MAX1817EUB [MAXIM]

Compact, High-Efficiency, Dual-Output Step-Up DC-DC Converter; 结构紧凑,高效率,双输出升压型DC -DC转换器
MAX1817EUB
型号: MAX1817EUB
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Compact, High-Efficiency, Dual-Output Step-Up DC-DC Converter
结构紧凑,高效率,双输出升压型DC -DC转换器

转换器 稳压器 开关式稳压器或控制器 电源电路 开关式控制器 光电二极管 信息通信管理
文件: 总12页 (文件大小:403K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-1794 Rev 0; 10/00  
Compact, High-Efficiency, Dual-Output  
Step-Up DC-DC Converter  
General Description  
Features  
The MAX1817 is a compact, high-efficiency, dual-out-  
put step-up converter for portable devices that pro-  
vides both the main logic supply and the LCD bias. The  
device operates from an input voltage of +1.5V to  
+5.5V, allowing the use of 2- or 3-cell alkaline batteries,  
or 1-cell lithium-ion (Li+) batteries.  
o Dual Step-Up Converter in a Tiny 10-Pin µMAX  
Package  
o Main Output  
Up to 125mA Load Current  
Fixed 3.3V or Adjustable 2.5V to 5.5V  
Up to 88% Efficiency  
Internal Switch  
The MAX1817’s main regulator supplies 125mA at  
either a preset 3.3V or an adjustable 2.5V to 5.5V out-  
put voltage with up to 88% efficiency. A 0.1µA shut-  
down state also minimizes battery drain. The  
MAX1817’s secondary step-up converter provides the  
LCD bias voltage and is adjustable up to +28V.  
o LCD Output  
Up to 28V for LCD Bias  
Internal Switch  
o Input Voltage Range +1.5V to +5.5V  
o Minimal External Components Required  
o 0.1µA Logic-Controlled Shutdown  
o Low 15µA Quiescent Supply Current  
Other features include a fast switching frequency to  
reduce the size of external components and a low qui-  
escent current to maximize battery life. Both outputs can  
be independently shut down for improved flexibility.  
The MAX1817 is supplied in a compact 10-pin µMAX  
package. The MAX1817 evaluation kit (MAX1817EVKIT)  
is available to speed up design.  
Ordering Information  
________________________Applications  
PART  
TEMP. RANGE  
PIN-PACKAGE  
Organizers/Translators  
MAX1817EUB  
-40°C to +85°C  
10 µMAX  
PDAs  
MP3 Players  
GPS Receivers  
Typical Operating Circuit  
Pin Configuration  
+1.5V  
TO +5.5V  
TOP VIEW  
FB  
ON  
1
2
3
4
5
10 OUT  
9
8
7
6
LX  
LCD  
MAX1817  
ONLCD  
FBLCD  
AGND  
GND  
LXLCD  
N.C.  
LXLCD  
FBLCD  
LX  
ONLCD  
LCD ON/OFF  
MAIN ON/OFF  
µMAX  
MAX1817  
ON  
AGND  
OUT  
FB  
GND  
MAIN  
________________________________________________________________ Maxim Integrated Products  
1
For price, delivery, and to place orders, please contact Maxim Distribution at 1-888-629-4642,  
or visit Maxim’s website at www.maxim-ic.com.  
Compact, High-Efficiency, Dual-Output  
Step-Up DC-DC Converter  
ABSOLUTE MAXIMUM RATINGS  
OUT to GND .............................................................-0.3V to +6V  
Operating Temperature Range ...........................-40°C to +85°C  
ON, ONLCD, FB, FBLCD, LX to GND ......-0.3V to (V  
LXLCD to GND .......................................................-0.3V to +30V  
AGND to GND .......................................................-0.3V to +0.3V  
+ 0.3V)  
Junction Temperature......................................................+150°C  
Storage Temperature Range.............................-65°C to +150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
OUT  
Continuous Power Dissipation (T = +70°C)  
A
10-Pin µMAX (derate 5.6mW/°C above +70°C)...........444mW  
LXLCD, LX Maximum Current ........................................0.5A  
RMS  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(V  
= V  
= V  
= +3.3V, FB = GND, T = 0°C to +85°C, unless otherwise noted. Typical values are at T = +25°C.)  
ON  
ONLCD  
OUT  
A
A
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
GENERAL  
Input Voltage Range  
1.5  
5.5  
V
V
R
R
= 35Ω  
1.5  
1.2  
LOAD  
Startup Voltage  
= , V = 1.35V  
1.55  
10  
LOAD  
FB  
Quiescent Current from OUT  
(Main Only)  
V
V
= V  
= 1.35V,  
FB  
FBLCD  
= 0  
5
µA  
ONLCD  
Quiescent Current from OUT  
Shutdown Quiescent Current  
MAIN OUTPUT  
V
V
= V  
= 1.35V  
15  
30  
1
µA  
µA  
FB  
FBLCD  
= V  
= 0  
ONLCD  
0.1  
ON  
V
V
V
rising, V = 1.35V  
2.2  
2.15  
3.3  
2.4  
OUT  
OUT  
FB  
OUT Undervoltage Lockout  
V
V
V
falling, V = 1.35V  
1.95  
3.14  
FB  
Fixed-Mode Output Voltage  
45mV  
3.47  
1.30  
FB  
Adjustable-Mode FB Regulation  
Voltage  
1.20  
1.25  
FB Input Bias Current  
V
= 1.35V  
50  
nA  
FB  
FB Dual ModeTM Threshold  
45  
2.5  
2.4  
0
75  
105  
mV  
Output Voltage Adjustment  
Range  
5.5  
7.5  
40  
V
Maximum LX On-Time  
V
V
= 0.5V  
5
µs  
FB  
Zero Crossing Comparator  
20  
mV  
Threshold (V - V  
)
LX  
OUT  
Zero Crossing Comparator  
Backup Timer  
= +0.5V  
22  
45  
1.6  
1.6  
70  
µs  
%
%
FB  
I
= 100mA,  
= +2V to +3V  
OUT  
Line Regulation  
Load Regulation  
V
IN  
V
= +2.5V,  
= 10mA to 100mA  
IN  
I
LOAD  
LX On-Resistance  
LX Current Limit  
V
= 3.3V, I = 100mA  
0.35  
0.75  
0.65  
1.05  
OUT  
LX  
0.5  
A
Dual Mode is a trademark of Maxim Integrated Products.  
_______________________________________________________________________________________  
2
Compact, High-Efficiency, Dual-Output  
Step-Up DC-DC Converter  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= V  
= V = +3.3V, FB = GND, T = 0°C to +85°C, unless otherwise noted. Typical values are at T = +25°C.)  
OUT A A  
ON  
ONLCD  
PARAMETER  
CONDITIONS  
= GND, V = 5.5V  
MIN  
TYP  
MAX  
1
UNITS  
µA  
LX Leakage Current  
ON Input Low Voltage  
ON Input High Voltage  
ON Input Bias Current  
LCD OUTPUT  
V
0.1  
ON  
LX  
1.8V < V  
1.8V < V  
< 5.5V, V = 0.5V  
400  
mV  
V
OUT  
OUT  
FB  
< 5.5V, V = 0.5V  
1.6  
FB  
1
µA  
LXLCD Voltage  
28  
2.0  
0.7  
1
V
LXLCD On-Resistance  
LXLCD Current Limit  
LXLCD Leakage Current  
FBLCD Regulation Voltage  
FBLCD Input Bias Current  
LCD Line Regulation  
LCD Load Regulation  
Maximum LXLCD On-Time  
V
V
V
= 3.3V, I  
= 100mA  
1.1  
0.5  
OUT  
LXLCD  
0.28  
1.20  
A
= 28V, V  
= 0  
ONLCD  
0.1  
µA  
V
LXLCD  
FBLCD  
1.25  
1.30  
50  
= 1.35V  
= 5mA, V = +2V to +3V  
nA  
%
%
µs  
I
I
0.1  
0.5  
9
LOAD  
LOAD  
IN  
= 1mA to 5mA, V = +2.5V  
IN  
4
14  
1.5  
7.5  
400  
V
V
1.2V  
0.7V  
0.5  
2.4  
1
FBLCD  
FBLCD  
Minimum LXLCD Off-Time  
µs  
5
ONLCD Input Low Voltage  
ONLCD Input High Voltage  
ONLCD Input Bias Current  
2.5V < V  
2.5V < V  
< 5.5V  
mV  
V
OUT  
OUT  
< 5.5V  
1.6  
1
µA  
ELECTRICAL CHARACTERISTICS  
(V  
= V  
= V = +3.3V, FB = GND, T = -40°C to +85°C, unless otherwise noted.) (Note 1)  
OUT A  
ON  
ONLCD  
PARAMETER  
CONDITIONS  
MIN  
MAX  
UNITS  
GENERAL  
Input Voltage Range  
Startup Voltage  
1.5  
5.5  
1.7  
V
V
R
= , V = 1.35V  
FB  
LOAD  
Quiescent Current from OUT  
(Main Only)  
V
= V  
= 1.35V, V = 0  
ONLCD  
10  
µA  
FB  
FBLCD  
Quiescent Current from OUT  
Shutdown Quiescent Current  
MAIN OUTPUT  
V
V
= V  
= 1.35V  
30  
1
µA  
µA  
FB  
FBLCD  
= V  
= 0  
ONLCD  
ON  
V
V
V
rising, V = 1.35V  
2.4  
OUT  
OUT  
FB  
OUT Undervoltage Lockout  
V
V
falling, V = 1.35V  
1.95  
3.14  
FB  
Fixed-Mode Output Voltage  
45mV  
3.47  
1.30  
50  
FB  
Adjustable-Mode FB Regulation  
Voltage  
1.20  
V
FB Input Bias Current  
V
= 1.35V  
nA  
FB  
_______________________________________________________________________________________  
3
Compact, High-Efficiency, Dual-Output  
Step-Up DC-DC Converter  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= V  
= V = +3.3V, FB = GND, T = -40°C to +85°C, unless otherwise noted.) (Note 1)  
OUT A  
ON  
ONLCD  
PARAMETER  
CONDITIONS  
MIN  
45  
MAX  
105  
5.5  
UNITS  
mV  
V
FB Dual Mode Threshold  
Output Voltage Adjustment Range  
Maximum LX On-Time  
2.5  
2.4  
V
= 0.5V  
= 0.5V  
7.5  
µs  
FB  
Zero Crossing Comparator  
0
40  
70  
mV  
µs  
Threshold (V - V  
)
LX  
OUT  
Zero Crossing Comparator  
Backup Timer  
V
V
22  
FB  
LX On-Resistance  
= 3.3V, I = 100mA  
0.65  
1.05  
1
A
OUT  
LX  
LX Current Limit  
0.42  
1.6  
LX Leakage Current  
ON Input Low Voltage  
ON Input High Voltage  
ON Input Bias Current  
LCD OUTPUT  
V
= GND, V = 5.5V  
µA  
mV  
V
ON  
LX  
1.8V < V  
1.8V < V  
< 5.5V, V = 0.5V  
400  
OUT  
OUT  
FB  
< 5.5V, V = 0.5V  
FB  
1
µA  
LXLCD Voltage  
28  
2
V
LXLCD On-Resistance  
LXLCD Current Limit  
LXLCD Leakage Current  
FBLCD Regulation Voltage  
FBLCD Input Bias Current  
Maximum LXLCD On-Time  
V
V
V
= 3.3V, I  
= 100mA  
OUT  
LXLCD  
0.25  
1.20  
0.7  
1
A
= 28V, V  
= 0  
ONLCD  
µA  
V
LXLCD  
FBLCD  
1.30  
70  
= 1.35V  
nA  
µs  
4
14  
V
V
1.2V  
0.7V  
0.5  
2.2  
1.5  
7.5  
400  
FBLCD  
FBLCD  
Minimum LXLCD Off-Time  
µs  
ONLCD Input Low Voltage  
ONLCD Input High Voltage  
ONLCD Input Bias Current  
2.5V < V  
2.5V < V  
< 5.5V  
mV  
V
OUT  
OUT  
< 5.5V  
1.6  
1
µA  
Note 1: Specifications to -40°C are guaranteed by design and not production tested.  
4
_______________________________________________________________________________________  
Compact, High-Efficiency, Dual-Output  
Step-Up DC-DC Converter  
Typical Operating Characteristics  
(Circuit of Figure 3, T = +25°C, unless otherwise noted.)  
A
LCD OUTPUT EFFICIENCY  
vs. LOAD CURRENT  
MAIN OUTPUT EFFICIENCY  
vs. LOAD CURRENT  
STARTUP VOLTAGE vs. LOAD CURRENT  
160  
140  
120  
100  
80  
75  
95  
90  
85  
80  
75  
70  
RESISTIVE LOAD  
LCD OFF  
A
70  
65  
60  
55  
50  
45  
40  
35  
B
A: V = 3.3V,  
B: V = 2.4V,  
IN  
OUT  
C
IN  
OUT  
V
= 5V  
V
= 5V  
D
E
F
A: V = +2.4V, V  
IN  
= 12V  
= 18V  
= 24V  
= 12V  
= 18V  
= 24V  
IN  
LCD  
LCD  
LCD  
LCD  
B: V = +2.4V, V  
C: V = +2.4V, V  
IN  
D: V = +1.8V, V  
IN  
60  
D: V = 1.8V,  
OUT  
IN  
= 5V  
C: V = 2.4V,  
OUT  
E: V = +1.8V, V  
IN  
IN  
= 3.3V  
IN  
LCD  
LCD  
V
V
F: V = +1.8V, V  
40  
E: V = 1.8V,  
IN  
V
= 3.3V  
20  
OUT  
V
= 3.3V,  
30  
25  
OUT  
NO LOAD  
CIRCUIT OF FIGURE 2  
0
0.01  
0.1  
1
10  
100  
1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7  
STARTUP VOLTAGE (V)  
0.1  
1
10  
100 1000  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
NO-LOAD SUPPLY CURRENT  
vs. INPUT VOLTAGE  
NO-LOAD SUPPLY CURRENT  
vs. INPUT VOLTAGE (LCD OFF)  
450  
400  
350  
300  
250  
200  
150  
100  
50  
18  
16  
14  
12  
10  
8
V
OUT  
= 3.3V  
V
= 18V, NO LOAD  
LCD  
R1 = 1M, R2 = 75kΩ  
6
4
2
0
0
0
1
2
3
4
5
6
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
LCD CONVERTER  
SWITCHING WAVEFORM  
MAIN CONVERTER  
SWITCHING WAVEFORM  
MAX1817-07  
MAX1817-06  
A
A
0
0
B
B
C
C
0
0
4µs/div  
10µs/div  
A: I  
, 500mA/div  
A: I , 500mA/div  
LX  
OUT  
C: V , 5V/div  
LX  
LXLCD  
B: V , 100mV/div, AC-COUPLED  
LCD  
B: V , 50mV/div, AC-COUPLED  
C: V  
, 10V/div  
LXLCD  
V
V
= 2.4V, V  
LCD  
= 3.3V, I  
LOAD,LCD  
= 0,  
V
IN  
= 2.4V, V  
= 3.3V, I  
= 50mA, V  
= 0  
ONLCD  
IN  
OUT  
= 18V, I  
LOAD,OUT  
= 5mA  
OUT  
LOAD,OUT  
_______________________________________________________________________________________  
5
Compact, High-Efficiency, Dual-Output  
Step-Up DC-DC Converter  
Typical Operating Characteristics (continued)  
(Circuit of Figure 3, T = +25°C, unless otherwise specified)  
A
MAIN LOAD TRANSIENT RESPONSE  
LCD LOAD TRANSIENT RESPONSE  
MAX1817-08  
MAX1817-09  
A
A
B
B
0
0
400µs/div  
200µs/div  
A: V , 100mV/div, AC-COUPLED  
A: V , 50mV/div, AC-COUPLED  
OUT  
LCD  
B: I  
, 50mA/div  
B: I  
, 10mA/div  
LOAD, OUT  
= 2.4V, V  
LOAD, OUT  
= 2.4V, V  
V
IN  
= 3.3V  
OUT  
V
IN  
= 3.3V (NO LOAD), V  
= 18V  
LCD  
OUT  
MAIN LINE TRANSIENT RESPONSE  
LCD LINE TRANSIENT RESPONSE  
MAX1817-10  
MAX1817-11  
A
B
A
B
2.4V  
1.8V  
2.4V  
1.8V  
400µs/div  
100mV/div, AC-COUPLED  
200µs/div  
A: V , 100mV/div, AC-COUPLED  
A: V  
IN,  
OUT,  
B: V 1V/div  
LCD  
B: V 1V/div  
IN,  
V
OUT  
= 3.3V (NO LOAD), V  
= 18V, I  
= 2mA  
V
OUT  
= 3.3V, I  
= 20mA, V = 0  
ONLCD  
LCD  
LOAD,LCD  
LOAD,MAIN  
MAIN OUTPUT TURN-ON/TURN-OFF  
RESPONSE  
LCD OUTPUT TURN-ON/TURN-OFF  
RESPONSE  
MAX1817-12  
MAX1817-13  
A
A
0
0
B
B
0
0
0
0
C
C
100µs/div  
400µs/div  
A: V , 2V/div  
IN  
C: V , 5V/div  
ON  
A: V , 10V/div  
LCD  
OUT  
B: I , 500mA/div  
B: I , 200mA/div  
IN  
C: V  
, 5V/div  
ONLCD  
V
IN  
= 2.4V, R  
= 165, V  
= 0  
V
IN  
= 2.4V, V  
= 3.3V (NO LOAD), R  
= 9kΩ  
LOAD,LCD  
LOAD,MAIN  
ONLCD  
OUT  
6
_______________________________________________________________________________________  
Compact, High-Efficiency, Dual-Output  
Step-Up DC-DC Converter  
Pin Description  
PIN  
NAME  
FUNCTION  
Main Output Feedback Input. Connect FB to GND for fixed 3.3V main output. For other output  
voltages, use a resistive voltage-divider to set the output voltage. The feedback regulation voltage  
is 1.25V at FB.  
1
FB  
Main Step-Up Converter On/Off Control. Connect ON to OUT for automatic startup. Connect ON to  
GND to put the IC into shutdown mode.  
2
3
4
ON  
LCD Output On/Off Control. Connect ONLCD to OUT to enable the LCD output. Connect ONLCD  
to GND to disable the LCD output. The main output must be 2.4V to enable the LCD output.  
ONLCD  
FBLCD  
LCD Output Feedback Input. Use a resistive voltage-divider from the LCD output to FBLCD to set  
the voltage. The feedback regulation voltage is 1.25V at FBLCD.  
5
6
AGND  
N.C.  
Analog Ground. Connect AGND to GND as close to the IC as possible.  
No Connection. Not internally connected.  
LCD Output Switching Node. Drain of the internal N-channel MOSFET that drives the LCD output.  
Connect an external inductor and rectifier to LXLCD.  
7
8
9
LXLCD  
GND  
LX  
Power Ground. Connect GND to AGND as close to the IC as possible.  
Main Output Switching Node. Drain of the internal N-channel MOSFET that drives the main output.  
Connect an external inductor and rectifier to LX.  
Main Step-Up Converter Output. OUT is used to measure the output voltage in fixed mode (FB =  
GND) and is the internal bias supply input to the IC. When shut down (ON = ONLCD = GND), OUT  
is high impedance, drawing 1µA (max).  
10  
OUT  
biasing the internal control circuitry. The MAX1817  
________________Detailed Description  
switches only as often as is required to supply sufficient  
power to the load. This allows the converter to operate  
at lower frequencies at light loads, improving efficiency.  
The MAX1817 dual step-up converter is designed to  
supply the main power and LCD bias for low-power,  
hand-held devices. The MAX1817s main step-up con-  
verter includes a 0.35N-channel power MOSFET  
switch and provides a fixed 3.3V or adjustable 2.5V to  
5.5V output at up to 125mA from an input as low as  
1.5V. The MAX1817s LCD bias step-up converter  
includes a high-voltage 1.1power MOSFET switch to  
support as much as 5mA at 28V (Figure 1). During  
startup, the MAX1817 extends the LCD MOSFET switch  
minimum off-time, limiting surge current. Both convert-  
ers require an inductor and external rectifier.  
The control scheme maintains regulation when the error  
amplifier senses the output voltage is below the feed-  
back threshold, turning on the internal N-channel MOS-  
FET and initiating an on-time. The on-time is terminated  
when the 0.75A current limit is reached or when the  
maximum on-time is reached. The N-channel MOSFET  
remains off until the inductor current drops to 0, forcing  
discontinuous inductor current. At the end of a cycle,  
the error comparator waits for the voltage at FB to drop  
below the regulation threshold, at which time another  
cycle is initiated.  
The MAX1817 runs in bootstrap mode, powering the IC  
from the main step-up converters output. Independent  
logic-controlled shutdown for the main and LCD step-  
up converters reduces quiescent current to 0.1µA.  
The main step-up converter uses a startup oscillator to  
allow it to start from an input voltage as low as +1.2V.  
This is necessary since the control circuitry is powered  
from the step-up converter output (OUT). When the  
voltage at OUT is below the OUT undervoltage lockout,  
a fixed 50% duty cycle drives the internal N-channel  
MOSFET, forcing the main output voltage to rise. Once  
Main Step-Up Converter  
The MAX1817 main step-up converter runs from a  
+1.5V to +5.5V input voltage and produces a fixed 3.3V  
or adjustable 2.5V to 5.5V output voltage as well as  
_______________________________________________________________________________________  
7
Compact, High-Efficiency, Dual-Output  
Step-Up DC-DC Converter  
V
IN  
DUAL-MODE FEEDBACK  
OUT  
LX  
ZERO-  
CROSSING  
DETECTOR  
MAIN  
ERROR  
COMPARATOR  
MAIN  
CONTROL  
LOGIC  
MAIN  
FB  
1.25V  
AGND  
75mV  
STARTUP  
CURRENT  
LIMIT  
MAIN  
SHUTDOWN  
LOGIC  
ON  
ON  
ON  
GND  
OFF  
OFF  
MAIN  
LCD  
LXLCD  
UNDERVOLTAGE  
LOCKOUT  
SHUTDOWN  
LOGIC  
LCD  
CONTROL  
LOGIC  
LCD  
ONLCD  
BIAS  
LCD  
ERROR  
COMPARATOR  
LCD  
1.25V  
AGND  
CURRENT  
LIMIT  
LCD  
MAX1817  
GND  
FBLCD  
AGND  
GND  
Figure 1. MAX1817 Simplified Functional Diagram  
the output voltage rises above the undervoltage thresh-  
old, the control circuitry is enabled, allowing proper  
regulation of the output voltage.  
During startup, the MAX1817 extends the minimum off-  
time to 5µs for V voltages <0.9V, limiting initial  
surge current. The LCD step-up converter features an  
independent shutdown control, ONLCD.  
FBLCD  
LCD Step-Up Converter  
The MAX1817s LCD step-up converter generates an  
LCD bias voltage up to 28V by use of a 500mA, 1.1Ω  
internal N-channel switching MOSFET (Figure 1). The  
LCD step-up converter control circuitry is powered from  
the main step-up converter output (OUT), so the voltage  
at OUT must be above the OUT undervoltage lockout  
voltage for the LCD step-up converter to operate.  
The LCD step-up converter features a minimum-off-  
time, current-limited control scheme. A pair of one-  
shots that set a minimum off-time and a maximum on-  
time governs the duty cycle. The switching frequency  
can be up to 500kHz and depends upon the load, and  
input and output voltages.  
8
_______________________________________________________________________________________  
Compact, High-Efficiency, Dual-Output  
Step-Up DC-DC Converter  
C1  
10µF  
C1  
10µF  
V
IN  
V
IN  
L1  
10µH  
L1  
10µH  
L2  
10µH  
L2  
10µH  
D1  
D1  
D2  
D2  
18V  
LCD  
C2  
1µF  
LCD 18V  
C2  
1µF  
LXLCD  
LX  
4.7pF  
C4  
R1  
1M  
LXLCD  
LX  
4.7pF  
C4  
R1  
1M  
ON  
LCD  
ON  
LCD  
OFF  
OFF  
OFF  
OFF  
ONLCD  
FBLCD  
OUT  
ONLCD  
FBLCD  
OUT  
ON  
R2 75k  
MAIN 5V  
ON  
R2 75k  
MAIN 3.3V  
MAX1817  
ON  
MAIN  
MAX1817  
ON  
C3  
22µF  
MAIN  
R3  
C3  
22µF  
300k  
FB  
FB  
AGND  
GND  
R4  
100k  
AGND  
GND  
Figure 2. Setting Main Output Voltage Using External Resistors  
Figure 3. Typical Application Circuit  
Low-Voltage Startup  
The MAX1817s internal circuitry is powered from OUT.  
The main step-up converter has a low-voltage startup  
circuit to control main DC-DC converter operation until  
___________________Design Procedure  
Setting the Main Output Voltage  
The main step-up converter feedback input (FB) fea-  
tures Dual Mode operation. With FB grounded, the  
main output voltage is preset to 3.3V. It can also be  
adjusted from 2.5V to 5.5V with external resistors R3  
and R4 as shown in Figure 2. To set the output voltage  
externally, select resistor R4 from 10kto 100k.  
Calculate R3 using:  
V
exceeds the 2.2V (typ) undervoltage lockout  
OUT  
threshold. The minimum startup voltage is a function of  
load current (see Typical Operating Characteristics).  
The MAX1817 main converter typically starts up into a  
35load with input voltages down to +1.5V, allowing  
startup with two alkaline cells even in deep discharge.  
R3 = R4 [(V  
/ V ) 1]  
OUT  
FB  
Shutdown: ON and ONLCD  
The MAX1817 features independent shutdown control  
of the main and LCD step-up converters. With both  
converters shut down, supply current is reduced to  
0.1µA. A logic low at ON shuts down the main step-up  
converter, and LX enters a high-impedance state.  
However, the main output remains connected to the  
input through the inductor and output rectifier, holding  
where V = 1.25V, and V  
FB  
can range from 2.5V to  
OUT  
5.5V.  
Setting the LCD Output Voltage  
Set the LCD output voltage with two external resistors  
R1 and R2 as shown in Figure 3. Since the input leak-  
age current at FBLCD has a maximum of 50nA, large  
resistors can be used without significant accuracy loss.  
Begin by selecting R2 in the 10kto 100krange, and  
calculate R1 using the following equation:  
V
to one diode drop below the input voltage when  
OUT  
the main converter is shut down. If the input voltage is  
sufficiently high to drive V  
above the undervoltage  
OUT  
R1 = R2 [(V  
/ V  
) 1]  
LCD  
FBLCD  
lockout voltage, the LCD step-up converter operates.  
where V  
to 28V.  
= 1.25V, and V  
can range from V  
FBLCD  
LCD  
IN  
A logic low at ONLCD shuts down the LCD step-up  
converter, and LXLCD enters a high-impedance state.  
The LCD output remains connected to the input  
through the inductor and output rectifier, holding it to  
one diode drop below the input.  
_______________________________________________________________________________________  
9
Compact, High-Efficiency, Dual-Output  
Step-Up DC-DC Converter  
shown in Figure 3 are recommended for most applica-  
C6  
0.1µF  
R3  
1
tions, although values between 4.7µH and 47µH are  
suitable. Smaller inductance values typically offer a  
smaller physical size for a given series resistance,  
allowing the smallest overall circuit dimensions. Larger  
inductance values exhibit higher output current capa-  
bility, but larger physical dimensions.  
-19V  
LCD  
D3*  
L1,10µH  
V
C5  
1µF  
C1  
10µF  
V
IN  
D4*  
L2  
10µH  
Circuits using larger inductance values may start up at  
lower input voltages and exhibit less ripple, but they  
may provide reduced output power. This occurs when  
the inductance is sufficiently large to prevent the maxi-  
mum current limit from being reached before the maxi-  
mum on-time expires. The inductors saturation current  
rating should be greater than the peak switching cur-  
rent. However, it is generally acceptable to bias most  
inductors into saturation by as much as 20%, although  
this may slightly reduce efficiency.  
D2  
LX  
D1**  
R1  
LXLCD  
C4  
C2  
0.1µF  
240k  
10pF  
MAX1817  
ONLCD  
FBLCD  
R2  
16.5k  
ON  
OUT  
FB  
MAIN  
C3  
22µF  
For best efficiency, select inductors with resistance no  
greater than the internal N-channel FET resistance in  
each step-up converter.  
AGND  
GND  
*D3, D4 = CENTRAL SEMICONDUCTOR  
CMPD7000 DUAL  
**D1 = CENTRAL SEMICONDUCTOR  
CMSD4448 (1N4148)  
For maximum output current, choose L such that:  
L < [(V  
t
) / I  
]
IN  
ON  
PEAK  
where t  
is the maximum switch on-time (5µs for main  
Figure 4. Negative Voltage for LCD Bias  
ON  
step-up converter) or 9µs for LCD step-up converter)  
and I is the switch peak current limit (0.75A for the  
main step-up converter, or 0.5A for the LCD step-up  
converter). With this inductor value, the maximum output  
current the main converter is able to deliver is given by:  
PEAK  
Using a Charge Pump to Make Negative  
LCD Output Voltage  
The MAX1817 can generate a negative LCD output by  
adding a diode-capacitor charge-pump circuit (D3, D4,  
and C6) to the LXLCD pin as shown in Figure 4. FBLCD  
is driven through a resistive voltage-divider from the  
positive output, which is not loaded, allowing a very  
small capacitor value at C2. For best stability and low-  
est ripple, the time constant of the R1 + R2 series com-  
bination and C2 should be near that of C5 and the  
effective load resistance. Output load regulation of the  
negative output degrades compared to the standard  
positive output circuit and may rise at very light loads. If  
this is not acceptable, reduce the resistance of R1 and  
R2, while maintaining their ratio, to effectively preload  
the output with a few hundred µA. This is why the R1  
and R2 values shown in Figure 4 are lower than typical  
values for a positive-output design. When loaded, the  
magnitude of the negative output voltage is slightly  
lower (closer to ground by approximately a diode for-  
ward voltage) than the voltage on C2.  
I
= 0.5  
I
/ (1 + t  
/ t  
)
OUT(MAX)  
PEAK  
ON OFF  
where t  
/ t  
= (V  
+ V - V ) / (V - V ), V  
ON OFF  
OUT D IN IN ON IN  
and V  
are the input and output voltages, V is the  
OUT  
D
Schottky diode drop (0.3V typ), and V  
= I  
ON  
PEAK  
R , where R  
ON  
is the switch on-resistance.  
ON  
For V = 1.5V and V  
IN  
= 3.3V, with a minimum I  
OUT  
PEAK  
(0.65) =  
value of 0.5A, and V  
given by (0.5)  
ON(MAX)  
0.325V, the available output current that the converter  
can provide is at least 90mA.  
For larger inductor values, I  
is determined by:  
PEAK  
I
= [(V  
t ) / L]  
ON  
PEAK  
IN  
External Rectifiers  
The high maximum switching frequency of the  
MAX1817 requires a high-speed rectifier. Schottky  
diodes such as the Motorola MBR0530 or the Nihon  
EP05Q03L are recommended. To maintain high effi-  
ciency, the average current rating of the Schottky diode  
should be greater than the peak switching current. A  
junction diode such as the Central Semiconductor  
CMPD4448 can be used for the LCD output with little  
Applications Information  
Inductor Selection  
The MAX1817s high switching frequency allows the  
use of small surface-mount inductors. The 10µH values  
10 ______________________________________________________________________________________  
Compact, High-Efficiency, Dual-Output  
Step-Up DC-DC Converter  
loss in efficiency. Choose a reverse breakdown voltage  
greater than the output voltage.  
(main converter) from 2.5V to 5.5V may require a larger  
value LCD feed-forward capacitor to prevent multipuls-  
ing of the LCD converter. Larger feed-forward capaci-  
tors slightly degrade load regulation, so choose the  
smallest value capacitor that provides stability.  
Input Bypass Capacitor  
The input supplies high currents to the inductors and  
requires local bulk bypassing close to the inductors. A  
low equivalent series resistance (ESR) input capacitor  
connected in parallel with the battery will reduce peak  
battery currents and input-reflected noise. Battery  
bypassing is especially helpful at low input voltages  
and with high-impedance batteries (such as alkaline  
types). Benefits include improved efficiency and lower  
useful end-of-life voltage for the battery. A single 10µF  
low-ESR surface-mount capacitor is sufficient for most  
applications.  
Layout Considerations  
The MAX1817s high-frequency operation makes PC  
board layout important for optimal performance. Use  
separate analog and power ground planes. Connect  
the two planes together at a single point as close as  
possible to the IC. Use surface-mount components  
where possible. If leaded components are used, mini-  
mize lead lengths to reduce stray capacitance and  
keep the components close to the IC to minimize trace  
resistance. Where an external voltage-divider is used to  
set output voltage, the traces from FB or FBLCD to the  
feedback resistors should be extremely short (less than  
0.2in or 5mm) to minimize coupling from LX and  
LXLCD. Refer to the MAX1817 evaluation kit for a full  
PC board example.  
Output Bypass Capacitors  
For most applications, use a small surface-mount 22µF  
or greater ceramic capacitor on the main converter out-  
put, and a 1µF or greater ceramic capacitor on the LCD  
output. For small ceramic capacitors, the output ripple  
voltage is dominated by the capacitance value. If tanta-  
lum or electrolytic capacitors are used, the ESR of the  
capacitors dominates the output ripple voltage.  
Decreasing the ESR reduces the output ripple voltage  
and the peak-to-peak transient voltage.  
____________________Chip Information  
TRANSISTOR COUNT: 2785  
PROCESS: BiCMOS  
LCD Compensation  
The MAX1817s LCD step-up converter feedback  
requires a small 4.7pF feed-forward capacitor for the  
typical application circuit. Circuits with adjustable V  
OUT  
______________________________________________________________________________________ 11  
Compact, High-Efficiency, Dual-Output  
Step-Up DC-DC Converter  
Package Information  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
12 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
© 2000 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY