MAX17843 [MAXIM]

12-Channel, High-Voltage Smart Sensor Data-Acquisition Interface;
MAX17843
型号: MAX17843
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

12-Channel, High-Voltage Smart Sensor Data-Acquisition Interface

文件: 总131页 (文件大小:2069K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
EVALUATION KIT AVAILABLE  
Click here for production status of specific part numbers.  
MAX17843  
12-Channel, High-Voltage Smart Sensor  
Data-Acquisition Interface  
General Description  
Benefits and Features  
12-Cell Battery-Voltage Measurement for Lithium-Ion,  
The MAX17843 is a programmable, highly integrated,  
high-voltage, 12-channel battery-monitoring smart data-  
acquisition interface with extensive features for safety. It  
is optimized for use with batteries used in automotive sys-  
tems, hybrid electric battery packs, electric cars, and any  
system that stacks long series strings of secondary metal  
batteries. This highly integrated battery sensor incorpo-  
rates a high-speed differential UART bus for robust daisy-  
chained serial communication.  
NiMH, or Super-Cap Cells  
Two Auxiliary Analog Inputs for NTC Thermistor or  
Absolute Voltage Measurement  
Die Temperature Measurement and alert  
High-Accuracy Differential Measurement I/Os  
• ±2mV Accuracy at +25°C and 3.6V  
Integrated 12-Channel Data-Acquisition System  
Differential High-Voltage Mux to ADC  
• 14-Bit ADC Resolution with Oversampling  
12 Cell Voltages Measured within 142μs  
• Module Voltage Measurement  
The analog front-end combines a 12-channel voltage-  
measurement data-acquisition system with a high-voltage  
switch-bank input. All measurements are done differen-  
tially across each cell. The full-scale measurement range  
is from 0 to 5.0V with a usable range of 0.2V to 4.8V. A  
high-speed successive approximation (SAR) A/D con-  
verter is used to digitize the cell voltages at 14-bit resolu-  
tion with oversampling. All 12 cells can be measured in  
under 142μs. The MAX17843 uses a 2-scan approach  
for collecting cell measurements and correcting them for  
errors. This 2-phase approach yields excellent accuracy  
over temperature and in the face of extreme noise in the  
system.  
• Redundant ADC  
Battery Fault Detection  
• Overvoltage and Undervoltage Digital Threshold  
Detection  
• Enhanced Diagnostic Features for Fault Detection  
to Support ASIL and FMEA  
12 Internal Cell-Balancing Switches  
• Support Up to 150mA per Switch  
• Emergency Cell-Discharge Mode  
The MAX17843 has two auxiliary analog inputs that can  
be used to measure external thermistor components. A  
negative temperature coefficient (NTC) thermistor can be  
configured with the AUXIN analog inputs to accurately  
monitor module or battery-cell temperature. A thermal-  
overload detector disables the MAX17843’s linear regula-  
tor to protect the IC, and a die-temperature measurement  
is also available.  
Integrated 9V to 65V Input Linear Regulator  
Integrated Temperature-Compensated, Voltage  
Reference  
Robust Differential Daisy-Chain UART Interface  
• Up to 32 Connected ICs in a Single Daisy-Chain  
• Compatible with Direct MCU Connection  
• Standard UART bytes at 2Mb/s (max) Rate  
Four General-Purpose Digital I/O Lines  
Applications  
Built-In Diagnostics to Support ASIL D and FMEA  
48V Vehicle Battery Modules or Systems  
High-Voltage Electric Vehicle (EVs)  
Hybrid Electric Vehicles (HEVs)  
Battery Packs  
Requirements  
Ultra-Low-Power Dissipation  
• 2.0mA (typ) Standby-Mode Supply Current  
3μA Shutdown Mode Leakage Current  
Electric Bikes  
High-Power Battery-Backup Systems  
Super-Cap Backup Systems  
Power Tools  
-40°C to +125°C Operating Temperature Range  
(AEC-Q100 Grade 1)  
64-Pin, Lead-Free/RoHS-Compliant, 10mm x 10mm  
LQFP Package  
Ordering Information appears at end of data sheet.  
19-100084; Rev 2; 4/18  
MAX17843  
12-Channel, High-Voltage Smart Sensor  
Data-Acquisition Interface  
TABLE OF CONTENTS  
General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Benefits and Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Simplified Operating Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11  
Functional Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Pin Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Detailed Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Data Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27  
Data Acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27  
Precision Internal Voltage References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Measurement Calibration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27  
Cell Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27  
Input Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28  
Block Voltage Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28  
Auxiliary Inputs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29  
THRM Output. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30  
Computing Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30  
Temperature Alerts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30  
Die Temperature Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Die Temperature Alert . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Acquisition Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32  
Oversampling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32  
Infinite Impulse Response Filtering (IIR Filter): . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33  
RDFILT Bit in SCANCTRL Register (0x13) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34  
AUTOBALSWDIS Feature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36  
Acquisition Watchdog Timeout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Scan Modes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38  
Acquisition Time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39  
Measurement Alerts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40  
Voltage Alerts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40  
Cell Mismatch. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40  
Cell Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40  
Temperature Alerts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40  
Maxim Integrated  
2  
www.maximintegrated.com  
MAX17843  
12-Channel, High-Voltage Smart Sensor  
Data-Acquisition Interface  
(
)
TABLE OF CONTENTS CONTINUED  
Cell Balancing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Cell-Balancing Switches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Maximum Cell-Balancing Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Cell-Balancing Watchdog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Emergency-Discharge Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43  
Low-Voltage Regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .44  
HV Charge Pump . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .45  
Oscillators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .46  
Device ID Number. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .46  
Power-On And Shutdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Power-On Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .46  
Power-On Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Shutdown Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .48  
Shutdown Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .48  
UART Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .50  
UART Ports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
UART Transmitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
UART Receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
UART RX Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
UART Loopback. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .53  
External Loopback Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .53  
Internal Loopback Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .53  
Baud Rate Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .53  
TX Adaptive Mode for Single-Ended Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .53  
Battery-Management UART Protocol. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .53  
Command Packet. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .54  
Preamble Character. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .54  
Data Characters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55  
Stop Character. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .56  
UART Idle Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .56  
UART Communication Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .56  
Data Types. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57  
Command Bytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57  
Command-Byte Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57  
Register Addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57  
Register Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57  
Data-Check Byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .58  
Maxim Integrated  
3  
www.maximintegrated.com  
MAX17843  
12-Channel, High-Voltage Smart Sensor  
Data-Acquisition Interface  
(
)
TABLE OF CONTENTS CONTINUED  
PEC Byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .58  
Alive-Counter Byte. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .58  
Fill Bytes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .58  
Battery-Management  
UART Protocol Commands. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59  
HELLOALL Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59  
WRITEALL Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60  
WRITEDEVICE Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60  
READALL Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
READDEVICE Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .62  
READBLOCK Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63  
Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .64  
ALTREF Diagnostic Measurement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .66  
V
AA  
Diagnostic Measurement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
LSAMP Offset Diagnostic Measurement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .68  
Zero-Scale ADC Diagnostic Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .68  
Full-Scale ADC Diagnostic Measurement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .69  
BALSW Diagnostics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .69  
BALSW Short Diagnostic. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .69  
BALSW Open Diagnostics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
Even/Odd Sense Wire Open Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
Diagnostic Test Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
Shutdown Diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
HVMUX Switch Open Diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
HVMUX Switch Shorted Diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78  
HVMUX Test Source Diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78  
Cn Open Diagnostic. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .79  
Cn Shorted to SWn Diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
Cn Leakage Diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81  
Cell Overvoltage Diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81  
Cell Undervoltage Diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .82  
ALRTHVUV Comparator Diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .82  
HVMUX Sequencer Diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82  
ALU Diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .84  
AUXINn Open Diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .85  
Calibration ROM Diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87  
Maxim Integrated  
4  
www.maximintegrated.com  
MAX17843  
12-Channel, High-Voltage Smart Sensor  
Data-Acquisition Interface  
(
)
TABLE OF CONTENTS CONTINUED  
Applications Information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88  
Vehicle Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .88  
Battery-Management Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .89  
Daisy-Chain System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .89  
Distributed-Module Communication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .90  
External Cell Balancing Using BJT Switches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91  
External Cell-Balancing Short-Circuit Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91  
High-Z Idle Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .92  
UART Supplemental ESD Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .93  
UART Supplemental ESD Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .94  
Single-Ended RX Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .94  
UART Isolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .94  
UART Transformer Isolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .95  
UART Optical Isolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .96  
Device Initialization Sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .96  
Error Checking. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .96  
PEC Errors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .96  
Register Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99  
VERSION Register (address 0x00) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .100  
ADDRESS Register (address 0x01) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101  
STATUS Register (address 0x02). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101  
FMEA1 Register (address 0x03). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102  
ALRTCELL Register (address 0x04). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103  
ALRTOVCELL Register (address 0x05) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103  
ALRTUVCELL Register (address 0x07) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104  
ALRTBALSW Register (address 0x08). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104  
MINMAXCELL Register (address 0x0A). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105  
FMEA2 Register (address 0x0B) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105  
AUTOBALSWDIS Delay Register (address 0x0C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106  
ID1 Register (address 0x0D). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .106  
ID2 Register (address 0x0E). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107  
DEVCFG1 Register (address 0x10) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108  
GPIO Register (address 0x11) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109  
MEASUREEN Register (address 0x12) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110  
SCANCTRL Register (address 0x13) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111  
ALRTOVEN Register (address 0x14) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112  
ALRTUVEN Register (address 0x15) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113  
Maxim Integrated  
5  
www.maximintegrated.com  
MAX17843  
12-Channel, High-Voltage Smart Sensor  
Data-Acquisition Interface  
(
)
TABLE OF CONTENTS CONTINUED  
WATCHDOG Register (address 0x18) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114  
ACQCFG Register (address 0x19) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115  
BALSWEN Register (address 0x1A). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115  
DEVCFG2 Register (address 0x1B) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116  
BALDIAGCFG1 Register (address 0x1C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117  
BALSWDCHG Register (address 0x1D) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118  
TOPCELL Register (address 0x1E) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118  
CELLn Register (addresses 0x20 to 0x2B) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119  
VBLOCK Register (address 0x2C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119  
AIN1 Register (address 0x2D) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120  
AIN2 Register (address 0x2E) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120  
TOTAL Register (address 0x2F) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121  
OVTHCLR Register (address 0x40) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121  
OVTHSET Register (address 0x42) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122  
UVTHCLR Register (address 0x44) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122  
UVTHSET Register (address 0x46) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123  
MSMTCH Register (address 0x48). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123  
AINOT Register (address 0x49) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124  
AINUT Register (address 0x4A) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124  
BALSHRTTHR Register (address 0x4B) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125  
BALLOWTHR Register (address 0x4C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125  
BALHIGHTHR Register (address 0x4D). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126  
DIAG Register (address 0x50) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126  
DIAGCFG Register (address 0x51). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127  
CTSTEN Register (address 0x52). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128  
ADCTEST1A Register (address 0x57) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128  
ADCTEST1B Register (address 0x58) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129  
ADCTEST2A Register (address 0x59) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129  
ADCTEST2B Register (address 0x5A) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130  
Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130  
Package Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130  
Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .131  
Maxim Integrated  
6  
www.maximintegrated.com  
MAX17843  
12-Channel, High-Voltage Smart Sensor  
Data-Acquisition Interface  
LIST OF FIGURES  
Figure 1. Simplified Operating Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11  
Figure 2. Cell and switch input Filter Operating Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Figure 3. MAX17843 Functional block diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Figure 4. MAX17843 64-Pin LQFP Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Figure 5. ESD Diode Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Figure 6. Analog Front-End (AFE Inputs) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Figure 7. VBLKP Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Figure 8. Auxiliary Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Figure 9. Auxiliary Application Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Figure 10. Die Temperature Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Figure 11. IIR Filter Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Figure 12. IIR Flowchart with Respect to the AMENDFILT Bit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Figure 13. IIR Filter Diagram with Respect to RDFILT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Figure 14. Logic Diagram when Balancing Switches Are Disabled. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Figure 15. Acquisition Mode Flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Figure 16. Acquisition, OVSAMP[2:0]=0h and SCANMODE=0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Figure 17. Acquisition, OVSAMP[2:0] > 0 and SCANMODE=0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Figure 18. Cell Voltage-Alert Thresholds. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41  
Figure 19. Internal Cell Balancing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41  
Figure 20. Cell-Balancing Watchdog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Figure 21. Low-Voltage Regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Figure 22. HV Charge Pump . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Figure 23. SHDNL Charge Pump . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Figure 24. Power-On Sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Figure 25. Shutdown Sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Figure 26. Power-On and Shutdown Timing (UART Control) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Figure 27. Shutdown Timing (Software Control) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Figure 28. System Data Flow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Figure 29. UART Transmitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
Figure 30. UART Receiver. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
Figure 31. Command Packet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
Figure 32. Preamble Character . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
Figure 33. Data Characters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
Figure 34. Stop Character . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
Figure 35. Communication Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
Figure 36. ALTREF Diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
Figure 37. VAA Diagnostic ADC1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
Maxim Integrated  
7  
www.maximintegrated.com  
MAX17843  
12-Channel, High-Voltage Smart Sensor  
Data-Acquisition Interface  
(
)
LIST OF FIGURES CONTINUED  
Figure 38. VAA Diagnostic ADC2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
Figure 39. LSAMP Offset Diagnostic. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
Figure 40. ADC Zero-Scale Diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
Figure 41. ADC Full-Scale Diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
Figure 42. Balancing Switch Short. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
Figure 43. BALSW Short Diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
Figure 44. BALSW Open Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
Figure 45. Cell Sense-Wire Open Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
Figure 46. Sense-Wire Open Diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .74  
Figure 47. Test Current Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
Figure 48. Shutdown Diagnostic Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77  
Figure 49. HVMUX Switch Open Diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77  
Figure 50. SWn to Cn Short. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80  
Figure 51. SWn-1 to Cn Short . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80  
Figure 52. Redundant HVMUX Paths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81  
Figure 53. HVMUX Sequencer Diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82  
Figure 54. HVMUX Sequencer Diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83  
Figure 55. ALU Diagnostic. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84  
Figure 56. AUXINn Open Diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85  
Figure 57. AUXINn Open Diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86  
Figure 58. Electric Vehicle System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88  
Figure 59. Daisy-Chain System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89  
Figure 60. Distributed System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90  
Figure 61. External Cell Balancing (BJT). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91  
Figure 62. UART Connection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92  
Figure 63. High-Z Idle Mode Application Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93  
Figure 64. External ESD Protection for UART TX Ports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93  
Figure 65. External ESD Protection for UART RX Ports. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94  
Figure 66. Application Circuit for Single-Ended Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94  
Figure 67. UART Transformer Isolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95  
Figure 68. UART Optical Isolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96  
Figure 69. Device Initialization Sequence in Differential Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97  
Figure 70. CRC Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97  
Figure 71. PEC Calculation Pseudocode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98  
Maxim Integrated  
8  
www.maximintegrated.com  
MAX17843  
12-Channel, High-Voltage Smart Sensor  
Data-Acquisition Interface  
LIST OF TABLES  
Table 1. System Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Table 2. Numeric Conventions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Table 3. Data-Acquisition Processes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Table 4. Input Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Table 5. THRM Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Table 6. AINTIME. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Table 7. Oversampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Table 8. AMENDFILT Bit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Table 9. RDFILT Bit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Table 10. Acquisition Time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Table 11. Acquisition Time Examples (with AINCFG[5:0] = 00h). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Table 12. Measurement Alerts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Table 13. Maximum Allowed Balancing Current per Switch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Table 14. Cell-Balancing Watchdog Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Table 15. Emergency Discharge Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Table 16. Low-Voltage Regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Table 17. Low-Voltage Regulator Diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Table 18. HV Charge-Pump Diagnostics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Table 19. Oscillator Diagnostics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Table 20. Shutdown Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Table 21. UART RX Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
Table 22. Data Character. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
Table 23. Battery-Management UART Protocol (Data Types). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
Table 24. Battery-Management UART Protocol (Command Packet Types) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
Table 25. Command-Byte Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
Table 26. Data-Check Byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
Table 27. HELLOALL Sequencing (z = Total Number of Devices). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
Table 28. WRITEALL Sequencing (Unchanged by Daisy-Chain) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
Table 29. WRITEDEVICE Sequencing (Unchanged by Daisy-Chain). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
Table 30. READALL Command Sequencing (z = Number of Devices). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
Table 31. READDEVICE Sequencing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
Table 32. READBLOCK Sequencing for Block Size = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
Table 33. READBLOCK Sequencing for Block Size = 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
Table 34. Summary of Built-In Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
Table 35. BALSW Short Diagnostic Autoconfiguration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
Maxim Integrated  
9  
www.maximintegrated.com  
MAX17843  
12-Channel, High-Voltage Smart Sensor  
Data-Acquisition Interface  
(
)
LIST OF TABLES CONTINUED  
Table 36. BALSW Diagnostics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
Table 37. BALSW Open-Diagnostic Autoconfiguration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
Table 38. Odd Sense-Wire Open Measurement Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
Table 39. Sense-Wire Open-Diagnostic Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .74  
Table 40. HVMUX Output Assignment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
Table 41. Shutdown Diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77  
Table 42. HVMUX Switch Open Diagnostic. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78  
Table 43. HVMUX Test-Source Diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78  
Table 44. Cn Pin Open Diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
Table 45. Expected ALU Diagnostic and Block Register Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85  
Table 46. CRC Bit Mask. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87  
Table 47. BJT Balancing Components. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91  
Maxim Integrated  
10  
www.maximintegrated.com  
MAX17843  
12-Channel, High-Voltage Smart Sensor  
Data-Acquisition Interface  
Simplified Operating Circuit  
MODULE N+1  
CELL STACK  
C81  
3.3µF  
25V  
R80  
40Ω  
MODULE-  
(N+1)  
D81  
SW12  
DCIN  
DCIN INPUT  
CIRCUIT  
HV  
DCIN  
MODULE+  
(N)  
D91  
UART DAISY-CHAIN FROM  
UPPER MODULE OR  
SYSTEM CONTROLLER  
VBLKP  
CPP  
C82  
0.1µF  
100V  
MAX178xx  
MODULE n+1  
CPN  
C12  
SW12  
C11  
SW11  
C10  
SW10  
C9  
RXUP  
RXUN  
TXLP  
TXLN  
CELL #12  
CELL #11  
CELL #10  
CELL #9  
CELL #8  
CELL #7  
CELL #6  
CELL #5  
CELL #4  
CELL #3  
CELL #2  
CELL #1  
UPPER PORT  
COMMUNICATION  
RXLP  
RXLN  
TXUP  
TXUN  
INTERFACE CIRCUIT  
MAX17843  
GPIO0  
GPIO1  
GPIO2  
GPIO3  
SW9  
C8  
GPIO INTERFACE  
CIRCUIT  
SW8  
C7  
VAA  
C83  
1.0µF  
SW7  
C6  
CELL INPUT  
FILTER  
INTERFACE  
CIRCUIT  
AGND  
VDDL1  
SW6  
C5  
C84  
0.47µF  
GNDL1  
VDDL2  
UART DAISY-CHAIN FROM  
LOWER MODULE OR  
C85  
SW5  
C4  
0.47µF  
GNDL2  
VDDL3  
SYSTEM CONTROLLER  
MAX178xx  
C86  
MODULE n-1,  
ISOLATOR, OR  
INTERFACE IC  
SW4  
C3  
0.47µF  
GNDL3  
TXLP  
TXLN  
RXUP  
RXUN  
SW3  
C2  
LOWER PORT  
COMMUNICATION  
RXLP  
RXLN  
TXUP  
TXUN  
INTERFACE CIRCUIT  
SW2  
C1  
SHDNL/  
C87  
1.0nF  
25V  
SW1  
C0  
MODULE-  
(N)  
D90  
SW0  
ANALOG AUX  
INPUT INTERFACE  
CIRCUIT  
THRM  
AUXIN2  
AUXIN1  
AGND  
AGND  
MODULE  
N-1 CELL  
STACK  
CAPACITOR RATINGS SHOWN IN THIS DATASHEET ARE BASED ON EXPECTED  
REFERENCE CIRCUIT CONDITIONS AND MAY BE MODIFIED BASED ON FINAL  
APPLICATION REQUIREMENTS.  
Figure 1. Simplified Operating Circuit  
Maxim Integrated  
11  
www.maximintegrated.com  
MAX17843  
12-Channel, High-Voltage Smart Sensor  
Data-Acquisition Interface  
Simplified Operating Circuit (continued)  
R13  
1kΩ  
C13  
330nF  
VBLKP  
C12  
R12  
C12  
1kΩ  
R32  
100nF  
22Ω  
Cell 12  
Cell 11  
Cell 10  
Cell 9  
Cell 8  
Cell 7  
Cell 6  
Cell 5  
Cell 4  
Cell 3  
Cell 2  
Cell 1  
SW12  
C11  
C26  
100nF  
R11  
1kΩ  
C11  
100nF  
MAX17843  
R31  
22Ω  
SW11  
C10  
C25  
100nF  
R10  
1kΩ  
C10  
100nF  
R30  
22Ω  
SW10  
C9  
C24  
100nF  
R9  
1kΩ  
C9  
100nF  
R29  
22Ω  
SW9  
C8  
C23  
100nF  
R8  
1kΩ  
C8  
100nF  
R28  
22Ω  
SW8  
C7  
C22  
100nF  
R7  
1kΩ  
C7  
100nF  
R27  
22Ω  
SW7  
C6  
C21  
100nF  
R6  
1kΩ  
C6  
100nF  
R26  
22Ω  
SW6  
C5  
C20  
100nF  
R5  
1kΩ  
C5  
100nF  
R25  
22Ω  
SW5  
C4  
C19  
100nF  
R4  
1kΩ  
C4  
100nF  
R24  
22Ω  
SW4  
C3  
C18  
100nF  
R3  
1kΩ  
C3  
100nF  
R23  
22Ω  
SW3  
C2  
C17  
100nF  
R2  
1kΩ  
C2  
100nF  
R22  
22Ω  
SW2  
C1  
C16  
100nF  
R1  
1kΩ  
C1  
100nF  
R21  
22Ω  
SW1  
C0  
C15  
100nF  
R0  
1kΩ  
C0  
100nF  
R20  
22Ω  
SW0  
C14  
1µF  
AGND  
Figure 2. Cell and switch input Filter Operating Circuit  
Maxim Integrated  
12  
www.maximintegrated.com  
MAX17843  
12-Channel, High-Voltage Smart Sensor  
Data-Acquisition Interface  
Functional Block Diagram  
+9V TO  
65V  
THRM  
HV  
VAA  
2.307V  
REFERENCE  
ALTERNATE 1.23V  
REFERENCE  
VBLKP  
LINEAR REGULATOR  
C12  
C11  
C10  
+3.3V  
HV  
HV CHARGE  
PUMP  
POR  
DIE TEMPERATURE  
CPP  
CPN  
C9  
C8  
16MHZ  
OSC  
32KHZ  
OSC  
V’BLKP  
C7  
C6  
C5  
+
-
C4  
CONTROL  
AND  
STATUS  
ADC1  
LS AMP  
C3  
C2  
C1  
C0  
MAX17843  
AGND  
AUXIN2  
AUXIN1  
TXUP  
TXUN  
RXUP  
RXUN  
ADC2  
UPPER PORT  
V’BLKP  
(5/8) x VAA  
DIE  
TEMPERATURE  
RXLP  
AGND  
FAULT DETECTION  
SUPPORT CIRCUITRY  
RXLN  
TXLP  
TXLN  
ALTMUX SWITCH BANK  
CELL BALANCING  
HV  
LOWER PORT  
SHDNL/  
Figure 3. MAX17843 Functional block diagram  
Maxim Integrated  
13  
www.maximintegrated.com  
MAX17843  
12-Channel, High-Voltage Smart Sensor  
Data-Acquisition Interface  
Absolute Maximum Ratings  
HV to AGND............................................................ -0.3 to +80V  
TXLP, TXLN to GNDL2............................................-0.3V to +6V  
TXUP, TXUN to GNDL3 ..........................................-0.3V to +6V  
DCIN, SWn, VBLK, and Cn to AGND .........-0.3V to V  
+ 0.3V  
HV  
-0.3V to +72V  
Cn to Cn-1..............................................................-72V to +72V  
SWn to SWn-1.......................................................-0.3V to +16V  
CPP to AGND....................................... V  
CPN to AGND.......................................... -0.3V to V  
GPIO0, GPIO1, GPIO2, GPIO3 to GNDL1..-0.3V to V  
- 1V to V  
+ 1V  
+ 0.3V  
+ 0.3V  
DCIN  
HV  
DCIN  
DDL1  
V
V
V
V
V
to AGND........................................................... -0.3v to +4V  
Max Continuous Current into Any Pin (Note 1)................±20mA  
Max Continuous Current into SWn Pin (Note 2)............±400mA  
Max Average Power for ESD Diodes (Note 3)............. 14.4/τW  
Package Continuous Power (Note 4)............................2000mW  
Package Junction-to-Ambient  
AA  
to GNDL1.....................................................-0.3V to +4V  
to GNDL2.....................................................-0.3V to +6V  
to GNDL3.....................................................-0.3V to +6V  
DDL1  
DDL2  
DDL3  
to V  
, V  
, and V  
.......................-0.3V to +0.3V  
AA  
DDL1 DDL2  
DDL3  
AGND to GNDL1, GNDL2, GNDL3......................-0.3V to +0.3V  
Thermal Resistance (θ ).............................................40°C/W  
JA  
AUXIN1, AUXIN2, THRM to AGND.............-0.3V to V + 0.3V  
Operating Temperature Range......................... -40°C to +125°C  
Storage Temperature Range............................ -55°C to +150°C  
Junction Temperature (continuous)...................................150°C  
Soldering Lead Temperature (10s max)............................300°C  
AA  
SHDNL to AGND........................................-0.3 to V  
+ 0.3V  
DCIN  
CTG to AGND..........................................................-0.3V to +6V  
RXLP, RXLN, RXUP, RXUN to GNDL1..................-30V to +30V  
Note 1: Balancing switches disabled.  
Note 2: One balancing switch enabled, 60s (max).  
Note 3: Average power for time period τ where τ is the time constant (in μs) of the transient diode current during a hot-plug event.  
For, example, if τ is 330μs, the maximum average power is 0.793W. Peak current must never exceed 2A. Actual average  
power during hot-plug must be calculated from the diode current waveform for the application circuit and compared to the  
maximum rating.  
Note 4: Multilayer board. For T > +70°C derate 25mW/°C.  
A
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these  
or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect  
device reliability.  
Maxim Integrated  
14  
www.maximintegrated.com  
MAX17843  
12-Channel, High-Voltage Smart Sensor  
Data-Acquisition Interface  
Electrical Characteristics  
(V  
= +48V, T = T  
to T  
, unless otherwise noted, where T  
= -40°C and T  
=+125°C. Typical values are at T = +25°C.  
DCIN  
A
MIN  
MAX  
MIN  
MAX A  
Operation is with the recommended application circuit.) (Note 5)  
PARAMETER  
POWER REQUIREMENTS  
Supply Voltage  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
9
65  
3
V
DCIN  
I
V
V
= 0V  
0.1  
2.0  
µA  
DCSHDN  
SHDNL  
SHDNL  
> 1.8V, baud rate = 0  
(100% idle), SCAN = 0, BALSWEN,  
CTSTEN = 0000h  
I
1.5  
2.0  
2.7  
mA  
mA  
DCSTBY  
Supply Current  
(Note 6)  
Baud rate = 2Mb/s (0% idle time  
preambles mode), 200pF load on TXUP,  
200pF on TXUN, TXL not active, SCAN  
= 0, BALSWEN, CTSTEN = 0000h  
I
5
DCCOMM  
MEASUREEN = 0FFFh,  
acquisition mode  
I
3.5  
0.9  
5.4  
1.1  
8
mA  
mA  
DCMEAS  
MEASUREEN = 0FFFh, acquisition  
HV Measurement Current  
I
1.3  
HVMEAS  
mode, V  
= V  
+ 5.5V  
HV  
DCIN  
Incremental HV Current  
for n Balancing Switches  
Enabled  
V
= V  
+ 5.5V,  
(n+1) x  
5
(n+1) x  
13.5  
(n+1) x  
26  
HV  
DCIN  
I
µA  
HVBAL  
cell-balancing mode  
VOLTAGE INPUTS (Cn, for n = 1 to 12 and V  
)
BLKP  
Unipolar mode  
Bipolar mode  
0.2  
4.8  
V
V
Differential Input Range,  
V
= V - V  
V
CELLn  
CELLn  
Cn  
Cn-1  
(Note 7)  
-2.3  
+2.3  
Common-Mode Input Range  
Input Leakage Current  
V
SWn inputs not connected  
= 71V, Cn = 0V  
0
65  
V
CnCM  
I
V
-200  
-10  
+200  
nA  
LKGCn_L  
HV  
C0 = 5V, C1 to C5 = 28V,  
C6 to C12 = 65V; V = 71V  
Input Leakage Current  
I
-200  
±10  
+200  
nA  
LKGCn_H  
HV  
V
Input Resistance  
BLKP  
R
V
= V = 57.6V  
DCIN  
4.5  
1.7  
10  
20  
6
MΩ  
kΩ  
VBLKP  
BLKP  
(to AGND)  
HVMUX Switch Resistance  
R
CTSTDAC[3:0] = Fh  
2.5  
MUX  
CELL-BALANCING INPUTS (SWn for n = 1 to 12)  
V
= 60V, V  
= 5 x N,  
DCIN  
SWn  
Leakage Current  
I
-1  
+1  
5
µA  
LKG_SW  
all SWn pins biased  
Resistance, SWn to SWn-1  
R
BALSWENn = 1, I  
= 100mA  
SWn  
0.5  
2
Ω
SWn  
AUXILIARY INPUTS (AUXIN1, AUXIN2)  
Input Voltage Range  
Input Leakage Current  
THRM OUTPUT  
V
0
V
V
AUXINn  
THRM  
I
ADC off; V  
= 1.65V  
AUXINn  
-400  
10  
25  
+400  
nA  
LKG_AUX  
Switch Resistance, THRM  
R
100  
+1  
Ω
THRM  
to V  
AA  
THRM Leakage  
I
V
= 1.65V  
-1  
µA  
THRM  
THRM  
Maxim Integrated  
15  
www.maximintegrated.com  
MAX17843  
12-Channel, High-Voltage Smart Sensor  
Data-Acquisition Interface  
Electrical Characteristics (continued)  
(V  
= +48V, T = T  
to T  
, unless otherwise noted, where T  
= -40°C and T  
=+125°C. Typical values are at T = +25°C.  
DCIN  
A
MIN  
MAX  
MIN  
MAX A  
Operation is with the recommended application circuit.) (Note 5)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
MEASUREMENT ACCURACY  
Unipolar mode, V  
= 3.6V,  
CELLn  
Initial Total-Acquisition Error  
(HVMUX Inputs, ADC1 or  
ADC2)  
DCIN = 43.2V, T = +25°C,  
V
A
CELLn  
-2  
-3.5  
-6  
+2  
+3.5  
+6  
mV  
VSAMPL[2:0] = 011b,  
ERRINIT  
filter coefficient, FC [2:0] = 010b  
Unipolar mode, 0.2V ≤ V  
≤ 4.8V,  
CELLn  
5C < T < 40°C OVSAMPL[2:0] = 011b,  
A
filter coefficient, FC [2:0] = 010b  
Initial-Acquisition Error  
(HVMUX Inputs, ADC1 or  
ADC2) (Note 8)  
Unipolar mode, 0.2V ≤ V  
OVSAMPL[2:0] = 011b, filter coefficient,  
FC[2:0]= 010b  
≤ 4.8V,  
CELLn  
V
±0.75  
mV  
CELLnERR  
Bipolar mode, -2.3V ≤ V  
OVSAMPL[2:0] = 011b, filter coefficient,  
≤ 2.3V,  
CELLn  
-6  
+6  
FC[2:0] = 010b  
Initial-Acquisition Error  
(HVMUX Inputs, ADC1 or  
ADC2) (Note 9)  
Unipolar mode, 0.2V ≤ V  
≤ 4.8V,  
CELLn  
0C < T < 40°C, OVSAMPL[2:0] = 011b,  
-3.5  
-3.5  
-6  
+3.5  
+3.5  
+6  
mV  
mV  
A
filter coefficient, FC[2:0]= 010b  
Unipolar mode, 0.2V ≤ V  
≤ 4.8V  
CELLn  
5C < T < 40°C OVSAMPL[2:0] = 011b,  
A
filter coefficient, FC [2:0] = 010b  
Initial-Acquisition Error  
(ALTMUX Inputs, ADC1  
or ADC2) (Note 8)  
Unipolar mode, 0.2V ≤ V  
OVSAMPL[2:0] = 011b, filter coefficient,  
FC[2:0] = 010b  
≤ 4.8V,  
CELLn  
V
SWnERR  
mV  
Bipolar mode, -2.3V ≤ V  
OVSAMPL[2:0] = 011b, filter coefficient,  
≤ 2.3V,  
CELLn  
-6  
+6  
FC[2:0] = 010b  
Total-Acquisition Noise  
(Note 9)  
V
No oversampling  
1.1  
mVRMS  
mV  
CELLNOISE  
9V ≤ V  
≤ 57.6V V  
= 57.6V,  
BLKP  
DCIN  
Total-Acquisition Error  
V
V
OVSAMPL[2:0 ]= 011b, filter coefficient,  
-110  
+110  
BLKERR  
OS_AUX  
(V  
Input)  
BLKP  
FC[2:0] = 010b  
Offset Error for AUXIN  
Measurement  
-3  
+3  
mV  
%
Gain Error for AUXIN  
Measurement  
A
-0.3  
+0.3  
V_AUX  
Total Error for Die-  
Temperature Measurement  
(Note 9)  
T
T = -40°C to +105°C, no averaging  
-5  
±3  
+5  
ºC  
DIE_ERR  
J
Differential Nonlinearity  
(Any Conversion)  
DNL  
±1.0  
LSbs  
bits  
ADC Resolution  
12  
Maxim Integrated  
16  
www.maximintegrated.com  
MAX17843  
12-Channel, High-Voltage Smart Sensor  
Data-Acquisition Interface  
Electrical Characteristics (continued)  
(V  
= +48V, T = T  
to T  
, unless otherwise noted, where T  
= -40°C and T  
=+125°C. Typical values are at T = +25°C.  
DCIN  
A
MIN  
MAX  
MIN  
MAX A  
Operation is with the recommended application circuit.) (Note 5)  
PARAMETER  
SYMBOL  
CONDITIONS  
DIAGSEL[2:0] = 011b,  
MIN  
TYP  
MAX  
UNITS  
Level-Shifting Amplifier  
Offset (Note 10)  
V
-200  
+200  
mV  
OS_LSAMP  
OVSAMPL[2:0] = 011b  
V
Diagnostic ADC1  
DIAGSEL[2:0] = 010b, OVSAMPL[2:0]  
= 011b, ADCSELECT = 0  
V
AA  
DIAG_  
-20  
-30  
+20  
+30  
mV  
mV  
Measurement Accuracy  
VAAERR1  
V
Diagnostic ADC2  
DIAGSEL[2:0] = 010b, OVSAMPL[2:0]  
= 011b, ADCSELECT = 1  
V
AA  
DIAG_  
Measurement Accuracy  
VAAERR2  
SHDNL INPUT AND CHARGE PUMP  
Input Low Voltage  
Input High Voltage  
V
0.55  
12  
V
V
IL_SHDNL  
V
1.8  
8
IH_SHDNL  
V
V
≥ 12V  
9.5  
6.7  
4.7  
V
DCIN  
DCIN  
Regulated Voltage  
V
SHDNLIMIT  
FORCEPOR  
= 9V  
V
Pulldown Resistance  
R
FORCEPOR = 1  
2.5  
4.5  
8
kΩ  
SHDNL Input Leakage  
Resistance  
R
20.5  
MΩ  
SHDNL  
Charge-Pump Current  
(Note 11)  
V
< V  
,
SHDNL  
SHDNLIMIT  
I
15  
117  
350  
0.8  
µA  
SHDNL  
baud rate = 2Mbps  
GENERAL-PURPOSE I/O (GPIO0GPIO3)  
Input Low Voltage  
Input High Voltage  
Pulldown Resistance  
Output Low Voltage  
Output High Voltage  
REGULATOR  
V
V
V
IL_GPIO  
V
2.4  
0.5  
IH_GPIO  
R
GPIO[15:12] = 0h (input)  
2
7.5  
0.4  
MΩ  
V
GPIO  
V
I
I
= 3mA  
OL_GPIO  
OH_GPIO  
SINK  
V
= 3mA  
V
- 0.4  
V
SOURCE  
DDL1  
Output Voltage  
V
0 ≤ I  
< 10mA  
3.2  
10  
3.3  
20  
3.4  
70  
V
mA  
V
AA  
VAA  
Short-Circuit Current  
I
V
V
V
shorted to AGND  
falling  
AASC  
AA  
AA  
AA  
V
V
2.85  
2.95  
3.0  
40  
3.02  
3.1  
PORFALL  
POR Threshold  
POR Hysteresis  
rising  
V
PORRISE  
V
mV  
PORHYS  
Thermal-Shutdown  
Temperature (Note 9)  
T
Temperature rising  
165  
10  
°C  
°C  
SHDN  
Thermal-Shutdown  
Hysteresis (Note 9)  
T
HYS  
HV CHARGE PUMP  
9V ≤ V  
≤ 12V, I  
= 1.5mA  
5
5
5.5  
5.5  
6
6
DCIN  
LOAD  
Output Voltage (V -V  
)
V
V
HV DCIN  
HV-DCIN  
12V ≤ V  
≤ 65V, I  
= 3mA  
DCIN  
LOAD  
Charge Pump Efficiency  
(Note 12)  
38  
%
Maxim Integrated  
17  
www.maximintegrated.com  
MAX17843  
12-Channel, High-Voltage Smart Sensor  
Data-Acquisition Interface  
Electrical Characteristics (continued)  
(V  
= +48V, T = T  
to T  
, unless otherwise noted, where T  
= -40°C and T  
=+125°C. Typical values are at T = +25°C.  
DCIN  
A
MIN  
MAX  
MIN  
MAX A  
Operation is with the recommended application circuit.) (Note 5)  
PARAMETER  
HV Headroom  
SYMBOL  
CONDITIONS  
ALRTHVHDRM = 0  
MIN  
TYP  
MAX  
UNITS  
V
4.7  
V
HVHDRM  
OSCILLATORS  
32kHz Oscillator Frequency  
16MHz Oscillator Frequency  
DIAGNOSTIC TEST SOURCES  
f
32.11  
15.68  
32.768  
16  
33.42  
16.32  
kHz  
OSC_32K  
f
MHz  
OSC_16M  
CTSTDAC[3:0] = 9h,  
< V - 1.4V, V = 3.3V  
50  
36  
62.5  
45  
75  
54  
V
Cn  
AA  
AA  
CTSTDAC[3:0] = 6h,  
< V - 1.4V, V = 3.3V  
V
Cn  
AA  
AA  
Cell-Test Source Current  
I
µA  
µA  
µA  
TSTCn  
CTSTDAC[3:0] = 6h,  
> V + 1.4V  
-54  
-75  
25  
-45  
-36  
-50  
37.5  
27  
V
Cn  
AGND  
CTSTDAC[3:0] = 9h,  
> V + 1.4V  
-62.5  
31.25  
22.5  
62.5  
45  
V
Cn  
AGND  
CTSTDAC[3:0] = 9h,  
< V - 1.4V, V  
HV  
V
= 53.5V  
= 53.5V  
Cn  
HV  
HVMUX Test-Source  
Current  
I
TSTMUX  
CTSTDAC[3:0] = 6h,  
< V - 1.4V, V  
HV  
18  
V
Cn  
HV  
CTSTDAC[3:0] = 9h,  
< V - 1.4V, V = 3.3V  
50  
75  
V
AUXINn  
AA  
AA  
CTSTDAC[3:0] = 6h,  
< V - 1.4V, V = 3.3V  
36  
54  
V
AUXINn  
AA  
AA  
AUXIN Test-Source Current  
I
TSTAUXIN  
CTSTDAC[3:0] = 6h,  
> V + 1.4V  
-54  
-75  
-45  
-36  
-50  
V
AUXINn  
AGND  
CTSTDAC[3:0] = 9h,  
> V + 1.4V  
-62.5  
V
AUXINn  
AGND  
DIAGNOSTIC REFERENCES  
ALTREF Voltage (Note 10)  
V
A
DIAGSEL[2:0] = 001b  
1.23  
1.242  
±25  
1.254  
V
ALTREF  
ALTREF Temperature  
Coefficient (ΔV  
/ΔT)  
ppm/°C  
ALTREF  
ALTREF  
(Note 9)  
PTAT Output Voltage  
(Note 9)  
V
T = +120°C  
1.2  
3.07  
0
V
mV/°C  
°C  
PTAT  
J
PTAT Temperature  
Coefficient (ΔV  
/ΔT)  
A
V_PTAT  
PTAT  
(Note 9)  
PTAT Temperature Offset  
(Note 9)  
T
OS_PTAT  
ALERTS  
ALRTVDDLn Threshold  
ALRTGNDLn Threshold  
V
V
= 3.3V  
AA  
3
3.15  
0.15  
3.25  
0.3  
V
V
VDDL_OC  
V
AGND = 0V  
0.05  
GNDL_OC  
Maxim Integrated  
18  
www.maximintegrated.com  
MAX17843  
12-Channel, High-Voltage Smart Sensor  
Data-Acquisition Interface  
Electrical Characteristics (continued)  
(V  
= +48V, T = T  
to T  
, unless otherwise noted, where T  
= -40°C and T  
=+125°C. Typical values are at T = +25°C.  
DCIN  
A
MIN  
MAX  
MIN  
MAX A  
Operation is with the recommended application circuit.) (Note 5)  
PARAMETER  
ALRTHVUV Threshold  
ALRTHVOV Threshold  
SYMBOL  
CONDITIONS  
falling  
MIN  
3.8  
7
TYP  
4.1  
MAX  
4.25  
10  
UNITS  
V
V
V
- V  
- V  
V
V
HVUV  
HVOV  
HV  
DCIN  
V
rising  
8.5  
HV  
DCIN  
ALRTTEMP Threshold  
(Note 9)  
T
T
115  
120  
2
125  
°C  
°C  
ALRTTEMP  
ALRTTEMP Hysteresis  
(Note 9)  
ALRTTEMP  
HYS  
UART OUTPUTS (TXLP, TXLN, TXUP, TXUN)  
Output Low Voltage  
V
I
= 20mA  
0.4  
V
V
OL  
SINK  
Output High Voltage  
(TXLP, TXLN)  
V
V
I
= 20mA  
= 20mA  
V
V
- 0.4  
- 0.4  
OH  
SOURCE  
SOURCE  
DDL2  
Output High Voltage  
(TXUP, TXUN)  
I
V
OH  
DDL3  
-1  
Leakage Current  
I
V
= 1.5V  
TX  
+1  
µA  
LKG_TX  
UART INPUTS (RXLP, RXLN, RXUP, RXUN)  
Input Voltage Range  
V
-25  
+25  
V
V
RX  
CH  
Receiver High Comparator  
Threshold (Notes 13, 17)  
V
/
V
/
DDL  
DDL  
V
V
/2  
DDL  
2 - 0.4  
2 + 0.4  
Receiver Zero-Crossing  
Comparator Threshold  
(Note 13)  
V
-0.4  
0
+0.4  
V
ZC  
-V  
2 - 0.4  
/
-V  
2 + 0.4  
/
DDL  
Receiver Low Comparator  
Threshold (Notes 13, 17)  
DDL  
V
-V  
/2  
V
CL  
DDL  
75  
Receiver Comparator  
Hysteresis (Note 13)  
V
mV  
HYS_RX  
Receiver Common-Mode  
Voltage Bias (Notes 13, 17)  
V
V
/3  
V
CM  
DDL  
Leakage Current  
I
V
= 1.5V  
±1.0  
4
µA  
pF  
LKG_RX  
RX  
Input Capacitance  
(RXLP, RXLN)  
C
RXL  
Input Capacitance  
(RXUP, RXUN)  
C
2
pF  
RXU  
UART TIMING  
Baud rate = 2Mb/s  
Baud rate = 1Mb/s  
Baud rate = 0.5Mb/s  
8
1/f  
OSC  
_16M  
Bit Period (Note 14)  
t
16  
32  
BIT  
Rx Idle to START Setup  
Time (Notes 9, 15)  
t
0
1
4
t
BIT  
RXSTSU  
STOP Hold Time to Idle  
(Notes 9, 15)  
1/f  
OSC  
_16M  
t
SPHD  
Maxim Integrated  
19  
www.maximintegrated.com  
MAX17843  
12-Channel, High-Voltage Smart Sensor  
Data-Acquisition Interface  
Electrical Characteristics (continued)  
(V  
= +48V, T = T  
to T  
, unless otherwise noted, where T  
= -40°C and T  
=+125°C. Typical values are at T = +25°C.  
DCIN  
A
MIN  
MAX  
MIN  
MAX A  
Operation is with the recommended application circuit.) (Note 5)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
RX Minimum Idle Time  
(STOP bit to START bit)  
(Notes 9, 15)  
t
1
t
RXIDLESPST  
BIT  
RX Fall Time (Notes 9, 16)  
RX Rise Time (Notes 9, 16)  
t
0.5  
0.5  
t
t
FALL  
BIT  
BIT  
t
RISE  
Propagation Delay (RX Port  
to TX port) (Note 9)  
t
2.5  
1
3
t
PROP  
BIT  
Startup Time from SHNDL  
High and V = 0V to  
t
ms  
AA  
STARTUP  
RXUP/RXUN Valid  
Note 5: Unless otherwise noted, limits are 100% production tested at T = +25°C. Limits over the operating temperature range and  
A
relevant supply voltage range are guaranteed by design and characterization.  
Note 6: Acquisition mode (ADC conversions) is entered when the SCAN bit is set and ends when SCANDONE is set. With the  
typical acquisition duty-cycle very low, the average current (I  
) is much less than I  
. Total supply current during  
DCIN  
DCMEAS  
communication: I  
= I  
+ I  
.
DCIN  
DCCOMM  
DCSTBY  
Note 7: Range over which measurement settling time and accuracy is guaranteed.  
Note 8: = V - V , V = V , and V = 12 x │V │ (9V min).  
Note 9: Guaranteed by design and not production tested.  
V
CELLn  
Cn  
Cn-1 CELLn  
CELLn-1  
DCIN  
CELLn  
Note 10: As measured during specified diagnostic mode; 5V full-scale for unipolar mode measurements and 2.5V full-scale for bipolar  
measurements.  
Note 11: I  
measured with V  
= 0.3V, STOP characters, zero idle time, V  
= 3.3V.  
SHDNL  
SHDNL  
RX_PEAK  
Note 12: Charge pump efficiency = δI  
/δI  
, where I  
is applied from HV to AGND, δI  
= 5mA, and δI  
= I  
SUPPLY DCIN  
LOAD SUPPLY  
LOAD  
LOAD  
(for I  
= 5mA) - I  
(for I  
= 0).  
) where V  
LOAD  
DCIN  
RXP  
LOAD  
Note 13: Differential signal (V  
- V  
and V  
do not exceed a common-mode voltage range of ±25V.  
RXN  
RXP  
RXN  
Note 14: In daisy-chain applications, the bit time of the second STOP bit may be less than specified to account for clock-rate variation  
and sampling error between devices.  
Note 15: Maximum limited by application circuit.  
Note 16: Fall time measured 90% to 10%; rise time measured 10% to 90%.  
Note 17: V  
= V  
for lower port; V  
= V  
for upper port.  
DDL  
DDL2  
DDL  
DDL3  
Maxim Integrated  
20  
www.maximintegrated.com  
MAX17843  
12-Channel, High-Voltage Smart Sensor  
Data-Acquisition Interface  
Pin Configuration  
TOP VIEW  
48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33  
SW8  
C8  
THRM  
AGND  
AUXIN1  
AUXIN2  
CTG  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
SW9  
C9  
SW10  
C10  
NC  
MAX17843  
SW11  
C11  
NC  
RXLN  
RXLP  
GNDL2  
VDDL2  
TXLN  
TXLP  
NC  
SW12  
C12  
VBLKP  
NC  
HV  
DCIN  
CPP  
CPN  
NC  
GPIO0  
+
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16  
LQFP  
Figure 4. MAX17843 64-Pin LQFP Pin Configuration  
Maxim Integrated  
21  
www.maximintegrated.com  
MAX17843  
12-Channel, High-Voltage Smart Sensor  
Data-Acquisition Interface  
Pin Description  
PIN  
NAME  
TYPE  
FUNCTION  
1, 18, 19,  
26, 27, 60  
N.C.  
Not Connected. Connect to ground or leave unconnected.  
2, 4, 31  
AGND  
Ground  
Analog Ground. Connect to negative terminal of cell 1 and ground plane.  
Active-Low Shutdown Input. Drive > 1.8V to enable operation and drive < 0.6V to reset  
device and place in shutdown mode. +72V tolerant. If not driven externally, this input can  
be controlled solely through UART communication and software control. Bypass with a  
1nF capacitor to AGND. For single-ended UART, SHDNL must be driven externally.  
3
SHDNL  
Input  
3.3V Regulator Output Used to Supply V  
capacitor to ground.  
, V  
, andV  
. Bypass with a 1µF  
DDL3  
DDL1 DDL2  
5
V
Power  
AA  
6
7
8
TXUN  
TXUP  
Output  
Output  
Ground  
Negative Output for Upper-Port Transmitter. Driven between V  
and GNDL3.  
DDL3  
Positive Output for Upper-Port Transmitter. Driven between V  
and GNDL3.  
DDL3  
GNDL1  
Digital Ground. Connect to ground plane.  
3.3V Digital Supply. Connect externally to V and bypass with 0.47µF capacitor to  
AA  
GNDL1.  
9
V
Power  
DDL1  
10  
GNDL3  
Ground  
Ground for Upper-Port Transmitter. Connect to ground plane.  
3.3V Supply for Upper-Port Transmitter. Connect externally to VAA and bypass with  
0.47µF capacitor to GNDL3.  
11  
12  
13  
V
Power  
Input  
Input  
DDL3  
RXUN  
RXUP  
Negative Input for Upper-Port Receiver. Tolerates ±30V.  
Positive Input for Upper-Port Receiver. Tolerates ±30V. Connect to ground for single-  
ended operation.  
14  
15  
16  
17  
20  
21  
GPIO3  
GPIO2  
GPIO1  
GPIO0  
TXLP  
I/O  
I/O  
General-Purpose I/O 3. Driven between V  
General-Purpose I/O 2. Driven between V  
General-Purpose I/O 1. Driven between V  
General-Purpose I/O 0. Driven between V  
and GNDL1. 2MΩ internal pulldown.  
and GNDL1. 2MΩ internal pulldown.  
and GNDL1. 2MΩ internal pulldown.  
and GNDL1. 2MΩ internal pulldown.  
DDL1  
DDL1  
DDL1  
DDL1  
I/O  
I/O  
Output  
Output  
Positive Output for Lower-Port Transmitter. Driven between V  
and GNDL2.  
DDL2  
TXLN  
Negative Output for Lower-Port Transmitter. Driven between V  
and GNDL2.  
DDL2  
3.3V Supply for Lower-Port Transmitter. Connect externally to VAA and bypass with  
0.47µF capacitor to GNDL2.  
22  
23  
24  
V
Power  
Ground  
Input  
DDL2  
GNDL2  
RXLP  
Ground for Lower-Port Transmitter. Connect to ground plane.  
Positive Input for Lower-Port Receiver. Tolerates ±30V. Connect to ground for single-  
ended operation.  
25  
28  
RXLN  
CTG  
Input  
Input  
Negative Input for Lower-Port Receiver. Tolerates ±30V.  
Reserved for Factory use. Connect to ground.  
Auxiliary Voltage Input 2 to Measure External Temperature. Connect to a voltage-divider  
consisting of a 10kΩ pullup to THRM and 10kΩ NTC thermistor to ground. If not used,  
connect to the pullup only.  
29  
30  
AUXIN2  
AUXIN1  
Input  
Input  
Auxiliary Voltage Input 1 to Measure External Temperature. Connect to a voltage-divider  
consisting of a 10kΩ pullup to THRM and a 10kΩ NTC thermistor to ground. If not used,  
connect to the pullup only.  
3.3V Switched Output. Used to supply the voltage-dividers for the auxiliary inputs. The  
output is enabled only during measurements, or as configured by THRMMODE[1:0].  
This output can source up to 2mA.  
32  
THRM  
Power  
Maxim Integrated  
22  
www.maximintegrated.com  
MAX17843  
12-Channel, High-Voltage Smart Sensor  
Data-Acquisition Interface  
Pin Description (continued)  
PIN  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
NAME  
SW0  
C0  
TYPE  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
FUNCTION  
Balance Input for Cell 1 Negative.  
Voltage Input for Cell 1 Negative. Connect to AGND.  
Balance Input for Cell 1 Positive (Cell 2 Negative)  
Voltage Input for Cell 1 Positive (Cell 2 Negative)  
Balance Input for Cell 2 Positive (Cell 3 Negative)  
Voltage Input for Cell 2 Positive (Cell 3 Negative)  
Balance Input for Cell 3 Positive (Cell 4 Negative)  
Voltage Input for Cell 3 Positive (Cell 4 Negative)  
Balance Input for Cell 4 Positive (Cell 5 Negative)  
Voltage Input for Cell 4 Positive (Cell 5 Negative)  
Balance Input for Cell 5 Positive (Cell 6 Negative)  
Voltage Input for Cell 5 Positive (Cell 6 Negative)  
Balance Input for Cell 6 Positive (Cell 7 Negative)  
Voltage Input for Cell 6 Positive (Cell 7 Negative)  
Balance Input for Cell 7 Positive (Cell 8 Negative)  
Voltage Input for Cell 7 Positive (Cell 8 Negative)  
Balance Input for Cell 8 Positive (Cell 9 Negative)  
Voltage Input for Cell 8 Positive (Cell 9 Negative)  
Balance Input for Cell 9 Positive (Cell 10 Negative)  
Voltage Input for Cell 9 Positive (Cell 10 Negative)  
Balance Input for Cell 10 Positive (Cell 11 Negative)  
Voltage Input for Cell 10 Positive (Cell 11 Negative)  
Balance Input for Cell 11 Positive (Cell 12 Negative)  
Voltage Input for Cell 11 Positive (Cell 12 Negative)  
Balance Input for Cell 12 Positive  
SW1  
C1  
SW2  
C2  
SW3  
C3  
SW4  
C4  
SW5  
C5  
SW6  
C6  
SW7  
C7  
SW8  
C8  
SW9  
C9  
SW10  
C10  
SW11  
C11  
SW12  
C12  
Voltage Input for Cell 12 Positive  
V
Block Voltage Positive Input. Internal 10MΩ pulldown during measurement.  
BLKP  
HV  
Decoupling Capacitor Connection for the HV Charge Pump. V  
(typical). Bypass with a 50V, 4.7µF capacitor to DCIN.  
= V  
+ 5.5V  
HV  
DCIN  
61  
Power  
DC Supply for the Low-Voltage Regulator, HV Charge Pump, and SHDNL Charge  
Pump. Connect to a voltage source between 9V and 65V through a 100Ω series resistor.  
Bypass with a 100V, 2.2μF capacitor to ground.  
62  
DCIN  
Power  
Positive Capacitor Connection for the HV Charge Pump. Connect a 100V, 0.1µF  
capacitor from CPP to CPN.  
63  
64  
CPP  
CPN  
Power  
Power  
Negative Capacitor Connection for the HV Charge Pump  
Maxim Integrated  
23  
www.maximintegrated.com  
MAX17843  
12-Channel, High-Voltage Smart Sensor  
Data-Acquisition Interface  
Detailed Description  
The data-acquisition system consists of the major blocks as described in Table 1.  
Table 1. System Blocks  
BLOCK  
DESCRIPTION  
Primary analog-to-digital converter. Uses a 12-bit successive-approximation register (SAR), with a  
ADC1  
ADC2  
reference voltage of 2.307V and is supplied by V . V diagnostic result yields V . This is the default  
ADC selected by the ADCSELECT bit in the SCANCTRL register.  
AA AA AA  
Secondary analog-to-digital converter. Uses a 12-bit successive-approximation register (SAR) with a  
reference voltage of 2.307V and is supplied by V . This is the secondary ADC. V diagnostic result  
AA  
AA  
yields V /2. Writing the ADCSELECT bit to 1 selects this ADC for measurements.  
AA  
HVMUX  
12-channel, high-voltage (65V) differential multiplexer for Cn inputs.  
High-voltage charge-pump supply (V  
that must switch high-voltage signals. Supplied by DCIN.  
+ 5.5V) for the HVMUX, ALTMUX, BALSW, and LSAMP circuits  
DCIN  
HV CHARGE PUMP  
Level-shifting amplifier with a gain of 6/13. The result is that a 5V differential signal is attenuated to  
2.307V, which is the reference voltage for the ADC.  
LSAMP  
LVMUX  
Multiplexes various low-voltage signals including the level-shifted signals and temperature signals to the  
ADC for subsequent A-to-D conversion.  
ALTMUX  
BALSW  
12-channel, high-voltage differential multiplexer for SWn inputs.  
Cell-balancing switches.  
LINREG  
REF  
3.3V (V ) linear regulator used to power the ADC and digital logic. Supplied by DCIN (9V to 65V).  
AA  
2.307V precision reference voltage for ADC and LINREG. Temperature-compensated.  
1.242V precision reference voltage used for diagnostics.  
ALTREF  
16MHZ OSC  
32kHz OSC  
16MHz oscillator with 2% accuracy for clocking state-machines and UART timing.  
32,768Hz oscillator for driving charge pumps and timers.  
Differential UART for communication with host or downstack devices. Autodetects baud rates of 0.5, 1, or  
2Mbps.  
LOWER PORT  
UPPER PORT  
Differential UART for communication with upstack devices.  
CONTROL AND  
STATUS  
ALUs, control logic, and data registers.  
DIE TEMP  
A proportional-to-absolute-temperature (PTAT) voltage source used to measure the die temperature.  
Maxim Integrated  
24  
www.maximintegrated.com  
MAX17843  
12-Channel, High-Voltage Smart Sensor  
Data-Acquisition Interface  
RXUP, RXUN,  
RXLP, RXLN  
HV  
CTG  
MAX17843  
CPP  
VAA  
THRM, AUXINn  
DCIN  
SHDNL, CPN  
VDDL3  
SW12  
SW11  
TXUP, TXUN  
GNDL3  
VDDL2  
SWn  
SW1  
SW0  
TXLP, TXLN  
GNDL2  
VDDL1  
Cn, VBLKP  
AGND  
HV  
VAA  
GPIOn  
GNDL1  
NOTES:  
1. ALL DIODES ARE RATED FOR ESD CLAMPING CONDITIONS. THEY ARE NOT INTENDED TO ACCURATELY  
CLAMP DC VOLTAGE.  
2. ALL DIODES HAVE A PARASITIC DIODE FROM AGND TO THEIR CATHODE THAT IS OMITTED FOR CLARITY.  
THESE PARASITIC DIODES HAVE THEIR ANODE AT AGND.  
Figure 5. ESD Diode Diagram  
Maxim Integrated  
25  
www.maximintegrated.com  
MAX17843  
12-Channel, High-Voltage Smart Sensor  
Data-Acquisition Interface  
CELL TEST  
SOURCES  
HIGH-VOLTAGE MUX  
VBLKP  
VAA  
SOURCE  
VAA  
AGND  
C12  
C11  
C10  
SOURCE  
12  
SOURCE  
11  
REF  
THRM  
SOURCE  
10  
VBLKP  
HVMUX INTEGRITY  
DETECTION  
C9  
C8  
C7  
SOURCE  
9
SOURCE  
8
+
SOURCE  
7
LS AMP  
ADC IN +  
C6  
C5  
SOURCE  
6
-
ADC1  
ADC IN -  
SOURCE  
5
C4  
C3  
C2  
REF DIAGNOSTIC  
SOURCE  
4
ALTREF  
REF  
SOURCE  
3
LV  
MUX1  
SOURCE  
2
C1  
C0  
SOURCE  
1
DIE TEMPERATURE  
SOURCE  
0
AGND  
SOURCE  
AUXIN2  
AUXIN2  
AUXIN1  
SOURCE  
AUXIN1  
REF  
THRM  
AUXIN2  
ADC IN +  
ADC IN -  
AUXIN1  
LV  
MUX2  
ADC2  
V’BLKP  
(5/8) x VAA  
DIE TEMPERATURE  
AGND  
Figure 6. Analog Front-End (AFE Inputs)  
Maxim Integrated  
26  
www.maximintegrated.com  
MAX17843  
12-Channel, High-Voltage Smart Sensor  
Data-Acquisition Interface  
Measurement Calibration  
Data Conventions  
The acquisition system is calibrated at the factory and  
cannot be changed afterwards. The calibration param-  
eters are stored in a ROM consisting of 12 read-only  
registers, CAL0–CAL10 and CAL15. ROMCRC[8:0] is  
an 8-bit CRC value based on the calibration ROM and is  
stored in ID2[15:8] at the factory. ROMCRC[8:0] can be  
used to check the integrity of the calibration, as described  
in the Diagnostics section.  
Representation of data follows the conventions shown in  
Table 2. All registers are 16-bit words.  
Data Acquisition  
Data acquisition is composed of the distinct processes  
defined in Table 3, and is controlled by various configu-  
ration registers described in this section. Configuration  
changes should be made prior to the acquisition in which  
the changes are to be effected.  
Cell Inputs  
Precision Internal Voltage References  
Up to 12 voltage measurements can be sampled  
differentially from the 13 cell inputs. The differential signal  
The measurement system uses two precision, temper-  
ature-compensated voltage references. The references  
are completely internal to the device and do not require  
any external components. The primary voltage reference  
(REF) is used to derive the linear regulator output voltage  
and to supply the ADC reference. An alternate, indepen-  
dent reference(ALTREF) can be used to verify the primary  
reference voltage, as described in the Diagnostics section.  
(V  
) is defined as V - V  
for n = 1–12.  
CELLn  
Cn  
Cn-1  
Cells to be measured are selected by MEASUREEN[11:0].  
During the scan, each selected signal is multiplexed into  
the level-shifting amplifier (LSAMP) as shown in Figure 6.  
Since the common-mode range of the input signals is 0 to  
65V, the signal must be level-shifted to the common-mode  
range of the amplifier. The amplifier has a gain of 6/13, so  
a 5V differential signal is attenuated to 2.307V, which is  
the ADC reference voltage.  
Table 2. Numeric Conventions  
DESCRIPTION  
Binary number  
CONVENTION  
0b prefix  
EXAMPLE  
0b01100001 = 61h  
0x61  
Hexadecimal address  
Hexadecimal data  
Register bit  
0x prefix  
h suffix  
61h  
Register name [x]  
Field name [x:y]  
{xxxx, yyyy}  
STATUS[15] = 1  
DA[4:0] = 0b01100 = 0Ch  
{DA[4:0], 0b001} = 61h  
Register field  
Concatenated numbers  
Table 3. Data-Acquisition Processes  
PROCESS  
DESCRIPTION  
The ADC samples a single input channel, converts it to a 12-bit binary value, and stores it in an  
ALU register.  
Conversion  
Scan  
The ADC sequentially performs conversions on all enabled cell input channels.  
The ADC performs two scans for the purpose of minimizing errors. The conversions (two  
for each input channel) are averaged together to form a single 14-bit binary value called  
a measurement. Note: The auxiliary inputs are only scanned once to create the auxiliary  
measurements.  
Measurement cycle or Sample  
Acquisition or Acquisition mode  
If oversampling is enabled, the ADC takes sequential measurements and averages them  
together to form one 14-bit binary value for each input channel sampled. If there is no  
oversampling, the acquisition is essentially a single-measurement cycle. Note: The auxiliary  
inputs are never oversampled and are stored as 12-bit values.  
Maxim Integrated  
27  
www.maximintegrated.com  
MAX17843  
12-Channel, High-Voltage Smart Sensor  
Data-Acquisition Interface  
Once the signal is properly conditioned, the ADC can start  
the conversion. The 12-bit conversion is stored in an ALU  
register where it can be averaged with subsequent con-  
versions. The ALU output is a 14-bit value and is ultimately  
stored in a 16-bit register with the two least-significant bits  
zero. Disabled channels result in a measurement value of  
0000h. Unless stated otherwise, measurement values are  
assumed to be 14-bit values. The 16-bit register values  
can be converted to 14-bit values by dividing by 4 (and  
vice versa). To convert the measurement value in register  
CELLn to a voltage, convert the 14-bit hexadecimal value  
to a decimal value and then convert to voltage as follows:  
The input range can effectively be extended from -2.5V to  
+5V by taking one bipolar measurement and one unipo-  
lar measurement. Any bipolar measurements over 2.3V  
should be replaced with the unipolar measurement.  
Note: Conversions for some diagnostic modes automati-  
cally use either bipolar or unipolar mode, regardless of the  
POLARITY bit value.  
Block Voltage Input  
The V  
input (total module voltage) is selected for  
BLKP  
measurement by MEASUREEN14. The measurement  
is stored in the VBLOCK register with a full-scale value  
of 60V (3.662mV/bit). It can be compared to the sum  
of the cell voltages as a diagnostic. To precondition  
V
= CELLn[15:2] x 5V/16384 = CELLn[15:2] x  
CELLn  
305.176μV.  
V
BLKP  
for conversion, it is voltage-divided by a factor of  
Input Range  
26. The divider is disconnected by default to minimize  
power consumption. The divider is connected by setting  
MEASUREEN15 (BLKCONNECT = 1) with sufficient set-  
tling time prior to the acquisition. For high acquisition rates,  
BLKCONNECT can remain enabled to reduce cycle time.  
The input range in unipolar mode is nominally 0 to 5V;  
however, the ADC has reduced linearity at its range  
extents and so accuracy is specified for the input range  
0.2V to 4.8V. Some applications may require specified  
accuracy below 0.2V, or even below 0V. To this end, the  
bipolar mode (POLARITY = 1) has a nominal input range  
of -2.5V to +2.5V, as shown in Table 4, with accuracy  
specified from -2.3V to +2.3V.  
Table 4. Input Range  
CELL INPUT VOLTAGE  
CELLN[15:2] (14 BITS)  
CELLN[15:0]  
(16 BITS)  
BIPOLAR MODE (V)  
UNIPOLAR MODE (V)  
HEXADECIMAL  
DECIMAL  
0d  
-2.5  
0
0
2.5  
5
0000h  
2000h  
3FFFh  
0000h  
8000h  
FFFCh  
8192d  
16383d  
+2.5  
V
REF  
R1 = 10MΩ – R2  
V
THRM  
VBLKP  
V
/26  
+
-
BLKP  
LV  
MUX  
ADC  
R2 = 384.5kΩ  
AGND  
Figure 7. V  
Measurement  
BLKP  
Maxim Integrated  
28  
www.maximintegrated.com  
MAX17843  
12-Channel, High-Voltage Smart Sensor  
Data-Acquisition Interface  
if oversampling is enabled; they are measured only once  
and stored as 12-bit values in the AIN1 and AIN2 registers.  
Auxiliary Inputs  
The AUXIN1 and AUXIN2 inputs can be used to measure  
external temperatures by enabling MEASUREEN[13:12].  
These inputs have a common-mode input range of 0 to  
To measure external temperature, the auxiliary input is  
connected to a voltage-divider consisting of a 10kΩ pullup  
to THRM and a 10kΩ NTC thermistor to ground, as shown  
in Figure 9.  
V
. For these measurements, the ADC reference volt-  
AA  
age is V  
, which is switched from V , as shown in  
AA  
THRM  
Figure 8. The auxiliary inputs are not oversampled even  
V
AA  
CONVERSIONS IN  
PROGRESS  
THRM  
V
REF  
AUXIN1  
AUXIN2  
AGND  
+
-
LV  
MUX  
ADC  
Figure 8. Auxiliary Measurement  
THRM  
R60  
10kΩ  
R61  
10kΩ  
MAX17843  
AUXIN1  
AUXIN2  
AGND  
C62  
100pF  
C60  
100pF  
C61  
100pF  
RTH2  
10kΩ  
R
TH1  
10kΩ  
t
t
THERMISTOR  
WIRE HARNESS  
Figure 9. Auxiliary Application Circuit  
Maxim Integrated  
29  
www.maximintegrated.com  
MAX17843  
12-Channel, High-Voltage Smart Sensor  
Data-Acquisition Interface  
The resistance of an NTC thermistor increases as the  
temperature decreases and is typically specified by its  
THRM Output  
The THRM output has two modes of operation, automatic  
and manual, as shown in Table 5.  
resistance R at T = 25°C = 298.15K and a material  
0
0
constant β (3400K typ). To the first order, the resistance  
The automatic mode minimizes power consumption, but  
after the THRM output is enabled, the AUXIN voltages  
must be allowed to settle before the conversion. Since the  
auxiliary inputs are the last inputs measured, the duration  
of the measurement cycle itself can provide sufficient set-  
tling time, depending on what measurements are enabled  
and the time constants for the auxiliary input circuit. Up  
to 384μs of additional settling time, if required, can be  
configured by ACQCFG[5:0] (see Table 6), or by utilizing  
the manual mode. The ability to configure the settling time  
allows for a range of time constants to be considered in  
designing the auxiliary application circuit.  
R
is at a temperature T in Kelvin can be computed as  
TH  
follows:  
(β(1/T-1/T ))  
R = R e  
0
0
The temperature T of the thermistor (in °C) can then be  
calculated as follows:  
T (in °C) = (β/ln((R /10kΩ) +  
TH  
(β/298.15K)) - 273.15K  
Temperature Alerts  
Auxiliary voltage measurements can be directly compared  
to precalculated voltages in the AINUT and AINOT reg-  
isters that correspond to specific over/undertemperature  
thresholds. When a measurement exceeds the AINUT  
or AINOT threshold level, the ALRTCOLD or ALRTHOT  
bits, respectively, are set in the STATUS register. An  
alert is cleared only by a new measurement that is within  
threshold.  
Computing Temperature  
In Figure 9, V  
= V  
x R /(10KΩ + R  
)
TH  
AUXINn  
THRM  
TH  
and this measurement is stored in the AINn register. The  
thermistor resistance can then be solved for as follows:  
R
= (V  
x 10kΩ)/(V  
- V  
),  
TH  
AUX  
THRM  
AUXINn  
where V  
= 3.3V nominally.  
THRM  
Table 5. THRM Output  
MODE  
ACQCFG[9:8]  
DESCRIPTION  
00b  
01b  
10b  
11b  
THRM output enabled at the beginning of the acquisition and disabled at the end  
of the acquisition.  
Automatic  
THRM output is enabled  
THRM output is disabled  
Manual  
Table 6. AINTIME  
ADDITIONAL SETTLING TIME PER ENABLED AUXILIARY  
CHANNEL = 6µs + (AINTIME x 6µs)  
ACQCFG[5:0] (AINTIME)  
00h  
01h  
02h  
6μs  
12μs  
18μs  
1Fh  
384 μs  
Maxim Integrated  
30  
www.maximintegrated.com  
MAX17843  
12-Channel, High-Voltage Smart Sensor  
Data-Acquisition Interface  
where V  
= 2.307V. The measured voltage can be  
Die Temperature Measurement  
REF  
converted into °C as follows:  
The die temperature measurement allows the host to  
compute the device temperature (T ) as it relates to  
the acquisition accuracy, and allows the device to auto-  
T
(in °C) = (V /A  
) + T  
- 273°C  
OS_PTAT  
DIE  
DIE  
PTAT V_PTAT  
See the Electrical Characteristics table for A  
and  
V_PTAT  
matically shut itself down when T  
> 145°C. The mea-  
DIE  
T
values.  
OS_PTAT  
surement employs a source whose voltage (V  
) is  
PTAT  
Die Temperature Alert  
proportional to absolute temperature (PTAT), as shown in  
Figure 10. The V measurement is enabled by setting  
The ALRTTEMP bit is updated at the end of each mea-  
surement cycle for which DIAGSEL[2:0] = 0b110. If  
ALRTTEMP is set, it signifies that T  
that the diagnostic measurement did not have sufficient  
settling time (< 50μs) and therefore can not be accurate. If  
ALRTTEMP is set, the host should consider the possibility  
that the acquisition does not meet the expected accuracy  
specification, or that the die temperature measurement  
itself may be inaccurate due to insufficient settling time  
(< 2 cell measurements enabled).  
PTAT  
DIAGSEL[2:0] to 0b110 and the 14-bit measurement is  
stored in DIAG[15:2]. The die temperature measurement  
requires a settling time of 50µs from the start of the mea-  
surement cycle until the diagnostic conversion. As long as  
two or more cell measurements are enabled, there will be  
sufficient settling time for this measurement. See Figure 17  
and Table 10 for a detailed view of this timing.  
> T  
, or  
ALRTTEMP  
DIE  
The PTAT voltage is computed as follows:  
V
PTAT  
= (DIAG[15:2]/16384d) x V  
REF  
V
REF  
ALRTEMP  
V
THRM  
+
-
1.230V  
+
-
+
-
LV  
MUX  
ADC  
+
-
V
PTAT  
AGND  
Figure 10. Die Temperature Measurement  
Maxim Integrated  
31  
www.maximintegrated.com  
MAX17843  
12-Channel, High-Voltage Smart Sensor  
Data-Acquisition Interface  
10) All enabled auxiliary conversions, in ascending order  
(AUXIN1, AUXIN2).  
Acquisition Mode  
The host enters the acquisition mode by writing a logic-one  
to the SCAN bit in the SCANCTRL register. This write is  
actually an automatic strobe of the bit since SCAN always  
reads logic-zero. In daisy-chained devices, acquisitions  
in upstack devices are delayed by the propagation delay  
11) Set SCANDONE bit.  
Oversampling  
Oversampling mode performs multiple measurement  
cycles in a single acquisition, and averages the samples  
in the ALU to reduce the measurement noise and effec-  
tively increase the resolution of each measurement result.  
In oversampling mode, acquisition times are proportional  
to the number of oversamples, as shown in Table 8. The  
number of oversamples can be configured from 4 to 128  
by OVSAMPL[2:0], as shown in Table 7. The AUXIN mea-  
surements are never oversampled, even in oversampling  
mode.  
(t ) of the command packet through each device.  
PROP  
The acquisition is complete when the device sets the  
SCANDONE bit. The basic acquisition process is outlined  
below with a detailed flowchart in Figure 8:  
1) Disable HV charge pump.  
2)  
V
BLKP  
conversion, if enabled.  
3) All enabled cell conversions (first):  
a. Ascending order (1:12) if pyramid mode, or  
b. Descending order (12:1) if top-down mode.  
To add n bits of measurement resolution requires at least  
2n  
2
oversamples. Since the ADC resolution is 12 bits,  
4) All enabled cell conversions (second):  
a. Descending order (12:1).  
13-bit resolution requires at least 4 oversamples and to  
achieve the maximum 14-bit resolution requires at least  
16 oversamples; therefore, with no oversampling, only  
the higher 12 bits of the measurement are statistically  
significant and with 4 or 8 oversamples, only the higher  
13 bits are statistically significant. Taking more than 16  
oversamples further reduces the measurement variation.  
5)  
V
BLKP  
conversion (second), if enabled.  
6) Diagnostic conversion (first), if enabled.  
7) Diagnostic conversion (second), if enabled.  
8) Enable HV charge pump for recovery period unless:  
a. OVSAMP[2:0] = 0 (no oversampling), or  
Of course with no oversampling, measurements can be  
averaged externally to achieve increased resolution, but  
at a higher computational cost for the host.  
b. All oversample measurements are complete.  
9) Repeat steps 1–8 until all oversamples are done.  
Table 7. Oversampling  
OVSAMPL[2:0]  
000b (default)  
001b  
OVERSAMPLES  
THEORETICAL RESOLUTION  
ACQUISITION WATCHDOG TIMEOUT  
0
4
12 bits  
13 bits  
13 bits  
14 bits  
14 bits  
14 bits  
14 bits  
14 bits  
1.10ms  
2.08ms  
3.36ms  
5.92ms  
10.99ms  
21.18ms  
41.56ms  
41.56ms  
010b  
8
011b  
16  
32  
64  
128  
128  
100b  
101b  
110b  
111b  
Maxim Integrated  
32  
www.maximintegrated.com  
MAX17843  
12-Channel, High-Voltage Smart Sensor  
Data-Acquisition Interface  
the equation, so it’s a tradeoff between response times to  
change in input value versus the noise attenuation. Refer  
to the application note in detail for how the filter affects the  
accuracy performance of MAX17843.  
Infinite Impulse Response Filtering (IIR Filter):  
To augment the accuracy performance, an IIR filtering  
scheme is implemented where the results of the cell volt-  
ages are filtered after the oversampling. The IIR filter is  
implemented by the simple equation below:  
Two new bits are added for the control of the data flow  
through the filter:  
Y(n) = FC x X(n) + (1 - FC) x Y(n-1)  
where FC = filter coefficient, user-selectable 3 bits.  
The default value is b’010, which has a weight of 3/8:  
X (n) = 3/8  
1) AMEND Filter (AMENDFILT) bit  
2) Read Filter (RDFILT) bit  
AMENDFILT is in SCANCTRL register 0x13.  
This bit when set to ‘1’ enables the automatic transfer  
of the new ADC conversion from the ALUn to CELLn  
registers through the IIR filter at the end of the scan. The  
default value is ‘0’, which keeps the scan conversion data  
in the ALUn register as an unfiltered result.  
Y (n-1) = 5/8  
The detailed filter coefficient settings are mentioned in the  
DEVCFG1 register. The filter can be turned off by setting  
the coefficient bits to b’111. The smaller that coefficient  
is, the more the history, represented by Y (n-1) outputs in  
Y(n-1)  
X(n)  
Y(n)  
INTERNAL  
REGISTER  
COMBINATIONAL  
LOGIC  
USER  
REGISTER  
IIR FILTER LOGIC  
DIAGRAM  
Figure 11. IIR Filter Block Diagram  
Table 8. AMENDFILT Bit  
AMENDFILT BIT  
FUNCTIONALITY AND RECOMMENDED USAGE  
No transfer of the ADC conversion result from ALUn to CELLn registers. Unfiltered data is stored in ALUn  
registers at the end of the scan. This bit should be set to ‘0’ during any diagnostic conversion such as open-  
sense wire, or using balancing switches.  
0
1
Automatic transfer of the ADC conversion result from ALUn to CELLn registers at the end of the scan  
through the IIR filter. Instantaneous unfiltered data is available in ALUn registers while the filtered data is  
stored in the CELLn registers. This bit should be set to ‘1’ during normal cell-voltage measurements.  
Maxim Integrated  
33  
www.maximintegrated.com  
MAX17843  
12-Channel, High-Voltage Smart Sensor  
Data-Acquisition Interface  
RDFILT Bit in SCANCTRL Register (0x13)  
This bit chooses where the ADC scan data is read from. Writing this bit to ‘1’ enables the read to occur from filtered CELLn  
registers. The default value is ‘0’, wherein the read of the scanned data occurs from unfiltered ALUn registers.  
START OF ADC SCAN  
NO  
ADC SCAN  
COMPLETE?  
YES  
INSTANTANEOUS RESULT IN ALUn REGISTERS  
UNFILTERED RESULT  
NO  
STORED IN ALUn  
REGISTERS  
AMENDFILT = 1?  
YES  
IIR FILTER  
{CELLn = FC x ALU REGISTER +  
(1-FC) x CELLn REGISTER}  
INSTANTANEOUS RESULT IN ALUn REGISTERS  
FILTERED RESULT STORED IN CELLn REGISTERS  
Figure 12. IIR Flowchart with Respect to the AMENDFILT Bit  
Table 9. RDFILT Bit  
RDFILT BIT  
FUNCTIONALITY AND RECOMMENDED USAGE  
Reads UNFILTERED result from the ALUn registers.  
To read back the result of diagnostic conversion such as open sense wire stored in ALUn registers.  
0
1
Reads FILTERED result from the CELLn registers.  
To read back the cell-voltage measurement data.  
Maxim Integrated  
34  
www.maximintegrated.com  
MAX17843  
12-Channel, High-Voltage Smart Sensor  
Data-Acquisition Interface  
IIR filtering will be applicable for CELLn and V  
results of both the ADCs.  
BLKP  
ALU REGISTERS  
CELL REGISTERS  
14  
14  
14  
14  
CELL1  
ALU1  
REGISTER  
14  
CELL2  
REGISTER  
ALU2  
14  
CELLn  
REGISTER  
DEMUX  
IIR FILTER  
MUX  
ALUN  
14  
14  
14  
14  
CELL12  
ALU12  
REGISTER  
VBLOCK  
REGISTER  
BLOCK ALU  
CONTROL  
CIRCUITRY  
RDFILT  
14  
UART DATA BUS  
Figure 13. IIR Filter Diagram with Respect to RDFILT  
Maxim Integrated  
35  
www.maximintegrated.com  
MAX17843  
12-Channel, High-Voltage Smart Sensor  
Data-Acquisition Interface  
It is divided into two 8-bit time-delay settings, with lower-  
byte register-delay setting for cell-recovery time, while  
upper byte of the register used for the delay setting of  
certain diagnostics such as sense-wire open. This delay  
should be set as appropriate by the customer according  
to their cell characteristics and properties and to enhance  
the maximum SoC of the battery available. Once the  
measurement is executed and the Scan done bit is set,  
the AUTOBALSWDIS bit should be cleared by the host.  
AUTOBALSWDIS Feature  
This feature enables the automatic disabling of the balanc-  
ing switches during measurements. The main purpose  
of this feature is to phase out the additional voltage drop  
due to cell balancing in accuracy measurements. This  
ultimately allows the system to get more precise cell-  
voltage readings, which helps to calculate higher accu-  
racy of state-of-charge (SoC). The AUTOBALSWDIS bit  
is the D11 bit in the DEVCFG1 register. This bit when  
set to '1' turns off the balancing switches. A delay in  
the AUTOBALSWDIS delay register (0x0C) is selected  
based on the DELAYSEL bit in the SCANTCTRL register  
(0x13), and the set wait time is added after the scan is  
enabled before the start of actual measurements. The  
AUTOBALSWDIS delay register has a minimum delay  
setting of 96μs, with maximum being up to 24.57ms.  
Enabling the AUTOBALSWDIS bit adds a delay before  
the start of measurements, but after the scan is enabled;  
therefore, this feature can be used during normal cell  
measurements as well as during diagnostic measure-  
ments with two separate delay timers that can be  
independently set.  
AUTOBALSWDIS/  
BALSWDISABLE/  
DISABLING OF  
BALANCING SWITCHES  
EMGCYDCHG/  
THRMSHDN/  
BALANCING SWITCH  
ENABLE  
(BALSWEN)n  
RST/  
POR  
PRIORITY OF OPERATION  
THRMSHDN > EMGCYDCHG > AUTOBALSWDIS/BALSWDISABLE > BALSWENn  
Figure 14. Logic Diagram when Balancing Switches Are Disabled  
Maxim Integrated  
36  
www.maximintegrated.com  
MAX17843  
12-Channel, High-Voltage Smart Sensor  
Data-Acquisition Interface  
measurement data registers are also cleared. The acquisi-  
tion watchdog-timeout interval depends on the oversam-  
pling configuration, as shown in Table 7.  
Acquisition Watchdog Timeout  
If the acquisition does not finish within a predetermined  
time interval, the SCANTIMEOUT bit is set, the ADC  
logic is reset, the ALU registers are cleared, and the  
STANDBY MODE  
NO  
COMPARE  
SCAN BIT SET?  
MEASUREMENTS TO  
THRESHOLDS AND  
UPDATE ALERTS  
YES  
LATCH ACQUISITION  
CONFIGURATION;  
DISABLE HV CHARGE  
PUMP  
CONVERT AUXINn  
INPUTS IF ENABLED;  
USE AINCFG SETTLING  
TIME  
SET ADC STATE  
MACHINE TIMEOUT  
PERIOD  
COMPARE AUXINn  
MEASUREMENT TO  
THRESHOLDS, UPDATE  
ALERTS  
CLEAR ALL ALU  
REGISTERS  
NO  
AMENDFILT  
SET?  
YES  
SET CELL = FILTOUT  
SET SCANDONE  
PERFORM  
MEASUREMENT  
SCANS FOR VBLKP,  
Enable HV charge pump  
for 100.3µs  
CELLn, DIAG PER  
MEASUREEN  
ENABLE HV CHARGE  
PUMP  
NO  
ALL SAMPLES  
DONE?  
YES  
STANDBY MODE  
Figure 15. Acquisition Mode Flowchart  
Maxim Integrated  
37  
www.maximintegrated.com  
MAX17843  
12-Channel, High-Voltage Smart Sensor  
Data-Acquisition Interface  
offset and reference-induced errors. The two conversions  
are then offset corrected and averaged in the ALU.  
Scan Modes  
The cell, block, and diagnostic-measurement cycle con-  
sists of two conversion phases. In each phase, the ADC  
scans through the enabled input channels. There are  
two scan modes configured by the SCANMODE bit. If  
SCANMODE = 0, the mode is pyramid mode, as shown  
in Figure 16. If SCANMODE = 1, the mode is top-down  
mode. In pyramid mode, the ADC scans first ascending  
and then descending. In top-down mode, the ADC scans  
descending in both phases. In the second scan, the  
amplifier inputs are inverted to effectively chop out any  
After the cell and block scans are complete, the diag-  
nostic conversions are made, if enabled, and finally, the  
auxiliary inputs, if enabled, are converted. The auxiliary  
inputs are measured using a single conversion and stored  
in the AIN1 and AIN2 registers. Any extra settling time, if  
configured by AINCFG[5:0], is implemented just before  
the conversion for each AUXIN channel, so if both inputs  
are enabled, the extra settling time occurs twice.  
Figure 16. Acquisition, OVSAMP[2:0]=0h and SCANMODE=0  
Figure 17. Acquisition, OVSAMP[2:0] > 0 and SCANMODE=0  
Maxim Integrated  
38  
www.maximintegrated.com  
MAX17843  
12-Channel, High-Voltage Smart Sensor  
Data-Acquisition Interface  
Acquisition Time  
The total acquisition time can be calculated by summing all the required processes, as shown in Table 10 and Table 11.  
There is one measurement cycle per oversample.  
Table 10. Acquisition Time  
PROCESS  
Initialization  
measurement  
TIME (µs)  
CONDITION  
FREQUENCY  
13  
Always  
If V is enabled  
BLKP  
Once per acquisition  
V
27  
BLKP  
12.5  
If cell input(s) enabled and V  
If cell input(s) enabled and V  
enabled  
disabled  
BLKP  
BLKP  
Cell scan setup  
Cell scans  
20  
9 x n  
For n = Number of enabled cell inputs  
If zero-scale ADC output diagnostic enabled  
If full-scale ADC output diagnostic enabled  
11.4  
Every measurement cycle  
11.4  
Diagnostic  
measurement  
(if enabled)  
86.2  
If V  
diagnostic enabled  
ALTREF  
86.2  
If die temperature diagnostic enabled  
If any other diagnostic mode enabled  
22.9  
10  
If AUXIN1 is enabled  
6µs x AINCFG[5:0]  
10  
AUXIN measurement  
(if enabled)  
Once per acquisition  
If AUXIN2 is enabled  
6µs x AINCFG[5:0]  
HV recovery (if  
oversampling enabled)  
After every measurement  
cycle except the last  
100.3 x m  
For m = Number of oversamples  
Table 11. Acquisition Time Examples (with AINCFG[5:0] = 00h)  
ENABLED MEASUREMENTS  
12 cells  
12 cells, V  
NO OVERSAMPLING  
141.0µs  
FOUR OVERSAMPLES  
825.9µs  
EIGHT OVERSAMPLES  
1739.1µs  
160.5µs  
903.9µs  
1895.1µs  
BLKP  
12 cells, AUXIN1 and AUXIN2  
161.0µs  
845.9µs  
1759.1µs  
12 cells, V  
12 cells, V  
and AUXIN2  
, AUXIN1 and AUXIN2  
180.5µs  
923.9µs  
1915.1µs  
BLKP  
BLKP  
, die temperature, AUXIN1  
266.7µs  
1268.7µs  
2604.7µs  
Maxim Integrated  
39  
www.maximintegrated.com  
MAX17843  
12-Channel, High-Voltage Smart Sensor  
Data-Acquisition Interface  
set threshold to full scale, or setting the undervoltage set  
threshold to zero scale, effectively disables voltage alerts.  
Measurement Alerts  
After the measurement cycle, the ALU compares the  
enabled measurements to the various configured thresh-  
olds, as shown in Table 12, and sets the alert bits before  
the ALU data is transferred to the data registers. In over-  
sampling mode, the alert status is updated after the last  
oversample. The alerts are updated whether or not the  
data is moved from the ALU registers to the data registers  
and are only updated for those measurements enabled in  
the MEASUREEN register.  
The ALRTOV and ALRTUV bits in the STATUS register  
are set when any alert flag is set in the ALRTOVCELL or  
ALRTUVCELL registers, respectively. ALRTCELL[n] is the  
logical OR of ALROVCELL[n] and ALRTUVCELL[n].  
Cell Mismatch  
Enable the mismatch alert to signal when the minimum  
and maximum cell voltages differ by more than a specified  
voltage. The MSMTCH register sets the 14-bit threshold  
Voltage Alerts  
(V  
) for the mismatch alert (ALRTMSMTCH).  
MSMTCH  
Use the ALRTOVEN and ALRTUVEN registers to enable  
voltage alerts for the cell and auxiliary inputs. If a cell-  
voltage alert is enabled, the cell input voltage is compared  
against the programmable overvoltage and undervoltage  
thresholds after every acquisition as shown in Figure 14.  
Separate thresholds for both setting and clearing the alert  
provide hysteresis. Configure the set thresholds for cell  
Whenever V  
- V  
> V  
, thenALRTMSMTCH  
MAX  
MIN  
MSMTCH  
= 1. The alert bit is cleared when a new acquisition does  
not exceed the threshold condition. To disable the alert,  
write FFCH to the MSMTCH register (default value).  
Cell Statistics  
The cell numbers with the lowest and highest voltages  
are stored in the MINMAXCELL register. When multiple  
cells have the same minimum or same maximum volt-  
age, only the highest cell position having that voltage is  
reported. The sum of all enabled cell voltages is stored  
in the TOTAL register as a 16-bit value. For acquisitions  
with no enabled cell inputs, the MINMAXCELL and TOTAL  
registers are not updated.  
undervoltage (V  
) and overvoltage (V  
)
UVTHSET  
OVTHSET  
using the UVTHSET and OVTHSET registers. Configure  
the clear thresholds for cell undervoltage (V  
)
UVTHCLR  
and cell overvoltage (V  
) using the UVTHCLR  
OVTHCLR  
and OVTHCLR registers.  
Alert flags in theALRTOVCELL register are set, if enabled,  
when the acquired cell voltage is over V . Alerts  
OVTHSET  
in the ALRTUVCELL register are set, if enabled, when the  
acquired cell voltage is under V . The alerts are  
cleared when the cell voltage moves in the opposite direc-  
tion and crosses the clear threshold. The voltage must  
cross the threshold; if it is equal to a threshold, the alert  
flag does not change. Therefore, setting the overvoltage  
Temperature Alerts  
UVTHSET  
Temperature alerts, if enabled, occur when the acquired  
AUXINx input voltages fall outside the thresholds config-  
ured by the AINOT and AINUT registers. Unlike the cell-  
voltage alerts, the temperature thresholds do not have the  
hysteresis afforded by separate set and clear thresholds.  
Table 12. Measurement Alerts  
DESCRIPTION  
Cell overvoltage (OV)  
Cell undervoltage (UV)  
Cell mismatch  
CONDITION OR RESULT  
- V > V  
VOVTHSET  
ALERT BIT  
ALRTOV, ALRTOVn  
ALRTUV, ALRTUVn  
ALRTMSMTCH  
None  
LOCATION  
STATUS, ALRTOVCELL  
STATUS, ALRTUVCELL  
STATUS  
V
Cn  
Cn-1  
V
- V  
< V  
Cn  
Cn-1 UVTHSET  
V
- V  
> V  
MSMTCH  
MAX  
MIN  
Cell with minimum voltage  
Cell with maximum voltage  
Total of all cell voltages  
n where V  
= V  
MINMAXCELL  
MINMAXCELL  
TOTAL  
CELLn  
CELLn  
MIN  
n where V  
Σ V  
= V  
None  
MAX  
where n = 1–12  
None  
CELLn  
AUXINx overvoltage  
(undertemperature)  
V
> V  
ALTRTCOLD, ALRTOVAINx  
ALRTHOT, ALRTUVAINx  
STATUS, ALRTOVCELL  
STATUS, ALRTUVCELL  
AUXINx  
AUXINx  
AINUT  
AINOT  
AUXINx undervoltage  
(overtemperature)  
V
< V  
Maxim Integrated  
40  
www.maximintegrated.com  
MAX17843  
12-Channel, High-Voltage Smart Sensor  
Data-Acquisition Interface  
Enabling adjacent balancing switches simultaneously  
may increase the balancing current significantly, so care  
must be taken to not exceed the device’s maximum  
operating conditions. Fault detection is described in the  
Diagnostics section.  
Cell Balancing  
Cell-Balancing Switches  
Cell balancing can be performed using any of the 12 inter-  
nal cell-balancing switches to discharge cells. The cell-  
balancing current is limited by the external balancing resis-  
tors and the internal balancing switch resistance (R ).  
SW  
V
OVER-VOLTAGE  
ALERT SET  
OVER-VOLTAGE SET AND CLEAR  
THRESHOLDS POR DEFAULT VALUE (+5.0V)  
OVER-VOLTAGE CLEAR  
THRESHOLD (OVTHRCLR)  
OVER-VOLTAGE  
ALERT CLEARED  
UNDER-VOLTAGE  
ALERT CLEARED  
CELL VOLTAGE  
N
UNDER-VOLTAGE CLEAR  
THRESHOLD (UVTHCLR)  
UNDER-VOLTAGE SET  
THRESHOLD (UVTHRSET)  
UNDER-VOLTAGE  
ALERT SET  
UNDER-VOLTAGE SET  
AND CLEAR THRESHOLDS  
POR DEFAULT VALUE (+0.0V)  
T
Figure 18. Cell Voltage-Alert Thresholds  
TO CELL n+1  
SENSE  
RFILTER  
Cn  
WIRE  
TO HVMUX  
CFILTER  
RBALANCE  
SWn  
TO ALTMUX  
BALSWEN  
HV  
RBAL  
FILTER  
BALANCING  
SWITCH (n)  
CELL n  
RBALANCE  
RFILTER  
SWn-1  
TO ALTMUX  
TO HVMUX  
SENSE  
WIRE  
Cn-1  
CFILTER  
AGND  
TO CELL n-1  
Figure 19. Internal Cell Balancing  
Maxim Integrated  
41  
www.maximintegrated.com  
MAX17843  
12-Channel, High-Voltage Smart Sensor  
Data-Acquisition Interface  
Maximum Cell-Balancing Current  
Cell-Balancing Watchdog  
The maximum balancing current is limited by package  
power dissipation, average die temperature, average duty  
cycle of the switch, and the number of switches conduct-  
ing current at any one time.  
Even if the host fails to disable the cell-balancing mode, the  
cell-balancing watchdog can automatically disable the cell-  
balancing switches regardless of the BALSWEN configu-  
ration. The cell-balancing watchdog does not modify the  
contents of the BALSWEN register. Use the WATCHDOG  
register to configure the timeout value from 1s to 3840s  
(64min), as shown in Table 14. The pre-divider configu-  
ration CBPDIV[2:0] effectively sets the rate at which the  
CBTIMER[3:0] counts down (see Figure 20).  
The power dissipation must not exceed the absolute  
maximum rating of the package, nor should the die tem-  
perature go outside the range specified for the desired  
level of measurement accuracy. Higher die temperatures  
and higher average duty cycles increase the probability  
of internal electromigration, so the maximum balancing  
current is lowered accordingly, as shown in Table 13 for  
an assumed 10-year device lifetime.  
Table 13. Maximum Allowed Balancing Current per Switch  
AVERAGE LIFETIME DUTY CYCLE  
T
= 85°C  
T
= 105°C  
T
= 125°C  
DIE  
DIE  
DIE  
(10 YEARS)  
15%  
> 320mA  
> 320mA  
> 320mA  
> 320mA  
215mA  
20%  
320mA  
256mA  
161mA  
129mA  
25%  
Table 14. Cell-Balancing Watchdog Configuration  
RANGE OF CBTIMER[3:0]  
CBPDIV[2:0]  
TIMER LSb PERIOD  
MINIMUM  
MAXIMUM  
000b  
001b  
010b  
011b  
100b  
101b  
110b  
Timer Disabled  
Timer Disabled  
1s  
4s  
1s  
4s  
15s  
60s  
16s  
64s  
128s  
256s  
16s  
64s  
128s  
256s  
240s  
960s  
1920s  
3840s  
CBPDIV2  
CBPDIV1  
CBPDIV0  
BIT 3 BIT 2 BIT 1 BIT 0  
TIMER ZERO  
FLAG  
32.768KHz  
CBPDIV  
CBTIMER  
CELL BALANCING  
SWITCH ENABLE  
BALSWEN  
CBTIMER ENABLE  
Figure 20. Cell-Balancing Watchdog  
Maxim Integrated  
42  
www.maximintegrated.com  
MAX17843  
12-Channel, High-Voltage Smart Sensor  
Data-Acquisition Interface  
The host should periodically update CBTIMER to ensure  
that it does not count down to zero. If the countdown  
timer is allowed to reach zero, the cell-balancing switches  
are disabled until the timer is either disabled or refreshed  
by writing a nonzero value.  
4) Read-only counter DCHGCNTR[3:0] increments at  
a 2Hz rate with periodic rollover at Fh. The host can  
read this counter periodically to confirm the mode is  
active.  
5) The GPIO3 pin is driven high while the countdown is  
active.  
To allow timed balancing with no host interaction, the  
GPIO3 pin is configured to output a logic-high level while  
the timer is counting using the GPIO3TMR configuration  
bit of the GPIO register. An external diode is connected  
from GPIO3 to SHDNL to prevent shutdown while the  
timer is counting. Once the timer expires, the device shuts  
down. The host may intervene prior to the timer expiring  
to keep the device active and to reconfigure the device.  
The emergency-discharge mode alternates between a  
1-minute discharge cycle for odd cells and a 1-minute  
discharge cycle for even cells. There is a 62.5ms minimum  
off-time at the end of each discharge cycle to ensure no  
overlap between even and odd discharge cycles. The  
duty cycle of each discharge cycle can be configured by  
DCHGWIN[2:0], as shown in Table 15.  
Emergency-Discharge Mode  
By clearing EMGCYDCHG, the emergency-discharge  
mode terminates and the following occurs:  
The emergency-discharge mode performs cell-balancing  
in a controlled manner so the cells can be discharged  
to a safe level in the event of an emergency. The  
BALSWDCHG and DEVCFG1 registers provide control  
for this mode. A timeout value for the mode is configured  
by DISCHGTIME[7:0], as shown in Table 15.  
1) The discharge timer is reset.  
2) Control of the cell-balancing switches reverts to the  
BALSWEN register.  
3) Control of GPIO3 reverts to the GPIO register.  
The emergency-discharge mode also terminates if  
DCHGTIME[7:0] = 0h or the discharge time has reached  
the configured timeout.  
The emergency-discharge mode is activated by setting  
the EMGCYDCHG bit with DCHGTIME[7:0] ≠ 00h. In  
emergency-discharge mode, the following occurs:  
To prevent the emergency-discharge mode from terminat-  
ing prematurely due to a device shutdown (which could  
occur due to an extended lapse in host communications),  
connect an external diode from GPIO3 to SHDNL to keep  
SHDNL high while the timer is counting.  
1) The CBTIMER[3:0] is cleared to prevent the cell-  
balancing watchdog from disabling the cell balancing.  
2) Cell-balancing switches are controlled by  
BALSWDCHG, not BALSWEN.  
3) The discharge timer starts to count down.  
Table 15. Emergency Discharge Mode  
FUNCTION  
REGISTER FIELD  
CONFIGURATION  
BEHAVIOR  
Switches on for 7.5s, off for 52.5s  
Switches on for 15s, off for 45s  
0h  
1h  
7h  
DCHGWIN[2:0]  
7.5s/bit  
Duty cycle  
Switches on for 59.94s, off for 62.5ms  
00h  
01h  
02h  
Discharge mode disabled  
Discharge mode disabled after 4 hours  
Discharge mode disabled after 6 hours  
DCHGTIME[7:0]  
2 hours/bit  
Timeout  
FFh  
Discharge mode disabled after 512 hours  
Maxim Integrated  
43  
www.maximintegrated.com  
MAX17843  
12-Channel, High-Voltage Smart Sensor  
Data-Acquisition Interface  
ated (see Figure 21). This event can be detected with  
the ALRTRST bit, as shown in Table 16. After a thermal  
Low-Voltage Regulator  
An internal linear regulator supplies low-voltage power  
shutdown, the regulator is not enabled until T  
due to hysteresis.  
< 130°C  
DIE  
(V ) for the ADC and digital logic. The regulator is  
AA  
disabled when SHDNL is active-low or when the die tem-  
perature (T ) exceeds 145°C. Once V  
2.95V (typ), an internal power-on reset (POR) is gener-  
decays below  
The low-voltage regulator is continuously monitored for  
undervoltage, as described in Table 17.  
DIE  
AA  
Table 16. Low-Voltage Regulator  
INPUT: DCIN  
INPUT VOLTAGE: 9V to 65V  
OUTPUT:  
OUTPUT VOLTAGE: 3.3V  
V
AA  
DISABLE:  
V
< 0.6V or T  
> 145°C  
SHNDL  
DIE  
Table 17. Low-Voltage Regulator Diagnostic  
FAULT  
CONDITION  
< 2.95V  
ALERT  
LOCATION  
V
undervoltage  
V
ALRTRST  
STATUS[15]  
AA  
AA  
R
DCIN  
DCIN  
VAA  
LINEAR  
REGULATOR  
REGULATOR  
ENABLE  
THERMAL  
SHUTDOWN  
+
SHDNL  
TO SHDNL  
CHARGE PUMP  
C
DCIN  
20MV  
HYST.  
C
VAA  
+
-
INTERNAL  
POR/  
C
SHDNL  
3.0V  
+
-
AGND  
Figure 21. Low-Voltage Regulator  
Maxim Integrated  
44  
www.maximintegrated.com  
MAX17843  
12-Channel, High-Voltage Smart Sensor  
Data-Acquisition Interface  
the C12 input, there is insufficient headroom to guarantee  
that HVMUX switch resistance is sufficiently low for an  
accurate acquisition of the channel. To properly identify  
HV Charge Pump  
The high-voltage multiplexers must be powered by a sup-  
ply higher than any monitored voltage. To this end, an  
internal charge pump draws power from the DCIN input  
this fault condition, if V –V  
is too low during the  
HV C12  
acquisition, the HV headroom-alert flag (ALRTHVHDRM)  
is set in the FMEA2 register. The HV undervoltage and  
HV headroom-alert functions can be verified by disabling  
to provide a high-voltage supply (V ) that is regulated to  
HV  
V
DCIN  
+ 5.5V (nominal). When the charge pump achieves  
regulation, charge pumping stops until the voltage drops  
by 20mV. The charge pump is automatically disabled  
during shutdown and during the measurement cycle to  
eliminate charge-pump noise. The charge pump can also  
be disabled manually by setting the HVCPDIS bit in the  
DEVCFG2 register.  
the HV charge pump (HVCPDIS = 1) and allowing V  
HV  
to decay while in acquisition mode. An overvoltage com-  
parator disables the charge pump in the case where V  
HV  
V
exceeds 8.5V. This condition is indicated by the  
DCIN  
ALRTHVOV bit in the FMEA2 register. The ALRTHVOV  
alert does not necessarily indicate a condition that affects  
measurement accuracy. HV charge-pump diagnostics are  
summarized in Table 18.  
If V –V  
drops below V  
, the HV undervoltage  
HVUV  
HV DCIN  
flag (ALRTHVUV) is set. If V  
drops too low relative to  
HV  
Table 18. HV Charge-Pump Diagnostics  
FAULT  
CONDITION  
ALERT BIT  
ALRTHVUV  
LOCATION  
FMEA1[3]  
FMEA2[0]  
FMEA2[2]  
V
undervoltage  
overvoltage  
V
V
–V  
< V  
HV  
HV DCIN  
HVUV  
HVOV  
V
–V  
HV DCIN  
> V  
ALRTHVOV  
HV  
V
low headroom  
V
–V  
< V  
(min.)  
ALRTHVHDRM  
HV  
HV C12  
HVHDRM  
+
-
HVOV  
TO ALRTHVOV  
-
+
TO ALRTHVUV  
8.5V  
4.1V  
+
-
+
-
20MV  
HYST.  
R
HV  
HV  
C
HV  
CPP  
INTERNAL POR/  
32KHZ  
SWITCH  
LOGIC  
5.5V  
+
-
R
DCIN  
DCIN  
DISABLE  
MEASURING  
DISABLE  
C
CP  
CPN  
HVOV  
DEVCFG2.  
HVCPDIS  
+
C
DCIN  
MAX17843  
15MA  
AGND  
Figure 22. HV Charge Pump  
Maxim Integrated  
45  
www.maximintegrated.com  
MAX17843  
12-Channel, High-Voltage Smart Sensor  
Data-Acquisition Interface  
Oscillators  
Power-On And Shutdown  
Two factory-trimmed oscillators provide all timing require-  
ments: a 16MHz oscillator for the UART and control logic,  
and a 32.768kHz oscillator for HV charge pump and tim-  
ers. A special diagnostic counter clocked by the 16MHz  
signal is employed to check the 32kHz oscillator. Every two  
periods of the 32kHz clock, the counter is sampled. If the  
count varies more than 5% from the expected value, the  
ALRTOSC1 bit is set, as shown in Table 19. A redundant  
alert bit (ALRTOSC2) increases the integrity level. If the  
16MHz oscillator varies by more than 5%, communication  
errors are indicated.  
Applications that remain connected continuously to the  
power source rely on the SHDNL input to shut down and  
reset the device. When V  
< 0.6V, the regulator is  
SHDNL  
disabled, the POR signal asserted, and the device goes  
into an ultra-low-power-shutdown mode. When V  
SHDNL  
> 1.8V, POR is deasserted, the regulator is enabled, and  
the device becomes fully operational in the standby mode.  
Power-On Method  
The SHNDL input can be driven externally, or can be  
controlled using UART communication only. In differential  
mode, the signaling on the lower-port receiver drives an  
internal charge pump that charges up the external 1nF  
capacitor connected to the SHDNL input (see Figure 23).  
Device ID Number  
The ID1[15:0] register, together with ID2[7:0], contain a  
24-bit manufacturing identification number (DEVID[23:0]).  
The ID, combined with the manufacturing date, provides  
a means of uniquely identifying each device. A device ID  
of zero is invalid.  
V
reaches 1.8V in 200μs (typ). The charge pump  
SHDNL  
then self-regulates to V  
and can maintain  
SHDNLIMIT  
V
at a logic-one even with the UART in idle 98%  
SHDNL  
of the time.  
Table 19. Oscillator Diagnostics  
FAULT  
CONDITION  
ALERT BIT  
LOCATION  
FMEA115  
32.768kHz oscillator  
32.768kHz oscillator  
16MHz oscillator  
31.129kHz > f  
> 34.406kHz  
ALRTOSC1  
ALRTOSC2  
osc_32k  
osc_32k  
osc_32k  
31.129kHz > f  
15MHz > f  
> 34.406kHz  
> 17MHz  
FMEA114  
ALRTMAN or ALRTPAR  
STATUS4, or STATUS2  
DCIN  
C42  
R40  
4.7kΩ  
C40  
15pF  
2nF 600V  
RXLP  
RXLN  
FROM DEVICE (n-1)  
TRANSMITTER  
CIRCUIT  
R41  
C43  
TO RECEIVER  
TO RECEIVER  
2nF 600V  
4.7kΩ  
R42  
100kΩ  
R43  
100KΩ  
C41  
15pF  
GNDL  
SHDNL  
C44  
1nF  
FORCEPOR  
10MΩ  
(C  
)
SHDNL  
Figure 23. SHDNL Charge Pump  
Maxim Integrated  
46  
www.maximintegrated.com  
MAX17843  
12-Channel, High-Voltage Smart Sensor  
Data-Acquisition Interface  
device is fully operational (standby mode) within 1ms from  
the time communication is first received in the shutdown  
mode. The power-on sequence is shown in Figure 24.  
Power-On Sequence  
Once V  
> 1.8V, the regulator is enabled. After V  
AA  
SHNDL  
reaches 3V (typ), the POR signal is deasserted, the oscil-  
lators enabled, and the HV charge pump enabled. Once  
the HV charge pump is stable, the logic is enabled. The  
REGULATOR  
DISABLED  
POR CLEARED  
VOLTAGE  
32KHZ OSCILLATOR  
APPLIED TO DCIN  
ENABLED  
DIE TEMP >  
145°C  
470USEC  
DELAY  
CHECK DIE  
TEMPERATURE  
SHUTDOWN  
MODE  
CHARGE PUMP AND  
DIGITAL LOGIC  
ENABLED  
SHDN/  
ACTIVE  
CHECK SHDN\  
ALRTRST BIT SET  
3MS DELAY  
REGULATOR ENABLED  
DIE TEMP > 145°C  
YES  
SHDN\ ACTIVE  
YES  
STANDBY  
MODE  
VAA <  
V
POR_RISING  
CHECK VAA  
CHARGE PUMP  
SETTLED  
REGULATOR  
DISABLED  
MAX17880 FULLY  
FUNCTIONAL  
Figure 24. Power-On Sequence  
Maxim Integrated  
47  
www.maximintegrated.com  
MAX17843  
12-Channel, High-Voltage Smart Sensor  
Data-Acquisition Interface  
If only a reset is required, the host can issue a soft-reset  
by setting the SPOR bit. This resets the device registers  
and disables high-voltage operation, but low-voltage  
operation remains enabled (the regulator is not disabled).  
Shutdown Mode  
Shutdown is performed by bringing V  
Table 20 summarizes the methods by which this can be  
achieved.  
< 0.6V.  
SHDNL  
Note: For single-ended communication, SHDNL must  
be driven externally since the charge-pump operation  
requires a differential signal.  
The quickest shutdown can be achieved by driving  
SHDNL externally with a driver pulldown impedance not  
exceeding 1kΩ. If SHDNL is not driven externally, the  
host can discharge C  
under software control by  
SHDNL  
Shutdown Sequence  
setting the FORCEPOR bit. This will enable a pulldown  
(4.7kΩ nominal) to discharge the capacitor with a 4.7μs  
time constant.  
The shutdown sequence and timing is shown in Figure 25,  
Figure 26, and Figure 27. The ALRTSHDNL status bit is  
set and the low-voltage regulator disabled as soon as  
The slowest method is for the host to simply cease  
communication. With the UART idle, there is no charge  
pumping and the capacitor discharges through an internal  
10MΩ resistor, with a 10ms time constant. If shutdown  
faster than 10ms is desired when power is disconnected  
from the device, a 200kΩ resistor can be connected  
externally from SHDNL to AGND to create a 200μs time  
constant.  
V
< 0.6V. When the V  
and V  
decoupling  
SHNDL  
AA  
DDL  
capacitors discharge below the POR threshold (2.95V  
typ), the device registers are reset and the HV charge  
pump disabled. The device is then in an ultra-low-power  
state until V  
> 1.8V.  
SHDNL  
Table 20. Shutdown Timing  
SHUTDOWN METHOD  
R
C
RC  
1µs  
PULLDOWN  
SHDNL  
1. Host drives SHDNL pin low  
2. Host sets FORCEPOR bit  
3. Disconnect DCIN  
1kΩ  
5kΩ  
External  
Internal  
External  
Internal  
5µs  
1nF  
200kΩ  
10MΩ  
200µs  
10,000µs  
4. Host places UART in idle mode  
POR INACTIVE  
V
> V  
POR_RISING  
AA  
CHECK V  
AA  
V
< V  
AA  
POR_FALLING  
POR ACTIVE  
OSCILLATOR, CHARGE  
PUMP, DIGITAL LOGIC  
DISABLED  
Figure 25. Shutdown Sequence  
Maxim Integrated  
48  
www.maximintegrated.com  
MAX17843  
12-Channel, High-Voltage Smart Sensor  
Data-Acquisition Interface  
RXLP  
RXLN  
V
SHDNLIMIT  
V
SHDNL  
tRXFD-VAA  
V
IL  
t
RXRU-VAA  
V
IH  
V
PORRISE  
V
PORFALL  
V
AA  
t
VAARU-POR  
t
VAAFD-POR  
POR  
t
PORUP-TX  
TXUP  
TXUN  
Figure 26. Power-On and Shutdown Timing (UART Control)  
RXLP  
RXLN  
t
FRPOR  
FORCEPOR  
V
IH  
V
V
SHDNL  
IL  
t
RXFD-VAA  
V
PORFALL  
V
AA  
tVAAFD-POR  
POR  
Figure 27. Shutdown Timing (Software Control)  
Maxim Integrated  
49  
www.maximintegrated.com  
MAX17843  
12-Channel, High-Voltage Smart Sensor  
Data-Acquisition Interface  
Each device first receives data at its lower RX port and  
immediately retransmits data from its upper TX port to the  
lower RX port of the next upstack device. The last device  
transmits data from its upper TX port directly into its upper  
RX port and then immediately retransmits the data from  
its lower TX port to the upper RX port of the next down-  
stack device. The protocol supports fixed baud rates of  
2Mb/s, 1Mb/s, or 0.5Mb/s. The baud rate is set by the host  
and is automatically detected by the device.  
UART Interface  
The battery-management UART protocol allows up to  
32 devices to be connected in daisy-chain fashion (see  
Figure 28). The host initiates all communication with the  
daisy-chain devices through a UART interface such as  
the MAX17841B. The data flow is always unidirectional  
from the host, up the daisy-chain (upstack) and then loops  
back down the daisy-chain (downstack) to the host.  
Figure 28. System Data Flow  
Maxim Integrated  
50  
www.maximintegrated.com  
MAX17843  
12-Channel, High-Voltage Smart Sensor  
Data-Acquisition Interface  
UART Ports  
UART Receiver  
Two UART ports are utilized, a lower port (RXL/TXL) and  
an upper port (RXU/TXU). Each port consists of a differ-  
ential line driver and differential line receiver. DC-blocking  
capacitors or transformers can be used to isolate daisy-  
chain devices that are operating at different common-  
mode voltages. During communication, the character  
encoding provides a balanced signal (50% duty cycle)  
that ensures charge neutrality on the isolation capacitors.  
The UART receiver has a wide common-mode input  
range to tolerate harsh EMC conditions, which can be  
operated in differential mode or single-ended mode per  
Table 21. By default, the UART receivers are configured  
for differential mode. In single-ended mode, the RXP input  
is grounded and the RXN input receives inverse data,  
as described in the Applications Information section. In  
single-ended mode, the receiver input threshold is nega-  
tive so that a zero differential voltage (V  
, V  
= 0V)  
RXP RXN  
UART Transmitter  
is considered to be a logic-one and a negative differential  
voltage (V high) is a logic-zero.  
When no data is being transmitted by the UART, the  
differential outputs must be driven to a common level  
to maintain a neutral charge difference between the  
AC-coupling capacitors or to avoid saturation of the  
isolation transformers. In the default idle mode (low-Z),  
the transmitter drives both outputs to a logic-low level  
to balance the charge on the capacitors; this also works  
well with transformer coupling. The high-Z idle mode  
(TXLHIZIDLE, TXUHIZIDLE = 1) places the TX pins in a  
high-Z state in idle mode, which may be desirable to mini-  
mize the effects of charging and discharging the isolation  
capacitors. The idle mode for the upper and lower ports  
can be controlled independently through the TXLHIZIDLE  
and TXUHIZIDLE configuration bits.  
RXN  
UART RX Modes  
During the first preamble received after a reset, the receiv-  
er automatically detects if the received signal is single-  
ended and if so, places the receiver in single-ended mode;  
therefore, the device must be reset for any change in the  
RX-mode hardware configuration to be detected.  
The receiver mode is indicated by the ALRTCOMMSEL  
bit (for lower port) and ALRTCOMMSEU bit (for upper  
port) of the FMEA1 register, as shown in Table 21. If the  
RXP input is open circuit, RX-mode detection places the  
UART in single-ended mode so the port can still oper-  
ate, albeit with reduced noise immunity. The host can  
diagnose this condition by checking ALRTCOMMSEL and  
ALRTCOMMSEU after any POR event. Any other faults  
result in communication errors.  
VDDL[2,3]  
TX[U,L]IDLEHIZ  
(UARTSTATE=IDLE?)  
DRIVE HIGH  
TX[U,L][P,N]  
ESD CLAMP  
DRIVE LOW  
GNDL[2,3]  
Figure 29. UART Transmitter  
Maxim Integrated  
51  
www.maximintegrated.com  
MAX17843  
12-Channel, High-Voltage Smart Sensor  
Data-Acquisition Interface  
30kΩ  
4pF  
VDDL/60  
1.18MΩ  
HIGH  
COMPARATOR  
RXP  
41.6kΩ  
VCM =  
VDDL/3  
ZERO CROSSING  
COMPARATOR  
GNDL  
DIGITAL CORE  
LOW  
COMPARATOR  
41.6kΩ  
4pF  
1.18MΩ  
RXN  
VDDL/60  
30kΩ  
Figure 30. UART Receiver  
Table 21. UART RX Modes  
RXP  
RXN  
ALRTCOMMSEn  
RX MODE  
Connected to data  
Grounded  
Connected to inverse data  
Connected to inverse data  
Connected to inverse data  
Open circuit (fault)  
0
1
1
0
Differential mode (normal)  
Single-ended mode (normal)  
Open circuit (fault)  
Connected to data  
Single-ended mode (low noise immunity)  
Differential mode (communication errors)  
Maxim Integrated  
52  
www.maximintegrated.com  
MAX17843  
12-Channel, High-Voltage Smart Sensor  
Data-Acquisition Interface  
the baud rate. A simple way to do this is for the host to  
start transmitting preambles and stop when a preamble  
has been received back at the host RX port.  
UART Loopback  
For the last device in the stack, the data must be looped  
back from the upper transmitter to the upper receiver. This  
is known as loopback and can be configured externally  
(default) or internally.  
TX Adaptive Mode for Single-Ended Mode  
To overcome the error tolerance limitation when connect-  
ing a MAX17843 to a conventional UART port, an adaptive  
transmit-timing feature has been added. The feature works  
by monitoring the location of the incoming Manchester  
transitions at the RXL port, with respect to the local clock,  
to calculate a correction factor. This correction factor is  
then applied to the TXL port so the outgoing downstack  
signal has similar timing characteristics to the incoming  
upstack signal. With this adaptive transmit timing, the  
interface between a conventional UART node and a Maxim  
proprietary battery-monitoring system node has a tolerance  
for baud-rate mismatch that is much higher than that of  
the conventional receiver port alone giving a high level of  
timing margin for direct connection applications. TX adap-  
tive mode should be enabled only on the bottom device  
(device connected to BMS micro or Maxim SPI-to-UART  
bridge IC).  
External Loopback Mode  
External loopback mode (default) uses a two-wire cable to  
connect the upper transmitter (TXU) to the upper receiver  
(RXU). The external loopback has two advantages:  
1) It is quicker to determine device count for applica-  
tions where the host does not assume what the  
device count is.  
2) It helps to match the supply current of the last device  
to that of the other daisy-chain devices (because the  
hardware configuration is identical).  
Internal Loopback Mode  
Internal-loopback mode (LASTLOOP = 1) routes the  
upper-port transmit data internally to the upper-port receiv-  
er. Any signal present on the upper-port receiver input  
pins is ignored in the internal loopback mode; therefore,  
when LASTLOOP is set, the write command that was  
forwarded to any upstack devices is interrupted in the  
downstack direction. The host should expect this and read  
the LASTLOOP bit to verify that the write was successful. If  
the MAX17841B interface is used, its receive buffer should  
be cleared before changing LASTLOOP, and cleared again  
after changing the loopback configuration because the  
communication was interrupted.  
Battery-Management UART Protocol  
The battery-management UART protocol uses the follow-  
ing features to maximize the integrity of the communica-  
tions:  
All transmitted data bytes are Manchester-encoded,  
where each data bit is transmitted twice with the 2nd  
bit inverted (G.E. Thomas convention).  
Every transmitted character contains 12 bits that  
Internal-loopback mode is useful to diagnose the location  
of a daisy-chain signal break by enabling the internal-loop-  
back mode on the first device, checking communication,  
then moving the loopback mode to the next device, and  
continuing up the stack until communication is lost.  
include a start bit, a parity bit, and two stop bits.  
Read/write packets contain a CRC-8 packet error  
checking (PEC) byte  
Each packet is framed by a preamble character and  
STOP character.  
Baud Rate Detection  
Read packets contain a data-check byte for verifying  
The UART can operate at a baud rate of 2Mb/s (default),  
1Mb/s, or 0.5Mb/s. The baud rate is controlled by the host  
and is automatically detected by the device when the first  
preamble character is received after reset. If the host  
changes the baud rate after reset, it must issue another  
reset, which can be done by setting the SPOR bit, and  
resend a minimum of 2 x n preambles (where n is the  
number of devices). The 2 x n preambles are necessary  
since the transmitter for the upper port will not transmit  
data until the lower-port receiver has detected the baud  
rate; likewise, the transmitter on the lower port will not  
transmit data until the upper-port receiver has detected  
the integrity of the transmission.  
The protocol is also designed to minimize power-  
”consumption by allowing slave devices to shut down if  
the UART is idle for a specified period of time. The host  
must periodically transmit data to prevent shutdown,  
unless the SHDNL input is driven externally.  
Maxim Integrated  
53  
www.maximintegrated.com  
MAX17843  
12-Channel, High-Voltage Smart Sensor  
Data-Acquisition Interface  
Command Packet  
Preamble Character  
A command packet is defined as a sequence of UART  
characters originating at the host. Each packet starts with  
a preamble character, followed by data characters, and  
ending with a stop character (see Figure 31). After send-  
ing a packet, the host either goes into idle mode or sends  
another packet.  
The preamble is a framing character that signals the  
beginning of a command packet. It is transmitted as an  
unencoded 15h with a logic-one parity bit and a balanced  
duty cycle. If any bit(s) other than the stop bits deviate  
from the unique preamble sequence, the character is  
not interpreted as a valid preamble, but rather as a data  
character.  
PREAMBLE  
IDLE  
MESSAGE  
STOP  
IDLE  
TXP-TXN  
Figure 31. Command Packet  
OPTIONAL  
IDLE  
OPTIONAL  
IDLE  
S
1
0
1
0
1
0
0
0
E = 1  
P
P
IDLE  
ENABLE  
IDLE  
DISABLE  
Figure 32. Preamble Character  
Maxim Integrated  
54  
www.maximintegrated.com  
MAX17843  
12-Channel, High-Voltage Smart Sensor  
Data-Acquisition Interface  
The parity is even, which means that the parity bit’s value  
should always result in an even number of logic-one bits in  
the character. Given that the data is Manchester encoded  
and that there are two stop bits, the parity bit for data char-  
acters is always transmitted as a logic-zero. If the UART  
detects a parity error in any received data character it sets  
the ALRTPAR bit in the STATUS register.  
Data Characters  
Each data character contains a single-nibble (4-bit) pay-  
load, so two characters must be transmitted for each byte  
of data. All data is transmitted least-significant bit, least-  
significant nibble, and least-significant byte first. The data  
itself is Manchester encoded, which means that each data  
bit is followed by its complement. If the UART detects a  
Manchester-encoding error in any received data character,  
it will set the ALRTMAN bit in the STATUS register.  
See Table 22 for a list of data characters and Figure 33 for  
a graphical representation.  
Table 22. Data Character  
BIT  
1
NAME  
Start  
SYMBOL  
DESCRIPTION  
S
E
First bit in character, always logic-zero  
2
Data0  
Data0/  
Data1  
Data1/  
Data2  
Data2/  
Data3  
Data3/  
Parity  
Stop  
Least-significant bit of data nibble (true)  
Least-significant bit of data nibble (inverted)  
Data bit 1 (true)  
3
4
5
Data bit 1 (inverted)  
6
Data bit 2 (true)  
7
Data bit 2 (inverted)  
8
Most-significant bit of data nibble (true)  
Most-significant bit of data nibble (inverted)  
Always logic-zero (even parity)  
Always logic-one  
9
10  
11  
12  
P
Stop  
P
Last bit in character, always logic-one  
DATA NIBBLE = 0h  
0
0
0
0
OPTIONAL  
IDLE  
OPTIONAL  
S
0
1
0
1
0
1
0
1
E = 0  
P
P
IDLE  
IDLE  
ENABLE  
IDLE  
DISABLE  
DATA NIBBLE = Ah  
0
1
0
1
OPTIONAL  
IDLE  
OPTIONAL  
IDLE  
S
0
1
1
0
0
1
1
0
E = 0  
P
P
IDLE  
ENABLE  
IDLE  
DISABLE  
Figure 33. Data Characters  
Maxim Integrated  
55  
www.maximintegrated.com  
MAX17843  
12-Channel, High-Voltage Smart Sensor  
Data-Acquisition Interface  
packet is sent or it goes into keep-alive mode, send-  
ing periodic stop characters to prevent the daisy-chain  
device(s) from going into shutdown.  
Stop Character  
The stop character is a framing character that signals the  
end of a command packet. It is transmitted as an unen-  
coded 54h with a logic-one parity bit and a balanced duty  
cycle (see Figure 34).  
UART Communication Mode  
When transitioning from idle mode to communication  
mode, the TXnP pin must be pulled high (logic-one) prior  
to signaling the start bit (logic-zero) (see Figure 35). The  
duration of the logic-one is minimized to maintain a bal-  
anced duty-cycle while still meeting the timing specifica-  
tion. When transitioning from the stop bit back to idle  
mode, the delay, if any, is also minimized.  
UART Idle Mode  
In the low-Z (default) idle mode, the transmitter outputs are  
both driven to 0V (see Figure 35). In the high-Z idle mode,  
the transmitter outputs are not driven by the UART. The  
MAX17841B interface automatically places its transmitter  
in idle mode immediately after each command packet  
and remains in idle mode until either the next command  
OPTIONAL  
IDLE  
OPTIONAL  
IDLE  
S
0
0
1
0
1
0
1
0
E = 1  
P
P
IDLE  
ENABLE  
IDLE  
DISABLE  
Figure 34. Stop Character  
IDLE  
PREAMBLE  
IDLE  
TXnP  
TXnN  
t
STSU  
TXnP-TXnN  
Figure 35. Communication Mode  
Maxim Integrated  
56  
www.maximintegrated.com  
MAX17843  
12-Channel, High-Voltage Smart Sensor  
Data-Acquisition Interface  
The device ignores commands containing a device  
address other than its own.  
Data Types  
The battery-management UART protocol employs several  
different data types, as described in Table 23.  
Register Addresses  
All register addresses are single-byte quantities and are  
defined in the Register Map. In general, if the register  
or device address in a received command is not a valid  
address for the device, the device ignores the read or write  
and simply passes through the packet to the next device.  
Command Bytes  
The battery-management UART protocol supports six  
command types summarized in Table 24.  
Command-Byte Encoding  
Command bytes encoding is described in Table 25.  
For READDEVICE and WRITEDEVICE commands,  
the device address is encoded in the command byte.  
Register Data  
All registers are 16-bit words (two data bytes) and are  
defined in the Register Map  
.
Table 23. Battery-Management UART Protocol (Data Types)  
DATA TYPE  
Command byte  
Register address  
Register data  
Data-check byte  
PEC byte  
DESCRIPTION  
A byte defining the command-packet type, generally either a read or a write.  
A byte defining the register address to be read or written.  
Register data bytes being read or written.  
An error and alert status byte sent and returned with all reads.  
A packet-error-checking byte sent and returned with every packet except for HELLOALL.  
A byte functioning as a device counter on all reads and writes, if ALIVECNTEN = 1.  
Bytes transmitted in READALL command packets for clocking purposes only.  
Alive counter  
Fill byte  
Table 24. Battery-Management UART Protocol (Command Packet Types)  
DATA  
CHECK  
ALIVE-  
COUNTER  
PACKET SIZE  
(CHARACTERS)  
COMMAND  
DESCRIPTION  
PEC  
Writes a unique device address to each device in  
the daisy-chain. Required for system initialization.  
HELLOALL  
No  
No  
No  
8
WRITEALL  
WRITEDEVICE  
READALL  
Writes a specific register in all devices.  
No  
No  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
14  
14  
Writes a specific register in a single device.  
Reads a specific register from all devices.  
Reads a specific register from a single device.  
Reads a set of registers from a single device.  
Yes  
Yes  
Yes  
12 + (4z)  
16  
READDEVICE  
READBLOCK  
14 + (4 x BS)  
Notes: z = Total number of devices, ALIVECNTEN = 1, packet size includes framing characters.  
BS[4:0] = Block size[4:0] = 132, which is the number of registers read.  
Table 25. Command-Byte Encoding  
COMMAND  
HELLOALL  
BYTE*  
57h  
7
0
6
1
5
0
4
1
3
0
2
1
1
0
1
0
1
1
1
0
1
0
1
1
0
1
0
0
1
1
0
WRITEDEVICE  
WRITEALL  
04h  
DA4  
0
DA3  
0
DA2  
0
DA1  
0
DA0  
0
02h  
READDEVICE  
READALL  
05h  
DA4  
0
DA3  
0
DA2  
0
DA1  
0
DA0  
0
03h  
READBLOCK  
06h  
BS4  
BS3  
BS2  
BS1  
BS0  
*Notes: Assumes DA[4:0] = 0x00 where DA[4:0] is the device address in the ADDRESS register.  
BS[4:0] = Block size (132).  
Maxim Integrated  
57  
www.maximintegrated.com  
MAX17843  
12-Channel, High-Voltage Smart Sensor  
Data-Acquisition Interface  
bit is set in the DEVCFG1 register. The host typically  
transmits the alive-counter seed value as 00h, but any  
value is permitted. For WRITEALL or READALL com-  
mands, each device retransmits the alive counter, incre-  
mented by one. For WRITEDEVICE or READDEVICE  
commands, only the addressed device will increment it.  
The alive counter is not used in the HELLOALL command.  
If the alive counter reaches FFh, the next device incre-  
ments it to 00h.  
Data-Check Byte  
The host uses the returned data-check byte to promptly  
determine if any communication errors occurred during  
the packet transmission and to check if alert flags are set  
in any devices, as shown in Table 26. The data-check  
byte is returned by the READALL and READDEVICE  
commands. For READDEVICE, the data-check byte is  
updated only by the addressed device.  
The data-check byte sent by the host is a seed value nor-  
mally set to 00hN although nonzero values can be used  
as a diagnostic. Each device logically ORs the received  
data-check byte with its own status and transmits it to the  
next device. A PEC error detected by any device will set  
the ALRTPEC bit in the STATUS register and, by exten-  
sion, the ALRTPEC and ALRTSTATUS bits in the data-  
check byte.  
Since the alive counter comes after the PEC byte, an  
incorrect PEC value does not affect the incrementing of  
the alive-counter byte. Also, the PEC calculation does  
not include the alive-counter byte. The host should verify  
that the alive counter equals the original seed value + the  
number of devices, considering that if the alive-counter  
reaches FFh, the next device increments it to 00h.  
Fill Bytes  
PEC Byte  
In the READALL command, the host sends two fill bytes  
for each device in the daisy-chain. The fill bytes are the  
locations within the packet and are used by the device to  
place the read data. The fill-byte values transmitted by the  
MAX17841B interface alternate between C2h and D3h.  
As the command packet propagates through the device,  
the device overwrites the appropriate fill bytes with the  
register data. The device uses the ADDRESS register to  
determine which specific fill bytes in the packet are to be  
overwritten.  
The PEC byte is a CRC-8 packet-error check sent by  
the host with all read and write commands. If any device  
receives an invalid PEC byte, it sets the ALRTPEC bit in  
the STATUS register. During any write transaction, a device  
does not execute the write command internally unless the  
received PEC matches the expected calculated value. For  
read commands, the device must return its own calculated  
PEC byte based on the returned data. The host should  
verify that the received PEC byte matches the calculated  
value and if an error is indicated, the data should be dis-  
carded. See Applications Information section for details on  
the PEC calculation.  
For a READDEVICE command, only two fill bytes are  
required since only one device responds (returning two  
data bytes). Also, fill bytes are not required for write com-  
mands because the data received is exactly the same as  
the data retransmitted.  
Alive-Counter Byte  
The alive-counter byte is the last data byte of the com-  
mand packets (except HELLOALL) if the ALIVECNTEN  
Table 26. Data-Check Byte  
BIT  
7
NAME  
ALRTPEC  
ALRTFMEA  
ALRTSTATUS  
CHECK  
DESCRIPTION  
ALRTPEC is set.  
6
ALRTFMEA1 or ALRTFMEA2 is set.  
STATUS bit other than ALRTFMEA1, ALRTFMEA2, ALRTOV, and ALRTUV is set.  
Check bit. Value received is forwarded.  
Check bit. Value received is forwarded.  
ALRTOV is set.  
5
4
3
CHECK  
2
ALRTOV  
1
ALRTUV  
ALRTUV is set.  
0
CHECK  
Check bit. Value received is forwarded.  
Maxim Integrated  
58  
www.maximintegrated.com  
MAX17843  
12-Channel, High-Voltage Smart Sensor  
Data-Acquisition Interface  
last address is known, the host can determine how many  
devices are in the daisy-chain, which is required for sub-  
sequent READALL commands. A READALL command  
should be used to verify the ADDRESS registers.  
Battery-Management  
UART Protocol Commands  
HELLOALL Command  
The purpose of the HELLOALL command is to initialize the  
device addresses of all daisy-chained devices. The device  
address is stored in the DA[4:0] bits of the ADDRESS reg-  
ister. The highest address possible is 0x1F, so a maximum  
of 32 devices can be addressed. The command must be  
issued after POR to reinitialize all device addresses.  
Special considerations exist if the host desires to use  
internal loopback instead of external loopback. The  
first HELLOALL command is not returned to the host  
because the internal loopback bit for the top device has  
not yet been written. If the number of devices is known  
to the host, the host can use a WRITEDEVICE to set the  
internal loopback bit on the last device and then verify  
with a READALL command. If the number of devices is  
unknown, the internal loopback bit must be set on the first  
device, verified, and then cleared. It can then be set on  
the second device and verified, and so on incrementally  
until there is no response (end of stack). With the number  
of devices known, the loopback bit can be reset on the  
last device and all ADDRESS registers verified.  
When the HELLOALL command is first sent by the host,  
the address specified in the HELLOALL command is  
stored to the DA[4:0] bits of the ADDRESS register in the  
first daisy-chained device. The command is then forward-  
ed to the next device in the chain, with the DA[4:0] bits of  
the address byte incremented by 1, as shown in Table 27.  
This continues in the upstack direction for each device.  
The downstack communication path does not increment  
the address. The advantage of the host choosing a first  
address of 0x00 is that it is not necessary to write the first  
address FA[4:0] to all the devices since the default value  
of FA[4:0] is 0x00. Note: The host should set the first  
address so that no assigned device address increments  
from 0x1F to 0x00 during the HELLOALL command.  
When a device receives a valid HELLOALL command, it  
clears the ADDRUNLOCK bit of the DEVCFG1 register.  
When this bit is 0, HELLOALL commands are ignored to  
prevent inadvertently changing any device address. To  
reconfigure the device address, the ADDRUNLOCK bit  
must first be set to 1, or a POR event must occur. After  
configuring the device addresses, they should be verified  
using the READALL or ROLLCALL commands.  
The DA[4:0] value returned to the host is one greater  
than the address assigned to the last device. Once this  
Table 27. HELLOALL Sequencing (z = Total Number of Devices)  
HOST TX  
Preamble  
57h  
DEVICE (n) RXL  
DEVICE (n) TXU  
HOST RX  
Preamble  
Preamble  
Preamble  
57h  
57h  
57h  
00h  
00h  
{0b000,ADDR[4:0]+n-1}  
Stop  
00h  
{0b000,ADDR[4:0]+n}  
Stop  
00h  
{0b000,ADDR[4:0]+z}  
Stop  
{0b000,ADDR[4:0]}  
Stop  
Maxim Integrated  
59  
www.maximintegrated.com  
MAX17843  
12-Channel, High-Voltage Smart Sensor  
Data-Acquisition Interface  
WRITEALL Command  
WRITEDEVICE Command  
The WRITEALL command writes a 16-bit value to a speci-  
fied register in all daisy-chained devices. Since most con-  
figuration information is common to all the devices, this  
command allows faster setup than writing to each device  
individually. If the register address is not valid for the  
device, the command is ignored. The command sequence  
is shown in Table 28.  
The WRITEDEVICE command writes a 16-bit value to  
the specified register in the addressed device only. If the  
register address is not valid for the device, the command  
is ignored. The command sequence is shown in Table 29.  
The register value is written immediately after the valid  
PEC byte is received, or if NOPEC is set, after the last  
byte is received. If the received PEC byte does not match  
the internal calculation, the command is not executed,  
but is still forwarded to the next device. The PEC is cal-  
culated from the first four bytes of the command starting  
after the preamble. A PEC error sets the ALRTPEC bit in  
the STATUS register. A PEC error can only occur in the  
addressed device.  
The register value is written immediately after the valid  
PEC byte is received, or if NOPEC is set, after the last  
byte is received. If the received PEC byte does not match  
the internal calculation, the command is not executed, but  
is still forwarded to the next device. The PEC is calculated  
from the first four bytes of the command starting after the  
preamble. A PEC error will generate a PEC alert in the  
device STATUS register.  
Table 28. WRITEALL Sequencing (Unchanged by Daisy-Chain)  
HOST TX  
DEVICE (n) RXL  
Preamble  
02h  
DEVICE (n) TXU  
Preamble  
02h  
HOST RX  
Preamble  
02h  
Preamble  
02h  
[REG ADDR]  
[DATA LSB]  
[REG ADDR]  
[DATA LSB]  
[DATA MSB]  
[PEC]  
[REG ADDR]  
[DATA LSB]  
[DATA MSB]  
[PEC]  
[REG ADDR]  
[DATA LSB]  
[DATA MSB]  
[PEC]  
[DATA MSB]  
[PEC]  
[ALIVE]*  
[ALIVE]*  
[ALIVE]*  
[ALIVE]*  
Stop  
Stop  
Stop  
Stop  
*If alive-counter mode is enabled.  
Table 29. WRITEDEVICE Sequencing (Unchanged by Daisy-Chain)  
HOST TX  
Preamble  
DEVICE (N) RXL  
Preamble  
DEVICE (N) TXU  
Preamble  
HOST RX  
Preamble  
{(DA[4:0]),0b100}  
[REG ADDR]  
[DATA LSB]  
{(DA[4:0]),0b100}  
[REG ADDR]  
[DATA LSB]  
[DATA MSB]  
[PEC]  
{(DA[4:0]),0b100}  
[REG ADDR]  
[DATA LSB]  
[DATA MSB]  
[PEC]  
{(DA[4:0]),0b100}  
[REG ADDR]  
[DATA LSB]  
[DATA MSB]  
[PEC]  
[DATA MSB]  
[PEC]  
[ALIVE]*  
[ALIVE]*  
[ALIVE]*  
[ALIVE]*  
Stop  
Stop  
Stop  
Stop  
*If alive-counter mode is enabled.  
Maxim Integrated  
60  
www.maximintegrated.com  
MAX17843  
12-Channel, High-Voltage Smart Sensor  
Data-Acquisition Interface  
ensuring that the Manchester error is propagated through  
the daisy-chain and back to the host.  
READALL Command  
The READALL command returns register data from the  
specified register for all daisy-chain devices. The data  
for the first device (connected to host) is returned last.  
The command sequence is shown in Table 30. If the  
received PEC byte does not match the calculated value,  
the ALRTPEC bit of the data-check byte and ALRTPEC  
bit of the STATUS register are set, but the command pro-  
ceeds. A Manchester error immediately switches the data  
propagation from read mode to write (pass-through) mode  
The fill-byte values transmitted by the MAX17841B  
interface alternate between C2h and D3h as shown.  
As the packet propagates through the device, the device  
retransmits it in the order shown in the sequencing table  
(device TXU column). The device knows which bytes to  
overwrite since its ADDRESS register contains the first  
device address and its own device address and therefore  
knows where in the data stream it belongs.  
Table 30. READALL Command Sequencing (z = Number of Devices)  
HOST TX  
DEVICE (n) RXL  
Preamble  
03h  
DEVICE (n) TXU  
Preamble  
03h  
HOST RX  
Preamble  
Preamble  
03h  
03h  
[REG ADDR]  
[REG ADDR]  
[DATA LSB(n-1)]  
[DATA MSB(n-1)]  
[DATA ADDR]  
[DATA LSB(n)]  
[DATA MSB(n)]  
[REG ADDR]  
[DC] = 0x00  
[DATA LSB(z)]  
[PEC]  
[DATA MSB(z)]  
[ALIVE]*  
[DATA LSB(z-1)]  
[FD(1) C2h]  
[DATA MSB(z-1)]  
[FD(1) D3h]  
[DATA LSB(1)]  
[DATA MSB(1)]  
[DC]  
[DATA LSB(1)]  
[DATA MSB(1)]  
[DC]  
[FD(2) C2h]  
[FD(2) D3h]  
[PEC]  
[PEC]  
[ALIVE]*  
[ALIVE]*  
[FD(1) C2h]  
[FD(1) D3h]  
[FD(1) C2h]  
[FD(1) D3h]  
[DATA LSB(1)]  
[DATA MSB(1)]  
[DC]  
[FD(z) C2h]  
[FD(z-n) C2h]  
[FD(z-n) D3h]  
Stop  
[FD(z-n-1) C2h]  
[FD(z-n-1) D3h]  
Stop  
[PEC]  
[FD(z) D3h]  
[ALIVE]*  
Stop  
Stop  
12+(4 x z) characters  
*If alive-counter mode is enabled.  
12+(4 x z) characters  
12+(4 x z) characters  
12+(4 x z) characters  
Maxim Integrated  
61  
www.maximintegrated.com  
MAX17843  
12-Channel, High-Voltage Smart Sensor  
Data-Acquisition Interface  
The command packet is forwarded up the daisy-chain until  
it reaches the addressed device. The addressed device  
overwrites the received fill bytes with the two bytes of reg-  
ister data and forwards the packet to the next device. The  
alive-counter byte is only incremented by the addressed  
device. A Manchester error immediately switches the  
data propagation from read mode to write (pass-through)  
mode, ensuring that the Manchester error is propagated  
through the daisy-chain and back to the host.  
READDEVICE Command  
The READDEVICE command returns a 16-bit word read  
from the specified register in the addressed device only.  
If the register address is not valid for the device, the com-  
mand is ignored. The command sequence is shown in  
Table 31.  
Table 31. READDEVICE Sequencing  
HOST TX  
Preamble  
DEVICE RXL  
Preamble  
{DA[4:0], 0b101}  
[REG ADDR]  
[DC]  
DEVICE TXU  
Preamble  
{DA[4:0], 0b101}  
[REG ADDR]  
[DATA LSB]  
[DATA MSB]  
[DC]  
HOST RX  
Preamble  
{DA[4:0], 0b101}  
[REG ADDR]  
[DATA LSB]  
[DATA MSB]  
[DC]  
{DA[4:0], 0b101}  
[REG ADDR]  
[DC]  
[PEC]  
[PEC]  
[ALIVE]*  
[ALIVE]*  
[FD(1) C2h]  
[FD(1) D3h]  
Stop  
[FD(1) C2h]  
[FD(1) D3h]  
Stop  
[PEC]  
[PEC]  
[ALIVE]*  
[ALIVE]*  
Stop  
Stop  
16 characters  
*If alive-counter mode is enabled.  
16 characters  
16 characters  
16 characters  
Maxim Integrated  
62  
www.maximintegrated.com  
MAX17843  
12-Channel, High-Voltage Smart Sensor  
Data-Acquisition Interface  
The command packet is forwarded up the daisy-chain  
until it reaches the addressed device. The addressed  
device overwrites the received fill bytes with the two bytes  
of register data (from a single device) and forwards the  
packet to the next device. The alive-counter byte is only  
incremented by the addressed device. A Manchester error  
immediately switches the data propagation from read  
mode to write (pass-through) mode, ensuring that the  
Manchester error is propagated through the daisy-chain  
and back to the host.  
READBLOCK Command  
The READBLOCK command returns an 18-byte read  
from the specified register for a block size of 1 in the  
addressed device only. If the register address is not valid  
for the device, it returns zero for any invalid addresses. If  
the device address is not valid, the command is ignored.  
The command sequences for a block size of 1 and for  
a block size of 2 are shown in Table 32 and Table 33  
respectively.  
,
Table 32. READBLOCK Sequencing for Block Size = 1  
HOST TX  
Preamble  
DEVICE RXL  
Preamble  
DEVICE TXU  
Preamble  
HOST RX  
Preamble  
{BS[4:0], 3b110}  
[DEVICE ADDR]  
[REG ADDR]  
[DC]  
{BS[4:0], 3b110}  
[DEVICE ADDR]  
[REG ADDR]  
[DC]  
{BS[4:0], 3b110}  
[DEVICE ADDR]  
[REG ADDR]  
[DATA LSB]  
[DATA MSB]  
[DC]  
{BS[4:0], 3b110}  
[DEVICE ADDR]  
[REG ADDR]  
[DATA LSB]  
[DATA MSB]  
[DC]  
[PEC]  
[PEC]  
[ALIVE]*  
[ALIVE]*  
[FD(1) C2h]  
[FD(1) C2h]  
[FD(1) D3h]  
Stop  
[PEC]  
[PEC]  
[FD(1) D3h]  
[ALIVE]*  
[ALIVE]*  
Stop  
Stop  
Stop  
18 characters  
*If alive-counter mode is enabled.  
18 characters  
18 characters  
18 characters  
Table 33. READBLOCK Sequencing for Block Size = 2  
HOST TX  
Preamble  
DEVICE RXL  
Preamble  
DEVICE TXU  
Preamble  
HOST RX  
Preamble  
{BS[4:0], 3b110}  
[DEVICE ADDR]  
[REG ADDR]  
[DC]  
{BS[4:0], 3b110}  
[DEVICE ADDR]  
[REG ADDR]  
[DC]  
{BS[4:0], 3b110}  
[DEVICE ADDR]  
[REG ADDR]  
[DATA0 LSB]  
[DATA0 MSB]  
[DATA1 LSB]  
[DATA1 MSB]  
[DC]  
{BS[4:0], 3b110}  
[DEVICE ADDR]  
[REG ADDR]  
[DATA0 LSB]  
[DATA0 MSB]  
[DATA1 LSB]  
[DATA1 MSB]  
[DC]  
[PEC]  
[PEC]  
[ALIVE]*  
[ALIVE]*  
[FD(1) C2h]  
[FD(1) C2h]  
[FD(1) D3h]  
[FD(1) C2h]  
[FD(1) D3h]  
Stop  
[FD(1) D3h]  
[FD(1) C2h]  
[PEC]  
[PEC]  
[FD(1) D3h]  
[ALIVE]*  
[ALIVE]*  
Stop  
Stop  
Stop  
22 characters  
*If alive-counter mode is enabled.  
22 characters  
22 characters  
22 characters  
Maxim Integrated  
63  
www.maximintegrated.com  
MAX17843  
12-Channel, High-Voltage Smart Sensor  
Data-Acquisition Interface  
at key-on), or periodically during operation, as required by  
the application. Diagnostics performed automatically by the  
device are previously described in the relevant functional  
sections. A description of the diagnostics requiring specific  
configurations are provided in this section.  
Diagnostics  
Built-in diagnostics support ISO 26262 (ASIL) requirements  
by detecting specific fault conditions, as shown in Table 34.  
The device automatically performs some of the diagnostics  
while the host can perform others during initialization (e.g.,  
Table 34. Summary of Built-In Diagnostics  
DIAGNOSTICS PERFORMED AUTOMATICALLY BY DEVICE, WITHOUT HOST INTERVENTION  
FAULT  
DIAGNOSTIC PROCEDURE  
Continuous voltage comparison  
OUTPUT  
ALRTRST  
V
V
undervoltage  
undervoltage  
overvoltage  
AA  
Continuous voltage comparison  
ALRTHVUV  
HV  
V
Continuous voltage comparison  
ALRTHVOV  
HV  
V
low headroom  
Voltage comparison – updated during measurement  
Continuous frequency comparison  
Communication error checking  
ALRTHVHDRM  
HV  
32kHz oscillator fault  
16MHz oscillator fault  
Communication fault  
RX pin open/short  
ALRTOSC1, ALRTOSC2  
ALRTMAN, ALRTPAR  
ALRTPEC, ALRTMAN, ALRTPAR  
ALRTCOMMSEUn/ALRTCOMMSELn  
ALRTVDDLx  
Communication error checking  
Verify RX mode after POR  
VDDLx pin open/short  
GNDLx pin open/short  
Die over-temperature  
Continuous voltage comparison  
Continuous voltage comparison  
ALRTGNDLx  
temperature comparison – updated after measurement.  
ALRTTEMP  
DIAGNOSTICS PERFORMED DURING ACQUISITION MODE, AS SELECTED BY DIAGSEL OR BALSWDIAG  
FAULT  
DIAGNOSTIC PROCEDURE  
DIAGSEL[2:0]  
DIAGSEL = 1h  
DIAGSEL = 2h  
DIAGSEL = 2h  
DIAGSEL = 3h  
DIAGSEL = 4h  
DIAGSEL = 5h  
DIAGSEL = 6h  
BALSWDIAG = 1h  
BALSWDIAG = 2h  
BALSWDIAG = 5h  
BALSWDIAG = 6h  
OUTPUT  
Reference voltage fault  
ALTREF diagnostic  
DIAG[15:0] (ALTREF voltage)  
V
V
voltage fault  
voltage fault  
V
V
diagnostic ADC1  
diagnostic ADC2  
DIAG[15:0] (V voltage)  
AA  
AA  
AA  
AA  
DIAG[15:0] (V /2 voltage)  
AA  
AA  
LSAMP Offset too high  
ADC bit stuck high  
ADC bit stuck low  
LSAMP offset diagnostic  
Zero-Scale ADC diagnostic  
Full-Scale ADC diagnostic  
Die Temperature diagnostic  
BALSW diagnostic mode  
BALSW diagnostic mode  
BALSW diagnostic mode  
BALSW diagnostic mode  
DIAG[15:0] (LSAMP offset voltage)  
DIAG[15:0] (Zero-scale)  
DIAG[15:0] (Full-scale)  
V
or ALRTTEMP fault  
DIAG[15:0] (V  
voltage), ALRTTEMP  
PTAT  
PTAT  
Balancing switch short  
Balancing switch open  
Odd sense-wire open  
Even sense-wire open  
ALRTBALSW  
ALRTBALSW  
ALRTBALSW  
ALRTBALSW  
Maxim Integrated  
64  
www.maximintegrated.com  
MAX17843  
12-Channel, High-Voltage Smart Sensor  
Data-Acquisition Interface  
Table 34. Summary of Built-In Diagnostics (continued)  
PROCEDURAL DIAGNOSTICS  
FAULT  
DIAGNOSTIC PROCEDURE  
Idle mode  
OUTPUT  
SHDNL stuck high  
HVMUX switch open  
HVMUX switch short  
HVMUX test sources  
Cn pin open  
ALRTSHDNL  
Acquisition with HVMUX test sources  
ALTREF diagnostic  
ALRTOV, ALRTUV  
DIAG[15:0]  
Acquisition with HVMUX test sources  
Acquisition with cell-test sources  
Acquisition with balancing switches  
ALTMUX vs. HVMUX acquisition  
ALTMUX acquisition with balancing switches  
ALTMUX acquisition with balancing switches  
Acquisition with HV charge pump disabled  
Acquisition with cell-test sources  
Acquisition with ADCTEST = 1  
CELLn  
ALRTOV, ALRTUV  
Cnshort to SWn  
CELLn  
Cn pin leakage  
CELLn  
Voltage comparator fault  
Voltage comparator fault  
ALRTHVUV comparator  
HVMUX sequencer  
ALU Data Path  
CELLn  
CELLn  
ALRTHVUV  
CELLn  
CELLn, VBLKP, DIAG, and AUXINn  
AUXINn Pin Open  
Calibration corruption  
Acquisition with AUXIN test sources  
Read CALx, IDx, perform CRC  
AUXINn  
ID2  
Note: Pin faults such as an open pin or adjacent pins shorted to each other must be detectable. Pin faults do not result in device  
damage, but have a specific device response such as a communication error, or are detectable through a built-in diagnostic.  
Analyzing the effect of pin faults is referred to as a pin FMEA. Contact Maxim Applications to obtain pin FMEA results.  
Maxim Integrated  
65  
www.maximintegrated.com  
MAX17843  
12-Channel, High-Voltage Smart Sensor  
Data-Acquisition Interface  
Since 1.23V < V  
< 1.254V and V  
= 1.242V  
ALTREF Diagnostic Measurement  
ALTREF  
ALTREF  
nominally, the expected range for DIAG[15:2] is:  
The ALTREF diagnostic measurement (DIAGSEL[2:0] =  
0b001) checks the primary voltage reference of the ADC  
(1.23V/5V) x 16384d = 4030d to (1.254V/5V) x 16384 =  
4109d. Therefore, 0FBEh ≤ DIAG[15:2] ≤ 100Dh. To use  
the 16-bit register value, the 14-bit values must be shifted  
or multiplied by four, so that 3EF8h ≤ DIAG[15:0] ≤ 4034h.  
by measuring the alternate reference voltage (V  
).  
ALTREF  
The result is available in the DIAG register after a normal  
acquisition.  
The ALTREF voltage is computed from the result in the  
DIAG register as follows:  
V
= (DIAG[15:2]/16384d ) x 5V  
ALTREF  
HVMUX BUS  
REF  
THRM  
G = 6/13  
+
-
LSAMP  
ADC IN +  
LV  
MUX  
ADC  
ADC IN -  
ADC AUTOMATICALLY IN  
UNIPOLAR MODE  
ALTREF  
AGND  
Figure 36. ALTREF Diagnostic  
Maxim Integrated  
66  
www.maximintegrated.com  
MAX17843  
12-Channel, High-Voltage Smart Sensor  
Data-Acquisition Interface  
The result for V should fall within the range provided in  
AA  
V
Diagnostic Measurement  
AA  
The V  
the Electrical Characteristics table for V  
.
AA  
diagnostic measurement (DIAGSEL[2:0] =  
AA  
0b010) verifies that V  
is within specification This diag-  
using REF as the ADC reference.  
V
diagnostic for ADC2 is given by:  
AA  
AA  
nostic measures V  
REF  
DIAG[15:2] = (3.3 x (5/8)/2.307) x (16384d) = 14648d  
= (DIAG[15:2]/16384d) x 5V  
V
AA  
diagnostic for ADC1 is given by:  
V
AA  
DIAG[15:2] = (3.3/5) x (16384d) = 10813d  
V
AA  
(for ADC2) = 4.47V  
V
AA  
= (DIAG[15:2]/16384d) x 5V  
V
AA  
(for ADC1) =3.29V  
Figure 37. V Diagnostic ADC1  
AA  
REF  
THRM  
ADC IN +  
ADC IN -  
(5/8) x VAA  
AGND  
LV  
MUX2  
ADC2  
AGND  
Figure 38. V Diagnostic ADC2  
AA  
Maxim Integrated  
67  
www.maximintegrated.com  
MAX17843  
12-Channel, High-Voltage Smart Sensor  
Data-Acquisition Interface  
The LSAMP offset is computed from the result in the  
DIAG register, as follows:  
LSAMP Offset Diagnostic Measurement  
The LSAMP diagnostic measurement (DIAGSEL[2:0] =  
0b011) measures the level-shift amplifier offset by short-  
ing the LSAMP inputs during the diagnostic portion of the  
acquisition. The result is available in the DIAG register  
after a normal acquisition. For this measurement, the  
ADC polarity is automatically set to bipolar mode to allow  
accurate measurement of voltages near zero. This mea-  
surement eliminates the chopping phase to preserve the  
offset error. If the diagnostic measurement exceeds the  
LSAMP Offset = ( | DIAG[15:2] - 2000h |/16384d ) x 5V  
The validity of measurements through LSAMP is further  
confirmed by the ALTREF and V diagnostics, and com-  
AA  
parison of the V  
measurements.  
measurement to the sum of the cell  
BLKP  
Zero-Scale ADC Diagnostic Measurement  
Stuck ADC output bits can be verified with a combination  
of the zero-scale and full-scale diagnostics. The zero-  
scale ADC diagnostic measurement (DIAGSEL[2:0] =  
0b100) verifies that the ADC conversion results in 000h  
valid range for V  
, as specified in the Electrical  
OS_LSAMP  
Characteristics table, the chopping function may not be  
able to cancel out all the offset error, and the acquisition  
accuracy could be degraded accordingly. See Figure 39  
for LSAMP Offset Diagnostics  
when its input is at -V  
in bipolar mode (since for an  
AA  
input ≤ -2.5V, DIAG[15:0] = 0000h). For this measure-  
ment, the ADC is automatically set to bipolar mode (see  
Figure 40).  
G = 6/13  
+
ADC IN +  
LV  
MUX  
HVMUX  
LSAMP  
BUS  
ADC  
ADC IN -  
-
ADC AUTOMATICALLY  
IN BIPOLAR MODE  
Figure 39. LSAMP Offset Diagnostic  
REF  
THRM  
VAA  
ADC IN +  
LV  
MUX  
ADC  
ADC IN -  
AGND  
ADC AUTOMATICALLY  
IN BIPOLAR MODE  
AGND  
Figure 40. ADC Zero-Scale Diagnostic  
Maxim Integrated  
68  
www.maximintegrated.com  
MAX17843  
12-Channel, High-Voltage Smart Sensor  
Data-Acquisition Interface  
abled. After BALSWDIAG[2:0] is cleared, the modified  
configurations automatically return to their prior setting. The  
same configurations and comparisons could be implement-  
ed manually but at the expense of more host operations.  
Full-Scale ADC Diagnostic Measurement  
Stuck ADC output bits can be verified with a combination  
of the zero-scale and full-scale diagnostics. The zero-  
scale ADC diagnostic measurement (DIAGSEL[2:0] =  
0b101) verifies that the ADC conversion results in FFFh  
BALSW Short Diagnostic  
when its input is at V in bipolar mode (since for an input  
AA  
A short-circuit fault in the balancing path could be a short  
between SWn and SWn-1 (see Figure 42), or that the  
balancing FET is stuck in the conducting state. In the  
short circuit state, the voltage between SWn and SWn-1  
(switch voltage) is less than the voltage between Cn and  
Cn-1 (cell voltage).  
≥ 2.5V, DIAG[15:0] = FFF0h). For this measurement, the  
ADC is automatically set to bipolar mode.  
BALSW Diagnostics  
Four balancing switch diagnostic modes are available to  
facilitate the following diagnostics:  
When enabled, the balancing switch short diagnostic  
mode (BALSWDIAG[2:0] = 0b001) functions as follows:  
Balancing switch shorted (BALSWDIAG[2:0] = 0b001)  
Balancing switch open (BALSWDIAG[2:0] = 0b010)  
Odd sense wire open (BALSWDIAG[2:0] = 0b101)  
Even sense wire open (BALSWDIAG[2:0] = 0b110)  
Disables the balancing switches automatically  
Configures the acquisition using ALTMUX path auto-  
matically  
Enabling any of these modes automatically preconfigures  
the acquisition (e.g. enables the ALTMUX measurement  
path). The host must initiate the acquisition but the diag-  
nostic mode automatically compares the measurements  
to the specific thresholds, and sets any corresponding  
alerts. The host presets the thresholds as determined  
by the minimum and maximum resistance of the switch  
Host initiates the acquisition  
Compares the measurement to the threshold value  
BALSHRTTHR automatically  
If outside the threshold, sets the corresponding flag in  
ALRTBALSW automatically  
For the best sensitivity to leakage current, set the threshold  
value based on the minimum cell voltage minus a small  
noise margin (100mV), then update the threshold value  
periodically or every time a measurement is taken, depend-  
ing on how fast the cell voltages are expected to change.  
(R ) specified in the Electrical Characteristics table and  
SW  
the intended cell-balancing current.  
During any balancing switch diagnostic mode, ALRTOV,  
ALRTUV and ALRTMSMTCH comparisons are dis-  
REF  
THRM  
VAA  
ADC IN +  
LV  
MUX  
ADC  
ADC IN -  
AGND  
ADC AUTOMATICALLY  
IN BIPOLAR MODE  
AGND  
Figure 41. ADC Full-Scale Diagnostic  
Maxim Integrated  
69  
www.maximintegrated.com  
MAX17843  
12-Channel, High-Voltage Smart Sensor  
Data-Acquisition Interface  
Cn  
TO HVMUX  
TO ALTMUX  
SWn  
BALSWEN  
HV  
BALANCING  
SWITCH (n)  
SHORT  
CIRCUIT  
SWn-1  
TO ALTMUX  
TO HVMUX  
Cn-1  
AGND  
Figure 42. Balancing Switch Short  
MAX178xx FULLY  
FUNCTIONAL AND  
INITIALIZED  
ENSURE BALSHRTTHR  
SET TO DESIRED  
VALUE  
SET BALSWDIAG[2:0]  
TO 0b001  
WAIT 100µs  
START ADC  
MEASUREMENT  
YES  
ALRTFMEA DATACHECK  
BIT SHOWS RESULT  
SCANDONE = 1  
NO  
CLEAR BALSWDIAG[2:0] AND  
SCANDONE  
BALSW SHORT  
CIRCUIT CHECK  
INVALID  
CHECK ALRTBALSW OR  
CELLn REGISTERS FOR  
DETAILED RESULT  
BALSW SHORT CIRCUIT  
CHECK DONE  
Figure 43. BALSW Short Diagnostic  
Maxim Integrated  
70  
www.maximintegrated.com  
MAX17843  
12-Channel, High-Voltage Smart Sensor  
Data-Acquisition Interface  
See Table 35 for BALSW Short-Diagnostic Auto-  
configuration, Table 36 for BALSW Diagnostics. See  
Table 37 for BALSW Open-Diagnostic Autoconfguration  
and Figure 44 for BALSW Open Diagnostics.  
BALSW Open Diagnostics  
The BALSW open diagnostic (BALSWDIAG[2:0] = 0b010)  
verifies that each enabled balancing switch is conducting  
(not open) as follows:  
Even/Odd Sense Wire Open Diagnostics  
Configures acquisition for bipolar mode (for measur-  
ing voltages near zero) automatically  
If enabled, the sense-wire open diagnostic modes detect  
if a cell-sense wire is disconnected as follows:  
Configures acquisition for ALTMUX path automati-  
cally  
Closes nonadjacent switches (even or odd  
automatically)  
Configures acquisition to measure switch voltages for  
those switches enabled by BALSWEN automatically  
Configures acquisition to use ALTMUX path  
automatically  
Host initiates acquisition  
Host waits 100µs for settling and then initiates the  
Compares measurement to the threshold value  
BALLOWTHR and BALHIGHTHR (Table 36) auto-  
matically  
acquisition  
Compares the result to the BALHIGHTHR and  
BALLOWTHR registers automatically  
If outside the threshold, set the corresponding flag in  
ALRTBALSW automatically  
If outside thresholds, sets flags in ALRTBALSW  
automatically  
Set the thresholds by taking into account the minimum  
and maximum R  
Electrical Characteristics table and the balancing current  
of the switch itself as specified in the  
SW  
See Figure 45 for Cell Sense-Wire Open Diagnostics.  
for the application.  
Table 35. BALSW Short Diagnostic Autoconfiguration  
CONFIGURATION BITS  
MEASUREEN[14:12]  
BALSWEN[11:0]  
AUTOMATIC SETTING  
PURPOSE  
Disable AUXIN and V measurements  
BLKP  
0b000  
000h  
1
Disable all balancing switches  
DIAGCFG.ALTMUXSEL  
Enable ALTMUX measurement path  
Table 36. BALSW Diagnostics  
BALSW  
V
FAULT INDICATED?  
POSSIBLE FAULT CONDITION  
SWn  
> V(BALHIGHTHR)  
> V(BALLOWTHR)  
< V(BALHIGHTHR)  
< V(BALLOWTHR)  
> V(BALSHRTTHR)  
< V(BALSHRTTHR)  
Yes  
Switch open circuit, or overcurrent  
On  
No  
None  
Yes  
No  
Path open circuit, or short circuit  
None  
Off  
Yes  
Short circuit, or leakage current  
Table 37. BALSW Open-Diagnostic Autoconfiguration  
CONFIGURATION BITS  
MEASUREEN[14:12]  
MEASUREEN[11:0]  
AUTOMATIC SETTING  
PURPOSE  
0b000  
Disable AUXINn and V  
measurements  
BLKP  
BALSWEN[11:0]  
Measure only active switch positions  
Enable ALTMUX measurement path  
Enable bipolar mode  
DIAGCFG.ALTMUXSEL  
SCANCTRL.POLARITY  
1
1
Maxim Integrated  
71  
www.maximintegrated.com  
MAX17843  
12-Channel, High-Voltage Smart Sensor  
Data-Acquisition Interface  
MAX178xx FULLY  
FUNCTIONAL AND  
INITIALIZED  
ENSURE BALLOWTHR  
AND BALHIGHTHR SET  
TO DESIRED VALUE  
SET BALSWDIAG[2:0] TO  
0b010  
START ADC  
MEASUREMENT  
YES  
ALRTFMEA DATACHECK BIT  
SHOWS RESULT  
SCANDONE = 1  
NO  
CLEAR BALSWDIAG[2:0]  
AND SCANDONE  
BALSW OPEN  
CHECK INVALID  
CHECK ALRTBALSW OR CELLn  
REGISTERS FOR DETAILED  
RESULT  
BALSW OPEN  
CHECK DONE  
Figure 44. BALSW Open Diagnostics  
Maxim Integrated  
72  
www.maximintegrated.com  
MAX17843  
12-Channel, High-Voltage Smart Sensor  
Data-Acquisition Interface  
TO CELL n+1  
SENSE  
WIRE  
RFILTER  
Cn  
TO HVMUX  
CFILTER  
RBALANCE  
SWn  
TO ALTMUX  
BALSWEN  
HV  
DETECT BREAK  
IN DASHED-LINE  
PATH  
RBAL  
FILTER  
BALANCING  
SWITCH (n)  
CELL n  
RBALANCE  
RFILTER  
SWn-1  
TO ALTMUX  
TO HVMUX  
SENSE  
WIRE  
Cn-1  
CFILTER  
MAX17843  
AGND  
TO CELL n-1  
Figure 45. Cell Sense-Wire Open Diagnostics  
Table 38. Odd Sense-Wire Open Measurement Result  
SENSE WIRE OPEN FAULT LOCATION  
C0  
C1  
C2  
C3  
C4  
C5  
C6  
C7  
C8  
C9  
C10  
NC  
C11  
NC  
C12  
NC  
Cell1  
Cell2  
Cell3  
Cell4  
Cell5  
Cell6  
Cell7  
Cell8  
Cell9  
0V  
0V  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
cell1+ cell2+  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
0V  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
0V  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
0V  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
0V  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
UD  
cell2  
cell3  
NC  
0V  
0V  
NC  
cell3+ cell4+  
cell4  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
cell5  
NC  
0V  
cell5+ cell6+  
cell6  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
cell7  
NC  
0V  
cell7+ cell8+  
cell8  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
cell9  
NC  
0V  
cell9+ cell10+  
cell10  
Cell10 NC  
Cell11 NC  
Cell12 NC  
NC  
NC  
NC  
NC  
NC  
NC  
cell11  
NC  
0V  
cell11+  
cell12  
NC  
NC  
Note: NC = No Change; UD = Undefined; Maximum result is 5V.  
Maxim Integrated  
73  
www.maximintegrated.com  
MAX17843  
12-Channel, High-Voltage Smart Sensor  
Data-Acquisition Interface  
MAX178xx FULLY  
FUNCTIONAL AND  
INITIALIZED  
ENSURE BALLOWTHR  
AND BALHIGHTHR SET  
TO DESIRED VALUE  
0b101 FOR ODD SWITCHES  
0b110 FOR EVEN SWITCHES  
SET BALSWDIAG[2:0]  
WAIT 100µs  
START ADC  
MEASUREMENT  
YES  
ALRTFMEA DATACHECK BIT  
SCANDONE = 1  
NO  
SHOWS RESULT  
CLEAR BALSWDIAG[2:0]  
AND SCANDONE  
BALSW CONDUCTING  
CHECK INVALID  
CHECK ALRTBALSW OR CELLn  
REGISTERS FOR DETAILED  
RESULT  
BALSW CONDUCTING  
CHECK DONE  
Figure 46. Sense-Wire Open Diagnostic  
Table 39. Sense-Wire Open-Diagnostic Configurations  
CONFIGURATION BIT(S)  
CONFIGURATION STATE  
TASK  
555h (BALSWDIAG = 0b101) or  
AAAh (BALSWDIAG = 0b110)  
Enable odd switches  
Enable even switches  
BALSWEN[11:0]  
MEASUREEN[14:12]  
MEASUREEN[11:0]  
0b000  
Disable AUXINn and V  
measurements  
BLKP  
BALSWEN[11:0]  
Measure only active switch positions  
Enable ALTMUX measurement path  
Enable bipolar mode  
DIAGCFG.ALTMUXSEL  
SCANCTRL.POLARITY  
1
1
Maxim Integrated  
74  
www.maximintegrated.com  
MAX17843  
12-Channel, High-Voltage Smart Sensor  
Data-Acquisition Interface  
CTSTDAC[3:0] (applies to all enabled sources).  
Diagnostic Test Sources  
Diagnostic test current sources (see Figure 47) can be  
enabled prior to the acquisition mode for detecting both  
internal and external hardware faults in the measure-  
ment path. One set of test sources are connected to the  
HVMUX input side and another set are connected to the  
HVMUX output side. See Table 40 for HVMUX output  
assignments. The basic premise in these diagnostics  
is that for a symmetrical measurement channel with no  
faults, the test currents can be applied symmetrically to  
the differential channel and there should be almost no  
change in the channel measurement. On the other hand,  
if an asymmetric fault exists on the channel, the resulting  
change will indicate the nature of the fault (e.g., an open  
or shorted pin).  
Test current sources from V or sinks to AGND  
AA  
per the CTSTSRC bit, except for C0 (applies to all  
enabled sources). The test current sources from V  
only for CTST0.  
AA  
For the two test current sources on the HVMUX output  
side:  
The test currents are enabled by the MUXDIAGEN  
bit.  
The test current always sources from the HV supply.  
● The test current ranges from 3.125μA up to 50μA per  
CTSTDAC[3:0] (applies to all enabled sources).  
The test current, by default, is applied to both  
HVMUX outputs (even and odd outputs). However,  
if MUXDIAGPAIR is set, the test current is applied to  
only one of the output lines per MUXDIAGBUS. This  
mode is used to test the test sources themselves.  
For the 15 test current sources on the input channels (13  
Cn and two AUXINn):  
The test currents individually enabled per  
CTSTEN[12:0] and AUXINTSTEN[2:1].  
See Figure 47 for test current sources diagram.  
● The test current ranges from 6.25μA up to 100μA per  
Table 40. HVMUX Output Assignment  
INPUT SIGNAL  
HVMUX OUTPUT  
Even bus  
Odd bus  
C12  
C11  
C10  
C9  
Even bus  
Odd bus  
C8  
Even bus  
Odd bus  
C7  
C6  
Even bus  
Odd bus  
C5  
C4  
Even bus  
Odd bus  
C3  
C2  
Even bus  
Odd bus  
C1  
C0  
Even bus  
Odd bus  
REF  
ALTREF  
AGND  
Odd bus  
Even bus  
Maxim Integrated  
75  
www.maximintegrated.com  
MAX17843  
12-Channel, High-Voltage Smart Sensor  
Data-Acquisition Interface  
VAA  
HV  
HV  
CELL TEST  
CURRENT  
SOURCE  
HVMUX TEST SOURCES  
CONTROLLED BY:  
MUXDIAGEN  
MUXDIAGPAIR  
MUXDIAGBUS  
R
HVMUX  
RFILTER  
Cn  
X
X
CTSTDAC  
CELL TEST SOURCES  
CONTROLLED BY:  
CTSTENn  
AGND  
CTSTSRC  
CTSTDAC  
AGND  
VAA  
CELL n  
CELL TEST  
CURRENT  
SOURCE  
RFILTER  
R
HVMUX  
Cn-1  
X
X
+
AGND  
TO ADC  
LSAMP  
AGND  
-
Figure 47. Test Current Sources  
Shutdown Diagnostic  
HVMUX Switch Open Diagnostic  
The shutdown diagnostic verifies that no hardware fault  
is preventing the device from shutting down, such as  
the SHDNL input being stuck at logic-one. To perform  
the diagnostic, the host attempts a shutdown. The tim-  
ing shown in Figure 48 is for a UART idle mode shut-  
Since an open HVMUX switch causes the measured  
voltage to go to either zero or full-scale, it is possible to  
execute the test by looking for an overvoltage or under-  
voltage alert following the diagnostic measurement with-  
out analyzing the measurement data. It is possible to read  
all voltage measurements and let the host compare the  
results by splitting the test into several segments.  
down. Once V  
< 0.6V, the ALRTSHDNL bit is set  
SHNDL  
in the STATUS register and the regulator is disabled  
(see Table 41); however, the STATUS register can still  
The procedure in Figure 49 is quick and efficient. For  
higher sensitivity to faults, each cell voltage measurement  
in the diagnostic mode can be compared to a threshold  
of 100mV by the host to determine if the HVMUX path is  
working correctly. The threshold is derived from the worst  
case HVMUX resistance mismatch and the worst-case  
diagnostic current source value variation.  
be read as long as V  
has not decayed below 2.95V  
AA  
(typ), which takes about 1ms. The host should verify that  
ALRTSHDNL is set. By reading the bit, the charge pump  
will drive V  
> 1.8V in about 200μs and enable  
SHDNL  
the regulator. The host must clear the ALRTSHDNL bit  
to complete the diagnostic. The ALRTSHDNLRT bit is a  
real-time version of ALRTSHDNL that automatically clears  
when V  
> 1.8V.  
SHDNL  
Maxim Integrated  
76  
www.maximintegrated.com  
MAX17843  
12-Channel, High-Voltage Smart Sensor  
Data-Acquisition Interface  
Table 41. Shutdown Diagnostic  
FAULT  
COMPARISON  
ALERT BIT  
ALRTSHDNL  
ALRTSHNDRT  
LOCATION  
STATUS[12]  
STATUS[11]  
SHDNL input stuck  
SHDNL input stuck  
V
V
< 0.6V?  
< 0.6V?  
SHDNL  
SHDNL  
Figure 48. Shutdown Diagnostic Timing  
MAX178xx FULLY  
FUNCTIONAL AND  
INITIALIZED;  
STORE  
MEASUREMENT  
VALUES IN HOST  
MUXDIAGPAIR = 0  
ENABLE VALID CELLS  
FOR MEASUREMENT  
SET TEST CURRENT  
SOURCE VALUE  
CTSTDAC[3:0] = 0xF  
START ADC  
MEASUREMENT  
ENABLE MUX TEST  
CURRENT SOURCE  
MUXDIAGEN = 1  
START ADC  
MEASUREMENT  
NO  
ALRTOV OR  
ALRTUV?  
ALL MUX SWITCHES AND  
PATHS FUNCTIONING  
YES  
MUX SWITCH PAIR  
IS MALFUNCTIONING  
Figure 49. HVMUX Switch Open Diagnostic  
Maxim Integrated  
77  
www.maximintegrated.com  
MAX17843  
12-Channel, High-Voltage Smart Sensor  
Data-Acquisition Interface  
dently instead of as a pair setting the MUXDIAGPAIR  
bit. MUXDIAGBUS controls which source is enabled  
(MUXDIAGBUS = 1 for odd bus source). This causes every  
measurement to have a definable change as the sources  
are enabled and disabled. By taking measurements while  
alternating which current source is enabled, it is possible to  
verify that each current source is working.  
HVMUX Switch Shorted Diagnostic  
A shorted mux switch is detectable in two ways based on  
corrupted measurement values. First, the ALTREF diag-  
nostic reports a large error. Also, during normal cell mea-  
surements, a shorted HVMUX switch causes the LSAMP  
to saturate, which is also easily detectable  
HVMUX Test Source Diagnostic  
See Table 42 for HVMUX switch open diagnstics and Table  
43 for HVMUX test-source diagnostic.  
The two current sources attached to the HVMUX even  
bus and the HVMUX odd bus can be enabled indepen-  
Table 42. HVMUX Switch Open Diagnostic  
HVMUX SWITCH OPEN FAULT LOCATION  
C4 C5 C6 C7 C8  
NC NC NC NC NC  
C0  
0V  
C1  
5V  
C2  
NC  
5V  
C3  
NC  
NC  
5V  
C9  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
5V  
C10  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
5V  
C11  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
5V  
C12  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
5V  
Cell1  
Cell2  
Cell3  
Cell4  
Cell5  
Cell6  
Cell7  
Cell8  
Cell9  
Cell10  
Cell11  
Cell12  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
0V  
NC  
NC  
5V  
NC  
NC  
NC  
5V  
NC  
NC  
NC  
NC  
5V  
NC  
NC  
NC  
NC  
NC  
5V  
NC  
NC  
NC  
NC  
NC  
NC  
5V  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
0V  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
0V  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
0V  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
0V  
NC  
NC  
NC  
NC  
NC  
NC  
0V  
NC  
NC  
NC  
NC  
NC  
0V  
NC  
NC  
NC  
NC  
0V  
NC  
NC  
NC  
0V  
NC  
NC  
0V  
NC  
0V  
Note: NC = No change.  
Table 43. HVMUX Test-Source Diagnostic  
HVMUX TEST-  
SOURCE FAULT  
EVEN TEST SOURCE  
SHORTED TO HV  
EVEN TEST SOURCE  
OPEN CIRCUIT  
ODD TEST SOURCE  
SHORTED TO HV  
ODD TEST SOURCE  
OPEN CIRCUIT  
Cell1:  
0V  
5V  
0V  
5V  
0V  
5V  
0V  
5V  
0V  
5V  
0V  
5V  
-I x R  
I x R  
-I x R  
I x R  
-I x R  
I x R  
-I x R  
I x R  
-I x R  
I x R  
-I x R  
I x R  
5V  
0V  
5V  
0V  
5V  
0V  
5V  
0V  
5V  
0V  
5V  
0V  
I x R  
-I x R  
I x R  
-I x R  
I x R  
-I x R  
I x R  
-I x R  
I x R  
-I x R  
I x R  
-I x R  
Cell2:  
Cell3:  
Cell4:  
Cell5:  
Cell6:  
Cell7:  
Cell8:  
Cell9:  
Cell10:  
Cell11:  
Cell12:  
Note: I = Test source current, R = HVMUX resistance.  
Maxim Integrated  
78  
www.maximintegrated.com  
MAX17843  
12-Channel, High-Voltage Smart Sensor  
Data-Acquisition Interface  
Cn Open Diagnostic  
Cn Shorted to SWn Diagnostic  
If the cell is disconnected from the input, the correspond-  
ing cell-test source (sinking to AGND) pulls the cell input  
Short circuits between the SWn pins and the cell input  
pins are detectable. A shorted SWn pin can be detected  
by an acquisition with the relevant cell-balancing switch  
off and then again with it on. If the SWn pin is not shorted  
to an adjacent cell input pin, no change in the measured  
value should be observed for the two cases. If the SWn  
pin is shorted to the Cn pin, then the measured value will  
change by approximately 40% to 50% when the balancing  
voltage toward 0V (except for C0, where source to V  
AA  
current source will pull the cell input voltage to V ). A new  
AA  
measurement is taken with the current sources enabled,  
and a change in measurement value is detected. If no  
open circuit exists, then the measurement value changes  
by only the value of the test current across the application  
circuit series resistor to the Cn pin (see Table 44).  
switch is turned on based on the values of R  
,
BALANCE  
and the balancing switch resistance. A short circuit from  
SWn to Cn-1 produces the same effect. By comparing  
both the V  
measurement value along with the  
CELLn  
V
and V  
values, it is possible to deter-  
CELLn+1  
CELLn-1  
mine exactly where the short circuit is located.  
Table 44. Cn Pin Open Diagnostic  
Cn PIN OPEN FAULT LOCATION  
C0  
C1  
C2  
C3  
C4  
C5  
C6  
C7  
C8  
C9  
C10  
NC  
C11  
NC  
C12  
NC  
Cell1-  
3.3V  
Cell1  
Cell2  
Cell3  
Cell4  
Cell5  
Cell6  
Cell7  
Cell8  
Cell9  
Cell10  
Cell11  
Cell12  
0V  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
Cell2+  
Cell1  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
0V  
NC  
NC  
NC  
0V  
NC  
NC  
NC  
0V  
NC  
NC  
NC  
NC  
0V  
NC  
NC  
NC  
NC  
NC  
0V  
NC  
NC  
NC  
NC  
NC  
NC  
0V  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
0V  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
0V  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
0V  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
0V  
Cell3+  
Cell2  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
0V  
Cell4+  
Cell3  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
Cell5+  
Cell4  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
Cell6+  
Cell5  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
Cell7+  
Cell6  
NC  
NC  
NC  
NC  
NC  
NC  
Cell8+  
Cell7  
NC  
NC  
NC  
NC  
NC  
Cell9+  
Cell8  
NC  
NC  
NC  
NC  
Cell10+  
Cell9  
NC  
NC  
NC  
Cell11+  
Cell10  
NC  
NC  
Cell12+  
Cell11  
NC  
Note: I = Test source current, R = HVMUX resistance.  
Maxim Integrated  
79  
www.maximintegrated.com  
MAX17843  
12-Channel, High-Voltage Smart Sensor  
Data-Acquisition Interface  
TEST FOR SWn TO Cn  
SHORT CIRCUIT  
CONDITION  
RFILTER  
Cn  
HV  
RBALANCE  
RFILTER  
SWn  
CONTROLLED BY  
BALSWEN[n-1]  
Cn-1  
CELL #n  
RBALANCE  
SWn-1  
Figure 50. SWn to Cn Short  
TEST FOR SWn TO Cn-1  
SHORT CIRCUIT  
CONDITION  
RFILTER  
Cn  
HV  
RBALANCE  
RFILTER  
SWn  
CONTROLLED BY  
BALSWEN[n-1]  
Cn-1  
CELL #n  
RBALANCE  
SWn-1  
Figure 51. SWn-1 to Cn Short  
Maxim Integrated  
80  
www.maximintegrated.com  
MAX17843  
12-Channel, High-Voltage Smart Sensor  
Data-Acquisition Interface  
Cn Leakage Diagnostic  
Cell Overvoltage Diagnostic  
Leakage at the Cn inputs can cause the voltage seen by  
the ADC to be different than that at the voltage source  
due to the resistance of the external filter circuit. By utiliz-  
ing an alternate measurement path, any voltage errors  
as a result of Cn pin leakage can be detected. The SWn  
pins are connected to the cell sources through an alter-  
nate path. Implementing an HVMUX connection from  
the SWn pins to the LSAMP completes the redundant  
measurement path. This alternate measurement path  
for the cell measurements can be enabled by setting the  
ALTMUXSEL bit of the DIAGCFG register. When this bit  
is set and a measurement cycle started, all cell measure-  
ments are taken using the alternate path instead of the Cn  
pin HVMUX connections. Measurements taken with the  
normal and alternate paths can be compared and should  
be nearly identical for a system with no faults. Since the  
SWn pins typically have a smaller external filter time  
constant than the Cn pins, increasing the oversampling  
setting for this diagnostic measurement may be beneficial  
for reducing measurement noise when the measurement  
is taken while the cells are exposed to transient loads.  
Enabling balancing switches can be used to generate a  
voltage up to 2 x V  
at the ALTMUX inputs to test the  
CELL  
input-range capability, assuming the cell is sufficiently  
charged.  
A cell-position input voltage is elevated by approximately  
1.5 x V  
turning on either BALSWn+1 or BALSWn-1.  
CELLn  
When the adjacent switch is turned on, the SWn pin  
shared with the switch is moved by 0.5 x V , which  
CELL  
causes V  
to increase by that amount when mea-  
CELLn  
sured with the ALTMUX path. For the topmost cell posi-  
tion, BALSWn-1 must be used, and for the bottom cell  
position, BALSWn+1 must be used. By turning on two  
adjacent switches instead of one, such as BALSWn+1  
and BALSWn+2, the measured voltage is approximately  
2 x V  
, assuming all cells are at approximately the  
CELL  
same voltage. This technique can create an input voltage  
that exceeds the overvoltage threshold to verify the higher  
end of the input range and the overvoltage alert function.  
Input range can also be verified by using the cell-test  
sources to induce a higher cell-channel voltage. If the  
change is as expected, it shows that the system can mea-  
sure voltages above the present nominal input voltage.  
TO CELL n+1  
SENSE  
RFILTER  
Cn  
WIRE  
CFILTER  
RBALANCE  
SWn  
TO  
ADC  
+
-
LSAMP  
RBAL  
FILTER  
CELL n  
SWn-1  
Cn-1  
RBALANCE  
RFILTER  
SENSE  
WIRE  
CFILTER  
AGND  
TO CELL n-1  
HVMUX HVMUX ALTMUX ALTMUX  
BUS BUS BUS BUS  
Figure 52. Redundant HVMUX Paths  
Maxim Integrated  
81  
www.maximintegrated.com  
MAX17843  
12-Channel, High-Voltage Smart Sensor  
Data-Acquisition Interface  
1) Perform an acquisition  
2) Turn on a cell-test source  
3) Wait for sufficient settling time  
4) Perform an acquisition  
Cell Undervoltage Diagnostic  
Turning on the balancing switch can be used to generate  
a near-zero voltage at any input channel to the ALTMUX  
path. By successfully measuring this near-zero voltage,  
the diagnostic verifies the lower-end of the input range  
and the undervoltage alert function.  
5) Check that the cell(s) sharing the pin whose current  
source was turned on had the expected measure-  
ment change and other cells had no changes.  
Input range can also be verified by using the cell-test  
sources to induce a lower cell-channel voltage. If the  
change is as expected, it shows that the system can mea-  
sure voltages below the present nominal input voltage.  
6) Repeat steps 1–5 for other pins to confirm there are  
no logic errors in the HVMUX control sequencer.  
The cell-test sources can be turned on for individual pins  
to create a detectable measurement variation that is deter-  
mined by the current-source value and the series resis-  
tance of the cell input-filter circuit. The settling time needed  
for a certain change in measurement value depends on  
the size of the external filter capacitors and the amplitude  
of the test-current source. A longer settling time gives the  
full voltage change, while a shorter settling time saves test  
time and should still produce an easily detectable voltage  
difference. By detecting the expected measurement varia-  
tion for a given cell input pair and running a sequence of  
tests to cover all cases, the HVMUX sequencer operation  
is verified.  
ALRTHVUV Comparator Diagnostic  
The ALRTHVUV comparator functionality can be verified by  
setting the CPEN bit (to disable the HV charge pump) and  
then discharging the external HV capacitor by performing  
an acquisition for 5ms (such as 12 cells, 32 oversamples),  
or by enabling using one or more of the cell-test current  
sources for an appropriate amount of time. The ALRTHVUV  
bit should be set after the voltage has decayed.  
HVMUX Sequencer Diagnostic  
The HVMUX control sequence can be checked using the  
sources attached to the Cn pins. The sources are con-  
trolled by the CTSTEN bits of the CTSTCFG register. The  
basic test method is as follows:  
VAA  
TEST SOURCE  
R
HVMUX  
R
FILTER  
Cn  
TEST SOURCES  
CONTROLLED BY:  
CTSTENn  
AGND  
CTSTSRC  
CTSTDAC  
AGND  
VAA  
CELL n  
TEST SOURCE  
R
FILTER  
R
HVMUX  
Cn-1  
+
-
TO  
ADC  
LSAMP  
AGND  
AGND  
Figure 53. HVMUX Sequencer Diagnostic  
Maxim Integrated  
82  
www.maximintegrated.com  
MAX17843  
12-Channel, High-Voltage Smart Sensor  
Data-Acquisition Interface  
STANDBY MODE  
STORE MEASUREMENT  
VALUES  
ENABLE VALID  
CELLS FOR  
MEASUREMENT  
SET TEST SOURCE  
CTSTDAC[3:0] = 0xF  
CURRENT  
INITIATE  
ACQUISITION  
SET TEST SOURCE  
CTSTSRC = 0 FOR AGND  
POLARITY  
n = 12  
n = n-1  
ENABLE CELL TEST  
CURRENT SOURCE n  
CTSTENn = 1  
WAIT FOR SETTLING  
TIME  
ONE APPS CIRCUIT  
R x C TIME  
INITIATE  
ACQUISITION  
COMPARE ALL  
CELL MEASUREMENTS  
TO SAVED  
VALUES  
NO  
CTSTENn = 0  
NO CHANGE  
EXCEPT VCELLn  
YES  
YES  
DISABLE CELL TEST  
CURRENT SOURCE  
,
n = 1?  
PASS  
VCELLn-1  
NO  
FAIL  
Figure 54. HVMUX Sequencer Diagnostic  
Maxim Integrated  
83  
www.maximintegrated.com  
MAX17843  
12-Channel, High-Voltage Smart Sensor  
Data-Acquisition Interface  
The ADCTEST1n registers are used for all odd-numbered  
samples in oversampling mode, as well as in single-sample  
acquisitions. The ADCTEST2n registers are used for all  
even-numbered samples (in oversampling mode). The A  
registers are used in lieu of the first conversion of each  
measurement and the B registers are used in lieu of the  
second conversion. After the acquisition, the host can read  
the measurement data registers and the alert registers and  
compare the data to expected values to verify the ALU  
functionality.  
ALU Diagnostic  
TheALUdiagnosticutilizestheADCtestmode(ADCTSTEN  
= 1) to feed data from specific test registers directly into  
the ALU instead of from the ADC conversion. The host  
can write different data combinations to the test registers  
in this mode to provide test coverage for all ALU and data  
registers (CELLn, VBLKP, DIAG, and AUXINn), as well as  
all alerts that are based on the measurement data and the  
corresponding thresholds (e.g., overvoltage alerts).  
ALU REGISTERS  
USER REGISTER MAP  
12  
12  
14  
14  
14  
14  
AIN1 REGISTER  
AIN2 REGISTER  
DIAG REGISTER  
DIAG ALU  
BLOCK ALU  
ALU1  
ADC IN +  
VBLOCK  
REGISTER  
12  
ADC  
CELL1 REGISTER  
CELLn REGISTER  
ADC IN -  
12  
ALUn  
12  
14  
CELL12  
REGISTER  
ALU12  
ADCTSTEN  
DATAMOVE  
TRIGGER  
12  
ADCTEST1A[11:0]  
12  
ADCTEST1B[11:0]  
12  
12  
UART COMMUNICATION  
ADCTEST2A[11:0]  
12  
ADCTEST2B[11:0]  
ADC_CHOP  
OVSAMP_EVEN_ODD  
Figure 55. ALU Diagnostic  
Maxim Integrated  
84  
www.maximintegrated.com  
MAX17843  
12-Channel, High-Voltage Smart Sensor  
Data-Acquisition Interface  
For MAX17843, Maxim design team added a digital offset  
trim to improve ADC accuracy. Because it is calculated  
after the ADCTST data insertion, it will show up as an  
offset to any ADCTST diagnostic. The offset value will be  
constant for a given part, but varies from part to part.  
Table 45 gives the mapping of expected read from the  
diagnostic and block register.  
AUXINn Open Diagnostic  
The AUXINn open diagnostic can be used to detect if the  
AUXINn pin is open circuit. The diagnostic procedure is  
shown in Figure 56 and Figure 57.  
Table 45. Expected ALU Diagnostic and Block Register Results  
ALU DIAGNOSTIC RESULT WHEN ADCTSTST = 1, DIAGSEL = 6  
OS SETTING  
000  
OVERSAMPLING  
DIAGNOSTIC DATA ALU  
1
ADCTST1A x 4  
[ADCTST1A + ADCTST2A] x 2  
001–111  
4–128  
ALU DIAGNOSTIC RESULT WHEN ADCTSTST = 1, DIAGSEL = 4, 5  
OS SETTING  
000  
OVERSAMPLING  
DIAGNOSTIC DATA ALU  
1
ADCTST1B x 4  
[ADCTST1B + ADCTST2B] x 2  
001–111  
4–128  
ALU DIAGNOSTIC RESULT WHEN ADCTSTST = 1, DIAGSEL = 1, 2, 3  
OS SETTING  
000  
OVERSAMPLING  
DIAGNOSTIC DATA ALU  
[ADCTST1A + ADCTST1B] x 2  
1
001–111  
4–128  
[ADCTST1A + ADCTST1B ADCTST2A + ADCTST2B]  
ALU BLOCK RESULT WHEN ADCTSTST = 1  
OS SETTING  
000  
OVERSAMPLING  
DIAGNOSTIC DATA ALU  
[ADCTST1A + ADCTST1B] x 2  
1
001–111  
4–128  
[ADCTST1A + ADCTST1B ADCTST2A + ADCTST2B]  
V
AA  
V
THRM  
TEST THIS  
NODE FOR AN  
OPEN CIRCUIT  
SET BY  
CTSTDAC[3:0]  
CONTROLLED BY  
AUXINnTSTEN AND  
CTSTSRC  
R
RATIO  
RFILTER  
AUXINn  
AGND  
TO LVMUX  
CFILTER  
THERMISTOR  
t
AGND  
Figure 56. AUXINn Open Diagnostic  
Maxim Integrated  
85  
www.maximintegrated.com  
MAX17843  
12-Channel, High-Voltage Smart Sensor  
Data-Acquisition Interface  
MAX178xx FULLY  
FUNCTIONAL AND  
INITIALIZED  
ENABLE APPROPRIATE  
INPUTS FOR  
TESTED INPUTS OK;  
REPEAT PROCEDURE  
FOR OTHER INPUTS  
MEASUREMENT  
YES  
START ADC  
MEASUREMENT  
ALL  
VOLTAGES  
WITHIN THRESHOLD  
?
OUT OF TOLERANCE  
INPUT HAS OPEN  
CIRCUIT  
NO  
SAVE ADC MEASUREMENT  
RESULT  
COMPARE ADC  
MEASUREMENT TO SAVED  
VALUE  
SET CTSTDAC[3:0] CURRENT  
SOURCE VALUE  
DETERMINE VOLTAGE  
CHANGE THRESHOLD BASED  
ON CURRENT AND INPUT  
FILTER  
SELECT CTSTSRC TO  
SOURCE OR  
SINK CURRENT  
SET AUXINnTSTEN TO  
ENABLE SOURCE  
START ADC  
MEASUREMENT  
Figure 57. AUXINn Open Diagnostic  
Maxim Integrated  
86  
www.maximintegrated.com  
MAX17843  
12-Channel, High-Voltage Smart Sensor  
Data-Acquisition Interface  
The CRC for the calibration ROM uses the same poly-  
nomial as the CRC-8 PEC byte and is performed on  
addresses C0h to CAh, CFh, and D0 to D4h. ID2 is pro-  
cessed in the order shown in Table 46, least-significant  
bit first. Registers CAL11, CAL12, CAL13, and CAL14  
are excluded from the calculation. Also, certain ROM bits  
must be zeroed prior to performing the calculation using  
the bit-wise AND masks in Table 46.  
Calibration ROM Diagnostic  
The CRC for the calibration ROM can be independently  
computed by the host. Any mismatch between the calcu-  
lated CRC and the factory CRC indicates that the measure-  
ment accuracy may be compromised. The factory CRC,  
ROMCRC[7:0], is stored in the ID2 register.  
Table 46. CRC Bit Mask  
ORDER  
ADDRESS  
0xC0  
0xC1  
0xC2  
0xC3  
0xC4  
0xC5  
0xC7  
0xC8  
0xC9  
0xCA  
0xCF  
0xD0  
0xD1  
0xD2  
0xD3  
0xD4  
0x0E  
NAME  
CAL0  
CAL1  
CAL2  
CAL3  
CAL4  
CAL5  
CAL7  
CAL8  
CAL9  
CAL10  
CAL15  
CAL16  
CAL17  
CAL18  
CAL19  
CAL20  
ID2  
BIT-WISE AND MASK  
0x003F  
1
2
0x007F  
3
0x001F  
4
0x0FFF  
0xFFFF  
0x3F00  
5
6
7
0x3F3F  
8
0x003F  
9
0x3FFF  
0x000F  
10  
11  
12  
13  
14  
15  
16  
17  
0x007F  
0x3FFF  
0x00FF  
0x3F00  
0x3F3F  
0x003F  
0x0001  
Maxim Integrated  
87  
www.maximintegrated.com  
MAX17843  
12-Channel, High-Voltage Smart Sensor  
Data-Acquisition Interface  
A battery module is a number of cells connected in series  
that can be connected with other modules to build a  
high-voltage battery pack (see Figure 58). The modularity  
allows for economy, configurability, quick assembly, and  
serviceability. The minimum number of cells connected to  
any one device is limited by the device’s minimum operat-  
Applications Information  
Vehicle Applications  
Battery cells can use various chemistries such as NiMH,  
Li-ion, SuperCap, or Lead-Acid. SuperCap cells are used  
in fast-charge applications such as energy storage for  
regenerative braking. An electric vehicle system may  
require a high-voltage battery pack containing up to 200  
Li-ion cells, or up to 500 NiMH cells.  
ing voltage. The 9V minimum for V  
usually requires  
DCIN  
at least two Li-ion, six NiMH or six SuperCap cells per  
module.  
BATTERY PACK  
MAIN HV+  
CONTACTOR  
PLUG  
PHASE 1  
VEHICLE  
VEHICLE  
CONTROL  
SYSTEM  
(VCS)  
12V PWR  
BATTERY  
MANAGEMENT  
SYSTEM  
COMM  
BUS  
PHASE 2  
PHASE 3  
CELL STACK  
VEHICLE GND  
M
INVERTER  
(BMS)  
COMM BUS  
MAIN HV-  
CONTACTOR  
PLUG  
CHASSIS GROUND  
Figure 58. Electric Vehicle System  
Maxim Integrated  
88  
www.maximintegrated.com  
MAX17843  
12-Channel, High-Voltage Smart Sensor  
Data-Acquisition Interface  
Battery-Management Systems  
Daisy-Chain System  
A daisy-chain system (Figure 59) employs a single data link between the host and all the battery modules. The daisy-  
chain method reduces cost and requires only a single isolator between the lowest module and the host.  
MAIN HV+  
CONTACTOR  
INVERTER+  
BATTERY  
MODULE  
SLAVE  
MONITOR  
AND  
CONTROL  
TEMP  
TEMP  
BATTERY  
MODULE  
SLAVE  
MONITOR  
AND  
CONTROL  
BATTERY PACK  
HVAC  
BATTERY  
MODULE  
VEHICLE  
12V PWR  
SLAVE  
MONITOR  
AND  
MASTER  
CONTROLLER  
COMMUNICATION  
ISOLATION  
CONTROL  
VEHICLE  
COMM BUS  
TEMP  
MAIN HV-  
CONTACTOR  
INVERTER-  
MICRO-Ω  
SHUNT  
GROUND  
FAULT  
CHECK  
CHASSIS GROUND  
Figure 59. Daisy-Chain System  
Maxim Integrated  
89  
www.maximintegrated.com  
MAX17843  
12-Channel, High-Voltage Smart Sensor  
Data-Acquisition Interface  
Distributed-Module Communication  
A distributed-module system employs a separate data link and isolator between each battery module and the host, with  
an associated increase in cost. Maxim battery-management ICs support the daisy-chain system (see Figure 60).  
PACK  
INVERTER+  
SWITCHES  
BATTERY  
MODULE  
SLAVE  
MONITOR  
AND  
ISOLATOR  
CONTROL  
TEMP  
BATTERY  
MODULE  
SLAVE  
MONITOR  
AND  
ISOLATOR  
ISOLATOR  
CONTROL  
TEMP  
TEMP  
BATTERY  
MODULE  
SLAVE  
MONITOR  
AND  
CONTROL  
BATTERY  
MODULE  
SLAVE  
MONITOR  
AND  
MASTER  
CONTROLLER  
ISOLATOR  
CONTROL  
VEHICLE 12V PWR  
VEHICLE GND  
COMM BUS  
TEMP  
FAULT  
CHECK  
PACK  
SWITCHES  
CURRENT  
SENSE  
INVERTER-  
Figure 60. Distributed System  
Maxim Integrated  
90  
www.maximintegrated.com  
MAX17843  
12-Channel, High-Voltage Smart Sensor  
Data-Acquisition Interface  
External Cell Balancing Using BJT Switches  
External Cell-Balancing Short-Circuit Detection  
An application circuit for cell balancing that employs  
A short-circuit fault in the external balancing path results  
BJT switches is shown in Figure 61. Q  
is  
in continuous current flow through R  
and  
BALANCE  
BALANCE  
selected for power dissipation based on the I drive  
Q
. To detect this fault, the voltage drop across  
B
BALANCE  
current available and the cell-balancing current. D  
the sense-wire parasitic resistance must be measurable.  
A very small series resistor can added for this purpose.  
BASE  
protects Q  
from negative V  
during hot-plug  
BALANCE  
GS  
events. R  
protects the device by limiting the hot-  
BASE  
pluginrush current. The cell-balancing current is limited by  
R
. See Table 47 for BJT balancing components.  
BALANCE  
TO CELL  
n+1  
RFILTER  
SENSE WIRE  
Cn  
TO HVMUX  
CFILTER  
RBIAS  
SWn  
TO ALTMUX  
BALSWn  
HV  
RBALANCE  
CBALFILTER  
RBASE  
BALANCING  
SWITCH (n)  
CELL n  
QBALANCE  
DBASE  
CBASE  
RBIAS  
SWn-1  
Cn-1  
TO ALTMUX  
TO HVMUX  
RFILTER  
SENSE WIRE  
CFILTER  
AGND  
TO CELL n-1  
Figure 61. External Cell Balancing (BJT)  
Table 47. BJT Balancing Components  
COMPONENT NAME  
TYPICAL VALUE OR PART  
FUNCTION  
R
22Ω  
15Ω  
S1B  
1nF  
Voltage-divider for transistor bias  
Hot-plug current-limiting resistor  
BIAS  
BASE  
BASE  
BASE  
R
D
C
Reverse emitter-base voltage protection  
Transient V suppression  
BE  
R
Q
Per balancing-current requirements  
NST489AMT1  
Balancing current-limiting resistor  
External switch  
BALANCE  
BALANCE  
Maxim Integrated  
91  
www.maximintegrated.com  
MAX17843  
12-Channel, High-Voltage Smart Sensor  
Data-Acquisition Interface  
idle mode. The application circuit shown in Figure 63 uses  
UART Interface  
a weak resistor-divider to bias the TX lines to V  
during  
DDL  
The UART pins also employ both internal and external cir-  
cuits to protect against noise. The recommended external  
filters are shown in Figure 62. ESD protection is shown in  
Figure 64 and Figure 65.  
the high-Z idle period and pnp transistor clamps to limit  
the maximum voltage at the TX pins during high noise  
injection. The resistor-divider and pnp clamps are not  
needed for applications utilizing only the low-Z mode. The  
low-Z and high-Z idle modes both exhibit a similar immu-  
nity to noise injection. Low-Z mode may be preferred for  
ports driving inductive loads to minimize ringing.  
High-Z Idle Mode  
The high-Z idle mode lowers radiated emissions from wire  
harnesses by minimizing the charging and discharging of  
the AC-coupling capacitors when entering and exiting the  
DAISY-CHAIN  
DEVICE (n-1)  
DAISY-CHAIN  
DEVICE (n)  
C42  
R50  
C40  
15pF  
R40  
1.5kΩ  
2.2nF  
47Ω  
600V  
RXLP  
RXLN  
TXUP  
C43  
R41  
R51  
47Ω  
2.2nF  
1.5kΩ  
600V  
TXUN  
C41  
15pF  
R43  
100kΩ  
SIGNAL TRACES  
OR WIRE  
HARNESS  
R42  
100kΩ  
C50  
2.2nF 600V  
R44  
47Ω  
R54  
1.5kΩ  
C52  
15pF  
TXLP  
TXLN  
GNDL  
RXUP  
C51  
2.2nF 600V  
R55  
R45  
47Ω  
C53  
15pF  
1.5kΩ  
RXUN  
GNDL  
SIGNAL TRACES  
OR WIRE  
HARNESS  
R52  
100kΩ  
R53  
100kΩ  
Figure 62. UART Connection  
Maxim Integrated  
92  
www.maximintegrated.com  
MAX17843  
12-Channel, High-Voltage Smart Sensor  
Data-Acquisition Interface  
The recommended circuits to meet ±8kV protection levels  
are shown in Figure 64 and Figure 65. The protection  
components should be placed as near as possible to the  
signal’s entry point on the PCB.  
UART Supplemental ESD Protection  
The UART ports may require supplemental protection to  
meet IEC 61000-4-2 requirements for contact discharge.  
VDDL[2,3]  
FMB3906  
VAA  
R46  
10kΩ  
R48  
10kΩ  
MAX17843  
R44  
47Ω  
TX[U,L]P  
TO REST OF TX CIRCUIT  
OR RX CIRCUIT  
R45  
47Ω  
TX[U,L]N  
R49  
10kΩ  
R47  
10kΩ  
GNDL[2,3]  
Figure 63. High-Z Idle Mode Application Circuit  
47Ω  
TXP  
47Ω  
TXN  
TO RECEIVER  
PESD1CAN  
GNDL  
Figure 64. External ESD Protection for UART TX Ports  
Maxim Integrated  
93  
www.maximintegrated.com  
MAX17843  
12-Channel, High-Voltage Smart Sensor  
Data-Acquisition Interface  
Transmitter operation is not affected. If the upstack device  
is single-ended, so only the TXUN signal is required.  
Note: in single-ended mode, SHDNL must be driven  
externally; leave TXLP unconnected.  
UART Supplemental ESD Protection  
The UART ports may require supplemental protection to  
meet IEC 61000-4-2 requirements for contact discharge.  
The recommended circuits to meet ±8kV protection levels  
are shown in Figures 64 and 65. The protection compo-  
nents should be placed as near as possible to the signal’s  
entry point on the PCB.  
UART Isolation  
The UART is expected to communicate reliably in noisy  
high-power battery environments, where both high dV/dt  
supply noise and common-mode current injection induced  
by electromagnetic fields are prevalent. Common-mode  
currents can also be induced by parasitic coupling of the  
system to a reference node such as a battery or vehicle  
chassis. The daisy-chain physical layer is designed for  
maximum noise immunity.  
Single-Ended RX Mode  
To configure the lower port for single-ended RX mode, the  
RXLP input is connected to digital ground and the RXLN  
input receives the inverted signal, just as it does for dif-  
ferential mode. If the host cannot transmit inverted data  
then the signal must be inverted as shown in Figure 66.  
15pF  
50V  
2.2nF  
600V  
100Ω  
1.5kΩ  
RXP  
FROM  
TRANSMITTER  
2.2nF  
600V  
100Ω  
1.5kΩ  
RXN  
15pF  
50V  
100kΩ  
100kΩ  
PESD1CAN  
GNDL  
Figure 65. External ESD Protection for UART RX Ports  
ISOLATED OR  
NON-ISOLATED  
INVERTING LOGIC  
DRIVER  
RXLP  
RXLN  
Rf  
1.5kΩ  
UART  
DATA  
Cf  
15pF  
GNDL  
Figure 66. Application Circuit for Single-Ended Mode  
Maxim Integrated  
94  
www.maximintegrated.com  
MAX17843  
12-Channel, High-Voltage Smart Sensor  
Data-Acquisition Interface  
The AC-coupled differential communication architecture  
has a ±30V common-mode range and +6V differential  
swing. This range is in addition to the static common-  
mode voltage across the AC-coupling capacitors between  
modules. Transmitter drivers have low internal impedance  
and are source-terminated by the application circuit so  
that impedances are well-matched in the high- and low-  
driver states. This architecture minimizes differential noise  
induced by common-mode current injection. The receiver  
inputs are filtered above the fundamental communication  
frequency to prevent high-frequency noise from entering  
the device. The system is designed for use with isolation  
transformers or optocouplers to provide an even higher  
degree of common-mode noise rejection in circuit locations  
where extremely large common-mode noise is present,  
such as between vehicle chassis and high-voltage battery-  
pack terminals.  
Since a mid-pack service-disconnect safety switch is  
present in many battery packs, the device is designed  
to communicate with the entire daisy-chain, regardless  
of whether the service-disconnect switch is engaged  
or open. This is possible with daisy-chains that employ  
capacitor isolation.  
UART Transformer Isolation  
The UART ports can be transformer-coupled because  
of their DC-balanced differential design (see Figure 67).  
Transformer coupling between the MAX17841B inter-  
face and the MAX17843 provides excellent isolation  
and common-mode noise rejection. The center tap of  
a signal transformer can be used to enhance common-  
mode rejection by AC-coupling the node to local ground.  
Common-mode currents that are able to pass through  
the parasitic coupling of the primary and secondary are  
shunted to ground to make a very effective common-  
mode noise filter.  
MAX17841  
DAISY-CHAIN  
DEVICE 1  
15pF  
47Ω  
1.5kΩ  
TXP  
RXLP  
1.5kΩ  
RXLN  
47Ω  
15pF  
TXN  
SIGNAL TRACES  
GNDL  
OR WIRE  
1nF  
HARNESS  
GNDL  
Figure 67. UART Transformer Isolation  
Maxim Integrated  
95  
www.maximintegrated.com  
MAX17843  
12-Channel, High-Voltage Smart Sensor  
Data-Acquisition Interface  
UART Optical Isolation  
Error Checking  
The daisy-chain may use optical isolation instead of trans-  
former or capacitor isolation (see Figure 68).  
Data integrity is provided by Manchester encoding, par-  
ity, character framing, and packet-error checking (PEC).  
The combination of these features verify stage-to-stage  
communication both in the write and read directions, with  
a hamming distance (HD) value of 6 for commands with  
a length up to 247 bits (counted prior to Manchester-  
encoding and character framing. This is equivalent to the  
longest possible command packet for a daisy-chain of  
up to 13 devices. The data-check byte is present in the  
READALL and READDEVICE commands to verify that  
the entire command propagated without errors. Using the  
data-check and PEC bytes, complete transaction integrity  
for READALL and READDEVICE command packets can  
be verified.  
Device Initialization Sequence  
Immediately after reset, all device addresses are set to  
0x00 and the UART baud rate and receive modes have not  
been autodetected; therefore, the following initialization  
sequence is recommended after every reset or after any  
change to the hardware configuration for differential mode:  
After the daisy-chain is initialized, each device should be  
configured for operation as follows:  
1) Perform a READALL of the status registers:  
The ALRTRST bit should be set in all devices to  
signify a reset occurred.  
PEC Errors  
Check for other unexpected alerts.  
If the device receiver receives an invalid PEC byte, the  
ALRTPEC bit is set in the STATUS register. A device does  
not execute any write command unless the received PEC  
matches the calculated PEC so to verify the write com-  
mand execution, the host should perform a READALL to  
verify the contents of the written register.  
2) Clear the ALRTRST bit on each device so that future  
unintended resets can be detected.  
3) Change configuration registers as necessary with  
WRITEALL commands:  
Configure the alert enables and alert thresholds  
required by the application.  
For returned read packets, the host should store the  
received data, perform the PEC calculation, and compare  
the results to the received PEC byte before considering the  
data to be valid. To support PEC, the host must implement  
an 8-bit cyclic redundancy check (CRC-8) encoding and  
decoding algorithm based on the following polynomial:  
Configure the acquisition mode.  
4) Perform all necessary key-on diagnostics.  
5) Start the acquisition cycle.  
6) Continuously monitor diagnostic and alert status bits.  
7) Periodically perform additional diagnostics, as  
required by the application.  
8
6
3
2
P(x) = x + x + x + x + 1  
VAA  
RXLP  
RXLN  
FROM UART  
DATA SOURCE  
RFILTER  
1.5kΩ  
CFILTER  
15pF  
ACPL-M72T  
GNDL  
3.3V  
ROPTO  
TXLN  
TO UART  
DATA SOURCE  
ACPL-M72T  
Figure 68. UART Optical Isolation  
Maxim Integrated  
96  
www.maximintegrated.com  
MAX17843  
12-Channel, High-Voltage Smart Sensor  
Data-Acquisition Interface  
DEVICE(s) IN  
SHUTDOWN MODE  
DEVICE  
COMMUNICATION  
INITIALIZED  
YES  
HOST SENDS  
PREAMBLES FOR 2ms  
PER DEVICE TO  
NO  
ADDRESSES AS  
EXPECTED?  
ADDRESSING  
ERROR  
WAKE UP DAISY-CHAIN  
NO  
FAULT OR NOT  
ENOUGH PREAMBLES  
SENT  
NO  
HOST RECEIVED  
PREAMBLE?  
YES  
COMMUNICATION FAULT  
OR ADDRESSING ERROR  
PEC ERRORS?  
YES  
HOST SELECTS FIRST  
ADDRESS AND SENDS  
HELLOALL  
READALL ADDRESS  
REGISTERS  
WRITEALL FA[4:0]  
(IF FIRST ADDRESS  
USED ≠ 0)  
NO  
RETURN ADDRESS  
AS EXPECTED?  
FAULT OR DEVICE  
COUNT ERROR  
YES  
Figure 69. Device Initialization Sequence in Differential Mode  
BIT0  
BIT1  
BIT2  
BIT3  
BIT4  
BIT5  
BIT6  
BIT7  
INPUT DATA BITSTREAM  
(LSB FIRST)  
Figure 70. CRC Calculation  
Maxim Integrated  
97  
www.maximintegrated.com  
MAX17843  
12-Channel, High-Voltage Smart Sensor  
Data-Acquisition Interface  
The host uses the algorithm to process all bytes received  
in the command packet prior to the PEC byte itself.  
Neither the PEC nor the alive-counter bytes are part of the  
calculation. The bits are processed in the order they are  
received, LSB first. A byte-wise pseudo-code algorithm is  
shown in Figure 71, but lookup table solutions are also  
possible to reduce host calculation time.  
For commonly issued command packets, the host can  
pre-calculate (hard-code) the PEC byte. For commonly  
used partial packets, the CRC value of a partial calcula-  
tion can be used as the initial value for a subsequent  
run-time calculation.  
Function PEC_Calculation(ByteList(), NumberOfBytes, CRCByte)  
{
// CRCByte is initialized to 0 for each ByteList in this implementation, where  
// ByteList contains all bytes of a single command. It is passed into the  
// function in case a partial ByteList calculation is needed.  
// Data is transmitted and calculated in LSb first format  
// Polynomial = x^8+x^6+x^3+x^2+1  
POLY = &HB2 // 10110010b for LSb first  
//Loop once for each byte in the ByteList  
For ByteCounter = 0 to (NumberOfBytes – 1)  
(
//Bitwise XOR the current CRC value with the ByteList byte  
CRCByte = CRCByte XOR ByteList(Counter1)  
//Process each of the 8 CRCByte remainder bits  
For BitCounter = 1 To 8  
(
// The LSb should be shifted toward the highest order polynomial  
// coefficient. This is a right shift for data stored LSb to the right  
// and POLY having high order coefficients stored to the right.  
// Determine if LSb = 1 prior to right shift  
If (CRCByte AND &H01) = 1 Then  
// When LSb = 1, right shift and XOR CRCByte value with 8 LSbs  
// of the polynomial coefficient constant. “/ 2” must be a true right  
// shift in the target CPU to avoid rounding problems.  
CRCByte = ((CRCByte / 2) XOR POLY)  
Else  
//When LSb = 0, right shift by 1 bit. “/ 2” must be a true right  
// shift in the target CPU to avoid rounding problems.  
CRCByte = (CRCByte / 2)  
End If  
//Truncate the CRC value to 8 bits if necessary  
CRCByte = CRCByte AND &HFF  
//Proceed to the next bit  
Next BitCounter  
)
//Operate on the next data byte in the ByteList  
Next ByteCounter  
)
// All calculations done; CRCByte value is the CRC byte for ByteList() and  
// the initial CRCByte value  
Return CRCByte  
}
Figure 71. PEC Calculation Pseudocode  
Maxim Integrated  
98  
www.maximintegrated.com  
MAX17843  
12-Channel, High-Voltage Smart Sensor  
Data-Acquisition Interface  
Register Map  
ADDRESS  
0x00  
0x01  
0x02  
0x03  
0x04  
0x05  
0x07  
0x08  
0x0A  
0x0B  
0x0C  
0x0D  
0x0E  
0x10  
0x11  
0x12  
0x13  
0x14  
0x15  
0x18  
0x19  
0x1A  
0x1B  
0x1C  
0x1D  
0x1E  
0x20  
0x21  
0x22  
0x23  
0x24  
0x25  
0x26  
0x27  
0x28  
0x29  
0x2A  
0x2B  
0x2C  
POR  
NAME  
VERSION  
DESCRIPTION  
xxxxh  
0000h  
8000h  
0000h  
0000h  
0000h  
0000h  
0000h  
0F0Fh  
0000h  
0000h  
XXXXh  
XXXXh  
1002h  
0000h  
0000h  
0000h  
0000h  
0000h  
0000h  
0000h  
0000h  
0000h  
0000h  
0000h  
000Ch  
0000h  
0000h  
0000h  
0000h  
0000h  
0000h  
0000h  
0000h  
0000h  
0000h  
0000h  
0000h  
0000h  
Device model and version  
ADDRESS  
STATUS  
Device addresses  
Status flags  
FMEA1  
Failure mode flags 1  
ALRTCELL  
ALRTOVCELL  
ALRTUVCELL  
ALRTBALSW  
MINMAXCELL  
FMEA2  
Voltage-fault alert flags  
Overvoltage alert flags  
Undervoltage alert flags  
Balancing switch alert flags  
Cell number for the highest and lowest voltages measured  
Failure mode flags 2  
ADR  
AUTOBALSWDIS Delay Register  
Device ID 1  
ID1  
ID2  
Device ID 2  
DEVCFG1  
GPIO  
Device configuration 1  
GPIO status and configuration  
Measurement enables  
MEASUREEN  
SCANCTRL  
ALRTOVEN  
ALRTUVEN  
TIMERCFG  
ACQCFG  
BALSWEN  
DEVCFG2  
BALDIAGCFG  
BALSWDCHG  
TOPCELL  
CELL1  
Acquisition control and status  
Overvoltage alert enables  
Undervoltage alert enables  
Timer configuration  
Acquisition configuration  
Balancing switch enables  
Device configuration 2  
Balancing diagnostic configuration  
Balancing switch discharge configuration  
Top cell configuration  
Cell 1 measurement result  
Cell 2 measurement result  
Cell 3 measurement result  
Cell 4 measurement result  
Cell 5 measurement result  
Cell 6 measurement result  
Cell 7 measurement result  
Cell 8 measurement result  
Cell 9 measurement result  
Cell 10 measurement result  
Cell 11 measurement result  
Cell 12 measurement result  
Block measurement result  
CELL2  
CELL3  
CELL4  
CELL5  
CELL6  
CELL7  
CELL8  
CELL9  
CELL10  
CELL11  
CELL12  
BLOCK  
Maxim Integrated  
99  
www.maximintegrated.com  
MAX17843  
12-Channel, High-Voltage Smart Sensor  
Data-Acquisition Interface  
Register Map (continued)  
ADDRESS  
0x2D  
0x2E  
0x2F  
0x40  
0x42  
0x44  
0x46  
0x48  
0x49  
0x4A  
0x4B  
0x4C  
0x4D  
0x50  
0x51  
0x52  
0x57  
0x58  
0x59  
0x5A  
POR  
0000h  
0000h  
0000h  
FFFCh  
FFFCh  
0000h  
0000h  
FFFCh  
0000h  
FFF0h  
0000h  
0000h  
0000h  
0000h  
0000h  
0000h  
0000h  
0000h  
0000h  
0000h  
NAME  
DESCRIPTION  
AUXIN1 measurement result  
AIN2  
AUXIN2 measurement result  
TOTAL  
Sum of all cell measurements  
OVTHCLR  
OVTHSET  
UVTHCLR  
UVTHSET  
MSMTCH  
Cell overvoltage clear threshold  
Cell overvoltage set threshold  
Cell undervoltage clear threshold  
Cell undervoltage set threshold  
Cell mismatch threshold  
AINOT  
AUXIN overtemperature threshold  
AUXIN undertemperature threshold  
Balancing switch diagnostic, short-circuit threshold  
Balancing switch diagnostic, on-state low threshold  
Balancing switch diagnostic, on-state high threshold  
Diagnostic measurement result  
AINUT  
BALSHRTTHR  
BALLOWTHR  
BALHIGHTHR  
DIAG  
DIAGCFG  
CTSTCFG  
ADCTEST1A  
ADCTEST1B  
ADCTEST2A  
ADCTEST2B  
Diagnostic configuration  
Test source configuration  
User-specified data for ALU diagnostic  
User-specified data for ALU diagnostic  
User-specified data for ALU diagnostic  
User-specified data for ALU diagnostic  
VERSION Register (address 0x00)  
BIT  
D15  
D14  
D13  
D12  
D11  
D10  
D9  
POR  
NAME  
DESCRIPTION  
843h  
MOD[11:0]  
Model number. Always reads 843h.  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
Die version as below:  
MAX17843 = 1h  
1h  
VER[3:0]  
D1  
D0  
Maxim Integrated  
100  
www.maximintegrated.com  
MAX17843  
12-Channel, High-Voltage Smart Sensor  
Data-Acquisition Interface  
ADDRESS Register (address 0x01)  
BIT  
D15  
D14  
D13  
D12  
D11  
D10  
D9  
POR  
NAME  
DESCRIPTION  
0
Reserved  
Always reads logic-zero.  
Address of the device connected to the host (first address). If the host uses a first address  
other than 0x00 in the HELLOALL command, then the host must write that first address  
to all devices in the daisy-chain with a WRITEALL command. READALL commands  
require that FA[4:0] and DA[4:0] be correct in order for the data-check and PEC features to  
function as intended.  
0
0
0
FA[4:0]  
Reserved  
DA[4:0]  
D8  
D7  
D6  
Always reads logic-zero.  
D5  
D4  
Device address written by the HELLOALL command as it propagates up the daisy-chain  
and is automatically incremented for each device. The host must choose a first address  
so that the last device address does not exceed the maximum address of 0x1F during the  
HELLOALL command. Writing has no effect except with a HELLOALL command while  
ADDRUNLOCK = 1.  
D3  
D2  
D1  
D0  
STATUS Register (address 0x02)  
BIT  
POR  
NAME  
DESCRIPTION  
Indicates a power-on reset (POR) event occurred. Clear after power-on and after a  
successful HELLOALL to detect future resets. Writing to a logic-one has no effect.  
D15  
1
ALRTRST  
D14  
D13  
0
0
ALRTOV  
ALRTUV  
Bit-wise logical OR of ALRTOVCELL[15:0]. Read-only.  
Bit-wise logical OR of ALRTUVCELL[15:0]. Read-only.  
Indicates V  
< V . Read during shutdown diagnostic when V > V  
.
.
SHDNL  
IL  
AA  
PORFALL  
D12  
D11  
D10  
0
0
0
ALRTSHDNL  
ALRTSHDNLRT  
ALRTMSMTCH  
Cleared by writing to logic-zero or POR. Writing to a logic-one has no effect.  
Indicates V  
Read-only.  
< V . Read during shutdown diagnostic when V > V  
IL AA PORFALL  
SHDNL  
Indicates V  
Read-only.  
- V  
> V  
Cleared at next acquisition if the condition is false.  
MAX  
MIN  
MSMTCH .  
D9  
D8  
0
0
ALRTTCOLD  
ALRTTHOT  
Logical OR of ALRTOVAIN0 and ALRTOVAIN1. Read-only.  
Logical OR of ALRTUVAIN0 and ALRTUVAIN1. Read-only.  
Indicates a received character contained a PEC error. Cleared only by writing to logic-zero.  
Writing to a logic-one has no effect.  
D7  
0
0
ALRTPEC  
Reserved  
D6  
D5  
Always reads logic-zero.  
Indicates that a character received by the lower UART contained a Manchester error.  
Cleared only by writing to logic-zero. Writing to a logic-one has no effect.  
D4  
D3  
D2  
0
0
0
ALRTMAN  
0
Write ignored, Read back ‘0’.  
Indicates that a character received by the lower UART contained a parity error.  
Cleared only by writing to logic-zero. Writing to logic-one has no effect.  
ALRTPAR  
D1  
D0  
0
0
ALRTFMEA2  
ALRTFMEA1  
Bit-wise logical OR of FMEA2 [15:0]. Read-only.  
Bit-wise logical OR of FMEA1 [15:0]. Read-only.  
Maxim Integrated  
101  
www.maximintegrated.com  
MAX17843  
12-Channel, High-Voltage Smart Sensor  
Data-Acquisition Interface  
FMEA1 Register (address 0x03)  
BIT  
POR  
NAME  
DESCRIPTION  
Indicates that the 32kHz oscillator frequency is not within ±5% of its expected value. The  
status is updated every two cycles (32kHz). Cleared only by writing to logic-zero. Writing to  
a logic-one has no effect.  
D15  
0
ALRTOSC1  
Same as ALRTOSC1 (redundant alert). Cleared only by writing to logic-zero. Writing to a  
logic-one has no effect.  
D14  
D13  
0
0
ALRTOSC2  
0
Always reads logic-zero.  
Indicates that the UART has placed the upper-port receiver in single-ended mode based on  
the first preamble received after POR. This bit is not set until the ALRTRST bit is cleared.  
Read-only.  
D12  
D11  
0
0
ALRTCOMMSEU1  
ALRTCOMMSEL1  
Indicates that the UART has placed the lower-port receiver in single-ended mode based on  
the first preamble received after POR. This bit is not set until the ALRTRST bit is cleared.  
Read-only.  
Same as ALRTCOMMSEU1 (redundant alert) except that it sets before ALRTRST is  
cleared. Read-only.  
D10  
D9  
0
0
ALRTCOMMSEU2  
ALRTCOMMSEL2  
Same as ALRTCOMMSEL2 (redundant alert) except that it sets before ALRTRST is  
cleared. Read-only.  
Indicates V  
< V  
. This bit is not set until the ALRTRST bit is cleared, and  
DDL3  
VDDL_OC  
D8  
0
ALRTVDDL3  
cleared only by writing to logic-zero. Writing to a logic-one has no effect.  
Indicates V < V . This bit is not set until the ALRTRST bit is cleared, and  
cleared only by writing to logic-zero. Writing to a logic-one has no effect.  
DDL2  
VDDL_OC  
D7  
D6  
D5  
0
0
0
ALRTVDDL2  
ALRTGNDL2  
ALRTBALSW  
Indicates an open circuit on the GNDL2 pin. This bit is not set until the ALRTRST bit is  
cleared, and cleared only by writing to logic-zero. Writing to a logic-one has no effect.  
Bit-wise logical OR of ALRTBALSW[15:0]. Cleared automatically if the fault is cleared, or by  
writing it to logic-zero.  
Indicates that T  
> 115°C (120°C typ) or that the diagnostic measurement did not have  
DIE  
D4  
0
ALRTTEMP  
sufficient settling time (< 50µs) and therefore may not be accurate. Cleared only by writing  
to logic-zero. Writing to a logic-one has no effect.  
Indicates V  
< V  
. This bit is not set until the ALRTRST bit is cleared, and cleared  
HV  
HVUV  
D3  
D2  
0
0
ALRTHVUV  
only by writing to logic-zero. Writing to logic-one has no effect.  
Indicates an open circuit on the GNDL3 pin. This bit is not set until the ALRTRST bit is  
cleared, and cleared only by writing to logic-zero. Writing to a logic-one has no effect.  
ALRTGNDL3  
Indicates V  
< V  
. This bit is not set until the ALRTRST bit is cleared and  
DDL1  
VDDL_OC  
D1  
D0  
0
0
ALRTVDDL1  
ALRTGNDL1  
cleared only by writing to logic-zero. Writing to a logic-one has no effect.  
Indicates an open circuit on the GNDL1 pin. This bit is not set until the ALRTRST bit is  
cleared, and cleared only by writing to logic-zero. Writing to a logic-one has no effect.  
Maxim Integrated  
102  
www.maximintegrated.com  
MAX17843  
12-Channel, High-Voltage Smart Sensor  
Data-Acquisition Interface  
ALRTCELL Register (address 0x04)  
BIT  
D15  
D14  
D13  
D12  
D11  
D10  
D9  
POR  
NAME  
DESCRIPTION  
0
Reserved  
Always reads logic-zero.  
0
0
ALRTAIN1  
ALRTAIN0  
Logical OR of ALRTOVAIN1 and ALRTUVAIN1. Read-only.  
Logical OR of ALRTOVAIN0 and ALRTUVAIN0. Read-only.  
D8  
D7  
D6  
0
ALRTCELL[12:1]  
ALRTCELL[n] is the logical OR of ALROVCELL[n] and ALRTUVCELL[n]. Read-Only.  
D5  
D4  
D3  
D2  
D1  
D0  
ALRTOVCELL Register (address 0x05)  
BIT  
D15  
D14  
POR  
NAME  
DESCRIPTION  
0
Reserved  
Always reads logic-zero.  
Indicates V  
Read-only.  
> AINUT (cold). Cleared at next acquisition if the condition is false.  
> AINUT (cold). Cleared at next acquisition if the condition is false.  
AIN1  
AIN0  
D13  
D12  
0
0
ALRTOVAIN1  
ALRTOVAIN0  
Indicates V  
Read-only.  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
ALRTOV[n] indicates V  
at next acquisition if the condition is false. Read-only.  
> V  
(OVTHRSET threshold) if ALRTOVEN[n] = 1 . Cleared  
CELLn  
OV  
0
ALRTOV[12:1]  
Maxim Integrated  
103  
www.maximintegrated.com  
MAX17843  
12-Channel, High-Voltage Smart Sensor  
Data-Acquisition Interface  
ALRTUVCELL Register (address 0x07)  
BIT  
D15  
D14  
POR  
NAME  
DESCRIPTION  
0
Reserved  
Always reads logic-zero.  
Indicates V  
Read-only.  
< AINOT (hot). Cleared at next acquisition if the condition is false.  
< AINOT (hot). Cleared at next acquisition if the condition is false.  
AIN1  
AIN0  
D13  
D12  
0
0
ALRTUVAIN1  
ALRTUVAIN0  
Indicates V  
Read-only.  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
ALRTUV[n] indicates V  
at next acquisition if the condition is false. Read-only.  
< V  
(UVTHRSET threshold) if ALRTUVEN[n] = 1 . Cleared  
CELLn  
UV  
0
ALRTUV[12:1]  
ALRTBALSW Register (address 0x08)  
BIT  
D15  
D14  
D13  
D12  
D11  
D10  
D9  
POR  
NAME  
DESCRIPTION  
0
Reserved  
Always reads logic-zero.  
D8  
D7  
ALRTBALSW[n] indicates the corresponding measurement result exceeds the threshold  
specified by BALSWDIAG[2:0]. Cleared at next acquisition if the condition is false.  
Read-only.  
D6  
0
ALRTBALSW[11:0]  
D5  
D4  
D3  
D2  
D1  
D0  
Maxim Integrated  
104  
www.maximintegrated.com  
MAX17843  
12-Channel, High-Voltage Smart Sensor  
Data-Acquisition Interface  
MINMAXCELL Register (address 0x0A)  
BIT  
D15  
D14  
D13  
D12  
D11  
D10  
D9  
POR  
NAME  
DESCRIPTION  
0
Reserved  
Always reads logic-zero.  
Cell number of the maximum cell voltage currently in the measurement registers. If  
multiple cells have the same maximum value, this field contains the highest cell number  
with that measurement. Read-only.  
Fh  
0
MAXCELL[3:0]  
Reserved  
D8  
D7  
D6  
Always reads logic-zero.  
D5  
D4  
D3  
Cell number of the minimum cell voltage currently in the measurement registers. If multiple  
cells have the same minimum value, this field contains the highest cell number with that  
measurement. Read-only.  
D2  
Fh  
MINCELL[3:0]  
D1  
D0  
FMEA2 Register (address 0x0B)  
BIT  
D15  
D14  
D13  
D12  
D11  
D10  
D9  
POR  
NAME  
DESCRIPTION  
0
Reserved  
Always reads logic-zero.  
D8  
D7  
D6  
D5  
D4  
D3  
Indicates that V  
- V  
was too low during the acquisition for an accurate  
HV  
C12  
D2  
D1  
D0  
0
0
0
ALRTHVHDRM  
Reserved  
measurement. Cleared only by writing to logic-zero. Writing to a logic-one has no effect.  
Always reads logic-zero.  
Indicates that V  
> V  
. This bit is not set until the ALRTRST bit is cleared and  
HV  
HVOV  
ALRTHVOV  
cleared only by writing to logic-zero. Writing to a logic-one has no effect.  
Maxim Integrated  
105  
www.maximintegrated.com  
MAX17843  
12-Channel, High-Voltage Smart Sensor  
Data-Acquisition Interface  
AUTOBALSWDIS Delay Register (address 0x0C)  
BIT  
POR  
NAME  
DESCRIPTION  
Time delay for cell recovery after diagnostic configuration. Default time is 96µs, with  
maximum time of 24.576ms.  
D15  
D14  
D13  
D12  
D11  
D10  
DIAGNOSTIC RECOVERY TIME[7:0]  
DELAY TIME IN µs  
00000000  
00000001  
00000010  
00000011  
00000100  
...  
96  
192  
288  
384  
480  
Diagnostic Recovery  
Time[7:0]  
0
D9  
11111110  
11111111  
24480  
24576  
D8  
D7  
Time delay for cell recovery from cell-balancing voltage drop. Default time is 100µs, with  
maximum time of 24.576ms.  
D6  
D5  
D4  
D3  
D2  
D1  
CELL RECOVERY TIME[7:0]  
DELAY TIME IN µs  
00000000  
00000001  
00000010  
00000011  
00000100  
...  
96  
192  
288  
384  
480  
.
Cell Recovery  
Time[7:0]  
0
D0  
11111110  
11111111  
24480  
24576  
ID1 Register (address 0x0D)  
BIT  
D15  
D14  
D13  
D12  
D11  
D10  
D9  
POR  
NAME  
DESCRIPTION  
D8  
The two least-significant bytes of the 24-bit factory-programmed device ID. A valid device  
ID has two or more bits set to logic-one. Read-only.  
xxxxh  
DEVID[15:0]  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Maxim Integrated  
106  
www.maximintegrated.com  
MAX17843  
12-Channel, High-Voltage Smart Sensor  
Data-Acquisition Interface  
ID2 Register (address 0x0E)  
BIT  
D15  
D14  
D13  
D12  
D11  
D10  
D9  
POR  
NAME  
DESCRIPTION  
xxh  
ROMCRC[7:0]  
8-bit CRC value computed from the on-board read-only memory. Read-only.  
D8  
D7  
D6  
D5  
D4  
Most-significant byte of the 24-bit factory-programmed device ID. ID1[0] always reads  
logic-one. A valid device ID has two or more bits set to logic-one. Read-only.  
xxh  
DEVID[23:16]  
D3  
D2  
D1  
D0  
Maxim Integrated  
107  
www.maximintegrated.com  
MAX17843  
12-Channel, High-Voltage Smart Sensor  
Data-Acquisition Interface  
DEVCFG1 Register (address 0x10)  
BIT  
POR  
NAME  
DESCRIPTION  
Enables bipolar mode for ADC (input range is -2.5V to 2.5V). Default is unipolar mode  
(input range is 0V to 5V). The ADC logic latches the value of this bit at the start of the  
measurement cycle. The DIAG measurement timeslot is controlled by the internal logic.  
Changing the value of this bit takes effect at the next measurement cycle start.  
D15  
0
POLARITY  
Configures which ADC is selected for measurements. Default is the ADC1 which is the  
primary ADC. The ADC logic latches the value of this bit at the start of the measurement cycle.  
Changing the value of this bit takes effect at the next measurement cycle start.  
D14  
0
ADCSELECT  
ADCSELECT  
SELECTED ADC  
1 (Primary)  
0
1
2 (Secondary)  
IIR filter coefficient bits. User-selectable filter coefficients. The default value is 010 that has  
a weight of 3/8. Setting these bits to 111 would turn the filter off. The ADC scan data is then  
transferred from ALU to CELLn registers as is.  
D13  
D12  
FILTER COEFFICIENT[2:0]  
WEIGHT OF THE COEFFICIENT  
000  
001  
010  
011  
100  
101  
110  
111  
1/8  
2/8  
010  
FC[2:0]  
3/8, Default value  
1/2  
5/8  
.6/8  
D11  
7/8  
1, Filter Off  
D10  
D9  
D8  
D7  
D6  
D5  
0
0
0
0
0
0
EMGCYDCHG  
HVCPDIS  
Set to enable emergency cell-discharge mode (configured by BALSWDCHG).  
Disables the HV charge pump. Used for ALRTHVUV diagnostic. If the HV charge pump is  
disabled in normal operation, measurement errors will result due to V  
undervoltage.  
HV  
Reserved  
Reserved for future use.  
Enables hard POR by pulling down SHDNL internally. If cleared before the POR occurs, it  
disables the active pulldown on SHDNL.  
FORCEPOR  
ALIVECNTEN  
ADCTSTEN  
Enables inclusion of alive-counter byte at end of all write and read packets.  
Enables the ALU test mode. This mode feeds 12-bit data from the ADCTEST registers  
directly into the ALU, instead of from the ADC conversion.  
Disables the acquisition watchdog but does not clear the SCANTIMEOUT flag in the  
SCANCTRL register if it is set.  
D4  
0
SCANTODIS  
Disables all the balancing switches conducting between SWn and Swn-1. This allows  
disabling all the balancing switches without actually clearing the BALSWEN register.  
D3  
D2  
D1  
D0  
0
0
1
0
BALSWDISABLE  
NOPEC  
Disables packet-error checking (PEC).  
Disables write-protection of device address DA[4:0]. Cleared only by HELLOALL command  
(write protected).  
ADDRUNLOCK  
SPOR  
Enables soft POR. Writing to a logic-zero has no effect. Always reads logic-zero.  
Maxim Integrated  
108  
www.maximintegrated.com  
MAX17843  
12-Channel, High-Voltage Smart Sensor  
Data-Acquisition Interface  
GPIO Register (address 0x11)  
BIT  
D15  
D14  
D13  
D12  
D11  
D10  
D9  
POR  
NAME  
DESCRIPTION  
0
DIR[3:0]  
Setting DIRn enables GPIOn as an output. Default state is high-impedance input.  
Indicates the current logic state of each GPIOn pin input buffer. The logic state is sampled  
at the end of the parity bit of the register address byte during a read of this register. Read-  
only.  
0
RD[3:0]  
D8  
Enables the GPIO3 timer mode. This mode overrides DIR3 and DRV3 and drives GPIO3  
to logic-one when the timer is counting, and drives to logic-zero when the timer times out.  
Emergency cell-discharge mode (EMGCYDCHG = 1) automatically enables the GPIO3  
timer mode.  
D7  
0
0
GPIO3TMR  
Reserved  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Always reads logic-zero.  
0
DRV[3:0]  
Setting DRVn sets GPIOn to logic-one if DIRn is set.  
Maxim Integrated  
109  
www.maximintegrated.com  
MAX17843  
12-Channel, High-Voltage Smart Sensor  
Data-Acquisition Interface  
MEASUREEN Register (address 0x12)  
BIT  
POR  
NAME  
DESCRIPTION  
Connects the voltage-divider to the V  
measurement. The ADC logic latches the value of this bit at the start of the measurement cycle.  
pin. Must be enabled prior to the VBLOCK  
BLKP  
D15  
0
BLKCONNECT  
Changing the value of this bit takes effect at the next measurement cycle start.  
Enables measurement of the V  
the value of this bit at the start of the measurement cycle. Changing the value of this bit  
takes effect at the next measurement cycle start.  
input in the acquisition mode. The ADC logic latches  
BLKP  
D14  
D13  
D12  
0
0
0
BLOCKEN  
AIN2EN  
Enables measurement of the AUXIN2 input in the acquisition mode. The ADC logic latches  
the value of this bit at the start of the measurement cycle. Changing the value of this bit  
takes effect at the next measurement cycle start.  
Enables measurement of the AUXIN1 input in the acquisition mode. The ADC logic latches  
the value of this bit at the start of the measurement cycle. Changing the value of this bit  
takes effect at the next measurement cycle start.  
AIN1EN  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Enables measurement of the respective cell in the acquisition mode. Disabled channels  
result in a measurement value of 0000h. The ADC logic latches the value of this bit at  
the start of the measurement cycle. Changing the value of this bit takes effect at the next  
measurement cycle start.  
0
CELLEN[12:1]  
Maxim Integrated  
110  
www.maximintegrated.com  
MAX17843  
12-Channel, High-Voltage Smart Sensor  
Data-Acquisition Interface  
SCANCTRL Register (address 0x13)  
BIT  
POR  
NAME  
DESCRIPTION  
Indicates the acquisition has completed. Cleared only by writing it to logic-zero to detect  
completion of the next acquisition. Writing to logic 1 has no effect. A new acquisition will not  
commence if this bit is set.  
D15  
0
SCANDONE  
Indicates the acquisition did not complete in the expected period of time. The timeout  
depends on the oversampling configuration. Cleared only by writing it to logic-zero to allow  
detection of future timeout events. The watchdog can be disabled by setting SCANTODIS  
in the DEVCFG register.  
D14  
D13  
0
0
SCANTIMEOUT  
DATARDY  
Indicates the measurement data from the acquisition has been transferred from the ALU to  
the data registers and can now be read. Data for all measurement registers and MIN/MAX/  
TOTAL is transferred at the same time. Cleared by writing it to logic-zero to allow detection  
of the next data transfer. Writing to logic-one has no effect.  
The delay after the start of the scan before the measurement is enabled only if  
the AUTOBALSWDIS bit is set to 1. Sets the delay based on the setting in the  
AUTOBALSWDIS Delay register (0x0C). The default bit setting is 0 which selects the delay  
associated with cell recovery time in register 0x0C. Setting this bit to 1 selects the delay  
setting of “Diagnostic Recovery time.” See AUTOBALSWDIS Delay Register (address  
0x0C) table for details on delay timings.  
D12  
D11  
0
0
DELAYSEL  
Automatic disable of balancing switches during measurements. The delay for cell recovery  
settling time and for the diagnostic recovery is set based on the AUTOBALSWDIS Delay  
register (0x0C). Set this bit to zero for normal balancing switch operation.  
AUTOBALSWDIS  
Configures the cell-balancing switch diagnostic modes per table below. When selected,  
these modes effectively override the BALSWEN, MEASUREEN, ALTMUXSEL, and  
POLARITY configurations during the acquisition mode and update the ALRTBALSW  
register per the BALHIGHTHR and BALLOWTHR thresholds. See the Diagnostics section  
for details.  
D10  
D9  
BALSWDIAG[2:0]  
DIAGNOSTIC TEST  
000  
001  
010  
011  
100  
101  
110  
111  
None  
0
BALSWDIAG[2:0]  
Balancing switch short  
Balancing switch open  
None  
D8  
D7  
None  
Cell sense open odds  
Cell sense open evens  
None  
This bit chooses where the ADC scan data is read from. Writing this bit to ‘1’ enables the  
read to occur from filtered CELLn registers. The default value is ‘0’ wherein the read of the  
scanned data occurs from unfiltered ALU registers.  
0
RDFILT  
Maxim Integrated  
111  
www.maximintegrated.com  
MAX17843  
12-Channel, High-Voltage Smart Sensor  
Data-Acquisition Interface  
SCANCTRL Register (address 0x13) (continued)  
BIT  
POR  
NAME  
DESCRIPTION  
D6  
Configures for the number of oversamples in the acquisition, per table below:  
OVSAMPL[2:0]  
OVERSAMPLES  
000  
001  
010  
011  
100  
101  
110  
111  
1
4
8
D5  
0
OVSAMPL[2:0]  
16  
32  
64  
128  
128  
D4  
D3  
This bit when set to ‘1’ enables the automatic transfer of the new ADC conversion from  
the ALU to CELLn registers through the IIR filter at the end of the scan. The scan result is  
available in the ALU as well as the CELLn registers. The default value is ‘0’, which keeps  
the scan conversion data in the ALU register as an unfiltered result.  
0
AMENDFILT  
D2  
D1  
0
0
SCANMODE  
FILTDONE  
Enables top-down scan mode. Default is pyramid scan mode.  
Indicates the user register has been updated with the new ADC conversion values based on  
filter coefficient bits when AMENDFILT = 1. Cleared only by writing it to logic-zero to detect  
update of the user registers for the next acquisition. Writing to logic-one has no effect.  
Enables the acquisition mode and (if in double-buffer mode) transfers previous acquisition  
data from ALU to data registers. Acts as a strobe bit and therefore does not need to be  
cleared. Always reads logic-zero. Ignored in acquisition mode.  
D0  
0
SCAN  
ALRTOVEN Register (address 0x14)  
BIT  
D15  
D14  
D13  
D12  
D11  
D10  
D9  
POR  
NAME  
DESCRIPTION  
0
Reserved  
Always reads logic-zero.  
0
0
AINOVALRTEN1  
AINOVALRTEN0  
Enables the AIN1 overvoltage alert.  
Enables the AIN0 overvoltage alert.  
D8  
D7  
D6  
Enables the overvoltage alert for the respective cell. Clearing also clears the associated  
cell alert.  
0
OVALRTEN[12:1]  
D5  
D4  
D3  
D2  
D1  
D0  
Maxim Integrated  
112  
www.maximintegrated.com  
MAX17843  
12-Channel, High-Voltage Smart Sensor  
Data-Acquisition Interface  
ALRTUVEN Register (address 0x15)  
BIT  
D15  
D14  
D13  
D12  
D11  
D10  
D9  
POR  
NAME  
DESCRIPTION  
0
Reserved  
Always reads logic-zero.  
0
0
AINUVALRTEN1  
AINUVALRTEN0  
Enables the AIN1 undervoltage alert.  
Enables the AIN0 undervoltage alert.  
D8  
D7  
D6  
Enables the undervoltage alert for the respective cell. Clearing also clears the associated  
cell alert.  
0
UVALRTEN[12:1]  
D5  
D4  
D3  
D2  
D1  
D0  
Maxim Integrated  
113  
www.maximintegrated.com  
MAX17843  
12-Channel, High-Voltage Smart Sensor  
Data-Acquisition Interface  
WATCHDOG Register (address 0x18)  
BIT  
D15  
D14  
D13  
POR  
NAME  
DESCRIPTION  
0
Reserved  
Always reads logic-zero.  
Sets the step size of the cell-balancing timer LSB per table below:  
CBPDIV[2:0]  
000  
STEP SIZE  
Disabled  
1s  
TIMEOUT RANGE  
No timeout  
1–15s  
001  
010  
4s  
4–60s  
0
CBPDIV[2:0]  
011  
16s  
16–240s  
D12  
100  
64s  
64–960s  
101  
128s  
256s  
256s  
128–1920s  
256–3840s  
256–3840s  
110  
111  
Watchdog timer for the cell-balancing switches. The timer counts down at a rate set by  
CBPDIVn. When the timer reaches ‘0’, all cell-balancing switches are disabled by a signal  
separate from the BALCFGn enable bits. The timer should be periodically rewritten with a  
timeout value to keep the cell-balancing switches enabled. When the timer value is read,  
the value reported is latched during the stop bit time following the ACQCFG UART register  
address of the READALL command. If the GPIO3TMR configuration is enabled, the GPIO3  
pin is driven high, while CBTIMER[3:0] is nonzero and is driven low when the timer value is  
zero. The cell-balancing timer is reset to zero when EMGCYDCHG = 1.  
D11  
D10  
D9  
0
CBTIMER[3:0]  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
0
Reserved  
Always reads logic-zero.  
Maxim Integrated  
114  
www.maximintegrated.com  
MAX17843  
12-Channel, High-Voltage Smart Sensor  
Data-Acquisition Interface  
ACQCFG Register (address 0x19)  
BIT  
D15  
D14  
D13  
D12  
D11  
D10  
D9  
POR  
NAME  
DESCRIPTION  
0
Reserved  
Always reads logic-zero.  
Configures the THRM mode based on the table below:  
THRMMODE[1:0]  
OPERATION  
00  
01  
10  
11  
Auto mode (on in acquisition mode)  
Auto mode (on in acquisition mode)  
Manual mode, THRM switch off  
Manual mode, THRM switch on  
0
0
0
THRMMODE[1:0]  
Reserved  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Always reads logic-zero.  
Configures the conversion time for each enabled AUXINn input from 6µs (default) up to  
384µs (6µs/bit). This is to allow extra settling time if the application circuit requires it since  
the THRM voltage is not driven out until the start of the acquisition (in auto mode).  
AINTIME[5:0]  
BALSWEN Register (address 0x1A)  
BIT  
D15  
D14  
D13  
D12  
D11  
D10  
D9  
POR  
NAME  
DESCRIPTION  
0
Reserved  
Always reads logic-zero.  
D8  
D7  
D6  
0
BALSWEN[11:0]  
BALSWEN[n-1] enables the balancing switch (conducting) between SWn and SWn-1.  
D5  
D4  
D3  
D2  
D1  
D0  
Maxim Integrated  
115  
www.maximintegrated.com  
MAX17843  
12-Channel, High-Voltage Smart Sensor  
Data-Acquisition Interface  
DEVCFG2 Register (address 0x1B)  
BIT  
POR  
NAME  
DESCRIPTION  
Enables UART loopback mode, which internally connects upper-port transmitter to  
upper-port receiver. The loopback mode allows the host to locate a break in daisy-chain  
communication whether or not the last daisy-chain device uses an external wire loopback  
wire or the internal loopback.  
D15  
0
LASTLOOP  
D14  
D13  
D12  
0
0
TXADPEN  
Reserved  
Enables TX adaptive mode. Leave in default state for normal operation.  
Always reads logic-zero.  
Enables high-Z idle mode, which causes the TX drivers of the lower UART to idle in the  
high-Z state instead of idling in the logic-zero state (default mode). Leave in default state  
for normal operation.  
D11  
D10  
0
TXLIDLEHIZ  
Enables high-Z idle mode, which causes the TX drivers of the upper UART to idle in the  
high-Z state instead of idling in the logic-zero state (default mode). Leave in default state  
for normal operation.  
0
0
TXUIDLEHIZ  
RESERVED  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Reserved for future use. Reads the written value.  
0
Reserved  
Always reads logic-zero.  
Maxim Integrated  
116  
www.maximintegrated.com  
MAX17843  
12-Channel, High-Voltage Smart Sensor  
Data-Acquisition Interface  
BALDIAGCFG1 Register (address 0x1C)  
BIT  
D15  
D14  
D13  
POR  
NAME  
DESCRIPTION  
0
0
Reserved  
Always reads logic-zero.  
ALTMUXSEL_M  
Mirror for ALTMUXSEL bit.  
Mirror for POLARITY bit. The ADC logic latches the value of this bit at the start of the  
D12  
0
POLARITY_M  
measurement cycle. Changing the value of this bit takes effect at the next measurement-cycle  
start.  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Mirror for CELLEN[12:1] in the MEASUREEN register. Writing to this field also updates  
CELLEN[12:1]. Reading this field reflects CELLEN[12:1].  
0
CELLEN_M[12:1]  
Maxim Integrated  
117  
www.maximintegrated.com  
MAX17843  
12-Channel, High-Voltage Smart Sensor  
Data-Acquisition Interface  
BALSWDCHG Register (address 0x1D)  
BIT  
D15  
D14  
POR  
NAME  
DESCRIPTION  
Configuration for emergency cell-discharge mode (EMGCYDCHG = 1). Sets the duty-  
cycle for each discharge cycle (even or odd) per the table below:  
DCHGWIN[2:0] (LSb = 7.5s)  
BEHAVIOR  
Switches on for 7.5s, off for 52.5s  
Switches on for 15s, off for 45s  
0h  
1h  
7h  
0
DCHGWIN[2:0]  
D13  
Switches on for 59.94s, off for 62.5ms  
D12  
D11  
D10  
D9  
0
0
Reserved  
Always reads logic-zero.  
Discharge counter, which can be read to verify operation of the emergency cell-discharge  
mode (EMGCYDCHG = 1). During the cell-discharge mode, the discharge counter counts  
at 2Hz rolling over at Fh to 0h and continuing until the cell-discharge mode terminates.  
Read-only.  
DCHGCNTR[3:0]  
D8  
D7  
Write to set the timeout value of the emergency cell-discharge mode (EMGCYDCHG = 1)  
per the table below. Writing to 00h disables the timer and terminates the emergency cell-  
discharge mode. The timer starts when EMGCYDCHG = 1 (and DCHGTIME[7:0] ≠ 00h)  
and stops when it reaches the timeout. The timer is reset when EMGCYDCHG = 0.  
D6  
D5  
D4  
D3  
DCHGTIME[7:0] (LSb = 2 HOURS)  
TIMEOUT  
Discharge mode disabled  
0
DCHGTIME[7:0]  
D2  
00h  
01h  
02h  
D1  
Discharge mode disabled after 4 hours  
Discharge mode disabled after 6 hours  
D0  
FFh  
Discharge mode disabled after 512 hours  
TOPCELL Register (address 0x1E)  
BIT  
D15  
D14  
D13  
D12  
D11  
D10  
D9  
POR  
NAME  
DESCRIPTION  
0
Reserved  
Always reads logic-zero.  
D8  
D7  
D6  
D5  
D4  
D3  
Configures the top cell position if less than 12 channels are used. This is to properly  
mask the ALRTBALSW diagnostic alerts. TOPCELL[3:0] = 0h is not a valid configuration.  
TOPCELL[3:0]= Dh, Eh, or Fh is identical to Ch (12d).  
D2  
Ch  
TOPCELL[3:0]  
D1  
D0  
Maxim Integrated  
118  
www.maximintegrated.com  
MAX17843  
12-Channel, High-Voltage Smart Sensor  
Data-Acquisition Interface  
CELLn Register (addresses 0x20 to 0x2B)  
BIT  
D15  
D14  
D13  
D12  
D11  
D10  
D9  
POR  
NAME  
DESCRIPTION  
D8  
CELLn[15:2] contains the 14-bit measurement result for CELLn. CELLn[1:0] always reads  
logic-zero. Read-only.  
0
CELLn[15:0]  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
VBLOCK Register (address 0x2C)  
BIT  
D15  
D14  
D13  
D12  
D11  
D10  
D9  
POR  
NAME  
DESCRIPTION  
D8  
VBLOCK[15:2] contains the 14-bit measurement result for V  
logic-zero. Read-only.  
. VBLOCK[1:0] always reads  
BLKP  
0
VBLOCK[15:0]  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Maxim Integrated  
119  
www.maximintegrated.com  
MAX17843  
12-Channel, High-Voltage Smart Sensor  
Data-Acquisition Interface  
AIN1 Register (address 0x2D)  
BIT  
D15  
D14  
D13  
D12  
D11  
D10  
D9  
POR  
NAME  
DESCRIPTION  
D8  
AIN1[15:4] contains the 12-bit measurement result for AUXIN1. AIN1[3:0] always reads logic-  
zero. Read-only.  
0
AIN1[15:0]  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
AIN2 Register (address 0x2E)  
BIT  
D15  
D14  
D13  
D12  
D11  
D10  
D9  
POR  
NAME  
DESCRIPTION  
D8  
AIN2[15:4] contains the 12-bit measurement result for AUXIN2. AIN2[3:0] always reads logic-  
zero. Read-only.  
0
AIN2[15:0]  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Maxim Integrated  
120  
www.maximintegrated.com  
MAX17843  
12-Channel, High-Voltage Smart Sensor  
Data-Acquisition Interface  
TOTAL Register (address 0x2F)  
BIT  
D15  
D14  
D13  
D12  
D11  
D10  
D9  
POR  
NAME  
DESCRIPTION  
D8  
0
SUM[15:0]  
16-bit sum of all cell voltages CELLn[15:4] that are enabled by MEASUREEN. Read-only.  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
OVTHCLR Register (address 0x40)  
BIT  
D15  
D14  
D13  
D12  
D11  
D10  
D9  
POR  
NAME  
DESCRIPTION  
D8  
FFFCh  
OVTHCLR[15:0]  
14-bit overvoltage-clear threshold. UVTHCLR[1:0] always reads logic-zero.  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Maxim Integrated  
121  
www.maximintegrated.com  
MAX17843  
12-Channel, High-Voltage Smart Sensor  
Data-Acquisition Interface  
OVTHSET Register (address 0x42)  
BIT  
D15  
D14  
D13  
D12  
D11  
D10  
D9  
POR  
NAME  
DESCRIPTION  
D8  
FFFCh  
OVTHSET[15:0]  
14-bit overvoltage-set threshold. OVTHSET[1:0] always reads logic-zero.  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
UVTHCLR Register (address 0x44)  
BIT  
D15  
D14  
D13  
D12  
D11  
D10  
D9  
POR  
NAME  
DESCRIPTION  
D8  
0
UVTHCLR[15:0]  
14-bit undervoltage-clear threshold. UVTHCLR[1:0] always reads logic-zero.  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Maxim Integrated  
122  
www.maximintegrated.com  
MAX17843  
12-Channel, High-Voltage Smart Sensor  
Data-Acquisition Interface  
UVTHSET Register (address 0x46)  
BIT  
D15  
D14  
D13  
D12  
D11  
D10  
D9  
POR  
NAME  
DESCRIPTION  
D8  
0
UVTHSET[15:0]  
14-bit undervoltage set threshold. UVTHSET[1:0] always reads logic-zero.  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
MSMTCH Register (address 0x48)  
BIT  
D15  
D14  
D13  
D12  
D11  
D10  
D9  
POR  
NAME  
DESCRIPTION  
D8  
FFFCh  
MSMTCH[15:0]  
14-bit voltage threshold for ALRTMSMTCH. MSMTCH[1:0] always reads logic-zero.  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Maxim Integrated  
123  
www.maximintegrated.com  
MAX17843  
12-Channel, High-Voltage Smart Sensor  
Data-Acquisition Interface  
AINOT Register (address 0x49)  
BIT  
D15  
D14  
D13  
D12  
D11  
D10  
D9  
POR  
NAME  
DESCRIPTION  
D8  
12-bit undervoltage (over-temperature) threshold for AUXINn alerts. AINOT[3:0] always  
reads logic-zero.  
0
AINOT[15:0]  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
AINUT Register (address 0x4A)  
BIT  
D15  
D14  
D13  
D12  
D11  
D10  
D9  
POR  
NAME  
DESCRIPTION  
D8  
12-bit overvoltage (undertemperature) threshold for AUXINn alerts. AINUT[3:0] always reads  
logic-zero..  
FFF0h  
AINUT[15:0]  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Maxim Integrated  
124  
www.maximintegrated.com  
MAX17843  
12-Channel, High-Voltage Smart Sensor  
Data-Acquisition Interface  
BALSHRTTHR Register (address 0x4B)  
BIT  
D15  
D14  
D13  
D12  
D11  
D10  
D9  
POR  
NAME  
DESCRIPTION  
14-bit voltage threshold for the balancing-switch short-circuit diagnostic test. The ADC  
results in this test mode are compared against the threshold. If any result is below the  
threshold, it is flagged as a balancing-switch alert. Results above the threshold are  
considered normal. The threshold should be set by the system controller prior to making  
a diagnostic measurement. BALSHRTTHR[1:0] always reads logic-zero.  
D8  
0
BALSHRTTHR[15:0]  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
BALLOWTHR Register (address 0x4C)  
BIT  
D15  
D14  
D13  
D12  
D11  
D10  
D9  
POR  
NAME  
DESCRIPTION  
14-bit low-voltage threshold for the balancing-switch conducting and cell sense-wire  
diagnostic tests. The ADC results in this test mode are compared against the threshold.  
If any result is below the threshold, it is flagged as a balancing-switch alert. Results  
above the threshold are considered normal. The threshold should be set by the system  
controller prior to making a diagnostic measurement. BALLOWTHR[1:0] always reads  
logic-zero.  
D8  
0
BALLOWTHR[15:0]  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Maxim Integrated  
125  
www.maximintegrated.com  
MAX17843  
12-Channel, High-Voltage Smart Sensor  
Data-Acquisition Interface  
BALHIGHTHR Register (address 0x4D)  
BIT  
D15  
D14  
D13  
D12  
D11  
D10  
D9  
POR  
NAME  
DESCRIPTION  
14-bit high-voltage threshold for the balancing-switch conducting and cell sense-wire  
diagnostic tests The ADC results in this test mode are compared against the threshold.  
If any result is above the threshold, it is flagged as a balancing-switch alert. Results  
below the threshold are considered normal. The threshold should be set by the system  
controller prior to making a diagnostic measurement. BALHIGHTHR[1:0] always reads  
logic-zero.  
D8  
0
BALHIGHTHR[15:0]  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
DIAG Register (address 0x50)  
BIT  
D15  
D14  
D13  
D12  
D11  
D10  
D9  
POR  
NAME  
DESCRIPTION  
D8  
DIAG[15:2] contains the 14-bit measurement result for the diagnostic selected by  
DIAGCFG[2:0]. DIAG[1:0] always reads logic-zero. Read-only.  
0
DIAG[15:0]  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Maxim Integrated  
126  
www.maximintegrated.com  
MAX17843  
12-Channel, High-Voltage Smart Sensor  
Data-Acquisition Interface  
DIAGCFG Register (address 0x51)  
BIT  
D15  
D14  
POR  
NAME  
DESCRIPTION  
Configures the current level for all enabled test sources per the table below (either 6.25µA  
or 3.125µA per bit.  
TEST SOURCE CURRENT  
CTSTDAC{3:0]  
D13  
D12  
Cx, AUXINn  
6.25µA  
12.5µA  
18.75µA  
….  
Cx, AUXINn  
3.125µA  
6.25µA  
9.375µA  
….  
0h  
1h  
2h  
0
CTSTDAC[3:0]  
Dh  
Eh  
Fh  
87.5µA  
93.75µA  
100µA  
43.75µA  
46.875µA  
50µA  
Configures the cell input test-current sources to either source current from V (logic-one),  
or sink current to AGND (logic-zero). For C0, configures the cell input test current to source  
AA  
D11  
0
CTSTSRC  
Reserved  
from V only.  
AA  
D10  
D9  
0
0
Reserved for future use.  
Enables the test current sources connected to the corresponding AUXINn input for  
diagnostic testing. The current level is configured by the CTSTDAC[3:0] and the current  
direction is configured by CTSTSRC.  
AUXINTSTEN[2:1]  
D8  
0
Selects the HVMUX output to which the HVMUX test current source is connected, if  
MUXDIAGPAIR is enabled, as shown below:  
MUXDIAGBUS  
HVMUX OUTPUT  
Output used for even cells, C0, and AGND.  
Output used for odd cells, REF, and ALTREF.  
D7  
0
MUXDIAGBUS  
0
1
Configures a single HVMUX test-current source to be connected to only one HVMUX  
output (as selected by MUXDIAGBUS). In the default configuration (MUXDIAGPAIR = 0),  
both HVMUX test-current sources are connected to both HVMUX outputs.  
D6  
D5  
0
0
MUXDIAGPAIR  
Reserved  
Always reads logic-zero.  
Enables the HVMUX test-current source(s). The current level is configured by  
CSTDAC[3:0] and the connectivity is configured by MUXDIAGPAIR and MUXDIAGBUS.  
The ADC logic latches the value of this bit at the start of the measurement cycle. Changing the  
value of this bit takes effect at the next measurement-cycle start.  
D4  
0
0
MUXDIAGEN  
ALTMUXSEL  
Enables cell measurements on the SWn inputs (ALTMUX data path) instead of the Cn  
inputs (HVMUX data path). See the Diagnostics section.  
D3  
D2  
Selects the diagnostic measurement for the acquisition per table below:  
DIAGSEL[2:0]  
0b000  
DIAGNOSTIC MEASUREMENT  
No measurement  
D1  
0b001  
V
V
(with ADC reference = REF)  
ALTREF  
0b010  
(with ADC reference = REF)  
AA  
0
DIAGSEL[2:0]  
0b011  
LSAMP offset  
D0  
0b100  
Zero-scale ADC output (000h)  
Full-scale ADC output (FFFh)  
Die temperature  
0b101  
0b110  
0b111  
No measurement  
Maxim Integrated  
127  
www.maximintegrated.com  
MAX17843  
12-Channel, High-Voltage Smart Sensor  
Data-Acquisition Interface  
CTSTEN Register (address 0x52)  
BIT  
D15  
D14  
D13  
D12  
D11  
D10  
D9  
POR  
NAME  
DESCRIPTION  
0
Reserved  
Always reads logic-zero.  
D8  
D7  
Enables the current sources connected to the corresponding cell input for diagnostic  
testing. The current level is configured by the CTSTDAC[3:0] and the current direction is  
configured by CTSTSRC in the DIAGCFG register.  
D6  
0
CTSTEN[12:0]  
D5  
D4  
D3  
D2  
D1  
D0  
ADCTEST1A Register (address 0x57)  
BIT  
D15  
D14  
D13  
D12  
D11  
D10  
D9  
POR  
NAME  
DESCRIPTION  
0
Reserved  
Always reads logic-zero.  
D8  
D7  
D6  
User-specified test data for the ALU diagnostic (ADCTEST = 1). This 12-bit data is fed into  
the ALU during the first conversion of odd-numbered samples (e.g., first sample).  
ADCTEST1A[11:0]  
D5  
D4  
D3  
D2  
D1  
D0  
Maxim Integrated  
128  
www.maximintegrated.com  
MAX17843  
12-Channel, High-Voltage Smart Sensor  
Data-Acquisition Interface  
ADCTEST1B Register (address 0x58)  
BIT  
D15  
D14  
D13  
D12  
D11  
D10  
D9  
POR  
NAME  
DESCRIPTION  
0
Reserved  
Always reads logic-zero.  
D8  
D7  
D6  
User-specified test data for the ALU diagnostic (ADCTEST = 1). This 12-bit data is fed into  
the ALU during the second conversion of odd-numbered samples (e.g., first sample).  
ADCTEST1B[11:0]  
D5  
D4  
D3  
D2  
D1  
D0  
ADCTEST2A Register (address 0x59)  
BIT  
D15  
D14  
D13  
D12  
D11  
D10  
D9  
POR  
NAME  
DESCRIPTION  
0
Reserved  
Always reads logic-zero.  
D8  
D7  
D6  
User-specified test data for the ALU diagnostic (ADCTEST = 1). This 12-bit data is fed into  
the ALU during the first conversion of even-numbered samples in oversampling mode.  
0
ADCTEST2A[11:0]  
D5  
D4  
D3  
D2  
D1  
D0  
Maxim Integrated  
129  
www.maximintegrated.com  
MAX17843  
12-Channel, High-Voltage Smart Sensor  
Data-Acquisition Interface  
ADCTEST2B Register (address 0x5A)  
BIT  
D15  
D14  
D13  
D12  
D11  
D10  
D9  
POR  
NAME  
DESCRIPTION  
0
Reserved  
Always reads logic-zero.  
D8  
D7  
D6  
User-specified test data for the ALU diagnostic (ADCTEST = 1). This 12-bit data is fed into  
the ALU during the second conversion of even-numbered samples in oversampling mode.  
0
ADCTEST2B[11:0]  
D5  
D4  
D3  
D2  
D1  
D0  
Ordering Information  
Package Information  
For the latest package outline information and land patterns  
PART  
TEMP RANGE PIN-PACKAGE  
-40° to +125°C 64 LQFP  
-40° to +125°C 64 LQFP  
(footprints), go to www.maximintegrated.com/packages. Note  
MAX17843ACB+*  
MAX17843ACB/V+  
that a “+”, “#”, or “-” in the package code indicates RoHS status  
only. Package drawings may show a different suffix character, but  
the drawing pertains to the package regardless of RoHS status.  
/V denotes an automotive qualified part.  
+ Denotes a lead(Pb)-free/RoHS-compliant package.  
*Future product―contact factory for availability.  
PACKAGE  
TYPE  
PACKAGE  
CODE  
OUTLINE  
NO.  
LAND  
PATTERN NO.  
64 LQFP  
C64+13  
21-0083  
90-0141  
Maxim Integrated  
130  
www.maximintegrated.com  
MAX17843  
12-Channel, High-Voltage Smart Sensor  
Data-Acquisition Interface  
Revision History  
REVISION  
NUMBER  
REVISION  
DATE  
PAGES  
DESCRIPTION  
CHANGED  
0
6/17  
Initial release  
Updated Benefits and Features, Absolute Maximum Ratings, Electrical  
Characteristics, TX Adaptive Mode for Single-Ended Mode, UART  
Communication Mode, SCANCTRL Register (address 0x13), and  
OVTHSET Register (address 0x42) sections/tables  
1, 14, 16, 53, 56,  
111, 122  
1
11/17  
4/18  
Changed Total-Acquisition Error (V  
Input) in Electrical Characteristics  
BLKP  
2
table from "-125 (min) to +125 (max)" to "-110 (min) to +110 (max)" and  
16, 87  
changed Bit-Wise and Mask in rows 8 and 16 from "0x001F to 0x003F"  
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim Integrated’s website at www.maximintegrated.com.  
Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses  
are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits)  
shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.  
©
Maxim Integrated and the Maxim Integrated logo are trademarks of Maxim Integrated Products, Inc.  
2018 Maxim Integrated Products, Inc.  
131  

相关型号:

MAX17843ACB

12-Channel, High-Voltage Smart Sensor Data-Acquisition Interface
MAXIM

MAX17843ACBV

12-Channel, High-Voltage Smart Sensor Data-Acquisition Interface
MAXIM

MAX17853

14-Channel High-Voltage Data-Acquisition System
MAXIM

MAX17853ACB

14-Channel High-Voltage Data-Acquisition System
MAXIM

MAX17853ACBV

14-Channel High-Voltage Data-Acquisition System
MAXIM

MAX17880

Ensures Safe Operation of Li-Ion Battery Packs While Reducing System Cost
MAXIM

MAX178ACNG

Calibrated 12-Bit ADC with T/H and Reference
MAXIM

MAX178ACNG+

ADC, Successive Approximation, 12-Bit, 1 Func, 1 Channel, Parallel, 8 Bits Access, PDIP24, PLASTIC, DIP-24
MAXIM

MAX178ACWG

Calibrated 12-Bit ADC with T/H and Reference
MAXIM

MAX178ACWG+

暂无描述
MAXIM

MAX178AENG

Calibrated 12-Bit ADC with T/H and Reference
MAXIM

MAX178AEWG

Calibrated 12-Bit ADC with T/H and Reference
MAXIM