MAX1888EUA+ [MAXIM]

Analog Circuit, 1 Func, CMOS, PDSO8, MICRO MAX PACKAGE-8;
MAX1888EUA+
型号: MAX1888EUA+
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Analog Circuit, 1 Func, CMOS, PDSO8, MICRO MAX PACKAGE-8

光电二极管
文件: 总7页 (文件大小:403K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-2189; Rev 1; 2/02  
Low-Cost Integrated Offset Logic  
for Notebook CPU Power Supplies  
General Description  
Features  
The MAX1888 is a three-input decoder with three open-  
drain outputs. It is used with the MAX1718 or a similar  
DC-to-DC controller to offset the CPU core voltage in  
notebook computers. Designed to interface with low-  
voltage logic, the MAX1888 can program the controller  
for three independent offsets. The circuit is extremely  
low cost and is available in an 8-pin µMAX package.  
Simple, Low-Cost Offset Voltage Control  
for CPU Core Power Supplies  
IMVP II Logic Interface  
3V to 5.5V Supply Voltage  
Low 30µA (max) Supply Current  
8-Pin µMAX Package  
Applications  
Ordering Information  
CPU Core Supplies for Intel IMVP II Notebook  
Computers  
PART  
TEMP RANGE  
PIN-PACKAGE  
MAX1888EUA  
-40°C to +85°C  
8 µMAX  
Minimal Operating Circuit  
Pin Configuration  
TOP VIEW  
POS  
INPUT  
SUPPLY  
V
CC  
OFFSET  
ADJUST  
MAX1888  
DPSLP  
PERF  
SUS  
1
2
3
4
8
7
6
5
V
CC  
NEG  
LOW-  
DPSLP  
PERF  
SUS  
BSM  
PSM  
BOM  
BSM  
PSM  
BOM  
OPEN-DRAIN  
DECODER  
OUTPUTS  
VOLTAGE  
LOGIC  
MAX1888  
INPUTS  
GND  
GND  
µMAX  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
Low-Cost Integrated Offset Logic for Notebook  
CPU Power Supplies  
ABSOLUTE MAXIMUM RATINGS  
V
CC  
to GND..............................................................-0.3V to +6V  
Extended Operating Temperature.......................-40°C to +85°C  
Junction Temperature......................................................+150°C  
Storage Temperature.........................................-65°C to +150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
PERF, SUS, DPSLP, BOM, PSM, BSM to GND ........-0.3V to +6V  
Continuous Power Dissipation  
8-Pin µMAX (derate 4.5mW/°C above +70°C)...........362.0mW  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(Circuit of Figure 1, V  
= +5V, T = -40°C to +85°C, unless otherwise noted.)  
A
CC  
PARAMETER  
POWER SUPPLY  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Supply Voltage Range (V  
)
CC  
3.0  
5.5  
V
BIAS  
All inputs = 0  
< 0.01  
10  
1
Quiescent Supply Current (V  
)
CC  
µA  
All inputs = 1.5V  
30  
LOGIC AND I/Os  
Logic Input High Voltage  
(PERF, SUS, DPSLP),  
Hysteresis = 40mV (typ)  
3V < V  
3V < V  
< 5.5V  
< 5.5V  
1.2  
-1  
V
V
CC  
CC  
Logic Input Low Voltage  
(PERF, SUS, DPSLP),  
Hysteresis = 40mV (typ)  
0.4  
0.3  
Logic Input Current  
1
µA  
I
I
= 5mA  
20  
50  
LOAD  
LOAD  
Output On-Resistance  
(BOM, BSM, PSM)  
= 5mA, 3V < V  
< 5.5V  
100  
CC  
Output Leakage Current  
(BOM, BSM, PSM)  
V(pin) = 5V  
< 0.01  
1
µA  
DYNAMICS  
Falling edge, 1.5V to 0V step in 2ns  
Rising edge, 0 to 1.5V step in 2ns  
700  
70  
Propagation Delay  
ns  
2
_______________________________________________________________________________________  
Low-Cost Integrated Offset Logic for Notebook  
CPU Power Supplies  
Typical Operating Characteristics  
(Circuit of Figure 1, logic high = 1.5V, V  
= 1.3V, T = +25°C, unless otherwise noted.)  
OUT  
A
SUPPLY CURRENT VS. TEMPERATURE  
SUPPLY CURRENT vs. SUPPLY VOLTAGE  
OUTPUT R VS. SUPPLY VOLTAGE  
ON  
MAX1888toc01  
100  
16  
40  
35  
30  
25  
20  
15  
10  
T = +85°C  
A
A
B
V
= 5V  
10  
1
CC  
12  
8
T = +25°C  
A
T = -40°C  
A
0.1  
V
= 4.5V  
CC  
C
D
4
0.01  
V
= 3.3V  
CC  
0.001  
0
3.0  
3.5  
4.0  
4.5  
(V)  
5.0  
5.5  
-40  
-15  
10  
35  
60  
85  
3.0  
3.5  
4.0  
4.5  
(V)  
5.0  
5.5  
TEMPERATURE (°C)  
V
V
CC  
CC  
A = ALL INPUTS = 1.5V  
B = ALL INPUTS = 3.3V  
C = ALL INPUTS = 5V  
D = ALL INPUTS = 0.4V  
SWITCHING CHARACTERISTICS  
SWITCHING CHARACTERISTICS  
(OUTPUT TRANSITIONS INTO A 10kLOAD)  
(OUTPUT TRANSITIONS INTO A 10kLOAD)  
OUTPUT R VS. TEMPERATURE  
ON  
MAX1888 toc05  
MAX1888 toc06  
40  
35  
30  
25  
20  
15  
10  
A
V
= 3.3V  
CC  
A
V
= 3.3V  
CC  
B
V
= 5V  
CC  
V
= 5V  
CC  
B
V
= 3.3V  
CC  
V
= 5V  
CC  
20ns/div  
400ns/div  
-40  
-15  
10  
35  
60  
85  
A = V , 1V/div  
A = V , 1V/div  
IN  
IN  
TEMPERATURE (°C)  
B = V , 1V/div  
B = V , 1V/div  
OUT  
OUT  
Pin Description  
PIN  
NAME  
DPSLP  
PERF  
SUS  
FUNCTION  
1
2
3
4
5
6
Deep-Sleep Mode Control Digital Input  
Performance-Mode Offset Control Digital Input  
Suspend-Mode (Deeper Sleep) Control Digital Input  
Ground  
GND  
BOM  
PSM  
Open-Drain Output for Battery Operating Mode (BOM)  
Open-Drain Output for Performance Sleep Mode (PSM)  
Open-Drain Output for Battery Sleep Mode (BSM)  
Supply Voltage  
7
8
BSM  
V
CC  
_______________________________________________________________________________________  
3
Low-Cost Integrated Offset Logic for Notebook  
CPU Power Supplies  
TTable 1. Truth Table  
INPUTS  
OUTPUTS  
MODE  
Deeper Sleep  
DPSLP  
PERF  
SUS  
BSM  
Hi-Z  
L
PSM  
Hi-Z  
Hi-Z  
L
BOM  
Hi-Z  
Hi-Z  
Hi-Z  
L
X
L
X
L
H
L
L
L
L
Battery Sleep  
Performance Sleep  
Battery Operating  
Performance  
L
H
L
Hi-Z  
Hi-Z  
Hi-Z  
H
H
Hi-Z  
Hi-Z  
H
Hi-Z  
Detailed Description  
Logic Characteristics  
The MAX1888 is a three-input decoder with three open-  
drain outputs. It is used with the MAX1718 DC-to-DC  
controller to offset the CPU core voltage in notebook  
computers. The MAX1718 has two dedicated inputs  
(POS and NEG) that simplify the task of offsetting its  
output voltage. Specifically, the output voltage shifts by  
an amount equal to the difference between POS and  
NEG multiplied by a scale factor that depends on the  
DAC code (refer to the MAX1718 data sheet). The volt-  
age between the POS and NEG inputs can be set with  
a programmable voltage-divider using the MAX1888 to  
connect the bottom resistor of the divider to ground  
(see Figure 1.)  
The Intel mobile processor specifications require inde-  
pendent offset to the CPU core voltage for battery  
sleep mode (BSM), performance sleep mode (PSM)  
and battery-operating mode (BOM). No offsets are  
required for the deeper-sleep mode (DPSLP) and per-  
formance mode (PERF). Table 1 explicitly describes  
the logical operation of the decoder.  
The decoders inputs may come from system-level  
logic or directly from the CPU. To interface with low-  
voltage logic, the MAX1888s input logic thresholds are  
designed with an input-logic high voltage of 1.2V (min)  
and an input-logic low voltage of 0.3V (max). The logic  
inputs also include 40mV (typ) hysteresis to improve  
noise immunity.  
The output on-resistance is guaranteed to be less than  
100over the entire supply voltage and temperature  
range. When loaded with a total pullup resistance  
greater than 10k, the open-drain output resistance  
causes less than 1% error in impedance. If the offset  
voltage is set to 5% of the regulated output voltage,  
then the effect of the impedance error on the output  
voltage is approximately 0.05%, which is negligible in  
most applications.  
V
OUT  
NEG  
POS  
TO  
MAX1718  
5V INPUT  
V
CC  
MAX1888  
The MAX1888 has rising- and falling-edge propagation  
delays of 70ns (typ) and 700ns (typ), respectively.  
Since transition times for CPU core voltage are typically  
much longer than these intervals, such delays are neg-  
ligible. Note the time constant of the rising edge in the  
output voltage is set by the capacitance of the open-  
drain output transistor and the load impedance (see  
the Typical Operating Characteristics).  
LOW-  
VOLTAGE  
LOGIC  
DPSLP  
PERF  
SUS  
BSM  
PSM  
BOM  
OPEN-DRAIN  
DECODER  
OUTPUTS  
INPUTS  
GND  
Figure 1. Simplified Application Circuit; Also Used for  
Obtaining Characterization Data; Offset Voltage is a  
Percentage of the Output Voltage.  
4
_______________________________________________________________________________________  
Low-Cost Integrated Offset Logic for Notebook  
CPU Power Supplies  
R1  
20  
5V INPUT  
C8  
C1  
0.22µF  
17  
9
0.1µF  
BATT 7V TO 24V  
V
V
DD  
CC  
1
2
SKP/SDN  
V+  
C2, 25V, X5R  
5 x 10µF  
D1  
10  
26  
CMPSH-3  
SHUTDOWN  
TON  
BST  
2x  
2x  
IRF7811A  
Q1  
25  
24  
V
L1  
CC  
28  
R8  
D0  
D1  
DH  
OUTPUT  
0.68µH  
0.004Ω  
0.6V TO 1.75V  
C3  
0.1µF  
SUMIDA  
R2  
100kΩ  
C4  
CEP125#4712-TO11  
27  
16  
23  
LX  
DL  
6 x 270µF, 2V  
PANASONIC SP  
EEFUE0E271R  
D2  
D2  
R3  
100kΩ  
FDS7764A  
Q2  
CENTRAL  
SEMICONDUCTOR  
CMSH5-40  
5V INPUT  
C7  
MAX1718  
22  
21  
D3  
D4  
8
V
CC  
15  
4
0.1µF  
GND  
FB  
MAX1888  
19  
18  
ZMODE  
SUS  
7
6
5
1
2
3
MUX CONTROL  
BSM  
PSM  
BOM  
DPSLP  
PERF  
SUS  
LOGIC  
INPUTS  
REF  
7
8
SUSPEND  
INPUT  
DECODER  
S0  
S1  
5
4
NEG  
POS  
GND  
R4  
62kΩ  
R10  
1kΩ  
R11  
R12  
R13  
82.5kΩ  
3
6
TIME  
CC  
26.7kΩ  
15.8kΩ  
C6  
47pF  
13  
5V  
C5  
0.22µF  
R5  
100kΩ  
11  
12  
REF  
14  
20  
POWER-GOOD  
OUTPUT  
R18  
24.9kΩ  
VGATE  
OVP  
ILIM  
R19  
27.4kΩ  
Figure 2. Typical Application Circuit  
_______________________________________________________________________________________  
5
Low-Cost Integrated Offset Logic for Notebook  
CPU Power Supplies  
Supply Current  
V
REF  
The MAX1888 needs no shutdown control. The circuit  
consumes virtually no current (I(V ) < 1µA) when all  
CC  
NEG  
POS  
the logic inputs are 0V, and less than 30µA when all the  
logic inputs are 1.5V. In general, the supply current  
increases with supply voltage and decreases with the  
logic input voltage. For a given supply voltage, the sup-  
ply current decreases with temperature (see the  
Typical Operating Characteristics).  
TO  
MAX1718  
5V INPUT  
V
CC  
MAX1888  
LOW-  
VOLTAGE  
LOGIC  
DPSLP  
PERF  
SUS  
BSM  
PSM  
BOM  
Applications Information  
OPEN-DRAIN  
DECODER  
OUTPUTS  
Figure 2 shows a typical CPU core supply application  
using the MAX1888 and the MAX1718. The voltage  
dividers are set to obtain negative offsets of 1%, 3%,  
and 5% of the output voltage for battery-operating  
mode (BOM), battery sleep mode (BSM), and perfor-  
mance sleep mode (PSM), respectively. The offset volt-  
age is given by the following equation:  
INPUTS  
GND  
Figure 3. Using the MAX1888 to Set the Offset Voltage  
Independent of V  
OUT  
V
= K V  
V  
(
)
OFFSET  
POS NEG  
The MAX1888 can be inserted in the feedback path of  
any regulator to offset the output voltage. An external  
reference greater than the feedback set point is need-  
ed to affect negative offsets. The basic arrangement is  
shown in Figure 4.  
where K is the DAC code-dependent scale factor (refer  
to Table 3 in the MAX1718 data sheet). The offset volt-  
age in each mode is:  
R10  
V
= K  
= K  
= K  
V
OUT  
OFFSET,BOM  
R10 + R13  
V
REF  
V
OUT  
R10  
V
V
OUT  
OFFSET,BSM  
R10 + R11  
5V INPUT  
R10  
V
FB  
V
V
OUT  
OFFSET,PSM  
V
R10 + R12  
CC  
MAX1888  
Note that divider ratio in each mode must be adjusted  
for a given DAC code. The circuit in Figure 2 assumes  
OUT  
values for R11, R12, R13 in the divider are 26.7k,  
15.8k, and 82.5k, respectively. Please note that  
these offsets are provided as an example only. Contact  
Intel for specific offset requirements.  
LOW-  
VOLTAGE  
LOGIC  
DPSLP  
PERF  
SUS  
BSM  
PSM  
BOM  
V
= 1V with K = 0.84 and R10 = 1k. The resulting  
OPEN-DRAIN  
DECODER  
OUTPUTS  
INPUTS  
GND  
The circuits in Figures 1 and 2 set the offset voltage as  
a percentage of the output voltage. Alternatively, the  
offset can be set as independent of the output voltage  
by biasing the POS and NEG inputs from a fixed refer-  
ence voltage (see Figure 3).  
Figure 4. Inserting the MAX1888 into the Feedback Path of Any  
Regulator to Shift Output Voltage  
6
_______________________________________________________________________________________  
Low-Cost Integrated Offset Logic for Notebook  
CPU Power Supplies  
Layout Guidelines  
Chip Information  
Most applications do not drive the MAX1888 with high  
frequency signals with ultra-fast transition times.  
Therefore, the layout requirements are minimal. Keep  
the resistive voltage-divider traces away from noisy  
nodes and terminate the dividers through the MAX1888  
to quiet analog ground. Place a 0.1µF decoupling  
capacitor close to the device.  
TRANSISTOR COUNT: 170  
PROCESS: CMOS  
Package Information  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,  
go to www.maxim-ic.com/packages.)  
4X S  
8
8
MILLIMETERS  
INCHES  
DIM MIN  
MAX  
MAX  
MIN  
-
-
0.043  
0.006  
0.037  
0.014  
0.007  
0.120  
1.10  
0.15  
0.95  
0.36  
0.18  
3.05  
A
0.002  
0.030  
0.010  
0.005  
0.116  
0.05  
0.75  
0.25  
0.13  
2.95  
A1  
A2  
b
E
H
ÿ 0.50±0.1  
c
D
e
0.0256 BSC  
0.65 BSC  
0.6±0.1  
E
H
0.116  
0.188  
0.016  
0  
0.120  
2.95  
4.78  
0.41  
0∞  
3.05  
5.03  
0.66  
6∞  
0.198  
0.026  
6∞  
L
1
1
α
S
0.6±0.1  
0.0207 BSC  
0.5250 BSC  
BOTTOM VIEW  
D
TOP VIEW  
A1  
A2  
A
c
α
e
L
b
SIDE VIEW  
FRONT VIEW  
PROPRIETARY INFORMATION  
TITLE:  
PACKAGE OUTLINE, 8L uMAX/uSOP  
APPROVAL  
DOCUMENT CONTROL NO.  
REV.  
1
21-0036  
J
1
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 _____________________ 7  
© 2002 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

相关型号:

MAX1888EUA-T

Analog Circuit, 1 Func, CMOS, PDSO8, MICRO MAX PACKAGE-8
MAXIM

MAX1889

Triple-Output TFT LCD Power Supply with Fault Protection
MAXIM

MAX1889EGE

Triple-Output TFT LCD Power Supply with Fault Protection
MAXIM

MAX1889ETE

Triple-Output TFT LCD Power Supply with Fault Protection
MAXIM

MAX1889ETE+

Switching Regulator, Current-mode, 2.8A, 1250kHz Switching Freq-Max, BICMOS, 5 X 5 MM, 0.80 MM HEIGHT, ULTRA THIN, QFN-16
MAXIM

MAX1889EVKIT

Evaluation Kit for the MAX1889
MAXIM

MAX188AEAP

ADC, Successive Approximation, 12-Bit, 1 Func, 8 Channel, Serial Access, CMOS, PDSO20, SSOP-20
MAXIM

MAX188AEAP+

ADC, Successive Approximation, 12-Bit, 1 Func, 8 Channel, Serial Access, CMOS, PDSO20, SSOP-20
MAXIM

MAX188AEAP-T

ADC, Successive Approximation, 12-Bit, 1 Func, 8 Channel, Serial Access, CMOS, PDSO20, SSOP-20
MAXIM

MAX188AEWP

ADC, Successive Approximation, 12-Bit, 1 Func, 8 Channel, Serial Access, CMOS, PDSO20, SO-20
MAXIM

MAX188AEWP-T

ADC, Successive Approximation, 12-Bit, 1 Func, 8 Channel, Serial Access, CMOS, PDSO20, SO-20
MAXIM

MAX188AMJP

ADC, Successive Approximation, 12-Bit, 1 Func, 8 Channel, Serial Access, CMOS, CDIP20, CERDIP-20
MAXIM