  
20  
NC  
16  
LX  
19  
LX  
18  
LX  
17  
+
1
PGND  
IN  
15  
PGND  
*EP  
2
14  
13  
12  
IN  
IN  
MAX17633A  
MAX17633B  
MAX17633C  
3
4
NC  
EXTVCC  
EN/UVLO  
MODE/SYNC  
11  
RESET  
5
6
10  
9
7
8
RT  
INTVCC  
SGND  
SS  
FB  
20-PIN TQFN (4mm × 4mm)  
*EXPOSED PAD  
Maxim Integrated  
12  
www.maximintegrated.com  
MAX17633  
4.5V to 36V, 3.5A, High Efficiency,  
Synchronous Step-Down, DC-DC Converter  
Pin Description  
PIN  
NAME  
FUNCTION  
Power Ground Pin of the Converter. Connect externally to the power ground plane. Refer to the  
MAX17633 EV kit datasheet for a layout example  
1, 15  
PGND  
Power-Supply Input Pin. 4.5V to 36V input-supply range. Decouple to PGND with a minimum of 2.2μF  
capacitor; place the capacitor close to the IN and PGND pins.  
2, 3,14  
4
IN  
Enable/Undervoltage Lockout Pin. Drive EN/UVLO high to enable the output. Connect to the center of  
EN/UVLO the resistor-divider between IN and SGND to set the input voltage at which the part turns on. Connect to  
the IN pin for always on operation. Pull low for disabling the device.  
Open-Drain RESET Output. The RESET output is driven low if FB drops below 92% of its set value.  
RESET goes high 1024 cycles after FB rises above 95% of its set value  
5
6
RESET  
5V LDO Output of the Part. Bypass INTVCC with a 2.2μF ceramic capacitance to SGND. LDO doesn't  
support the external loading on INTVCC.  
INTVCC  
7
8
SGND  
SS  
Analog Ground  
Soft-Start Input. Connect a capacitor from SS to SGND to set the soft-start time.  
Feedback Input. Connect the output-voltage node (V  
) to FB for MAX17633A and MAX17633B.  
OUT  
9
FB  
RT  
Connect FB to the center node of an external resistor-divider from the output to SGND to set the output  
voltage for MAX17633C. See the Adjusting Output Voltage section for more details.  
Programmable Switching Frequency Input. Connect a resistor from RT to SGND to set the regulator’s  
switching frequency between 400kHz and 2.2MHz. Leave RT open for the default 500kHz frequency.  
See the Setting the Switching Frequency (RT) section for more details.  
10  
MODE/SYNC Pin Configures the Device to Operate in PWM, PFM, or DCM Modes of Operation. Leave  
MODE/SYNC OPEN for PFM operation (pulse skipping at light loads). Connect MODE/SYNC to SGND  
for constant-frequency PWM operation at all loads. Connect MODE/SYNC to INTVCC for DCM operation  
at light loads.The device can be synchronized to an external clock using this pin. See the Mode Selection  
and External Clock Synchronization (MODE/SYNC) section for more details.  
MODE/  
SYNC  
11  
12  
External Power Supply Input Reduces the Internal-LDO Loss. Connect it to buck output when it is pro-  
grammed to 5V only. When EXTVCC is not used, connect it to SGND.  
EXTVCC  
13, 16  
17–19  
20  
NC  
LX  
Not Connected  
Switching Node Pins. Connect LX pins to the switching side of the inductor.  
Boost Flying Capacitor. Connect a 0.1μF ceramic capacitor between BST and LX.  
BST  
Exposed Pad. Always connect EP to the SGND pin of the IC. Also, connect EP to a large SGND plane  
with several thermal vias for best thermal performance. Refer to the MAX17633 EV kit data sheet for an  
example of the correct method for EP connection and thermal vias.  
EP  
Maxim Integrated  
13  
www.maximintegrated.com  
MAX17633  
4.5V to 36V, 3.5A, High Efficiency,  
Synchronous Step-Down, DC-DC Converter  
Functional Diagram  
MAX17633A/MAX17633B/MAX17633C  
EXTVCC  
BST  
INTVCC  
SGND  
LDO  
IN  
CURRENT-  
SENSE  
LOGIC  
EN/UVLO  
ENOK  
HICCUP  
1.215V  
LX  
PWM/PFM/HICCUP  
LOGIC  
RT  
OSCILLATOR  
PGND  
*S1  
ERROR AMPLIFIER /  
LOOP COMPENSATION  
FB  
*S3  
THERMAL  
SHUTDOWN  
R1  
*S2  
R2  
SLOPE  
COMPENSATION  
INTVCC  
SWITCH-OVER LOGIC  
MODE/SYNC  
MODE  
SELECTION  
LOGIC  
SS  
HICCUP  
ENOK  
RESET  
FB  
RESET  
LOGIC  
*S1 – CLOSE, *S2,*S3 – OPEN FOR MAX17633C  
*S1 – OPEN, *S2,*S3 – CLOSE FOR MAX17633A/MAX17633B  
R1 – 132.7kΩ, R2 – 29.1kΩ FOR MAX17633B  
R1 – 77.7kΩ, R2 – 29.1kΩ FOR MAX17633A  
Maxim Integrated  
14  
www.maximintegrated.com  
MAX17633  
4.5V to 36V, 3.5A, High Efficiency,  
Synchronous Step-Down, DC-DC Converter  
loads. If the state of the MODE/SYNC pin is high (> V  
M_  
Detailed Description  
), the device operates in DCM mode at light loads.  
DCM  
The MAX17633 is a high-efficiency, high-voltage, syn-  
chronous step-down DC-DC converter with integrated  
MOSFETs operating over an input voltage range of 4.5V  
to 36V. It can deliver up to 3.5A current. The MAX17633  
is available in three variants MAX17633A, MAX17633B,  
and MAX17633C. The MAX17633A and MAX17633B are  
the fixed 3.3V and fixed 5V output voltage parts, respec-  
tively. MAX17633C is an adjustable output voltage (from  
During external clock synchronization the device oper-  
ates in PWM mode, irrespective of whether PWM or DCM  
mode is set. When 16 external clock rising edges are  
detected on the MODE/SYNC pin, the internal oscillator  
frequency set by RT pin (f ) changes to external clock  
SW  
frequency. The device remains in PWM mode until EN/  
UVLO or input power is cycled. The external clock fre-  
quency must be between 1.1 x f  
and 1.4 x f . The  
0.9V up to 90% of V ) part. Built-in compensation across  
SW  
SW  
IN  
minimum external clock pulse width should be greater  
than 50ns. The off-time duration of the external clock  
should be at least 160ns.  
the output voltage range eliminates the need for exter-  
nal components. The feedback (FB) voltage regulation  
accuracy over -40ºC to +125ºC is ±1.3% for MAX17633A,  
MAX17633B, and MAX17633C.  
If PFM mode of operation is set, the device ignores the  
external clock pulses and remains in PFM mode. Thus,  
external clock synchronization is not supported in PFM  
mode. See the MODE/SYNC section in the Electrical  
Characteristics table for details.  
The device features a peak-current-mode control archi-  
tecture. An internal transconductance error amplifier  
produces an integrated error voltage at an internal node,  
which sets the duty cycle using a PWM comparator, a  
high-side current-sense amplifier, and a slope-compen-  
sation generator. At each rising edge of the clock, the  
high-side MOSFET turns on and remains on until either  
the appropriate or maximum duty cycle is reached, or  
the peak current limit is detected. During the high-side  
MOSFET’s on-time, the inductor current ramps up. During  
the second half of the switching cycle, the high-side  
MOSFET turns off and the low-side MOSFET turns on.  
The inductor releases the stored energy as its current  
ramps down and provides current to the output.  
PWM Mode Operation  
In PWM mode, the inductor current is allowed to go  
negative. PWM operation provides constant frequency  
operation irrespective of loading, and is useful in applica-  
tions sensitive to switching frequency. However, the PWM  
mode of operation gives lower efficiency at light loads  
compared to PFM and DCM modes of operation.  
PFM Mode Operation  
PFM mode of operation disables negative inductor cur-  
rent and additionally skips pulses at light loads for high  
efficiency. In PFM mode, the inductor current is forced  
The device features a MODE/SYNC pin that can be used  
to operate the device in PWM, PFM, or DCM control  
schemes. The device features adjustable-input undervolt-  
age lockout, adjustable soft-start, open drain RESET, and  
external clock synchronization features. The MAX17633  
offers a low minimum on-time that enables designing the  
converter at higher switching frequencies, which helps  
reduce the solution size.  
to a fixed peak of I  
(1.2A typ) every clock cycle until  
PFM  
the output rises to 102.3% of the set nominal output volt-  
age. Once the output reaches 102.3% of the set nominal  
output voltage, both the high-side and low-side FETs are  
turned off and the device enters hibernate operation until  
the load discharges the output to 101.1% of the set nomi-  
nal output voltage. Most of the internal blocks are turned  
off in hibernate operation to reduce quiescent current.  
After the output falls below 101.1% of the set nominal  
output voltage, the device comes out of hibernate opera-  
tion, turns on all internal blocks, and again commences  
the process of delivering pulses of energy to the output  
until it reaches 102.3% of the set nominal output voltage.  
The advantage of PFM mode is higher efficiency at light  
loads because of lower quiescent current drawn from the  
supply. The disadvantage is that the output-voltage ripple  
is higher compared to PWM or DCM modes of operation  
and switching frequency is not constant at light loads.  
Mode Selection and External Clock Synchro-  
nization (MODE/SYNC)  
The MAX17633 supports PWM, PFM, and DCM modes  
of operation. The device enters the required mode of  
operation based on the setting of the MODE/SYNC pin  
as detected within 1.5ms after V  
and EN/UVLO volt-  
CC  
ages exceed their respective UVLO rising thresholds  
(V , V ). If the MODE/SYNC pin is open,  
INTVCC_UVR ENR  
the device operates in PFM mode at light loads. If the  
state of the MODE/SYNC pin is low (< V ), the  
M_PWM  
device operates in constant-frequency PWM mode at all  
Maxim Integrated  
15  
www.maximintegrated.com  
MAX17633  
4.5V to 36V, 3.5A, High Efficiency,  
Synchronous Step-Down, DC-DC Converter  
DCM Mode Operation  
Table 1. Switching Frequency vs.  
DCM mode of operation features constant frequency  
operation down to lighter loads than PFM mode, by  
disabling negative inductor current at light loads. DCM  
operation offers efficiency performance that lies between  
PWM and PFM modes. The output-voltage ripple in DCM  
mode is comparable to PWM mode and relatively lower  
compared to PFM mode.  
R
Resistor  
RT  
SWITCHING FREQUENCY  
RRT RESISTOR  
(KΩ)  
(KHZ)  
400  
500  
50.8  
OPEN  
40.2  
500  
2200  
8.06  
Linear Regulator (INTVCC and EXTVCC)  
The MAX17633 has an internal low dropout (LDO) regu-  
lator that powers INTVCC from IN. This LDO is enabled  
during power-up or when EN/UVLO is above 0.75V (typ).  
An internal switch connects the EXTVCC to INTVCC. The  
switch is open during power up. If INTVCC is above its  
UVLO threshold and EXTVCC is greater than 4.7V (typ),  
then the internal LDO is disabled and INTVCC is pow-  
ered from EXTVCC. Powering INTVCC (INTVCC output  
voltage is 5V typ) from EXTVCC increases efficiency at  
higher input voltages. Bypass INTVCC to SGND with a  
2.2µF low-ESR ceramic capacitor. INTVCC powers the  
internal blocks and the low-side MOSFET driver and  
recharges the external bootstrap capacitor  
Where R is in kΩ and f  
open forces the device to operate at a default switching  
frequency of 500kHz. See Table 1 for R resistor values  
for a few common switching frequencies.  
is in kHz. Leaving the RT pin  
RT  
SW  
RT  
Operating Input-Voltage Range  
The minimum and maximum operating input voltages for  
a given output-voltage setting should be calculated as  
follows:  
V
+ I  
(
× R  
(
+ R  
DCR(MAX) DS_ONL(MAX)  
)
)
OUT  
OUT(MAX)  
V
=
IN(MIN)  
1 - f  
× t  
(
)
SW(MAX)  
OFF_MIN(MAX)  
The MAX17633 employs an undervoltage lockout circuit  
that forces the converter off when INTVCC falls below  
+ I  
(
× R  
(
− R  
)
)
DS_ONH(MAX)  
DS_ONL(MAX)  
OUT MAX  
(
)
V
(3.8V typ). The buck converter can be  
INTVCC_UVF  
immediately enabled again when INTVCC > V  
INTVCC_  
V
OUT  
(4.2typ). The 400mV UVLO hysteresis prevents chat-  
UVR  
V
=
f
IN MAX  
(
)
× t  
tering on power-up and power-down.  
SW MAX  
ON_MIN MAX  
( )  
(
)
In applications where the buck converter output is con-  
nected to the EXTVCC pin, if the output is shorted to  
ground then the transfer from EXTVCC to internal LDO  
happens seamlessly without any impact on the normal  
functionality. Connect the EXTVCC pin to SGND when  
not in use.  
where:  
V
= Steady-state output voltage,  
OUT  
I
= Maximum load current,  
OUT(MAX)  
R
= Worst-case DC resistance of the inductor,  
DCR  
f
t
= Maximum switching frequency,  
SW(MAX)  
Setting the Switching Frequency (RT)  
= Worst-case minimum switch off-time  
OFF_MIN(MAX)  
The switching frequency of the device can be pro-  
grammed from 400kHz to 2.2MHz by using a resistor con-  
nected from the RT pin to SGND. The switching frequency  
(160ns),  
t
Worst-case minimum switch on-time  
ON_MIN(MAX) =  
(80ns),  
(f ) is related to the resistor(R ) connected at the RT  
SW  
RT  
R
and R  
= Worst case  
DS_ONH(MAX)  
pin by the following equation:  
DS_ONL(MAX)  
on-state resistance of low-side and high-side internal  
MOSFETs respectively.  
21000  
R
− 1.7  
RT  
f
SW  
Maxim Integrated  
16  
www.maximintegrated.com  
MAX17633  
4.5V to 36V, 3.5A, High Efficiency,  
Synchronous Step-Down, DC-DC Converter  
Overcurrent Protection/Hiccup Mode  
Thermal-Shutdown Protection  
The device is provided with a robust overcurrent protec-  
tion (OCP) scheme that protects the device under over-  
load and output short-circuit conditions. A cycle-by-cycle  
peak current limit turns off the high-side MOSFET when-  
ever the high-side switch current exceeds an internal limit  
Thermal-shutdown protection limits junction temperature  
in the device. When the junction temperature of the device  
exceeds +165ºC, an on-chip thermal sensor shuts down  
the device, allowing the device to cool. The device turns  
on with soft-start after the junction temperature reduces  
of I  
(5.4A typ). A runaway current limit on the  
by 10°C. Carefully evaluate the total power dissipation  
(see the Power Dissipation section) to avoid unwanted  
triggering of the thermal shutdown in normal operation.  
PEAK-LIMIT  
high-side switch current at I  
(6.4A typ)  
RUNAWAY_LIMIT  
protects the device under high input voltage, output short-  
circuit conditions when there is insufficient output voltage  
available to restore the inductor current that has built up  
during the on period of the step-down converter. One  
occurrence of the runaway current limit triggers hiccup  
Applications Information  
Input Capacitor Selection  
The input filter capacitor reduces peak currents drawn  
from the power source and reduces noise and voltage  
ripple on the input caused by the circuit’s switching.  
mode. In addition, if feedback voltage drops to V  
FB_HICF  
(0.58V typ) due to a fault condition, hiccup mode is trig-  
gered 1024 clock cycles after soft-start is completed. In  
hiccup mode, the converter is protected by suspending  
switching for a hiccup timeout period of 32,768 clock  
cycles of half the switching frequency. Once the hiccup  
timeout period expires, soft-start is attempted again. Note  
that when soft-start is attempted under overload condi-  
The input capacitor RMS current requirement (I  
defined by the following equation:  
) is  
RMS  
V
×( V  
V
- V  
)
OUT  
IN  
IN  
OUT  
×
OUT(MAX)  
I
= I  
RMS  
tion, if feedback voltage does not exceed V  
, the  
FB_HICF  
where, I  
is the maximum load current. I  
has  
RMS  
OUT(MAX)  
device continues to switch at half the programmed switch-  
ing frequency for the time duration of the programmed  
soft-start time and 1024 clock cycles. Hiccup mode of  
operation ensures low power dissipation under output  
short-circuit conditions.  
a maximum value when the input voltage equals twice  
the output voltage (V = 2 x V ), so I  
=
RMS(MAX)  
IN  
OUT  
I
/2. Choose an input capacitor that exhibits less  
OUT(MAX)  
than +10°C temperature rise at the RMS input current for  
optimal long-term reliability. Use low-ESR ceramic capaci-  
tors with high-ripple-current capability at the input. X7R  
capacitors are recommended in industrial applications for  
their temperature stability. Calculate the input capacitance  
using the following equation:  
RESET Output  
The device includes a RESET comparator to monitor the  
status of output voltage. The open-drain RESET output  
requires an external pullup resistor. RESET goes high  
(high impedance) with a delay of 1024 switching cycles  
I
× D × 1 − D  
(
× ∆ V  
)
OUT MAX  
(
)
C
=
after the regulator output increases above V  
and  
IN  
FB_OKR  
η × f  
SW  
IN  
95% of V  
tor output voltage drops to below V  
. RESET goes low when the regula-  
FB_REG  
and 92% of  
where:  
D = V  
FB_OKF  
V
. RESET also goes low during thermal shutdown  
FB_REG  
/V is the duty ratio of the controller,  
OUT IN  
or when the EN/UVLO pin goes below V  
.
ENF  
f
= Switching frequency,  
SW  
Prebiased Output  
ΔV = Allowable input voltage ripple,  
IN  
When the device starts into a prebiased output, both the  
high-side and the low-side switches are turned off so  
that the converter does not sink current from the output.  
Highside and low-side switches do not start switching until  
the PWM comparator commands the first PWM pulse, at  
which point switching commences. The output voltage is  
then smoothly ramped up to the target value in alignment  
with the internal reference.  
η = Efficiency.  
In applications where the source is located distant from  
the device input, an appropriate electrolytic capacitor  
should be added in parallel to the ceramic capacitor  
to provide necessary damping for potential oscillations  
caused by the inductance of the longer input power path  
and input ceramic capacitor.  
Maxim Integrated  
17  
www.maximintegrated.com  
MAX17633  
4.5V to 36V, 3.5A, High Efficiency,  
Synchronous Step-Down, DC-DC Converter  
ered while selecting the output capacitor. Derating curves  
are available from all major ceramic capacitor vendors  
Inductor Selection  
Three key inductor parameters must be specified for  
operation with the device: inductance value (L), inductor  
Soft-Start Capacitor Selection  
saturation current (I  
), and DC resistance (R  
). The  
SAT  
DCR  
The device implements adjustable soft-start operation to  
reduce inrush current. A capacitor connected from the SS  
pin to SGND programs the soft-start time. The selected  
switching frequency and output voltage determine the  
inductor value as follows:  
output capacitance (C  
determine the minimum required soft-start capacitor as  
follows:  
) and the output voltage (V  
)
SEL  
OUT  
1.5  
Where V  
and f  
are nominal values and f  
is in  
OUT  
SW  
SW  
−6  
Hz. Select an inductor whose value is nearest to the value  
calculated by the previous formula. Select a low-loss  
inductor closest to the calculated value with acceptable  
dimensions and having the lowest possible DC resis-  
tance. The saturation current rating (I  
must be high enough to ensure that saturation can occur  
C
≥ 28 × 10 × C  
× V  
SS  
SEL OUT  
The soft-start time (t ) is related to the capacitor con-  
SS  
nected at SS (C ) by the following equation:  
SS  
) of the inductor  
SAT  
C
SS  
t
=
SS  
−6  
5.55 × 10  
only above the peak current-limit value of I  
(5.4A typ).  
PEAK_LIMIT  
For example, to program a 1ms soft-start time, a 5.6nF  
capacitor should be connected from the SS pin to SGND.  
Note that, during start-up, device operates at half the  
programmed switching frequency until the output voltage  
reaches 66.7% of set output nominal voltage.  
Output Capacitor Selection  
X7R ceramic output capacitors are preferred due to  
their stability over temperature in industrial applications.  
Output capacitor is calculated and sized to support a 50%  
of maximum output current as the dynamic step load, and  
to contain the output-voltage deviation to within ±3% of  
the output voltage. The minimum required output capaci-  
tance can be calculated as follows:  
Setting the Input Undervoltage-Lockout Level  
The device offers an adjustable input undervoltage-lockout  
level. Set the voltage at which the device turns on with  
a resistive voltage-divider connected from INto SGND.  
Connect the center node of the divider to the EN/UVLO pin.  
I
× t  
1
2
STEP RESPONSE  
C
=
×
OUT  
∆ V  
Choose R  
to be 3.3MΩ and then calculate R  
TOP  
BOTTOM  
OUT  
as follows:  
0.35  
t
R
× 1.215  
− 1.215  
RESPONSE  
TOP  
f
C
R
=
BOTTOM  
V
(
)
INU  
where:  
I
t
= Load current step,  
STEP  
where V  
to turn on. Ensure that V  
is the voltage at which the device is required  
INU  
= Response time of the controller,  
= Allowable output-voltage deviation,  
is higher than 0.8 x V  
INU OUT  
RESPONSE  
to avoid hiccup during slow power-up (slower than soft-  
start) or power-down. If the EN/UVLO pin is driven from  
an external signal source, a series resistance of minimum  
1kΩ is recommended to be placed between the output  
pin of the signal source and the EN/UVLO pin to reduce  
voltage ringing on the line.  
ΔV  
OUT  
f
= Target closed-loop crossover frequency.  
C
Select f to be 1/10th of f  
less than or equal to 800kHz. If the switching frequency is  
more than 800kHz, select f to be 80kHz. Actual derating  
for the switching frequencies  
C
SW  
C
of ceramic capacitors with DC-voltage must be consid-  
Maxim Integrated  
18  
www.maximintegrated.com  
MAX17633  
4.5V to 36V, 3.5A, High Efficiency,  
Synchronous Step-Down, DC-DC Converter  
V
V
OUT  
IN  
MAX17633A  
MAX17633B  
MAX17633C  
MAX17633C  
R
U
R
TOP  
EN/UVLO  
FB  
R
B
R
BOTTOM  
Figure 1. Setting the Input Undervoltage Lockout  
Figure 2. Setting the Output Voltage  
where:  
Adjusting Output Voltage  
Set the output voltage with a resistive voltage-divider  
P
= Output power  
OUT  
connected from the output-voltage node (V  
(see Figure 2). Connect the center node of the divider  
to the FB pin for MAX17633C. Connect the output-  
) to SGND  
OUT  
η = Efficiency of the converter  
= DC resistance of the inductor.  
R
DCR  
See Typical Operating Characteristics for more informa-  
voltage node (V  
) to the FB pin for MAX17633A and  
OUT  
tion on efficiency at typical operating conditions.  
MAX17633B. Use the following procedure to choose the  
resistive voltage-divider values:  
For a typical multilayer board, the thermal performance  
metrics for the package are given below:  
Calculate resistor R from the output to the FB pin as  
U
follows:  
θ
= 26ºC/W  
= 2ºC/W  
JC  
JA  
270  
R
=
f
θ
U
× C  
C
OUT  
The junction temperature of the device can be estimated  
where R is in kΩ, crossover frequency f is in Hz, and  
at any given maximum ambient temperature (T  
from the following equation:  
)
U
C
A(MAX)  
the output capacitor C  
is in F. Calculate resistor R  
OUT  
B
connected from the FB pin to SGND as follows:  
T
= T  
+ θ × P  
(
)
J(MAX)  
A(MAX) JA LOSS  
R
× 0.9  
U
R
=
B
V
− 0.9  
If the application has a thermal-management system that  
ensures that the exposed pad of the device is maintained  
(
)
OUT  
at a given temperature (T  
sinks, then the junction temperature of the device can be  
estimated at any given maximum ambient temperature as:  
) by using proper heat  
R is in kΩ.  
EP(MAX)  
B
Select an appropriate f and C  
combination of R and R is less than 50kΩ.  
so that the parallel  
C
U
OUT  
B
T
= T  
+
θ
(
× P  
JC LOSS  
)
J(MAX)  
EP(MAX)  
Power Dissipation  
At a particular operating condition, the power losses that  
lead to a temperature rise of the part are estimated as fol-  
lows:  
Note: Junction temperatures greater than +125°C  
degrade operating lifetimes.  
1
η
2
P
= P  
(
×
− 1 − I  
× R  
OUT DCR  
LOSS  
OUT  
(
))  
(
)
P
= V  
× I  
OUT  
OUT OUT  
Maxim Integrated  
19  
www.maximintegrated.com  
MAX17633  
4.5V to 36V, 3.5A, High Efficiency,  
Synchronous Step-Down, DC-DC Converter  
When routing the circuitry around the IC, the analog  
small-signal ground and the power ground for switching  
currents must be kept separate. They should be con-  
nected together at a point where switching activity is at a  
minimum. This helps keep the analog ground quiet. The  
ground plane should be kept continuous/unbroken as  
far as possible. No trace carrying high switching current  
should be placed directly over any ground plane discon-  
tinuity  
PCB Layout Guidelines  
All connections carrying pulsed currents must be very  
short and as wide as possible. The inductance of these  
connections must be kept to an absolute minimum due to  
the high di/dt of the currents. Since inductance of a cur-  
rent-carrying loop is proportional to the area enclosed by  
the loop, if the loop area is made very small, inductance  
is reduced. Additionally, small-current loop areas reduce  
radiated EMI.  
PCB layout also affects the thermal performance of the  
design. A number of thermal throughputs that connect to a  
large ground plane should be provided under the exposed  
pad of the part for efficient heat dissipation.  
A ceramic input filter capacitor should be placed close  
to the IN pins of the IC. This eliminates as much trace  
inductance effects as possible and gives the IC a cleaner  
voltage supply. A bypass capacitor for the INTVCCpin  
also should be placed close to the pin to reduce effects of  
trace impedance.  
For a sample layout that ensures first pass success, refer  
to the MAX17633 evaluation kit layout available at www.  
maximintegrated.com.  
Typical Application Circuits  
Typical Application Circuit —Adjustable 3.3V Output  
V
IN  
4.5V TO 36V  
C1  
2.2μF  
2x  
EN/UVLO  
IN  
IN  
BST  
IN  
RT  
C5  
0.1μF  
MODE/SYNC  
INTVCC  
L1  
LX  
LX  
5.6μH  
3.3V, 3.5A  
V
OUT  
MAX17633C  
C3  
2.2μF  
C4  
47μF  
2x  
R1  
76.8kΩ  
LX  
SGND  
RESET  
FB  
PGND  
SS  
PGND  
EXTVCC  
f
= 500kHz  
SW  
R2  
L1: XAL5050-562ME  
C1: GRM32ER72A225KA35  
C4: GRM32ER70J476KE20  
28.7kΩ  
C2  
5600pF  
MODE/SYNC:  
1. CONNECT TO SGND FOR PWM MODE  
2. CONNECT TO INTVCC FOR DCM MODE  
3. LEAVE OPEN FOR PFM MODE  
Figure 3. Adjustable 3.3V Output with 500kHz Switching Frequency  
Maxim Integrated  
20  
www.maximintegrated.com  
MAX17633  
4.5V to 36V, 3.5A, High Efficiency,  
Synchronous Step-Down, DC-DC Converter  
Typical Application Circuits (continued)  
Typical Application Circuit—Adjustable 5V Output  
V
IN  
6.5V TO 36V  
C1  
2.2μF  
2x  
EN/UVLO  
IN  
IN  
BST  
IN  
RT  
C5  
0.1μF  
MODE/SYNC  
INTVCC  
L1  
LX  
LX  
6.8μH  
5V, 3.5A  
V
OUT  
MAX17633C  
C3  
2.2μF  
C4  
22μF  
2x  
R1  
133kΩ  
LX  
SGND  
RESET  
FB  
PGND  
SS  
PGND  
EXTVCC  
f
= 500kHz  
SW  
R2  
L1: XAL5050-682ME  
C1: GRM32ER72A225KA35  
C4: GRM32ER71A226K  
28.7kΩ  
C2  
5600pF  
V
OUT  
MODE/SYNC:  
1. CONNECT TO SGND FOR PWM MODE  
2. CONNECT TO INTVCC FOR DCM MODE  
3. LEAVE OPEN FOR PFM MODE  
Figure 4. Adjustable 5V Output with 500kHz Switching Frequency  
Typical Application Circuit —Fixed 3.3V Output  
V
IN  
4.5V TO 36V  
C1  
2.2μF  
2x  
EN/UVLO  
IN  
IN  
BST  
IN  
RT  
C5  
0.1μF  
MODE/SYNC  
INTVCC  
L1  
LX  
LX  
5.6μH  
3.3V, 3.5A  
V
OUT  
MAX17633A  
C3  
2.2μF  
C4  
47μF  
2x  
LX  
SGND  
RESET  
FB  
PGND  
SS  
PGND  
EXTVCC  
f
= 500kHz  
SW  
L1: XAL5050-562ME  
C2  
5600pF  
C1: GRM32ER72A225KA35  
C4: GRM32ER70J476KE20  
MODE/SYNC:  
1. CONNECT TO SGND FOR PWM MODE  
2. CONNECT TO INTVCC FOR DCM MODE  
3. LEAVE OPEN FOR PFM MODE  
Figure 5. Fixed 3.3V Output with 500kHz Switching Frequency  
Maxim Integrated  
21  
www.maximintegrated.com  
MAX17633  
4.5V to 36V, 3.5A, High Efficiency,  
Synchronous Step-Down, DC-DC Converter  
Typical Application Circuits (continued)  
Typical Application Circuit —Fixed 5V Output  
V
IN  
6.5V TO 36V  
C1  
2.2μF  
2x  
EN/UVLO  
IN  
IN  
BST  
IN  
RT  
C5  
0.1μF  
MODE/SYNC  
INTVCC  
L1  
LX  
LX  
6.8μH  
5V, 3.5A  
V
OUT  
MAX17633B  
C3  
2.2μF  
C4  
22μF  
LX  
SGND  
2x  
RESET  
FB  
PGND  
SS  
PGND  
EXTVCC  
f
= 500kHz  
SW  
C2  
5600pF  
L1: XAL5050-682ME  
C1: GRM32ER72A225KA35  
C4: GRM32ER71A226K  
MODE/SYNC:  
1. CONNECT TO SGND FOR PWM MODE  
2. CONNECT TO INTVCC FOR DCM MODE  
3. LEAVE OPEN FOR PFM MODE  
Figure 6. Fixed 5V Output with 500kHz Switching Frequency  
Ordering Information  
OUTPUT  
PART NUMBER  
VOLTAGE  
PIN-PACKAGE  
(V)  
20 TQFN-EP*  
(4mm x 4mm)  
MAX17633AATP+  
MAX17633AATP+T  
MAX17633BATP+  
MAX17633BATP+T  
MAX17633CATP+  
MAX17633CATP+T  
3.3  
20 TQFN-EP*  
(4mm x 4mm)  
3.3  
20 TQFN-EP*  
(4mm x 4mm)  
5
20 TQFN-EP*  
(4mm x 4mm)  
5
20 TQFN-EP*  
(4mm x 4mm)  
Adjustable  
Adjustable  
20 TQFN-EP*  
(4mm x 4mm)  
+Denotes a lead(Pb)-free/RoHS compliant package  
*EP = Exposed pad.  
T = Tape and reel.  
Maxim Integrated  
22  
www.maximintegrated.com  
MAX17633  
4.5V to 36V, 3.5A, High Efficiency,  
Synchronous Step-Down, DC-DC Converter  
Revision History  
REVISION REVISION  
PAGES  
CHANGED  
DESCRIPTION  
NUMBER  
DATE  
0
4/18  
Initial release  
Updated the General Description, Benefits and Features, Electrical Characteristics,  
Pin Description, Detailed Description, and Operating Input-Voltage Range sections,  
and TOC01–TOC12; replaced the Typical Application Circuit and Mode Selection and  
External Clock Synchronization (MODE/SYNC); added TOC45–TOC46  
4–5, 7–11,  
14, 16, 18, 19  
1
2
2/19  
7/20  
Updated the General Description, Benefits and Features, Electrical Characteristics,  
Pin Configuration, Pin Description, Detailed Description, PFM Mode Operation,  
Overcurrent Protection/Hiccup Mode, Output Capacitor Selection, Thermal-Shutdown  
Protection, Power Dissipation, and added the MAX17633AATP+T, MAX17633BATP+T  
and MAX17633CATP+T to the Ordering Information section; updated TOC34,  
TOC36–TOC39, TOC45, TOC46 and replaced the Typical Application Circuit  
1–3, 5, 9–13,  
15–19, 22  
For pricing, delivery, and ordering information, please visit Maxim Integrated’s online storefront at https://www.maximintegrated.com/en/storefront/storefront.html.  
Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses  
are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits)  
shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.  
©
Maxim Integrated and the Maxim Integrated logo are trademarks of Maxim Integrated Products, Inc.  
2020 Maxim Integrated Products, Inc.  
23  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY