MAX186CCAP+ [MAXIM]

ADC, Successive Approximation, 12-Bit, 1 Func, 8 Channel, Serial Access, CMOS, PDSO20, SSOP-20;
MAX186CCAP+
型号: MAX186CCAP+
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

ADC, Successive Approximation, 12-Bit, 1 Func, 8 Channel, Serial Access, CMOS, PDSO20, SSOP-20

光电二极管 转换器
文件: 总25页 (文件大小:470K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
EVALUATION KIT AVAILABLE  
MAX186/MAX188  
Low-Power, 8-Channel,  
Serial 12-Bit ADCs  
General Description  
____________________________Features  
o 8-Channel Single-Ended or 4-Channel  
The MAX186/MAX188 are 12-bit data-acquisition sys-  
tems that combine an 8-channel multiplexer, high-  
bandwidth track/hold, and serial interface together with  
high conversion speed and ultra-low power consump-  
tion. The devices operate with a single +5V supply or  
dual 5V supplies. The analog inputs are software con-  
figurable for unipolar/bipolar and single-ended/differen-  
tial operation.  
Differential Inputs  
o Single +5V or 5V Operation  
o Low Power: 1.5mA (Operating Mode)  
2µA (Power-Down Mode)  
o Internal Track/Hold, 133kHz Sampling Rate  
o Internal 4.096V Reference (MAX186)  
o SPI-/QSPI-/MICROWIRE-/TMS320-Compatible  
The 4-wire serial interface directly connects to SPI,  
4-Wire Serial Interface  
®
QSPI™ and MICROWIRE devices without external  
o Software-Configurable Unipolar or Bipolar Inputs  
o 20-Pin PDIP, SO, SSOP Packages  
o Evaluation Kit Available  
logic. A serial strobe output allows direct connection to  
TMS320 family digital signal processors. The  
MAX186/MAX188 use either the internal clock or an  
external serial-interface clock to perform successive-  
approximation A/D conversions. The serial interface can  
operate beyond 4MHz when the internal clock is used.  
Ordering Information  
PART†  
TEMP RANGE  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
PIN-PACKAGE  
20 PDIP  
20 SO  
MAX186_CPP+  
MAX186_CWP+  
MAX186_CAP+  
MAX186DC/D  
MAX186_EPP+  
MAX186_EWP+  
MAX186_EAP+  
The MAX186 has an internal 4.096V reference while the  
MAX188 requires an external reference. Both parts have  
a reference-buffer amplifier that simplifies gain trim .  
20 SSOP  
Dice*  
The MAX186/MAX188 provide a hard-wired SHDN pin  
and two software-selectable power-down modes.  
Accessing the serial interface automatically powers up  
the devices, and the quick turn-on time allows the  
MAX186/MAX188 to be shut down between every con-  
version. Using this technique of powering down  
between conversions, supply current can be cut to  
under 10µA at reduced sampling rates.  
20 PDIP  
20 SO  
20 SSOP  
Ordering Information continued on last page.  
Parts are offered in grades A, B, C and D (grades defined in  
Electrical Characteristics). When ordering, please specify grade.  
Contact factory for availability of A-grade in SSOP package.  
*Dice are specified at +25°C, DC parameters only.  
The MAX186/MAX188 are available in 20-pin PDIP and  
SO packages, and in a shrink small-outline package  
(SSOP), that occupies 30% less area than an 8-pin  
PDIP. For applications that call for a parallel interface,  
see the MAX180/MAX181 data sheet. For anti-aliasing  
filters, consult the MAX274/MAX275 data sheet.  
+Denotes a lead(Pb)-free/RoHS-compliant package.  
____________________Pin Configuration  
TOP VIEW  
+
CH0  
CH1  
CH2  
CH3  
CH4  
CH5  
CH6  
CH7  
1
2
V
DD  
20  
________________________Applications  
Portable Data Logging  
19 SCLK  
3
CS  
18  
17  
Data-Acquisition  
4
DIN  
MAX186  
MAX188  
High-Accuracy Process Control  
Automatic Testing  
5
16 SSTRB  
15 DOUT  
6
Robotics  
DGND  
AGND  
7
14  
13  
12  
11  
Battery-Powered Instruments  
Medical Instruments  
8
V
9
REFADJ  
VREF  
SS  
SHDN  
10  
QSPI is a trademark of Motorola.  
MICROWIRE is a registered trademark of National  
Semiconductor.  
PDIP/SO/SSOP  
For pricing, delivery, and ordering information, please contact Maxim Direct at  
1-888-629-4642, or visit Maxim Integrated’s website at www.maximintegrated.com.  
19-0123; Rev 5; 1/12  
MAX186/MAX188  
Low-Power, 8-Channel,  
Serial 12-Bit ADCs  
ABSOLUTE MAXIMUM RATINGS  
V
DD  
V
SS  
V
to AGND............................................................-0.3V to +6V  
to AGND ............................................................+0.3V to -6V  
Continuous Power Dissipation (TA = +70°C)  
PDIP (derate 11.11mW/°C above +70°C).....................889mW  
SO (derate 10.00mW/°C above +70°C)........................800mW  
SSOP (derate 8.00mW/°C above +70°C) .....................640mW  
Operating Temperature Ranges  
to V ..............................................................-0.3V to +12V  
DD  
SS  
AGND to DGND.....................................................-0.3V to +0.3V  
CH0–CH7 to AGND, DGND.............(V - 0.3V) to (V + 0.3V)  
SS  
DD  
CH0–CH7 Total Input Current........................................... 20mA  
MAX186_C/MAX188_C........................................0°C to +70°C  
MAX186_E/MAX188_E......................................-40°C to +85°C  
Storage Temperature Range.............................-60°C to +150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
Soldering Temperature (reflow) .......................................+260°C  
VREF to AGND ...........................................-0.3V to (V  
REFADJ to AGND.......................................-0.3V to (V  
Digital Inputs to DGND...............................-0.3V to (V  
Digital Outputs to DGND............................-0.3V to (V  
+ 0.3V)  
+ 0.3V)  
+ 0.3V)  
+ 0.3V)  
DD  
DD  
DD  
DD  
Digital Output Sink Current .................................................25mA  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
= 2.0MHz, external clock (50% duty cycle); 15 clocks/conversion cycle (133ksps); MAX186—  
CLK  
(V  
= 5V 5%; V = 0V or -5V; f  
DD  
SS  
4.7µF capacitor at VREF pin; MAX188—external reference, VREF = 4.096V applied to VREF pin; T = T  
to T , unless otherwise  
MAX  
A
MIN  
noted.)  
PARAMETER  
DC ACCURACY (Note 1)  
Resolution  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
12  
Bits  
MAX186A/MAX188A  
0.5  
0.5  
1.0  
0.75  
1.0  
1
MAX186B/MAX188B  
MAX186C  
Relative Accuracy (Note 2)  
LSB  
MAX188C  
MAX186D/MAX188D  
No missing codes over temperature  
MAX186A/MAX188A  
MAX186B/MAX188B  
MAX186C/MAX188C  
MAX186D/MAX188D  
MAX186 (all grades)  
MAX188A  
Differential Nonlinearity  
Offset Error  
DNL  
LSB  
LSB  
2.0  
3.0  
3.0  
3.0  
3.0  
1.5  
2.0  
2.0  
3.0  
Gain Error (Note 3)  
MAX188B  
MAX188C  
MAX188D  
LSB  
External reference  
4.096V (MAX188)  
Gain Temperature Coefficient  
External reference, 4.096V  
0.8  
0.1  
ppm/°C  
LSB  
Channel-to-Channel  
Offset Matching  
DYNAMIC SPECIFICATIONS (10kHz sine wave input, 4.096V , 133ksps, 2.0MHz external clock, bipolar input mode)  
P-P  
Signal-to-Noise + Distortion Ratio  
SINAD  
70  
dB  
dB  
Total Harmonic Distortion  
(up to the 5th harmonic)  
THD  
-80  
Spurious-Free Dynamic Range  
Channel-to-Channel Crosstalk  
SFDR  
80  
dB  
dB  
65kHz, V = 4.096V  
(Note 4)  
-85  
IN  
P-P  
2
Maxim Integrated  
MAX186/MAX188  
Low-Power, 8-Channel,  
Serial 12-Bit ADCs  
ELECTRICAL CHARACTERISTICS (continued)  
= 2.0MHz, external clock (50% duty cycle); 15 clocks/conversion cycle (133ksps); MAX186—  
CLK  
(V  
= 5V 5%; V = 0V or -5V; f  
DD  
SS  
4.7µF capacitor at VREF pin; MAX188—external reference, VREF = 4.096V applied to VREF pin; T = T  
to T , unless otherwise  
MAX  
A
MIN  
noted.)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Small-Signal Bandwidth  
Full-Power Bandwidth  
CONVERSION RATE  
-3dB rolloff  
4.5  
MHz  
800  
kHz  
Internal clock  
5.5  
6
10  
Conversion Time (Note 5)  
t
µs  
CONV  
External clock, 2MHz, 12 clocks/conversion  
Track/Hold Acquisition Time  
Aperture Delay  
t
AZ  
1.5  
µs  
ns  
10  
Aperture Jitter  
<50  
1.7  
ps  
Internal Clock Frequency  
MHz  
External compensation, 4.7µF  
Internal compensation (Note 6)  
Used for data transfer only  
0.1  
0.1  
2.0  
0.4  
External Clock Frequency Range  
MHz  
10  
ANALOG INPUT  
0 to  
VREF  
Unipolar, V = 0V  
SS  
Input Voltage Range,  
Single-Ended and Differential  
(Note 9)  
V
Bipolar, V = -5V  
SS  
VREF/2  
1
On/off leakage current, V  
(Note 6)  
= 5V  
Multiplexer Leakage Current  
Input Capacitance  
0.01  
16  
µA  
pF  
IN  
INTERNAL REFERENCE (MAX186 only, reference buffer enabled)  
T
A
= +25°C  
VREF Output Voltage  
4.076  
4.096  
4.116  
30  
V
VREF Short-Circuit Current  
mA  
MAX186_C  
MAX186_E  
30  
30  
50  
MAX186A, MAX186B,  
MAX186C  
VREF Tempco  
ppm/°C  
60  
MAX186D  
30  
Load Regulation (Note 7)  
Capacitive Bypass at VREF  
0 to 0.5mA output load  
Internal compensation  
External compensation  
Internal compensation  
External compensation  
2.5  
mV  
µF  
0
4.7  
0.01  
0.01  
Capacitive Bypass at REFADJ  
REFADJ Adjustment Range  
µF  
%
1.5  
EXTERNAL REFERENCE AT VREF (Buffer disabled, VREF = 4.096V)  
V
DD  
+
2.50  
12  
Input Voltage Range  
V
50mV  
Input Current  
200  
20  
350  
µA  
kΩ  
µA  
Input Resistance  
Shutdown VREF Input Current  
1.5  
10  
V
-
DD  
Buffer Disable Threshold REFADJ  
V
50mV  
Maxim Integrated  
3
MAX186/MAX188  
Low-Power, 8-Channel,  
Serial 12-Bit ADCs  
ELECTRICAL CHARACTERISTICS (continued)  
= 2.0MHz, external clock (50% duty cycle); 15 clocks/conversion cycle (133ksps); MAX186—  
CLK  
(V  
= 5V 5%; V = 0V or -5V; f  
DD  
SS  
4.7µF capacitor at VREF pin; MAX188—external reference, VREF = 4.096V applied to VREF pin; T = T  
to T , unless otherwise  
MAX  
A
MIN  
noted.)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
EXTERNAL REFERENCE AT REFADJ  
Internal compensation mode  
External compensation mode  
MAX186  
0
Capacitive Bypass at VREF  
µF  
V/V  
µA  
4.7  
1.678  
1.638  
Reference-Buffer Gain  
MAX188  
MAX186  
50  
5
REFADJ Input Current  
MAX188  
DIGITAL INPUTS (DIN, SCLK, CS, SHDN)  
V
2.4  
V
V
DIN, SCLK, CS Input High Voltage  
DIN, SCLK, CS Input Low Voltage  
DIN, SCLK, CS Input Hysteresis  
DIN, SCLK, CS Input Leakage  
DIN, SCLK, CS Input Capacitance  
SHDN Input High Voltage  
INH  
V
INL  
0.8  
V
0.15  
V
HYST  
I
IN  
V
= 0V or V  
DD  
1
µA  
pF  
V
IN  
C
IN  
(Note 6)  
15  
V
INH  
V
- 0.5  
DD  
V
0.5  
4.0  
V
SHDN Input Low Voltage  
INL  
I
V
V
= V  
µA  
µA  
V
SHDN Input Current, High  
SHDN Input Current, Low  
SHDN  
INH  
DD  
I
= 0V  
-4.0  
1.5  
SHDN  
INL  
V
V
-1.5  
SHDN Input Mid Voltage  
IM  
DD  
V
V
V
= open  
= open  
2.75  
0.3  
V
SHDN Voltage, Open  
SHDN  
FLT  
SHDN Max Allowed Leakage,  
Mid Input  
-100  
100  
0.4  
nA  
V
SHDN  
DIGITAL OUTPUTS (DOUT, SSTRB)  
I
I
I
= 5mA  
SINK  
Output Voltage Low  
V
OL  
= 16mA  
SINK  
Output Voltage High  
V
= 1mA  
4
V
OH  
SOURCE  
Three-State Leakage Current  
I
V
= 5V  
10  
15  
µA  
pF  
CS  
CS  
L
Three-State Output Capacitance  
POWER REQUIREMENTS  
Positive Supply Voltage  
C
V
= 5V (Note 6)  
OUT  
V
DD  
5
5%  
0 or  
V
V
Negative Supply Voltage  
Positive Supply Current  
Negative Supply Current  
V
SS  
-5 5%  
Operating mode  
1.5  
2.5  
70  
10  
50  
10  
mA  
I
Fast power-down  
30  
DD  
µA  
µA  
Full power-down  
2
Operating mode and fast power-down  
Full power-down  
I
SS  
4
Maxim Integrated  
MAX186/MAX188  
Low-Power, 8-Channel,  
Serial 12-Bit ADCs  
ELECTRICAL CHARACTERISTICS (continued)  
= 2.0MHz, external clock (50% duty cycle); 15 clocks/conversion cycle (133ksps); MAX186—  
CLK  
(V  
= 5V 5%; V = 0V or -5V; f  
DD  
SS  
4.7µF capacitor at VREF pin; MAX188—external reference, VREF = 4.096V applied to VREF pin; T = T  
to T , unless otherwise  
MAX  
A
MIN  
noted.)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Positive Supply Rejection  
(Note 8)  
V
= 5V 5%; external reference, 4.096V;  
DD  
PSR  
0.06  
0.5  
mV  
full-scale input  
V = -5V 5%; external reference, 4.096V;  
SS  
full-scale input  
Negative Supply Rejection  
(Note 8)  
PSR  
0.01  
0.5  
mV  
TIMING CHARACTERISTICS  
(V = 5V 5%; V =0V or -5V, T = T  
to T  
, unless otherwise noted.)  
MAX  
DD  
SS  
A
MIN  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
t
Acquisition Time  
1.5  
µs  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
AZ  
t
DS  
DIN to SCLK Setup  
100  
t
DIN to SCLK Hold  
0
DH  
t
C
C
C
= 100pF  
= 100pF  
= 100pF  
SCLK Fall to Output Data Valid  
CS Fall to Output Enable  
CS Rise to Output Disable  
CS to SCLK Rise Setup  
CS to SCLK Rise Hold  
SCLK Pulse Width High  
SCLK Pulse Width Low  
SCLK Fall to SSTRB  
MAX18_ _C/E  
20  
150  
100  
100  
DO  
LOAD  
LOAD  
LOAD  
t
DV  
t
TR  
t
100  
0
CSS  
t
CSH  
t
200  
200  
CH  
t
CL  
t
C
LOAD  
= 100pF  
200  
200  
SSTRB  
CS Fall to SSTRB Output Enable  
(Note 6)  
t
External clock mode only, C  
External clock mode only, C  
Internal clock mode only  
= 100pF  
= 100pF  
ns  
ns  
ns  
SDV  
LOAD  
CS Rise to SSTRB Output Disable  
(Note 6)  
t
200  
STR  
LOAD  
SSTRB Rise to SCLK Rise  
(Note 6)  
t
0
SCK  
Note 1: Tested at V  
= 5.0V; V = 0V; unipolar input mode.  
SS  
Note 2: Relative accuracy is the deviation of the analog value at any code from its theoretical value after the full-scale range has  
DD  
been calibrated.  
Note 3: MAX186 – internal reference, offset nulled; MAX188 – external reference (VREF = +4.096V), offset nulled.  
Note 4: Ground on-channel; sine wave applied to all off channels.  
Note 5: Conversion time defined as the number of clock cycles times the clock period; clock has 50% duty cycle.  
Note 6: Guaranteed by design. Not subject to production testing.  
Note 7: External load should not change during conversion for specified accuracy.  
Note 8: Measured at V  
+5% and V  
-5% only.  
SUPPLY  
SUPPLY  
Note 9: The common-mode range for the analog inputs is from V to V  
.
DD  
SS  
Maxim Integrated  
5
MAX186/MAX188  
Low-Power, 8-Channel,  
Serial 12-Bit ADCs  
__________________________________________Typical Operating Characteristics  
CHANNEL-TO-CHANNEL OFFSET MATCHING  
POWER-SUPPLY REJECTION  
vs. TEMPERATURE  
INTERNAL REFERENCE VOLTAGE  
vs. TEMPERATURE  
vs. TEMPERATURE  
0.16  
0.30  
V
= +5V 5ꢀ  
DD  
2.456  
0.14  
0.12  
0.10  
0.08  
0.06  
0.04  
0.25  
0.20  
V
= 0V or -5V  
SS  
2.455  
2.454  
2.453  
2.452  
0.15  
0.10  
0.05  
0.00  
-0.05  
0.02  
0
-40 -20  
0
20 40 60 80 100 120  
TEMPERATURE (°C)  
-60 -40 -20  
0
20 40 60 80 100 120 140  
-60 -40 -20  
0
20 40 60 80 100 120 140  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
MAX186/MAX188 FFT PLOT – 133kHz  
20  
0
-20  
-40  
f = 10kHz  
t
f = 133kHz  
s
A
T = +25°C  
-60  
-80  
-100  
-120  
-140  
0
33.25kHz  
66.5kHz  
FREQUENCY  
_____________________________________________________________Pin Description  
PIN  
1–8  
9
NAME  
FUNCTION  
CH0–CH7 Sampling Analog Inputs  
V
SS  
Negative Supply Voltage. Connect to -5V 5% or AGND  
Three-Level Shutdown Input. Pulling SHDN low shuts the MAX186/MAX188 down to 10μA (max)  
supply current, otherwise the MAX186/MAX188 are fully operational. Pulling SHDN high puts the  
reference-buffer amplifier in internal compensation mode. Leaving SHDN unconnected puts the  
reference-buffer amplifier in external compensation mode.  
10  
11  
SHDN  
Reference Voltage for analog-to-digital conversion. Also, output of the reference buffer amplifier  
(4.096V in the MAX186, 1.638 x REFADJ in the MAX188). Add a 4.7μF capacitor to ground when  
using external compensation mode. Also functions as an input when used with a precision external  
VREF  
6
Maxim Integrated  
MAX186/MAX188  
Low-Power, 8-Channel,  
Serial 12-Bit ADCs  
________________________________________________Pin Description (continued)  
PIN  
NAME  
FUNCTION  
Input to the Reference-Buffer Amplifier. To disable the reference-buffer amplifier, connect REFADJ to  
12  
REFADJ  
V
DD  
.
13  
14  
15  
AGND  
DGND  
DOUT  
Analog Ground. Also IN- Input for single-ended conversions.  
Digital Ground  
Serial Data Output. Data is clocked out at the falling edge of SCLK. High impedance when CS is high.  
Serial Strobe Output. In internal clock mode, SSTRB goes low when the MAX186/MAX188 begin the  
A/D conversion and goes high when the conversion is done. In external clock mode, SSTRB pulses  
high for one clock period before the MSB decision. High impedance when CS is high (external mode).  
16  
SSTRB  
17  
18  
DIN  
CS  
Serial Data Input. Data is clocked in at the rising edge of SCLK.  
Active-Low Chip Select. Data will not be clocked into DIN unless CS is low. When CS is high, DOUT  
is high impedance.  
Serial Clock Input. Clocks data in and out of serial interface. In external clock mode, SCLK also sets  
the conversion speed. (Duty cycle must be 40% to 60% in external clock mode.)  
19  
20  
SCLK  
V
DD  
Positive Supply Voltage, +5V 5%  
+5V  
3kΩ  
18  
CS  
DOUT  
DOUT  
19  
SCLK  
INPUT  
SHIFT  
INT  
17  
10  
3kΩ  
DIN  
C
LOAD  
C
LOAD  
CLOCK  
REGISTER  
CONTROL  
LOGIC  
SHDN  
DGND  
a. High-Z to V and V to V  
OH  
DGND  
1
CH0  
15  
16  
OUTPUT  
SHIFT  
REGISTER  
DOUT  
b. High-Z to V and V to V  
OH  
OL  
OL  
OH  
OL  
2
3
4
CH1  
CH2  
CH3  
CH4  
CH5  
SSTRB  
ANALOG  
INPUT  
MUX  
Figure 1. Load Circuits for Enable Time  
T/H  
5
6
CLOCK  
IN  
12-BIT  
SAR  
ADC  
7
8
+5V  
CH6  
CH7  
OUT  
20  
14  
REF  
13  
V
DD  
AGND  
3kΩ  
A
1.65  
DOUT  
DOUT  
+2.46V  
REFERENCE  
(MAX186)  
DGND  
20kΩ  
9
V
MAX186  
MAX188  
SS  
12  
11  
REFADJ  
VREF  
3kΩ  
C
LOAD  
C
LOAD  
+4.096V  
DGND  
DGND  
a V to High-Z  
OH  
b V to High-Z  
OL  
Figure 3. Block Diagram  
Figure 2. Load Circuits for Disabled Time  
Maxim Integrated  
7
MAX186/MAX188  
Low-Power, 8-Channel,  
Serial 12-Bit ADCs  
_______________Detailed Description  
12-BIT CAPACITIVE DAC  
The MAX186/MAX188 use a successive-approximation  
conversion technique and input track/hold (T/H) circuit-  
ry to convert an analog signal to a 12-bit digital output.  
A flexible serial interface provides easy interface to  
microprocessors. No external hold capacitors are  
required. Figure 3 shows the block diagram for the  
MAX186/MAX188.  
VREF  
COMPARATOR  
INPUT  
MUX  
C
HOLD  
ZERO  
+
CH0  
CH1  
CH2  
CH3  
CH4  
CH5  
CH6  
CH7  
AGND  
16pF  
10kΩ  
R
S
C
SWITCH  
HOLD  
Pseudo-Differential Input  
TRACK  
AT THE SAMPLING INSTANT,  
THE MUX INPUT SWITCHES  
FROM THE SELECTED IN+  
CHANNEL TO THE SELECTED  
IN– CHANNEL.  
The sampling architecture of the ADC’s analog com-  
parator is illustrated in the Equivalent Input Circuit  
(Figure 4). In single-ended mode, IN+ is internally  
switched to CH0-CH7 and IN- is switched to AGND. In  
differential mode, IN+ and IN- are selected from pairs  
of CH0/CH1, CH2/CH3, CH4/CH5 and CH6/CH7.  
Configure the channels with Table 3 and Table 4.  
T/H  
SWITCH  
SINGLE-ENDED MODE: IN+ = CHO-CH7, IN– = AGND.  
DIFFERENTIAL MODE: IN+ AND IN– SELECTED FROM PAIRS OF  
CH0/CH1, CH2/CH3, CH4/CH5, CH6/CH7.  
Figure 4. Equivalent Input Circuit  
In differential mode, IN- and IN+ are internally switched  
to either one of the analog inputs. This configuration is  
pseudo-differential to the effect that only the signal at  
IN+ is sampled. The return side (IN-) must remain sta-  
ble within 0.5LSB ( 0.1LSB for best results) with  
respect to AGND during a conversion. Accomplish this  
by connecting a 0.1µF capacitor from AIN- (the select-  
ed analog input, respectively) to AGND.  
single-ended inputs, IN- is connected to AGND, and  
the converter samples the “+” input. If the converter is  
set up for differential inputs, IN- connects to the “-”  
input, and the difference of |IN+ - IN-| is sampled. At  
the end of the conversion, the positive input connects  
back to IN+, and CHOLD charges to the input signal.  
During the acquisition interval, the channel selected as  
the positive input (IN+) charges capacitor CHOLD. The  
acquisition interval spans three SCLK cycles and ends  
on the falling SCLK edge after the last bit of the input  
control word has been entered. At the end of the acqui-  
sition interval, the T/H switch opens, retaining charge  
on CHOLD as a sample of the signal at IN+.  
The time required for the T/H to acquire an input signal  
is a function of how quickly its input capacitance is  
charged. If the input signal’s source impedance is high,  
the acquisition time lengthens and more time must be  
allowed between conversions. Acquisition time is cal-  
culated by:  
t
AZ = 9 x (RS + RIN) x 16pF,  
The conversion interval begins with the input multiplex-  
er switching CHOLD from the positive input (IN+) to the  
negative input (IN-). In single-ended mode, IN- is sim-  
ply AGND. This unbalances node ZERO at the input of  
the comparator. The capacitive DAC adjusts during the  
remainder of the conversion cycle to restore node  
ZERO to 0V within the limits of 12-bit resolution. This  
action is equivalent to transferring a charge of 16pF x  
[(VIN+) - (VIN-)] from CHOLD to the binary-weighted  
capacitive DAC, which in turn forms a digital represen-  
tation of the analog input signal.  
where RIN = 5kΩ, RS = the source impedance of the  
input signal, and tAZ is never less than 1.5µs. Note that  
source impedances below 5kΩ do not significantly  
affect the AC performance of the ADC. Higher source  
impedances can be used if an input capacitor is con-  
nected to the analog inputs, as shown in Figure 5. Note  
that the input capacitor forms an RC filter with the input  
source impedance, limiting the ADC’s signal bandwidth.  
Input Bandwidth  
The ADC’s input tracking circuitry has a 4.5MHz  
small-signal bandwidth, so it is possible to digitize  
high-speed transient events and measure periodic sig-  
nals with bandwidths exceeding the ADC’s sampling  
rate by using undersampling techniques. To avoid  
high-frequency signals being aliased into the frequency  
band of interest, anti-alias filtering is recommended.  
Track/Hold  
The T/H enters its tracking mode on the falling clock  
edge after the fifth bit of the 8-bit control word has been  
shifted in. The T/H enters its hold mode on the falling  
clock edge after the eighth bit of the control word has  
been shifted in. If the converter is set up for  
8
Maxim Integrated  
MAX186/MAX188  
Low-Power, 8-Channel,  
Serial 12-Bit ADCs  
V
DD  
+5V  
OSCILLOSCOPE  
0.1µF  
DGND  
AGND  
SCLK  
V
SS  
MAX186  
MAX188  
SSTRB  
DOUT*  
0V TO  
4.096V  
ANALOG  
INPUT  
CH7  
CS  
SCLK  
DIN  
0.01µF  
CH4  
2MHz  
OSCILLATOR  
CH3  
CH1  
CH2  
+5V  
+5V  
DOUT  
D1  
1N4148  
SSTRB  
REFADJ  
VREF  
SHDN  
N.C.  
C2  
0.01µF  
C1  
4.7µF  
**  
+2.5V  
+2.5V  
REFERENCE  
* FULL-SCALE ANALOG INPUT, CONVERSION RESULT = $FFF (HEX)  
**REQUIRED FOR MAX188 ONLY. A POTENTIOMETER MAY BE USED IN PLACE OF THE REFERENCE FOR TEST PURPOSES.  
Figure 5. Quick-Look Circuit  
Analog Input Range and Input Protection  
Table 1a. Unipolar Full Scale and Zero Scale  
Zero  
Internal protection diodes, which clamp the analog  
input to VDD and VSS, allow the channel input pins to  
swing from VSS - 0.3V to VDD + 0.3V without damage.  
However, for accurate conversions near full scale, the  
inputs must not exceed VDD by more than 50mV, or be  
lower than VSS by 50mV.  
Full Scale  
Reference  
Scale  
Internal Reference  
(MAX186 only)  
0V  
+4.096V  
External Reference  
at REFADJ  
V
x A*  
0V  
0V  
REFADJ  
at VREF  
VREF  
If the analog input exceeds 50mV beyond the sup-  
plies, do not forward bias the protection diodes of  
off-channels over two milliamperes, as excessive  
current will degrade the conversion accuracy of the  
on-channel.  
* A = 1.678 for the MAX186, 1.638 for the MAX188  
Table 1b. Bipolar Full Scale, Zero Scale, and  
Negative Full Scale  
The full-scale input voltage depends on the voltage at  
VREF. See Tables 1a and 1b.  
Negative  
Zero  
Full Scale  
Reference  
Internal Reference  
Full Scale  
Scale  
Quick Look  
-4.096V/2  
0V  
+4.096V/2  
(MAX186 only)  
To evaluate the analog performance of the  
MAX186/MAX188 quickly, use the circuit of Figure 5.  
The MAX186/MAX188 require a control byte to be writ-  
ten to DIN before each conversion. Tying DIN to +5V  
feeds in control bytes of $FF (HEX), which trigger  
External Reference  
at REFADJ  
-1/2V  
+1/2V  
REFADJ  
REFADJ  
0V  
0V  
x A*  
x A*  
at VREF  
-1/2 VREF  
+1/2 VREF  
* A = 1.678 for the MAX186, 1.638 for the MAX188  
Maxim Integrated  
9
MAX186/MAX188  
Low-Power, 8-Channel,  
Serial 12-Bit ADCs  
single-ended unipolar conversions on CH7 in external  
clock mode without powering down between conver-  
sions. In external clock mode, the SSTRB output pulses  
high for one clock period before the most significant bit  
of the 12-bit conversion result comes out of DOUT.  
Varying the analog input to CH7 should alter the  
sequence of bits from DOUT. A total of 15 clock cycles  
is required per conversion. All transitions of the SSTRB  
and DOUT outputs occur on the falling edge of SCLK.  
The MAX186/MAX188 are fully compatible with  
Microwire and SPI devices. For SPI, select the correct  
clock polarity and sampling edge in the SPI control reg-  
isters: set CPOL = 0 and CPHA = 0. Microwire and SPI  
both transmit a byte and receive a byte at the same  
time. Using the Typical Operating Circuit, the simplest  
software interface requires only three 8-bit transfers to  
perform a conversion (one 8-bit transfer to configure  
the ADC, and two more 8-bit transfers to clock out the  
12-bit conversion result).  
How to Start a Conversion  
Example: Simple Software Interface  
A conversion is started on the MAX186/MAX188 by  
clocking a control byte into DIN. Each rising edge on  
SCLK, with CS low, clocks a bit from DIN into the  
MAX186/MAX188’s internal shift register. After CS falls,  
the first arriving logic “1” bit defines the MSB of the  
control byte. Until this first “start” bit arrives, any num-  
ber of logic “0” bits can be clocked into DIN with no  
effect. Table 2 shows the control-byte format.  
Make sure the CPU’s serial interface runs in master  
mode so the CPU generates the serial clock. Choose a  
clock frequency from 100kHz to 2MHz.  
1) Set up the control byte for external clock mode, call  
it TB1. TB1 should be of the format: 1XXXXX11  
Binary, where the Xs denote the particular channel  
and conversion-mode selected.  
Table 2. Control-Byte Format  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
(MSB)  
(LSB)  
START  
SEL2  
SEL1  
SEL0  
UNI/BIP  
SGL/DIF  
PD1  
PD0  
Bit  
Name  
Description  
7(MSB)  
START  
The first logic “1” bit after CS goes low defines the beginning of the control byte.  
6
5
4
SEL2  
SEL1  
SEL0  
These three bits select which of the eight channels are used for the conversion.  
See Tables 3 and 4.  
3
UNI/BIP  
1 = unipolar, 0 = bipolar. Selects unipolar or bipolar conversion mode. In unipolar  
mode, an analog input signal from 0V to VREF can be converted; in bipolar mode, the  
signal can range from -VREF/2 to +VREF/2.  
2
SGL/DIF  
1 = single ended, 0 = differential. Selects single-ended or differential conversions. In  
single-ended mode, input signal voltages are referred to AGND. In differential mode,  
the voltage difference between two channels is measured. See Tables 3 and 4.  
1
PD1  
PD0  
Selects clock and power-down modes.  
0(LSB)  
PD1  
PD0  
Mode  
0
0
Full power-down (IQ = 2µA)  
Fast power-down (IQ = 30µA)  
Internal clock mode  
External clock mode  
0
1
1
1
0
1
10  
Maxim Integrated  
MAX186/MAX188  
Low-Power, 8-Channel,  
Serial 12-Bit ADCs  
Table 3. Channel Selection in Single-Ended Mode (SGL/DIFF = 1)  
SEL2 SEL1  
SEL0  
CH0  
CH1  
CH2  
CH3  
CH4  
CH5  
CH6  
CH7  
AGND  
0
1
0
1
0
1
0
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
+
+
+
+
+
+
+
+
Table 4. Channel Selection in Differential Mode (SGL/DIFF = 0)  
SEL2 SEL1  
SEL0  
CH0  
CH1  
CH2  
CH3  
CH4  
CH5  
CH6  
CH7  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
+
+
+
+
+
+
+
+
2) Use a general-purpose I/O line on the CPU to pull  
Figure 6 shows the timing for this sequence. Bytes RB2  
and RB3 will contain the result of the conversion  
padded with one leading zero and three trailing zeros.  
The total conversion time is a function of the serial  
clock frequency and the amount of dead time between  
8-bit transfers. Make sure that the total conversion time  
does not exceed 120µs, to avoid excessive T/H droop.  
Digital Output  
CS on the MAX186/MAX188 low.  
3) Transmit TB1 and simultaneously receive a byte  
and call it RB1. Ignore RB1.  
4) Transmit a byte of all zeros ($00 HEX) and simulta-  
neously receive byte RB2.  
5) Transmit a byte of all zeros ($00 HEX) and simulta-  
neously receive byte RB3.  
In unipolar input mode, the output is straight binary  
(see Figure 15). For bipolar inputs, the output is  
twos-complement (see Figure 16). Data is clocked out  
at the falling edge of SCLK in MSB-first format.  
6) Pull CS on the MAX186/MAX188 high.  
Maxim Integrated  
11  
MAX186/MAX188  
Low-Power, 8-Channel,  
Serial 12-Bit ADCs  
CS  
t
ACQ  
SCLK  
1
4
8
12  
16  
20  
24  
UNI/ SCL/  
BIP DIFF  
DIN  
START SEL2 SEL1 SEL0  
PD1 PD0  
RB2  
B8  
RB3  
SSTRB  
RB1  
FILLED WITH  
ZEROS  
B11  
MSB  
B0  
LSB  
DOUT  
B10 B9  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
ACQUISITION  
CONVERSION  
IDLE  
IDLE  
A/D STATE  
1.5μs (CLK = 2MHz)  
Figure 6. 24-Bit External Clock Mode Conversion Timing (SPI, QSPI and Microwire Compatible)  
• • •  
CS  
t
t
t
CSH  
CSS  
CH  
t
t
CL  
CSH  
SCLK  
• • •  
t
DS  
t
DH  
DIN  
• • •  
• • •  
t
DV  
t
t
TR  
DO  
DOUT  
Figure 7. Detailed Serial-Interface Timing  
version steps. SSTRB pulses high for one clock period  
after the last bit of the control byte. Successive-approxi-  
mation bit decisions are made and appear at DOUT on  
each of the next 12 SCLK falling edges (see Figure 6).  
SSTRB and DOUT go into a high-impedance state when  
CS goes high; after the next CS falling edge, SSTRB will  
output a logic low. Figure 8 shows the SSTRB timing in  
external clock mode.  
Internal and External Clock Modes  
The MAX186/MAX188 may use either an external serial  
clock or the internal clock to perform the  
successive-approximation conversion. In both clock  
modes, the external clock shifts data in and out of the  
MAX186/MAX188. The T/H acquires the input signal as  
the last three bits of the control byte are clocked into  
DIN. Bits PD1 and PD0 of the control byte program the  
clock mode. Figures 7 through 10 show the timing  
characteristics common to both modes.  
The conversion must complete in some minimum time, or  
else droop on the sample-and-hold capacitors may  
degrade conversion results. Use internal clock mode if the  
clock period exceeds 10µs, or if serial-clock interruptions  
could cause the conversion interval to exceed 120µs.  
External Clock  
In external clock mode, the external clock not only shifts  
data in and out, it also drives the analog-to-digital con-  
12  
Maxim Integrated  
MAX186/MAX188  
Low-Power, 8-Channel,  
Serial 12-Bit ADCs  
CS  
• • •  
• • •  
• • •  
t
t
STR  
SDV  
SSTRB  
• • •  
t
t
SSTRB  
SSTRB  
SCLK  
• • •  
• • • •  
PD0 CLOCKED IN  
Figure 8. External Clock Mode SSTRB Detailed Timing  
CS  
SCLK  
DIN  
1
4
8
18  
24  
2
3
5
6
7
9
10  
11  
12  
19  
20  
21  
22  
23  
UNI/ SCL/  
DIP DIFF  
START SEL2 SEL1 SEL0  
PD1 PD0  
SSTRB  
t
CONV  
FILLED WITH  
ZEROS  
B11  
MSB  
B0  
LSB  
DOUT  
B10  
B9  
B2  
B1  
ACQUISITION  
CONVERSION  
10μs MAX  
IDLE  
IDLE  
A/D STATE  
1.5μs (CLK = 2MHz)  
Figure 9. Internal Clock Mode Timing  
Internal Clock  
will produce the MSB of the conversion at DOUT, fol-  
lowed by the remaining bits in MSB-first format (see  
Figure 9). CS does not need to be held low once a con-  
version is started. Pulling CS high prevents data from  
being clocked into the MAX186/MAX188 and three-  
states DOUT, but it does not adversely effect an internal  
clock-mode conversion already in progress. When inter-  
nal clock mode is selected, SSTRB does not go into a  
high-impedance state when CS goes high.  
In internal clock mode, the MAX186/MAX188 generate  
their own conversion clock internally. This frees the  
microprocessor from the burden of running the SAR con-  
version clock, and allows the conversion results to be  
read back at the processor’s convenience, at any clock  
rate from zero to typically 10MHz. SSTRB goes low at the  
start of the conversion and then goes high when the con-  
version is complete. SSTRB will be low for a maximum of  
10µs, during which time SCLK should remain low for best  
noise performance. An internal register stores data when  
the conversion is in progress. SCLK clocks the data out  
at this register at any time after the conversion is com-  
plete. After SSTRB goes high, the next falling clock edge  
Figure 10 shows the SSTRB timing in internal clock  
mode. In internal clock mode, data can be shifted in and  
out of the MAX186/MAX188 at clock rates exceeding  
4.0MHz, provided that the minimum acquisition time, tAZ  
is kept above 1.5µs.  
,
Maxim Integrated  
13  
MAX186/MAX188  
Low-Power, 8-Channel,  
Serial 12-Bit ADCs  
CS • • •  
t
t
CONV  
CSS  
t
t
SCK  
CSH  
SSTRB • • •  
SCLK • • •  
t
SSTRB  
PD0 CLOCK IN  
NOTE: FOR BEST NOISE PERFORMANCE, KEEP SCLK LOW DURING CONVERSION.  
Figure 10. Internal Clock Mode SSTRB Detailed Timing  
Data Framing  
__________ Applications Information  
The falling edge of CS does not start a conversion on the  
MAX186/MAX188. The first logic high clocked into DIN is  
interpreted as a start bit and defines the first bit of the  
control byte. A conversion starts on the falling edge of  
SCLK, after the eighth bit of the control byte (the PD0 bit)  
is clocked into DIN. The start bit is defined as:  
Power-On Reset  
When power is first applied and if SHDN is not pulled  
low, internal power-on reset circuitry will activate the  
MAX186/MAX188 in internal clock mode, ready to con-  
vert with SSTRB = high. After the power supplies have  
been stabilized, the internal reset time is 100µs and no  
conversions should be performed during this phase.  
SSTRB is high on power-up and, if CS is low, the first  
logical 1 on DIN will be interpreted as a start bit. Until a  
conversion takes place, DOUT will shift out zeros.  
The first high bit clocked into DIN with CS low any-  
time the converter is idle, e.g. after VCC is applied.  
OR  
The first high bit clocked into DIN after bit 5 of a  
conversion in progress is clocked onto the DOUT pin.  
Reference-Buffer Compensation  
In addition to its shutdown function, the SHDN pin also  
selects internal or external compensation. The compen-  
sation affects both power-up time and maximum conver-  
sion speed. Compensated or not, the minimum clock  
rate is 100kHz due to droop on the sample-and-hold.  
If a falling edge on CS forces a start bit before bit 5  
(B5) becomes available, then the current conversion  
will be terminated and a new one started. Thus, the  
fastest the MAX186/MAX188 can run is 15 clocks per  
conversion. Figure 11a shows the serial-interface timing  
necessary to perform a conversion every 15 SCLK  
cycles in external clock mode. If CS is low and SCLK is  
continuous, guarantee a start bit by first clocking in 16  
zeros.  
To select external compensation, open SHDN. See the  
Typical Operating Circuit, which uses a 4.7µF capacitor at  
VREF. A value of 4.7µF or greater ensures stability and  
allows operation of the converter at the full clock speed of  
2MHz. External compensation increases power-up time (see  
the Choosing Power-Down Mode section, and Table 5).  
Most microcontrollers require that conversions occur in  
multiples of 8 SCLK clocks; 16 clocks per conversion  
will typically be the fastest that a microcontroller can  
drive the MAX186/MAX188. Figure 11b shows the  
serial-interface timing necessary to perform a conver-  
sion every 16 SCLK cycles in external clock mode.  
Internal compensation requires no external capacitor at  
VREF, and is selected by pulling SHDN high. Internal com-  
pensation allows for shortest power-up times, but is only  
available using an external clock and reduces the maxi-  
mum clock rate to 400kHz.  
14  
Maxim Integrated  
MAX186/MAX188  
Low-Power, 8-Channel,  
Serial 12-Bit ADCs  
CS  
1
8
1
8
1
SCLK  
DIN  
S
CONTROL BYTE 2  
S
CONTROL BYTE 0  
S
CONTROL BYTE 1  
B11 B10 B9 B8 B7 B6 B5 B4 B3 B2 B1 B0  
CONVERSION RESULT 0  
B11 B10 B9 B8 B7 B6 B5 B4 B3 B2 B1 B0  
CONVERSION RESULT 1  
DOUT  
SSTRB  
Figure 11a. External Clock Mode, 15 Clocks/Conversion Timing  
• • •  
• • •  
• • •  
• • •  
CS  
SCLK  
S
CONTROL BYTE 0  
S
CONTROL BYTE 1  
DIN  
DOUT  
B11 B10 B9 B8 B7 B6 B5 B4 B3 B2 B1 B0  
CONVERSION RESULT 0  
B11 B10 B9 B8  
CONVERSION RESULT 1  
Figure 11b. External Clock Mode, 16 Clocks/Conversion Timing  
using low-leakage capacitors that will not discharge  
more than 1/2LSB while shut down. In shutdown, the  
capacitor has to supply the current into the reference  
(1.5µA typ) and the transient currents at power-up.  
Power-Down  
Choosing Power-Down Mode  
You can save power by placing the converter in a  
low-current shutdown state between conversions.  
Select full power-down or fast power-down mode via  
bits 7 and 8 of the DIN control byte with SHDN high or  
open (see Tables 2 and 6). Pull SHDN low at any time to  
shut down the converter completely. SHDN overrides  
bits 7 and 8 of DIN word (see Table 7).  
Figures 12a and 12b illustrate the various power-down  
sequences in both external and internal clock modes.  
Software Power-Down  
Software power-down is activated using bits PD1 and  
PD0 of the control byte. As shown in Table 6, PD1 and  
PD0 also specify the clock mode. When software shut-  
down is asserted, the ADC will continue to operate in  
the last specified clock mode until the conversion is  
complete. Then the ADC powers down into a low quies-  
cent-current state. In internal clock mode, the interface  
remains active and conversion results may be clocked  
out while the MAX186/MAX188 have already entered a  
software power-down.  
Full power-down mode turns off all chip functions that draw  
quiescent current, reducing IDD and ISS typically to 2µA.  
Fast power-down mode turns off all circuitry except the  
bandgap reference. With the fast power-down mode, the  
supply current is 30µA. Power-up time can be shortened  
to 5µs in internal compensation mode.  
In both software shutdown modes, the serial interface  
remains operational, however, the ADC will not convert.  
Table 5 illustrates how the choice of reference-buffer  
compensation and power-down mode affects both  
power-up delay and maximum sample rate.  
The first logical 1 on DIN will be interpreted as a start  
bit, and powers up the MAX186/MAX188. Following the  
start bit, the data input word or control byte also deter-  
mines clock and power-down modes. For example, if  
the DIN word contains PD1 = 1, then the chip will  
remain powered up. If PD1 = 0, a power-down will  
resume after one conversion.  
In external compensation mode, the power-up time is  
20ms with a 4.7µF compensation capacitor (200ms with  
a 33µF capacitor) when the capacitor is fully discharged.  
In fast power-down, you can eliminate start-up time by  
Maxim Integrated  
15  
MAX186/MAX188  
Low-Power, 8-Channel,  
Serial 12-Bit ADCs  
CLOCK  
MODE  
INTERNAL  
EXTERNAL  
EXTERNAL  
SHDN  
SETS FAST  
POWER-DOWN  
MODE  
SETS EXTERNAL  
CLOCK MODE  
SETS EXTERNAL  
CLOCK MODE  
DIN  
S
X
X X X X 1  
1
S X  
X
X X X 0  
1
S
X X X X X 1  
1
DOUT  
DATA VALID  
DATA VALID  
VALID DATA INVALID  
(12 DATA BITS)  
(12 DATA BITS)  
POWERED  
UP  
FULL  
POWER  
DOWN  
POWERED UP  
POWERED UP  
MODE  
FAST  
POWER-DOWN  
Figure 12a. Timing Diagram Power-Down Modes, External Clock  
Table 5. Typical Power-Up Delay Times  
Reference  
Buffer  
Reference-  
Buffer  
VREF  
Power-  
Down  
Mode  
Power-Up  
Delay  
(s)  
Maximum  
Sampling  
Capacitor  
(μF)  
Compensation  
Rate (ksps)  
Mode  
Enabled  
Enabled  
Enabled  
Enabled  
Disabled  
Disabled  
Internal  
Internal  
External  
External  
Fast  
Full  
5µ  
26  
26  
300µ  
4.7  
4.7  
Fast  
Full  
See Figure 14c  
133  
133  
133  
133  
See Figure 14c  
Fast  
Full  
2µ  
2µ  
Table 6. Software Shutdown and Clock Mode  
Table 7. Hard-Wired Shutdown and  
Compensation Mode  
PD1 PD0  
Device Mode  
SHDN  
State  
1
Open  
0
Device  
Reference-Buffer  
1
1
0
0
1
0
1
0
External Clock Mode  
Internal Clock Mode  
Fast Power-Down Mode  
Full Power-Down Mode  
Mode  
Compensation  
Enabled  
Internal Compensation  
External Compensation  
N/A  
Enabled  
Full Power-Down  
16  
Maxim Integrated  
MAX186/MAX188  
Low-Power, 8-Channel,  
Serial 12-Bit ADCs  
CLOCK  
MODE  
INTERNAL CLOCK MODE  
SETS FULL  
POWER-DOWN  
SETS INTERNAL  
CLOCK MODE  
DIN  
S
X
X X X X 1  
0
S X  
X
X X X 0  
0
S
DOUT  
DATA VALID  
DATA VALID  
SSTRB  
MODE  
CONVERSION  
CONVERSION  
FULL  
POWER-DOWN  
POWERED UP  
POWERED  
UP  
Figure 12b. Timing Diagram Power-Down Modes, Internal Clock  
Hardware Power-Down  
Lowest Power at up to 500  
Conversions/Channel/Second  
The SHDN pin places the converter into the full  
power-down mode. Unlike with the software shut-down  
modes, conversion is not completed. It stops coinci-  
dentally with SHDN being brought low. There is no  
power-up delay if an external reference is used and is  
not shut down. The SHDN pin also selects internal or  
external reference compensation (see Table 7).  
The following examples illustrate two different power-down  
sequences. Other combinations of clock rates, compen-  
sation modes, and power-down modes may give lowest  
power consumption in other applications.  
Figure 14a depicts the MAX186 power consumption for  
one or eight channel conversions utilizing full  
power-down mode and internal reference compensation.  
A 0.01µF bypass capacitor at REFADJ forms an RC filter  
with the internal 20kΩ reference resistor with a 0.2ms  
time constant. To achieve full 12-bit accuracy, 10 time  
constants or 2ms are required after power-up. Waiting  
2ms in FASTPD mode instead of full power-up will reduce  
the power consumption by a factor of 10 or more. This is  
achieved by using the sequence shown in Figure 13.  
Power-Down Sequencing  
The MAX186/MAX188 auto power-down modes can  
save considerable power when operating at less than  
maximum sample rates. The following discussion illus-  
trates the various power-down sequences.  
COMPLETE CONVERSION SEQUENCE  
2ms WAIT  
(ZEROS)  
CH1  
CH7  
(ZEROS)  
DIN  
1
0 0  
1
0 1  
1
1 1  
1
0 0  
1
0 1  
FULLPD  
2.5V  
FASTPD  
NOPD  
FULLPD  
FASTPD  
REFADJ  
VREF  
0V  
4V  
0V  
τ = RC = 20kΩ x C  
REFADJ  
t
15µs  
BUFFEN  
Figure 13. MAX186 FULLPD/FASTPD Power-Up Sequence  
Maxim Integrated  
17  
MAX186/MAX188  
Low-Power, 8-Channel,  
Serial 12-Bit ADCs  
MAX186  
FULL POWER-DOWN  
MAX186/MAX188  
FAST POWER-DOWN  
1000  
10,000  
2ms FASTPD WAIT  
400kHz EXTERNAL CLOCK  
8 CHANNELS  
INTERNAL COMPENSATION  
8 CHANNELS  
100  
1000  
100  
1 CHANNEL  
1 CHANNEL  
10  
2MHz EXTERNAL CLOCK  
EXTERNAL COMPENSATION  
50µs WAIT  
1
10  
0
50 100 150 200 250 300 350 400 450 500  
CONVERSIONS PER CHANNEL PER SECOND  
0
2k  
4k  
6k  
8k 10k 12k 14k 16k 18k  
CONVERSIONS PER CHANNEL PER SECOND  
Figure 14a. MAX186 Supply Current vs. Sample Rate/Second,  
FULLPD, 400kHz Clock  
Figure 14b. MAX186/MAX188 Supply Current vs. Sample  
Rate/Second, FASTPD, 2MHz Clock  
Lowest Power at Higher Throughputs  
3.0  
2.5  
2.0  
1.5  
1.0  
Figure 14b shows the power consumption with  
external-reference compensation in fast power-down,  
with one and eight channels converted. The external  
4.7µF compensation requires a 50µs wait after power-up,  
accomplished by 75 idle clocks after a dummy conver-  
sion. This circuit combines fast multi-channel conversion  
with lowest power consumption possible. Full  
power-down mode may provide increased power sav-  
ings in applications where the MAX186/MAX188 are  
inactive for long periods of time, but where intermittent  
bursts of high-speed conversions are required.  
0.5  
0
External and Internal References  
0.0001 0.001  
0.01  
0.1  
1
10  
TIME IN SHUTDOWN (sec)  
The MAX186 can be used with an internal or external  
reference, whereas an external reference is required for  
the MAX188. Diode D1 shown in the Typical Operating  
Circuit ensures correct start-up. Any standard signal  
diode can be used. For both parts, an external refer-  
ence can either be connected directly at the VREF ter-  
minal or at the REFADJ pin.  
Figure 14c. Typical Power-Up Delay vs. Time in Shutdown  
External Reference  
With both the MAX186 and MAX188, an external refer-  
ence can be placed at either the input (REFADJ) or the  
output (VREF) of the internal buffer amplifier. The  
REFADJ input impedance is typically 20kΩ for the  
MAX186 and higher than 100kΩ for the MAX188, where  
the internal reference is omitted. At VREF, the input  
impedance is a minimum of 12kΩ for DC currents.  
During conversion, an external reference at VREF must  
be able to deliver up to 350µA DC load current and have  
an output impedance of 10Ω or less. If the reference has  
higher output impedance or is noisy, bypass it close to  
the VREF pin with a 4.7µF capacitor.  
An internal buffer is designed to provide 4.096V at  
VREF for both the MAX186 and MAX188. The  
MAX186’s internally trimmed 2.46V reference is  
buffered with a gain of 1.678. The MAX188's buffer is  
trimmed with a buffer gain of 1.638 to scale an external  
2.5V reference at REFADJ to 4.096V at VREF.  
MAX186 Internal Reference  
The full-scale range of the MAX186 with internal reference  
is 4.096V with unipolar inputs, and 2.048V with bipolar  
inputs. The internal reference voltage is adjustable to  
1.5% with the Reference-Adjust Circuit of Figure 17.  
18  
Maxim Integrated  
MAX186/MAX188  
Low-Power, 8-Channel,  
Serial 12-Bit ADCs  
OUTPUT CODE  
FULL-SCALE  
TRANSITION  
11 . . . 111  
011 . . . 111  
011 . . . 110  
FS = +4.096  
11 . . . 110  
11 . . . 101  
2
1LSB = +4.096  
000 . . . 010  
000 . . . 001  
000 . . . 000  
4096  
FS = +4.096V  
1LSB = FS  
4096  
111 . . . 111  
111 . . . 110  
111 . . . 101  
00 . . . 011  
00 . . . 010  
100 . . . 001  
100 . . . 000  
00 . . . 001  
00 . . . 000  
0V  
0
-FS  
+FS - 1LSB  
1
2
3
FS  
INPUT VOLTAGE (LSBs)  
FS - 3/2LSB  
INPUT VOLTAGE (LSBs)  
Figure 15. MAX186/MAX188 Unipolar Transfer Function,  
4.096V = Full Scale  
Figure 16. MAX186/MAX188 Bipolar Transfer Function,  
4.096V/2 = Full Scale  
Using the buffered REFADJ input avoids external  
buffering of the reference. To use the direct VREF input,  
+5V  
disable the internal buffer by tying REFADJ to VDD  
.
MAX186  
Transfer Function and Gain Adjust  
510kΩ  
100kΩ  
REFADJ  
Figure 15 depicts the nominal, unipolar input/output  
(I/O) transfer function, and Figure 16 shows the bipolar  
input/output transfer function. Code transitions occur  
halfway between successive integer LSB values. Output  
coding is binary with 1 LSB = 1.00mV (4.096V/4096) for  
unipolar operation and 1 LSB = 1.00mV ((4.096V/2 -  
-4.096V/2)/4096) for bipolar operation.  
12  
0.01μF  
24kΩ  
Figure 17. MAX186 Reference-Adjust Circuit  
Figure 17, the MAX186 Reference-Adjust Circuit, shows  
how to adjust the ADC gain in applications that use the  
internal reference. The circuit provides 1.5%  
( 65LSBs) of gain adjustment range.  
and DGND should be connected to this ground. No  
other digital system ground should be connected to  
this single-point analog ground. The ground return to  
the power supply for this ground should be low imped-  
ance and as short as possible for noise-free operation.  
Layout, Grounding, Bypassing  
For best performance, use printed circuit boards.  
Wire-wrap boards are not recommended. Board layout  
should ensure that digital and analog signal lines are  
separated from each other. Do not run analog and digi-  
tal (especially clock) lines parallel to one another, or  
digital lines underneath the ADC package.  
High-frequency noise in the VDD power supply may  
affect the high-speed comparator in the ADC. Bypass  
these supplies to the single-point analog ground with  
0.1µF and 4.7µF bypass capacitors close to the  
MAX186/MAX188. Minimize capacitor lead lengths for  
best supply-noise rejection. If the +5V power supply is  
very noisy, a 10Ω resistor can be connected as a low-  
pass filter, as shown in Figure 18.  
Figure 18 shows the recommended system ground  
connections. A single-point analog ground (“star”  
ground point) should be established at AGND, sepa-  
rate from the logic ground. All other analog grounds  
Maxim Integrated  
19  
MAX186/MAX188  
Low-Power, 8-Channel,  
Serial 12-Bit ADCs  
High-Speed Digital Interfacing with QSPI  
The MAX186/MAX188 can interface with QSPI at high  
throughput rates using the circuit in Figure 19. This  
QSPI circuit can be programmed to do a conversion on  
each of the eight channels. The result is stored in mem-  
ory without taxing the CPU since QSPI incorporates its  
own micro-sequencer. Figure 19 depicts the MAX186,  
but the same circuit could be used with the MAX188 by  
adding an external reference to VREF and connecting  
SUPPLIES  
+5V  
-5V  
GND  
R* = 10Ω  
REFADJ to VDD  
.
Figure 20 details the code that sets up QSPI for  
autonomous operation. In external clock mode, the  
MAX186/MAX188 perform a single-ended, unipolar con-  
version on each of their eight analog input channels.  
Figure 21, QSPI Assembly-Code Timing, shows the tim-  
ing associated with the assembly code of Figure 20. The  
first byte clocked into the MAX186/MAX188 is the control  
byte, which triggers the first conversion on CH0. The last  
two bytes clocked into the MAX186/MAX188 are all zero  
and clock out the results of the CH7 conversion.  
V
AGND  
V
SS  
DGND  
+5V  
DGND  
DD  
DIGITAL  
CIRCUITRY  
MAX186/MAX188  
* OPTIONAL  
Figure 18. Power-Supply Grounding Connection  
+5V  
+
CH0  
V
, V  
, V  
, V  
DDSYN STBY  
0.1μ F  
4.7μ F  
DDI  
DDE  
1
20  
19  
18  
V
DD  
2
CH1  
CH2  
SCLK  
CS  
SCK  
3
4
PCS0  
MOSI  
MC68HC16  
CH3 MAX186  
ANALOG  
INPUTS  
DIN 17  
16  
5
6
CH4  
CH5  
CH6  
CH7  
SSTRB  
15  
MISO  
DOUT  
7
DGND 14  
13  
8
AGND  
9
12  
11  
V
REFADJ  
VREF  
SS  
0.01μ F  
10  
SHDN  
+
4.7μ F  
0.1μ F  
V
VSSE  
SSI  
* CLOCK CONNECTIONS NOT SHOWN  
Figure 19. MAX186 QSPI Connection  
20  
Maxim Integrated  
MAX186/MAX188  
Low-Power, 8-Channel,  
Serial 12-Bit ADCs  
*Title : MAX186.ASM  
* Description :  
*
*
*
*
This is a shell program for using a stand-alone 68HC16 without any external memory. The internal 1K RAM  
is put into bank $0F to maintain 68HC11 code compatibility. This program was written with software  
provided in the Motorola 68HC16 Evaluation Kit.  
* Roger J.A. Chen, Applications Engineer  
* MAXIM Integrated Products  
* November 20, 1992  
*
******************************************************************************************************************************************************  
INCLUDE  
INCLUDE  
INCLUDE  
ORG $0200  
‘EQUATES.ASM’ ;Equates for common reg addrs  
‘ORG00000.ASM’ ;initialize reset vector  
‘ORG00008.ASM’ ;initialize interrupt vectors  
;start program after interrupt vectors  
INCLUDE ‘INITSYS.ASM’  
;set EK=F,XK=0,YK=0,ZK=0  
;set sys clock at 16.78 MHz, COP off  
INCLUDE ‘INITRAM.ASM’ ;turn on internal SRAM at $10000  
;set stack (SK=1, SP=03FE)  
MAIN:  
JSR INITQSPI  
MAINLOOP:  
JSR READ186  
WAIT:  
LDAA SPSR  
ANDA #$80  
BEQ WAIT  
BRA MAINLOOP  
;wait for QSPI to finish  
ENDPROGRAM:  
INITQSPI:  
;This routine sets up the QSPI microsequencer to operate on its own.  
;The sequencer will read all eight channels of a MAX186/MAX188 each time  
;it is triggered. The A/D converter results will be left in the  
;receive data RAM. Each 16 bit receive data RAM location will  
;have a leading zero, 12 bits of conversion result and three zeros.  
;
;Receive RAM Bits 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00  
;A/D Result  
0
MSB  
LSB 0 0 0  
***** Initialize the QSPI Registers ******  
PSHA  
PSHB  
LDAA #%01111000  
STAA QPDR  
;idle state for PCS0-3 = high  
LDAA #%01111011  
STAA QPAR  
LDAA #%01111110  
STAA QDDR  
;assign port D to be QSPI  
;only MISO is an input  
LDD #$8008  
STD SPCR0  
;master mode,16 bits/transfer,  
;CPOL=CPHA=0,1MHz Ser Clock  
LDD #$0000  
STD SPCR1  
;set delay between PCS0 and SCK,  
Figure 20. MAX186/MAX188 Assembly-Code Listing  
Maxim Integrated  
21  
MAX186/MAX188  
Low-Power, 8-Channel,  
Serial 12-Bit ADCs  
;set delay between transfers  
LDD #$0800  
STD SPCR2  
;set ENDQP to $8 for 9 transfers  
***** Initialize QSPI Command RAM *****  
LDAA #$80  
STAA $FD40  
LDAA #$C0  
STAA $FD41  
STAA $FD42  
STAA $FD43  
STAA $FD44  
STAA $FD45  
STAA $FD46  
STAA $FD47  
LDAA #$40  
STAA $FD48  
;CONT=1,BITSE=0,DT=0,DSCK=0,PCS0=ACTIVE  
;store first byte in COMMAND RAM  
;CONT=1,BITSE=1,DT=0,DSCK=0,PCS0=ACTIVE  
;CONT=0,BITSE=1,DT=0,DSCK=0,PCS0=ACTIVE  
***** Initialize QSPI Transmit RAM *****  
LDD #$008F  
STD $FD20  
LDD #$00CF  
LDD #$009F  
LDD #$00DF  
LDD #$00AF  
LDD #$00EF  
LDD #$00BF  
LDD #$00FF  
LDD #$0000  
STD $FD22  
STD $FD24  
STD $FD26  
STD $FD28  
STD $FD2A  
STD $FD2C  
STD $FD2E  
STD $FD30  
PULB  
PULA  
RTS  
READ186:  
;This routine triggers the QSPI microsequencer to autonomously  
;trigger conversions on all 8 channels of the MAX186. Each  
;conversion result is stored in the receive data RAM.  
PSHA  
LDAA #$80  
ORAA SPCR1  
STAA SPCR1  
PULA  
;just set SPE  
RTS  
***** Interrupts/Exceptions *****  
BDM: BGND  
;exception vectors point here  
;and put the user in background debug mode  
Figure 20. MAX186/MAX188 Assembly-Code Listing (continued)  
22  
Maxim Integrated  
MAX186/MAX188  
Low-Power, 8-Channel,  
Serial 12-Bit ADCs  
CS  
• • • •  
• • • •  
SCLK  
SSTRB  
DIN  
• • • •  
• • • •  
Figure 21. QSPI Assembly-Code Timing  
TMS320C3x to MAX186 Interface  
Figure 22 shows an application circuit to interface the  
MAX186/MAX188 to the TMS320 in external clock  
mode. The timing diagram for this interface circuit is  
shown in Figure 23.  
XF  
CS  
CLKX  
SCLK  
TMS320C3x  
Use the following steps to initiate a conversion in the  
MAX186/MAX188 and to read the results:  
MAX186  
MAX188  
CLKR  
DX  
1) The TMS320 should be configured with CLKX (trans-  
mit clock) as an active-high output clock and CLKR  
(TMS320 receive clock) as an active-high input clock.  
CLKX and CLKR of the TMS320 are connected  
together with the SCLK input of the MAX186/MAX188.  
DIN  
DR  
DOUT  
SSTRB  
FSR  
2) The MAX186/MAX188 CS is driven low by the XF_  
I/O port of the TMS320 to enable data to be clocked  
into DIN of the MAX186/MAX188.  
Figure 22. MAX186/MAX188 to TMS320 Serial Interface  
3) An 8-bit word (1XXXXX11) should be written to the  
MAX186/MAX188 to initiate a conversion and place  
the device into external clock mode. Refer to Table  
2 to select the proper XXXXX bit values for your spe-  
cific application.  
5) The TMS320 reads in one data bit on each of the  
next 16 rising edges of SCLK. These data bits rep-  
resent the 12-bit conversion result followed by four  
trailing bits, which should be ignored.  
4) The SSTRB output of the MAX186/MAX188 is moni-  
tored via the FSR input of the TMS320. A falling  
edge on the SSTRB output indicates that the conver-  
sion is in progress and data is ready to be received  
from the MAX186/MAX188.  
6) Pull CS high to disable the MAX186/MAX188 until  
the next conversion is initiated.  
Maxim Integrated  
23  
MAX186/MAX188  
Low-Power, 8-Channel,  
Serial 12-Bit ADCs  
CS  
SCLK  
DIN  
START  
SEL2  
SEL1  
SEL0  
UNI/BIP SGL/DIF  
PD1  
PD0  
HIGH  
IMPEDANCE  
SSTRB  
HIGH  
IMPEDANCE  
DOUT  
MSB  
B10  
B1  
LSB  
Figure 23. TMS320 Serial Interface Timing Diagram  
__________Typical Operating Circuit  
_Ordering Information (continued)  
PART†  
TEMP RANGE  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
PIN-PACKAGE  
20 PDIP  
20 SO  
+5V  
MAX188_CPP+  
MAX188_CWP+  
MAX188_CAP+  
MAX188DC/D  
MAX188_EPP+  
MAX188_EWP+  
MAX188_EAP+  
V
DD  
V
CH0  
DD  
C3  
0.1μF  
20 SSOP  
Dice*  
0V to  
4.096V  
DGND  
AGND  
C4  
0.1μF  
ANALOG  
INPUTS  
20 PDIP  
20 SO  
CPU  
MAX186  
CH7  
V
SS  
I/O  
CS  
20 SSOP  
SCLK  
SCK (SK)*  
MOSI (SO)  
MISO (SI)  
VREF  
DIN  
PART  
TEMP RANGE  
BOARD TYPE  
C1  
4.7μF  
DOUT  
MAX186EVKIT-DIP  
0°C to +70°C  
Through-Hole  
SSTRB  
SHDN  
REFADJ  
Parts are offered in grades A, B, C and D (grades defined in  
Electrical Characteristics). When ordering, please specify grade.  
Contact factory for availability of A-grade in SSOP package.  
*Dice are specified at +25°C, DC parameters only.  
V
C2  
0.01μF  
SS  
+Denotes a lead(Pb)-free/RoHS-compliant package.  
Chip Information  
Package Information  
For the latest package outline information and land patterns (foot-  
prints), go to www.maximintegrated.com/packages. Note that a  
“+”, “#”, or “-” in the package code indicates RoHS status only.  
Package drawings may show a different suffix character, but the  
drawing pertains to the package regardless of RoHS status.  
Substrate connected to V  
DD  
PACKAGE  
TYPE  
PACKAGE  
CODE  
P20+3  
W20+3  
A20+1  
OUTLINE  
NO.  
21-0043  
21-0042  
21-0056  
LAND  
PATTERN NO.  
20 PDIP  
20 SO  
91-0108  
91-0094  
20 SSOP  
24  
Maxim Integrated  
MAX186/MAX188  
Low-Power, 8-Channel,  
Serial 12-Bit ADCs  
Revision History  
REVISION REVISION  
PAGES  
CHANGED  
DESCRIPTION  
NUMBER  
DATE  
0
5
3/93  
Initial release  
1/12  
Updated the Ordering Information and Electrical Characteristics.  
1, 3, 18  
Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent  
licenses are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and  
max limits) shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.  
Maxim Integrated 160 Rio Robles, San Jose, CA 95134 USA 1-408-601-1000  
25  
© 2012 Maxim Integrated Products, Inc.  
Maxim Integrated and the Maxim Integrated logo are trademarks of Maxim Integrated Products, Inc.  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY