MAX1837EUT50-T [MAXIM]

24V Internal Switch, 100% Duty Cycle, Step-Down Converters; 24V内部开关, 100 %占空比,降压型转换器
MAX1837EUT50-T
型号: MAX1837EUT50-T
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

24V Internal Switch, 100% Duty Cycle, Step-Down Converters
24V内部开关, 100 %占空比,降压型转换器

转换器 开关
文件: 总13页 (文件大小:394K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-1919; Rev 1; 01/02  
24V Internal Switch, 100% Duty Cycle,  
Step-Down Converters  
General Description  
____________________________Features  
4.5V to 24V Input Voltage Range  
Preset 3.3V or 5V Output  
The MAX1836/MAX1837 high-efficiency step-down  
converters provide a preset 3.3V or 5V output voltage  
from supply voltages as high as 24V. Using external  
feedback resistors, the output voltage may be adjusted  
Adjustable Output from 1.25V to V  
IN  
from 1.25V to V . An internal current-limited switching  
IN  
MOSFET delivers load currents up to 125mA  
(MAX1836) or 250mA (MAX1837).  
Output Currents Up to 125mA (MAX1836) or  
250mA (MAX1837)  
The unique current-limited control scheme, operating  
with duty cycles up to 100%, minimizes the dropout  
voltage (120mV at 100mA). Additionally, this control  
scheme reduces supply current under light loads to  
12µA. High switching frequencies allow the use of tiny  
surface-mount inductors and output capacitors.  
Internal P-Channel MOSFET  
Efficiency Over 90%  
12µA Quiescent Current  
3µA Shutdown Current  
100% Maximum Duty Cycle for Low Dropout  
Current-Limiting and Overtemperature Protection  
Small 6-Pin SOT23 Package  
The MAX1836/MAX1837 step-down converters with  
internal switching MOSFETs are available in a 6-pin  
SOT23 package, making them ideal for low-cost, low-  
power, space-sensitive applications. For increased out-  
put drive capability, use the MAX1776 step-down  
converter that uses an internal 24V switch to deliver up  
to 500mA. For even higher currents, use the MAX1626/  
MAX1627 step-down controllers that drive an external  
P-channel MOSFET to deliver up to 20W.  
Ordering Information  
TOP  
MARK  
PIN-  
PACKAGE  
PART  
TEMP RANGE  
6 SOT23-6  
6 SOT23-6  
6 SOT23-6  
6 SOT23-6  
MAX1836EUT50-T -40°C to +85°C  
MAX1836EUT33-T -40°C to +85°C  
MAX1837EUT50-T -40°C to +85°C  
MAX1837EUT33-T -40°C to +85°C  
AANW  
AANY  
AANX  
AANZ  
________________________Applications  
9V Battery Systems  
Note: The MAX1836/MAX1837 require special solder tempera-  
ture profile described in the Absolute Maximum Ratings.  
Notebook Computers  
Distributed Power Systems  
Backup Supplies  
Selector Guide  
4mA to 20mA Loop Power Supplies  
Industrial Control Supplies  
Hand-Held Devices  
PRESET OUTPUT  
VOLTAGE (V)  
LOAD  
CURRENT (mA)  
PART  
MAX1836EUT50  
MAX1836EUT33  
MAX1837EUT50  
MAX1837EUT33  
5
125  
125  
250  
250  
3.3  
5
Typical Operating Circuit  
3.3  
OUTPUT  
3.3V OR 5V  
INPUT  
4.5V TO 24V  
Pin Configuration  
IN  
LX  
TOP VIEW  
SHDN  
FB  
GND  
IN  
1
2
3
6
5
4
OUT  
SHDN  
LX  
OUT  
MAX1836  
MAX1837  
MAX1836  
MAX1837  
GND  
FB  
NOTE: HIGH-CURRENT PATHS SHOWN WITH BOLD LINES.  
SOT23  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
24V Internal Switch, 100% Duty Cycle,  
Step-Down Converters  
ABSOLUTE MAXIMUM RATINGS  
IN, SHDN to GND...................................................-0.3V to +25V  
Operating Temperature Range ...........................-40°C to +85°C  
Junction Temperature......................................................+150°C  
Storage Temperature Range.............................-65°C to +150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
LX to GND.......................................................-2V to (V + 0.3V)  
OUT, FB to GND.......................................................-0.3V to +6V  
IN  
Continuous Power Dissipation (T = +70°C) (Note 1)  
A
6-Pin SOT23 (derate 8.7mW/°C above +70°C)............696mW  
2
Note 1: Thermal properties are specified with product mounted on PC board with 1in of copper area and still air.  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(Circuits of Figures 1 (MAX1836) and 2 (MAX1837), V = 12V, SHDN = IN, T = 0°C to +85°C. Typical values are at T = +25°C,  
IN  
A
A
unless otherwise noted.)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
4.5  
TYP  
MAX  
24  
UNITS  
Input Supply Range  
V
V
IN  
V
V
rising  
falling  
3.55  
3.45  
4.0  
3.9  
12  
18  
3
4.4  
4.3  
25  
IN  
IN  
Input Undervoltage Lockout  
Threshold  
V
V
UVLO  
Input Supply Current  
I
µA  
µA  
µA  
IN  
Input Supply Current in Dropout  
Input Shutdown Current  
I
V
= 5V  
IN(DROP)  
IN  
SHDN = GND  
7
FB = GND,  
MAX183_EUT50  
MAX183_EUT33  
4.80  
3.168  
1.25  
5.00  
3.30  
5.20  
I
= 0 to 125mA  
LOAD  
Output Voltage (Preset Mode)  
V
V
V
OUT  
OUT  
(MAX1836) or  
250mA (MAX1837)  
3.432  
Output Voltage Range  
(Adjustable Mode)  
(Note 2)  
V
V
V
IN  
Feedback Set Voltage  
(Adjustable Mode)  
V
1.200  
1.25  
2.5  
1.300  
FB  
OUT Bias Current  
V
V
V
= 5V  
7.4  
+25  
150  
0.6  
13  
µA  
nA  
mV  
µs  
µs  
OUT  
FB Bias Current  
I
= 0 or 1.25V, T = +25°C  
-25  
50  
0.2  
7
FB  
FB  
FB  
A
FB Dual ModeTM Threshold  
LX Switch Minimum Off-Time  
LX Switch Maximum On-Time  
LX Switch On-Resistance  
rising or falling  
100  
0.4  
10  
t
OFF(MIN)  
t
V
V
= 1.3V  
= 6V  
ON(MAX)  
FB  
IN  
R
1.1  
312  
625  
2
LX  
MAX1836  
MAX1837  
250  
500  
-75  
450  
850  
+75  
LX Current Limit  
I
mA  
mV  
LIM  
LX Zero-Crossing Threshold  
Dual Mode is a trademark of Maxim Integrated Products, Inc.  
_______________________________________________________________________________________  
2
24V Internal Switch, 100% Duty Cycle,  
Step-Down Converters  
ELECTRICAL CHARACTERISTICS (continued)  
(Circuits of Figures 1 (MAX1836) and 2 (MAX1837), V = 12V, SHDN = IN, T = 0°C to +85°C. Typical values are at T = +25°C,  
IN  
A
A
unless otherwise noted.)  
PARAMETER  
Zero-Crossing Timeout  
LX Switch Leakage Current  
Dropout Voltage  
SYMBOL  
CONDITIONS  
LX does not rise above the threshold  
MIN  
TYP  
MAX  
UNITS  
µs  
30  
V
= 18V, LX = GND, T = +25°C  
1
µA  
IN  
A
V
I
= 100mA, V = 5V  
IN  
120  
mV  
%
DROPOUT  
OUT  
Line Regulation  
V
= 5V to 24V  
0.05  
IN  
I
= 0 to 125mA (MAX1836) or 250mA  
OUT  
Load Regulation  
0.3  
%
(MAX1837)  
Shutdown Input Threshold  
Shutdown Leakage Current  
Thermal Shutdown  
V
V
V
= 4.5V to 24V (Note 3)  
0.8  
-1  
2.4  
+1  
V
SHDN  
IN  
I
= 0 or 24V  
µA  
°C  
SHDN  
SHDN  
10°C hysteresis (typ)  
160  
ELECTRICAL CHARACTERISTICS  
(Circuits of Figures 1 (MAX1836) and 2 (MAX1837), V = 12V, SHDN = IN, T = -40°C to +85°C, unless otherwise noted.) (Note 4)  
IN  
A
PARAMETER  
Input Supply Range  
SYMBOL  
CONDITIONS  
MIN  
4.5  
TYP  
MAX  
24  
UNITS  
V
V
IN  
V
V
rising  
falling  
3.55  
3.45  
4.4  
4.3  
25  
IN  
IN  
Input Undervoltage Lockout  
Threshold  
V
V
UVLO  
Input Supply Current  
I
µA  
µA  
IN  
Input Shutdown Current  
SHDN = GND  
7
FB = GND,  
MAX183_EUT50  
4.80  
3.168  
1.25  
5.20  
I
= 0 to 125mA  
LOAD  
Output Voltage (Preset Mode)  
V
V
OUT  
OUT  
(MAX1836) or  
250mA (MAX1837)  
MAX183_EUT33  
3.432  
Output Voltage Range  
(Adjustable Mode)  
V
(Note 2)  
V
V
V
IN  
Feedback Set Voltage  
(Adjustable Mode)  
V
1.200  
1.300  
FB  
OUT Bias Current  
V
V
= 5V  
7.4  
150  
0.6  
13  
µA  
mV  
µs  
µs  
OUT  
FB Dual Mode Threshold  
LX Switch Minimum Off-Time  
LX Switch Maximum On-Time  
LX Switch On-Resistance  
rising or falling  
50  
0.2  
7
FB  
t
OFF(MIN)  
t
V
V
= 1.3V  
= 6V  
ON(MAX)  
FB  
IN  
R
LX  
2
MAX1836  
MAX1837  
250  
500  
450  
900  
LX Current Limit  
I
mA  
LIM  
_______________________________________________________________________________________  
3
24V Internal Switch, 100% Duty Cycle,  
Step-Down Converters  
ELECTRICAL CHARACTERISTICS (continued)  
(Circuits of Figures 1 (MAX1836) and 2 (MAX1837), V = 12V, SHDN = IN, T = -40°C to +85°C, unless otherwise noted.) (Note 4)  
IN  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
-75  
0.8  
-1  
TYP  
MAX  
+75  
2.4  
UNITS  
mV  
V
LX Zero-Crossing Threshold  
Shutdown Input Threshold  
Shutdown Leakage Current  
V
V
V
= 4.5V to 24V (Note 3)  
SHDN  
IN  
I
= 0 or 24V  
+1  
µA  
SHDN  
SHDN  
Note 2: When using the shutdown input, the maximum output voltage allowed with external feedback is 5.5V. If the output voltage is  
set above 5.5V, connect shutdown to the input.  
Note 3: Shutdown input minimum slew rate (rising or falling) is 10V/ms.  
Note 4: Specifications to -40°C are guaranteed by design, not production tested.  
Typical Operating Characteristics  
(Circuits of Figures 1 (MAX1836) and 2 (MAX1837), V = 12V, SHDN = IN, T = +25°C.)  
IN  
A
MAX1836EUT33  
EFFICIENCY vs. LOAD CURRENT  
MAX1837EUT33  
OUTPUT VOLTAGE vs. LOAD CURRENT  
MAX1836EUT33  
OUTPUT VOLTAGE vs. LOAD CURRENT  
100  
95  
3.33  
3.32  
3.31  
3.30  
3.29  
3.28  
3.27  
3.33  
3.32  
3.31  
3.30  
3.29  
3.28  
3.27  
FIGURE 1  
= 3.3V  
FIGURE 2  
FIGURE 1  
V
OUT  
V
= 5V  
V
= 5V  
IN  
IN  
V
= 9V  
IN  
90  
85  
80  
V
= 5V  
IN  
V
= 9V  
IN  
V
= 12V  
IN  
V
= 9V to 12V  
IN  
V
= 12V  
100  
IN  
75  
70  
0.1  
1
10  
1000  
0
50 100 150 200 250 300 350  
LOAD CURRENT (mA)  
0
50  
100  
150  
200  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
MAX1837EUT33  
SWITCHING FREQUENCY vs. LOAD CURRENT  
MAX1837EUT33  
OUTPUT VOLTAGE vs. INPUT VOLTAGE  
MAX1837EUT33  
EFFICIENCY vs. LOAD CURRENT  
100  
180  
3.33  
3.32  
3.31  
3.30  
3.29  
3.28  
3.27  
FIGURE 2  
OUT  
FIGURE 2  
= 3.3V  
I
= 10mA  
OUT  
160  
V
= 3.3V  
V
OUT  
95  
V = 9V  
IN  
140  
120  
100  
80  
V
= 12V  
IN  
V
= 5V  
IN  
90  
85  
80  
I
= 200mA  
OUT  
V
= 9V  
IN  
60  
40  
FIGURE 2  
75  
70  
V
= 5V  
IN  
20  
V
= 3.3V  
OUT  
L1 = 47µH  
V
= 12V  
IN  
0
0.1  
1
10  
LOAD CURRENT (mA)  
100  
1000  
0
50 100 150 200 250 300 350  
LOAD CURRENT (mA)  
0
4
8
12  
16  
20  
24  
INPUT VOLTAGE (V)  
4
_______________________________________________________________________________________  
24V Internal Switch, 100% Duty Cycle,  
Step-Down Converters  
Typical Operating Characteristics (continued)  
(Circuits of Figures 1 (MAX1836) and 2 (MAX1837), V = 12V, SHDN = IN, T = +25°C.)  
IN  
A
MAX1837EUT33  
EFFICIENCY vs. INPUT VOLTAGE  
MAX1837EUT33  
PEAK INDUCTOR CURRENT vs. INPUT VOLTAGE  
MAX1837EUT33  
SWITCHING FREQUENCY vs. INPUT VOLTAGE  
100  
95  
90  
85  
80  
75  
70  
100  
10  
1000  
FIGURE 2  
= 3.3V  
FIGURE 2  
OUT  
L1 = 47µH  
I
= 200mA  
OUT  
V
V
= 3.3V  
OUT  
L1 = 47µH  
I
= 200mA  
OUT  
800  
I
= 10mA  
OUT  
600  
400  
FIGURE 2  
= 3.3V  
V
OUT  
I
= 200mA  
OUT  
L1 = 47µH  
I
= 10mA  
12  
OUT  
8
200  
0
I
= 10mA  
20  
OUT  
LIMITED BY  
LIMITED BY  
t
I
ON(MIN)  
LIM  
1
0
4
16  
20  
24  
0
4
8
12  
16  
24  
0
4
8
12  
16  
20  
24  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
MAX1837EUT50  
OUTPUT VOLTAGE vs. LOAD CURRENT  
MAX1837EUT50  
EFFICIENCY vs. LOAD CURRENT  
5.04  
5.02  
5.00  
4.98  
100  
95  
FIGURE 6  
= 5V  
V
OUT  
V
= 12V TO 24V  
IN  
V
= 7V  
IN  
V
= 9V  
IN  
V
= 9V  
IN  
V
= 12V  
IN  
90  
85  
80  
V
= 7V  
IN  
V
= 24V  
IN  
75  
70  
V
= 18V  
10  
IN  
FIGURE 6  
50  
4.96  
0
100  
150  
200  
250  
300  
0.1  
1
100  
1000  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
MAX1837EUT50  
DROPOUT VOLTAGE vs. LOAD CURRENT  
NO-LOAD SUPPLY CURRENT  
vs. INPUT VOLTAGE  
400  
350  
300  
250  
200  
150  
100  
15  
14  
13  
12  
11  
10  
FIGURE 6  
OUT  
V
= 5V  
50  
0
0
100  
200  
300  
0
4
8
12  
16  
20  
24  
LOAD CURRENT (mA)  
INPUT VOLTAGE (V)  
_______________________________________________________________________________________  
5
24V Internal Switch, 100% Duty Cycle,  
Step-Down Converters  
Typical Operating Characteristics (continued)  
(Circuits of Figures 1 (MAX1836) and 2 (MAX1837), V = 12V, SHDN = IN, T = +25°C.)  
IN  
A
MAX1837EUT50  
LINE TRANSIENT  
MAX1837EUT50  
LOAD TRANSIENT  
MAX1836/7 toc14  
MAX1836/7 toc15  
400mA  
20V  
10V  
A
200mA  
0
A
0
5.1V  
5.0V  
5.02V  
5.00V  
4.98V  
B
B
4.9V  
500mA  
0
750mA  
C
250mA  
0
C
100µs/div  
400µs/div  
A: I  
= 10mA to 250mA, 200mA/div  
= 5V, 20mV/div  
A: V = 9V to 18V, 10V/div  
IN  
OUT  
B: V  
B: V  
= 5V, R  
= 100, 100mV/div  
OUT  
OUT  
OUT  
C: I , 500mA/div  
C: I , 500mA/div  
L
L
V
IN  
= 12V, FIGURE 6  
FIGURE 6  
MAX1837EUT50  
STARTUP WAVEFORM  
MAX1837EUT50  
LINE TRANSIENT NEAR DROPOUT  
MAX1836/7 toc17  
MAX1836/7 toc16  
15V  
10V  
2V  
A
A
B
0
5V  
5.1V  
5.0V  
4V  
2V  
B
0
500mA  
0
4.9V  
500mA  
0
C
C
200µs/div  
= 0 to 2V, 2V/div  
400µs/div  
A: V = 5V to 12V, 5V/div  
A: V  
B: V  
SHDN  
IN  
= 5V, R  
= 100, 2V/div  
OUT  
OUT  
B: V  
= 5V, R  
= 100, 100mV/div  
OUT  
OUT  
C: I , 500mA/div  
L
C: I , 500mA/div  
L
V
= 12V, FIGURE 6  
IN  
FIGURE 6  
6
_______________________________________________________________________________________  
24V Internal Switch, 100% Duty Cycle,  
Step-Down Converters  
Pin Description  
PIN  
NAME  
FUNCTION  
Dual-Mode Feedback Input. Connect to GND for the preset 3.3V (MAX183_EUT33) or 5.0V (MAX183_EUT50)  
output. Connect to a resistive divider between the output and FB to adjust the output voltage between 1.25V  
1
FB  
IN  
and V , and connect the OUT pin to GND. When setting output voltages above 5.5V, permanently connect  
SHDN  
to IN.  
2
3
4
GND  
IN  
Ground  
Input Voltage. 4.5V to 24V input range. Connected to the internal P-channel power MOSFETs source.  
Inductor Connection. Connected to the internal P-channel power MOSFETs drain.  
LX  
Shutdown Input. A logic low shuts down the MAX1836/MAX1837 and reduces supply current to 3µA. LX is  
SHDN  
5
6
high impedance in shutdown. Connect to IN for normal operation. When setting output voltages above 5.5V,  
SHDN  
permanently connect  
to IN.  
Regulated Output Voltage High-Impedance Sense Input. Internally connected to a resistive divider. Connect  
to the output when using the preset output voltage. Connect to GND when using an external resistive divider  
to adjust the output voltage.  
OUT  
L1  
47µH  
L1  
22µH  
OUTPUT  
3.3V OR 5V  
OUTPUT  
3.3V OR 5V  
INPUT  
4.5V OR 12V  
INPUT  
4.5V OR 12V  
IN  
LX  
IN  
LX  
C
C
OUT  
C
OUT  
100µF  
C
IN  
10µF  
IN  
10µF  
D1  
D1  
SHDN  
SHDN  
150µF  
6.3V  
6.3V  
25V  
25V  
OUT  
OUT  
MAX1836  
MAX1837  
GND  
FB  
GND  
FB  
C
= TAIYO YUDEN TMK432BJ106KM  
C = TAIYO YUDEN TMK432BJ106KM  
IN  
IN  
L1 = SUMIDA CDRH5D28-470  
L1 = SUMIDA CDRH5D28-220  
C
OUT  
= SANYO POSCAP 6TPC100M (SMALLER CAPACITORS CAN BE USED FOR 5V)  
C
OUT  
= SANYO OS-CON 6SA150M (SMALLER CAPACITORS CAN BE USED FOR 5V)  
D1 = NIHON EP05Q03L  
D1 = NIHON ED05Q03L  
NOTE: HIGH-CURRENT PATHS SHOWN WITH BOLD LINES.  
NOTE: HIGH-CURRENT PATHS SHOWN WITH BOLD LINES.  
Figure 1. Typical MAX1836 Application Circuit  
Figure 2. Typical MAX1837 Application Circuit  
life. Additionally, an internal 24V switching MOSFET,  
internal current sensing, and a high switching frequen-  
cy minimize PC board space and component cost.  
Detailed Description  
The MAX1836/MAX1837 step-down converters are  
designed primarily for battery-powered devices, note-  
book computers, and industrial control applications. A  
unique current-limited control scheme provides high  
efficiency over a wide load range. Operation up to  
100% duty cycle allows the lowest possible dropout  
voltage, increasing the useable supply voltage range.  
Under no-load, the MAX1836/MAX1837 draw only  
12µA, and in shutdown mode, they draw only 3µA to  
further reduce power consumption and extend battery  
Current-Limited Control Architecture  
The MAX1836/MAX1837 use a proprietary current-limit-  
ed control scheme that operates with duty cycles up to  
100%. These DC-DC converters pulse as needed to  
maintain regulation, resulting in a variable switching fre-  
quency that increases with the load. This eliminates the  
high supply currents associated with conventional con-  
_______________________________________________________________________________________  
7
24V Internal Switch, 100% Duty Cycle,  
Step-Down Converters  
OUTPUT  
3.3V OR 5V  
INPUT  
4.5V OR 24V  
L1  
LX  
IN  
C
IN  
SHDN  
D1  
C
OUT  
V
SENSE  
OUT  
FB  
R
S
Q
MAXIMUM  
OFF-TIME  
DELAY  
Q
TRIG  
100mV  
V
SET  
1.25V  
Q
TRIG  
MAXIMUM  
ON-TIME  
DELAY  
GND  
MAX1836  
MAX1837  
Figure 3. Functional Diagram  
stant-frequency pulse-width-modulation (PWM) con-  
trollers that switch the MOSFET unnecessarily.  
10V  
When the output voltage is too low, an error comparator  
sets a flip-flop, which turns on the internal P-channel  
MOSFET and begins a switching cycle (Figure 3). As  
shown in Figure 4, the inductor current ramps up linear-  
ly, charging the output capacitor and servicing the  
load. The MOSFET turns off when the current limit is  
reached, or when the maximum on-time is exceeded  
while the output voltage is in regulation. Otherwise, the  
MOSFET remains on, allowing a duty cycle up to 100%  
to ensure the lowest possible dropout voltage. Once  
the MOSFET turns off, the flip-flop resets, diode D1  
turns on, and the current through the inductor ramps  
back down, transferring the stored energy to the output  
capacitor and load. The MOSFET remains off until the  
0.5µs minimum off-time expires and the inductor cur-  
rent ramps down to zero, and the output voltage drops  
back below the set point.  
A
0
B
3.3V  
500mA  
C
0
4µs/div  
CIRCUIT OF FIGURE 2, V = 12V  
IN  
A. V , 5V/div  
OUT  
LX  
B. V  
= 3.3V, 20mV/div, 200mA LOAD  
C. INDUCTOR CURRENT, 500mA/div  
Figure 4. Discontinuous-Conduction Operation  
8
_______________________________________________________________________________________  
24V Internal Switch, 100% Duty Cycle,  
Step-Down Converters  
(see the Selector Guide). For example, the  
Input-Output (Dropout) Voltage  
A step-down converters minimum input-to-output volt-  
age differential (dropout voltage) determines the lowest  
useable input supply voltage. In battery-powered sys-  
tems, this limits the useful end-of-life battery voltage. To  
maximize battery life, the MAX1836/MAX1837 operate  
with duty cycles up to 100%, which minimizes the input-  
to-output voltage differential. When the supply voltage  
approaches the output voltage, the P-channel MOSFET  
remains on continuously to supply the load.  
MAX1836EUT33 has a preset 3.3V output voltage.  
The MAX1836/MAX1837 output voltage may be adjust-  
ed by connecting a voltage divider from the output to  
FB (Figure 5). When externally adjusting the output volt-  
age, connect OUT to GND. Select R2 in the 10kto  
100krange. Calculate R1 with the following equation:  
V
V
OUT  
R1=R2  
-1  
FB  
Dropout voltage is defined as the difference between  
the input and output voltages when the input is low  
enough for the output to drop out of regulation. For a  
step-down converter with 100% duty cycle, the dropout  
voltage depends on the MOSFET drain-to-source on-  
where V = 1.25V, and V  
IN  
down feature cannot be used, so SHDN must be per-  
manently connected to IN.  
may range from 1.25V to  
FB  
OUT  
V . When setting output voltages above 5.5V, the shut-  
resistance (R  
) and inductor series resistance;  
DS(ON)  
therefore, it is proportional to the load current:  
Inductor Selection  
When selecting the inductor, consider these four para-  
meters: inductance value, saturation current rating,  
series resistance, and size. The MAX1836/MAX1837  
operate with a wide range of inductance values. For  
most applications, values between 10µH and 100µH  
work best with the controllers switching frequency.  
Calculate the minimum inductance value as follows:  
V
=I  
× R  
(
+R  
)
DROPOUT OUT  
DS(ON) INDUCTOR  
Shutdown (SHDN)  
A logic-level low voltage on SHDN shuts down the  
MAX1836/MAX1837. When shut down, the supply cur-  
rent drops to 3µA to maximize battery life, and the inter-  
nal P-channel MOSFET turns off to isolate the output  
from the input. The output capacitance and load cur-  
rent determine the rate at which the output voltage  
decays. A logic-level high voltage on SHDN activates  
the MAX1836/MAX1837. Do not leave SHDN floating. If  
unused, connect SHDN to IN. When setting output volt-  
ages above 5.5V, the shutdown feature cannot be  
used, so SHDN must be permanently connected to IN.  
The SHDN input voltage slew rate must be greater than  
10V/ms.  
(V  
-V  
)t  
IN(MAX) OUT ON(MIN)  
L
=
(MIN)  
I
LIM  
where t  
(MIN)  
= 1.0µs. Inductor values up to six times  
ON(MIN)  
L
are acceptable. Low-value inductors may be  
smaller in physical size and less expensive, but they  
result in higher peak-current overshoot due to current-  
sense comparator propagation delay (300ns). Peak-  
current overshoot reduces efficiency and could exceed  
the current ratings of the internal switching MOSFET  
and external components.  
Thermal-Overload Protection  
Thermal-overload protection limits total power dissipa-  
tion in the MAX1836/MAX1837. When the junction tem-  
perature exceeds T = +160°C, a thermal sensor turns  
J
OUTPUT  
1.25V TO V  
INPUT  
4.5V OR 24V  
L1  
off the pass transistor, allowing the IC to cool. The ther-  
mal sensor turns the pass transistor on again after the  
ICs junction temperature cools by 10°C, resulting in  
a pulsed output during continuous thermal-overload  
conditions.  
IN  
IN  
LX  
C
IN  
D1  
C
OUT  
SHDN  
R1  
R2  
FB  
MAX1836  
MAX1837  
Design Information  
GND  
OUT  
Output Voltage Selection  
The feedback input features dual-mode operation.  
Connect the output to OUT and FB to GND for the pre-  
set output voltage. The MAX1836/MAX1837 are sup-  
plied with factory-set output voltages of 3.3V or 5V. The  
two-digit part number suffix identifies the output voltage  
NOTE: HIGH-CURRENT PATHS SHOWN WITH BOLD LINES.  
Figure 5. Adjustable Output Voltage  
_______________________________________________________________________________________  
9
24V Internal Switch, 100% Duty Cycle,  
Step-Down Converters  
The inductors saturation current rating must be greater  
than the peak switching current, which is determined  
by the switch current limit plus the overshoot due to the  
300ns current-sense comparator propagation delay:  
able for initial capacitor selection, but final values  
should be set by testing a prototype or evaluation cir-  
cuit. As a general rule, a smaller amount of charge  
delivered in each pulse results in less output ripple.  
Since the amount of charge delivered in each oscillator  
pulse is determined by the inductor value and input  
voltage, the voltage ripple increases with larger induc-  
tance but decreases with lower input voltages.  
(V -V  
) 300ns  
IN OUT  
I
=I  
+
PEAK LIM  
L
where the switch current-limit (I ) is typically 312mA  
LIM  
With low-cost aluminum electrolytic capacitors, the  
ESR-induced ripple can be larger than that caused by  
the current into and out of the capacitor. Consequently,  
high-quality low-ESR aluminum-electrolytic, tantalum,  
polymer, or ceramic filter capacitors are required to  
minimize output ripple. Best results at reasonable cost  
are typically achieved with an aluminum-electrolytic  
capacitor in the 100µF range, in parallel with a 0.1µF  
ceramic capacitor.  
(MAX1836) or 625mA (MAX1837). Saturation occurs  
when the inductors magnetic flux density reaches the  
maximum level the core can support, and the induc-  
tance starts to fall.  
Inductor series resistance affects both efficiency and  
dropout voltage (see the Input-Output Voltage section).  
High series resistance limits the maximum current avail-  
able at lower input voltages and increases the dropout  
voltage. For optimum performance, select an inductor  
with the lowest possible DC resistance that fits in the  
allotted dimensions. Typically, the inductors series  
resistance should be significantly less than that of the  
internal P-channel MOSFETs on-resistance (1.1typ).  
Inductors with a ferrite core, or equivalent, are recom-  
mended.  
Input Capacitor  
The input filter capacitor reduces peak currents drawn  
from the power source and reduces noise and voltage  
ripple on the input caused by the circuits switching.  
The input capacitor must meet the ripple-current  
requirement (I  
) imposed by the switching currents  
RMS  
defined by the following equation:  
The maximum output current of the MAX1836/MAX1837  
current-limited converter is limited by the peak inductor  
current. For the typical application, the maximum out-  
put current is approximately:  
V
V -V  
(
)
OUT IN OUT  
I
=I  
RMS LOAD  
V
IN  
For most applications, nontantalum chemistries (ceram-  
ic, aluminum, polymer, or OS-CON) are preferred due  
to their robustness with high inrush currents typical of  
systems with low-impedance battery inputs.  
Alternatively, two (or more) smaller-value low-ESR  
capacitors can be connected in parallel for lower cost.  
Choose an input capacitor that exhibits <+10°C tem-  
perature rise at the RMS input current for optimal circuit  
longevity.  
1
2
I
=
I
PEAK  
OUT(MAX)  
Output Capacitor  
Choose the output capacitor to supply the maximum  
load current with acceptable voltage ripple. The output  
ripple has two components: variations in the charge  
stored in the output capacitor with each LX pulse, and  
the voltage drop across the capacitors equivalent  
series resistance (ESR) caused by the current into and  
out of the capacitor:  
Diode Selection  
The current in the external diode (D1) changes abruptly  
from zero to its peak value each time the LX switch  
turns off. To avoid excessive losses, the diode must  
have a fast turn-on time and a low forward voltage. Use  
a diode with an RMS current rating of 0.5A or greater,  
V
V  
+ V  
RIPPLE  
RIPPLE(ESR) RIPPLE(C)  
The output voltage ripple as a consequence of the ESR  
and output capacitance is:  
and with a breakdown voltage >V . Schottky diodes  
IN  
V
=I  
ESR  
are preferred. For high-temperature applications,  
Schottky diodes may be inadequate due to their high  
leakage currents. In such cases, ultra-high-speed sili-  
con rectifiers are recommended, although a Schottky  
diode with a higher reverse voltage rating can often  
provide acceptable performance.  
RIPPLE(ESR) PEAK  
2   
L I  
- I  
(
)
V
PEAK OUT  
IN  
V
=
RIPPLE(C)  
2C  
V
V -V  
IN OUT  
OUT OUT  
where I  
is the peak inductor current (see the  
Inductor Selection section). These equations are suit-  
PEAK  
10 ______________________________________________________________________________________  
24V Internal Switch, 100% Duty Cycle,  
Step-Down Converters  
Table 1. Component Suppliers  
SUPPLIER  
INDUCTORS  
PHONE  
FAX  
WEBSITE  
Coilcraft  
847-639-6400  
561-241-7876  
847-956-0666  
847-297-0070  
847-639-1469  
561-241-9339  
847-956-0702  
847-699-1194  
www.coilcraft.com  
www.coiltronics.com  
www.sumida.com  
www.tokoam.com  
Coiltronics  
Sumida USA  
Toko  
CAPACITORS  
AVX  
803-946-0690  
408-986-0424  
847-468-5624  
619-661-6835  
408-573-4150  
803-626-3123  
408-986-1442  
847-468-5815  
619-661-1055  
408-573-4159  
www.avxcorp.com  
www.kemet.com  
www.panasonic.com  
www.secc.co.jp  
Kemet  
Panasonic  
Sanyo  
Taiyo Yuden  
DIODES  
www.t-yuden.com  
Central Semiconductor  
International  
516-435-1110  
310-322-3331  
847-843-7500  
602-303-5454  
516-543-7100  
516-435-1824  
310-322-3332  
847-843-2798  
602-994-6430  
516-864-7630  
www.centralsemi.com  
www.irf.com  
Nihon  
www.niec.co.jp  
www.onsemi.com  
www.zetex.com  
On Semiconductor  
Zetex  
coupling. The MAX1837 evaluation kit shows the rec-  
ommended layout.  
MAX1836/MAX1837 Stability  
Commonly, instability is caused by excessive noise on  
the feedback signal or ground due to poor layout or  
improper component selection. When seen, instability  
typically manifests itself as motorboating,which is  
characterized by grouped switching pulses with large  
gaps and excessive low-frequency output ripple during  
no-load or light-load conditions.  
Applications Information  
High-Voltage Step-Down Converter  
The typical application circuits(Figures 1 and 2) com-  
ponents were selected for 9V battery applications.  
However, the MAX1836/MAX1837 input voltage range  
allows supply voltages up to 24V. Figure 6 shows a  
modified application circuit for high-voltage applica-  
tions. When using higher input voltages, verify that the  
PC Board Layout and Grounding  
High switching frequencies and large peak currents  
make PC board layout an important part of the design.  
Poor layout may introduce switching noise into the  
feedback path, resulting in jitter, instability, or degrad-  
ed performance. High-power traces, bolded in the typi-  
cal application circuits (Figures 1 and 2), should be as  
short and wide as possible. Additionally, the current  
input capacitors voltage rating exceeds V  
and  
IN(MAX)  
that the inductor value exceeds the minimum induc-  
tance recommended in the Inductor Selection section.  
Inverter Configuration  
Figure 7 shows the MAX1836/MAX1837 in a floating  
ground configuration. By connecting what would nor-  
mally be the output to the supply-voltage ground, the  
ICs ground pin is forced to regulate to -5V  
(MAX183_EUT50) or -3.3V (MAX183_EUT33). Avoid  
exceeding the maximum ratings of 24V between IN and  
GND, and 5.5V between OUT and GND. Other negative  
voltages may be generated by placing a resistive  
divider across the output capacitor and connecting the  
tap to FB in the same manner as the normal step-down  
configuration.  
loops formed by the power components (C , C  
,
OUT  
IN  
L1, and D1) should be as tight as possible to avoid  
radiated noise. Connect the ground pins of these  
power components at a common node in a star-ground  
configuration. Separate the noisy traces, such as the  
LX node, from the feedback network with grounded  
copper. Furthermore, keep the extra copper on the  
board, and integrate it into a pseudoground plane.  
When using external feedback, place the resistors as  
close to the feedback pin as possible to minimize noise  
______________________________________________________________________________________ 11  
24V Internal Switch, 100% Duty Cycle,  
Step-Down Converters  
L1  
47µH  
L1  
47µH  
OUTPUT  
5V  
INPUT  
INPUT  
4.5V TO 24V  
3.6V TO 18V  
IN  
LX  
IN  
LX  
C
OUT  
68µF  
C
C
IN  
IN  
D1  
OUT  
SHDN  
SHDN  
10µF  
10µF  
C
10V  
OUT  
25V  
D1  
100µF  
OUT  
MAX1836  
MAX1837  
MAX1837  
OUTPUT  
-3.3V OR -5V  
GND  
FB  
GND  
FB  
NOTE: HIGH-CURRENT PATHS SHOWN WITH BOLD LINES.  
C
IN  
= TAIYO YUDEN TMK432BJ106KM  
L1 = SUMIDA CDRH5D28-470  
= SANYO POSCAP 10TPC68M  
C
OUT  
Figure 7. MAX1836/MAX1837 Inverter Configuration  
D1 = NIHON EP05Q03L  
NOTE: HIGH-CURRENT PATHS SHOWN WITH BOLD LINES.  
Chip Information  
Figure 6. High-Voltage Application  
TRANSISTOR COUNT: 731  
PROCESS: BiCMOS  
12 ______________________________________________________________________________________  
24V Internal Switch, 100% Duty Cycle,  
Step-Down Converters  
Package Information  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,  
go to www.maxim-ic.com/packages.)  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ____________________ 13  
© 2002 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY