MAX189 [MAXIM]

+5V.Low-Power.12-Bit Serial ADCs ; + 5V.Low - Power.12位串行模数转换器\n
MAX189
型号: MAX189
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

+5V.Low-Power.12-Bit Serial ADCs
+ 5V.Low - Power.12位串行模数转换器\n

转换器 模数转换器
文件: 总20页 (文件大小:178K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-0196; Rev 0; 10/93  
+5 V, Lo w -P o w e r, 1 2 -Bit S e ria l ADCs  
MAX1  
__________________Ge n e ra l De s c rip t io n  
________________________________Fe a t u re s  
12-Bit Resolution  
The MAX187/MAX189 serial 12-bit analog-to-digital  
converters (ADCs) operate from a single +5V supply  
and accept a 0V to 5V analog input. Both parts feature  
a n 8.5µs s uc c e s s ive -a p p roxima tion ADC, a fa s t  
track/hold (1.5µs), an on-chip clock, and a high-speed  
3-wire serial interface.  
±1⁄  
LSB Integral Nonlinearity (MAX187A/MAX189A)  
2
Internal Track/Hold, 75kHz Sampling Rate  
Single +5V Operation  
7/MAX189  
Low Power: 2µA Shutdown Current  
1.5mA Operating Current  
The MAX187/MAX189 d ig itize s ig na ls a t a 75ks p s  
throughput rate. An external clock accesses data from  
the interface, which communicates without external  
hardware to most digital signal processors and micro-  
c ontrolle rs . The inte rfa c e is c omp a tib le with SPI™,  
QSPI™, and Microwire.  
Internal 4.096V Buffered Reference (MAX187)  
3-Wire Serial Interface, Compatible with SPI,  
QSPI, and Microwire  
Small-Footprint 8-Pin DIP and 16-Pin SO  
_________________Ord e rin g In fo rm a t io n  
The MAX187 has an on-chip buffered reference, and  
the MAX189 requires an external reference. Both the  
MAX187 and MAX189 save space with 8-pin DIP and  
16-pin SO packages. Power consumption is 7.5mW  
and reduces to only 10µW in shutdown.  
ERROR  
(LSB)  
PART  
TEMP. RANGE PIN-PACKAGE  
MAX187ACPA  
MAX187BCPA  
MAX187CCPA  
MAX187ACWE  
MAX187BCWE  
MAX187CCWE  
MAX187BC/D  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
8 Plastic DIP  
8 Plastic DIP  
8 Plastic DIP  
16 Wide SO  
16 Wide SO  
16 Wide SO  
Dice*  
±1⁄  
±1  
2
Excellent AC characteristics and very low power con-  
sumption combined with ease of use and small pack-  
age size make these converters ideal for remote DSP  
and sensor applications, or for circuits where power  
consumption and space are crucial.  
±2  
±1⁄  
±1  
±2  
±1  
2
___________________________Ap p lic a t io n s  
Portable Data Logging  
Ordering Information continued on last page.  
* Dice are specified at T = +25°C, DC parameters only.  
A
Remote Digital Signal Processing  
Isolated Data Acquisition  
** Contact factory for availability and processing to MIL-STD-883.  
High-Accuracy Process Control  
_________________P in Co n fig u ra t io n s  
________________Fu n c t io n a l Dia g ra m  
6
TOP VIEW  
OUTPUT  
SHIFT  
REGISTER  
DOUT  
SCLK  
8
5
GND  
REF-  
DAC  
REF+  
AV = 1.638  
10k  
(4.096V)  
V
DD  
1
2
3
4
8
7
6
5
+2.5V  
BANDGAP  
SCLK  
CS  
AIN  
SHDN  
REF  
REFERENCE  
(MAX187 ONLY)  
12-BIT  
SAR  
MAX187  
MAX189  
DOUT  
4
2
REF  
GND  
AIN  
T/H  
COMPARATOR  
DIP  
7
3
MAX187  
MAX189  
CS  
CONTROL  
AND  
BUFFER ENABLE/DISABLE  
1
TIMING  
SHDN  
V
DD  
NOTE: PIN NUMBERS SHOWN ARE FOR 8-PIN DIPs ONLY.  
Pin Configurations continued on last page.  
™ SPI and QSPI are trademarks of Motorola. Microwire is a trademark of National Semiconductor.  
________________________________________________________________ Maxim Integrated Products  
Ca ll t o ll fre e 1 -8 0 0 -9 9 8 -8 8 0 0 fo r fre e s a m p le s o r lit e ra t u re .  
1
+5 V, Lo w -P o w e r, 1 2 -Bit S e ria l ADCs  
ABSOLUTE MAXIMUM RATINGS  
V
DD  
to GND .............................................................-0.3V to +6V  
Continuous Power Dissipation (T = +70°C)  
A
AIN to GND................................................-0.3V to (V + 0.3V)  
8-Pin Plastic DIP (derate 9.09mW/°C above +70°C) ..500mW  
16-Pin Wide SO (derate 8.70mW/°C above +70°C) ...478mW  
8-Pin CERDIP (derate 8.00mW/°C above +70°C) ......440mW  
Operating Temperature Ranges:  
DD  
REF to GND ...............................................-0.3V to (V + 0.3V)  
DD  
Digital Inputs to GND.................................-0.3V to (V + 0.3V)  
DD  
Digital Outputs to GND..............................-0.3V to (V + 0.3V)  
DD  
SHDN to GND.............................................-0.3V to (V + 0.3V)  
MAX187_C_ _/MAX189_C_ _.............................0°C to +70°C  
MAX187_E_ _/MAX189_E_ _ ..........................-40°C to +85°C  
MAX187_MJA/MAX189_MJA .......................-55°C to +125°C  
Storage Temperature Range ............................-60°C to +150°C  
Lead Temperature (soldering, 10sec)............................+300°C  
DD  
REF Load Current (MAX187) .........................4.0mA Continuous  
REF Short-Circuit Duration (MAX187)................................20sec  
DOUT Current..................................................................±20mA  
7/MAX189  
Stresses beyond those listed under Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
MAX1  
(V  
= +5V ±5%; GND = 0V; unipolar input mode; 75ksps, f  
= 4.0MHz, external clock (50% duty cycle); MAX187—internal  
DD  
CLK  
reference: V  
= 4.096V, 4.7µF capacitor at REF pin, or MAX189—external reference: V  
= 4.096V applied to REF pin, 4.7µF  
REF  
REF  
capacitor at REF pin; T = T  
to T ; unless otherwise noted.)  
MAX  
A
MIN  
PARAMETER  
DC ACCURACY (Note 1)  
Resolution  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Bits  
12  
MAX18_A  
MAX18_B  
MAX18_C  
±1⁄  
±1  
±2  
±1  
±11⁄  
±3  
2
Relative Accuracy (Note 2)  
LSB  
Differential Nonlinearity  
Offset Error  
DNL  
No missing codes over temperature  
MAX18_A  
LSB  
LSB  
2
MAX18_B/C  
MAX187  
±3  
Gain Error (Note 3)  
LSB  
MAX189A  
±1  
MAX189B/C  
±3  
Gain Temperature Coefficient  
External reference, 4.096V  
±0.8  
ppm/°C  
(10kHz sine wave input, 0V to 4.096Vp-p, 75ksps)  
DYNAMIC SPECIFICATIONS  
Signal-to-Noise plus  
Distortion Ratio  
SINAD  
70  
80  
dB  
dB  
Total Harmonic Distortion  
(up to the 5th harmonic)  
THD  
-80  
Spurious-Free Dynamic Range  
Small-Signal Bandwidth  
Full-Power Bandwidth  
SFDR  
dB  
Rolloff -3dB  
4.5  
0.8  
MHz  
MHz  
2
_______________________________________________________________________________________  
+5 V, Lo w -P o w e r, 1 2 -Bit S e ria l ADCs  
MAX1  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= +5V ±5%; GND = 0V; unipolar input mode; 75ksps, f  
= 4.0MHz, external clock (50% duty cycle); MAX187—internal  
DD  
CLK  
reference: V  
= 4.096V, 4.7µF capacitor at REF pin, or MAX189—external reference: V  
= 4.096V applied to REF pin, 4.7µF  
REF  
REF  
capacitor at REF pin; T = T  
to T ; unless otherwise noted.)  
MAX  
A
MIN  
PARAMETER  
CONVERSION RATE  
Conversion Time  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
8.5  
UNITS  
7/MAX189  
tCONV  
tACQ  
5.5  
1.5  
µs  
µs  
Track/Hold Acquisition Time  
Throughput Rate  
External clock, 4MHz, 13 clocks  
75  
ksps  
ns  
Aperture Delay  
tAPR  
10  
Aperture Jitter  
<50  
ps  
ANALOG INPUT  
Input Voltage Range  
Input Capacitance (Note 4)  
0 to VREF  
V
16  
pF  
INTERNAL REFERENCE (MAX187 only, reference buffer enabled)  
TA = +25°C  
4.076  
4.060  
4.050  
4.040  
4.096  
4.116  
4.132  
4.140  
4.150  
30  
MAX187_C  
MAX187_E  
MAX187_M  
REF Output Voltage  
VREF  
V
TA = TMIN to TMAX  
REF Short-Circuit Current  
REF Tempco  
mA  
MAX187AC/BC  
MAX187AE/BE  
±30  
±30  
±30  
±30  
1
±50  
±60  
ppm/°C  
MAX187AM/BM  
MAX187C  
±80  
Load Regulation (Note 5)  
0mA to 0.6mA output load  
mV  
EXTERNAL REFERENCE AT REF (Buffer disabled, VREF = 4.096V)  
Input Voltage Range  
Input Current  
2.50  
12  
VDD + 50mV  
350  
V
200  
20  
µA  
k  
µA  
Input Resistance  
Shutdown REF Input Current  
1.5  
10  
_______________________________________________________________________________________  
3
+5 V, Lo w -P o w e r, 1 2 -Bit S e ria l ADCs  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= +5V ±5%; GND = 0V; unipolar input mode; 75ksps, f  
= 4.0MHz, external clock (50% duty cycle); MAX187—internal  
DD  
CLK  
reference: V  
= 4.096V, 4.7µF capacitor at REF pin, or MAX189—external reference: V  
= 4.096V applied to REF pin, 4.7µF  
REF  
REF  
capacitor at REF pin; T = T  
to T ; unless otherwise noted.)  
MAX  
A
MIN  
PARAMETER  
SYMBOL  
SHDN  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
DIGITAL INPUTS (SCLK, CS  
SCLK, CS Input High Voltage  
SCLK, CS Input Low Voltage  
SCLK, CS Input Hysteresis  
SCLK, CS Input Leakage  
SCLK, CS Input Capacitance  
SHDN Input High Voltage  
SHDN Input Low Voltage  
SHDN Input Current  
,
)
V
2.4  
V
V
INH  
V
0.8  
INL  
7/MAX189  
VHYST  
0.15  
V
IIN  
V
IN = 0V or VDD  
±1  
15  
µA  
pF  
V
CIN  
(Note 4)  
V
VDD - 0.5  
INSH  
MAX1  
V
0.5  
±4.0  
V
INSL  
IINS  
SHDN = VDD or 0V  
µA  
V
SHDN Input Mid Voltage  
SHDN Voltage, Floating  
V
1.5  
VDD -1.5  
IM  
VFLT  
SHDN = open  
SHDN = open  
2.75  
V
SHDN Maximum Allowed  
Leakage, Mid Input  
-100  
100  
0.4  
nA  
V
DIGITAL OUTPUT (DOUT)  
ISINK = 5mA  
ISINK = 16mA  
ISOURCE = 1mA  
CS = 5V  
Output Voltage Low  
VOL  
0.3  
Output Voltage High  
VOH  
IL  
4
V
Three-State Leakage Current  
±10  
15  
µA  
Three-State Output  
Capacitance  
COUT  
CS = 5V (Note 4)  
pF  
POWER REQUIREMENTS  
Supply Voltage  
VDD  
4.75  
5.25  
2.5  
2.0  
10  
V
MAX187  
MAX189  
1.5  
1.0  
2
Operating mode  
mA  
IDD  
Supply Current  
Power-down mode  
µA  
V
DD = +5V, ±5%; external reference, 4.096V;  
Power-Supply Rejection  
PSR  
±0.06  
±0.5  
mV  
full-scale input (Note 6)  
4
_______________________________________________________________________________________  
+5 V, Lo w -P o w e r, 1 2 -Bit S e ria l ADCs  
MAX1  
TIMING CHARACTERISTICS  
(V = +5.0V ±5%, T = T  
to T , unless otherwise noted.)  
MAX  
DD  
A
MIN  
PARAMETER  
SYMBOL  
CONDITIONS  
CS = high (Note 7)  
MIN  
TYP  
MAX  
UNITS  
7/MAX189  
Track/Hold Acquisition Time  
SCLK Fall to Output Data Valid  
tACQ  
1.5  
20  
20  
µs  
MAX18_ _C/E  
MAX18_ _M  
150  
200  
100  
100  
5
tDO  
CLOAD = 100pF  
ns  
CS Fall to Output Enable  
CS Rise to Output Disable  
SCLK Clock Frequency  
SCLK Pulse Width High  
SCLK Pulse Width Low  
tDV  
tTR  
fSCLK  
tCH  
CLOAD = 100pF  
CLOAD = 100pF  
ns  
ns  
MHz  
ns  
100  
100  
tCL  
ns  
SCLK Low to CS Fall  
tCSO  
tCS  
50  
ns  
ns  
Setup Time  
CS Pulse Width  
500  
Note 1: Tested at V = +5V.  
DD  
Note 2: Relative accuracy is the deviation of the analog value at any code from its theoretical value after the full-scale range has  
been calibrated.  
Note 3: MAX187—internal reference, offset nulled; MAX189–external +4.096V reference, offset nulled. Excludes reference errors.  
Note 4: Guaranteed by design. Not subject to production testing.  
Note 5: External load should not change during conversion for specified ADC accuracy.  
Note 6: DC test, measured at 4.75V and 5.25V only.  
Note 7: To guarantee acquisition time, t  
is the maximum time the device takes to acquire the signal, and is also the minimum  
ACQ  
time needed for the signal to be acquired.  
_______________________________________________________________________________________  
5
+5 V, Lo w -P o w e r, 1 2 -Bit S e ria l ADCs  
________________________________________________Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s  
POWER-SUPPLY REJECTION vs.  
V
REF  
vs. TEMPERATURE  
TEMPERATURE  
4.090  
4.089  
0.16  
0.14  
4.088  
4.087  
0.12  
0.10  
7/MAX189  
4.086  
4.085  
4.084  
4.083  
4.082  
4.081  
4.080  
0.08  
0.06  
0.04  
0.02  
0
MAX1  
-60  
-20  
20  
60  
100  
140  
-60  
-20  
20  
60  
100  
140  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
SHUTDOWN SUPPLY CURRENT vs.  
TEMPERATURE  
SUPPLY CURRENT vs. TEMPERATURE  
7
2.2  
1.8  
6
5
MAX187  
MAX189  
4
3
2
1
0
1.4  
1.0  
0.6  
0.2  
-60  
-20  
20  
60  
100  
140  
-60  
-20  
20  
60  
100  
140  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
6
_______________________________________________________________________________________  
+5 V, Lo w -P o w e r, 1 2 -Bit S e ria l ADCs  
MAX1  
_______________________________________________________________________P in De s c rip t io n  
PIN  
NAME  
FUNCTION  
DIP  
1
WIDE SO  
7/MAX189  
1
3
VDD  
AIN  
Supply voltage, +5V ±5%  
2
Sampling analog input, 0V to VREF range  
Three-level shutdown input. Pulling SHDN low shuts the MAX187/MAX189  
down to 10µA (max) supply current. Both MAX187 and MAX189 are fully opera-  
tional with either SHDN high or floating. For the MAX187, pulling SHDN high  
enables the internal reference, and letting SHDN float disables the internal  
reference and allows for the use of an external reference.  
3
4
6
8
SHDN  
Reference voltagesets analog voltage range and functions as a 4.096V output  
for the MAX187 with enabled internal reference. REF also serves as a +2.5V to  
REF  
VDD input for a precision reference for both MAX187 (disabled internal reference)  
and MAX189. Bypass with 4.7µF if internal reference is used, and with 0.1µF if an  
external reference is applied.  
5
10  
11  
12  
GND  
AGND  
DGND  
DOUT  
Analog and digital ground  
6
Analog ground  
Digital ground  
Serial data output. Data changes state at SCLK’s falling edge.  
Active-low chip select initiates conversions on the falling edge. When CS is high,  
DOUT is high impedance.  
7
15  
CS  
8
16  
SCLK  
N.C.  
Serial clock input. Clocks data out with rates up to 5MHz.  
2,4,5,7,9,13,14  
Not internally connected. Connect to AGND for best noise performance.  
unipolar serial format. A high bit, signaling the end of  
conversion (EOC), followed by the data bits (MSB first),  
make up the serial data stream.  
_______________De t a ile d De s c rip t io n  
Co n ve rt e r Op e ra t io n  
The MAX187/MAX189 use input track/hold (T/H) and  
successive approximation register (SAR) circuitry to  
convert an analog input signal to a digital 12-bit output.  
No e xte rna l hold c a p a c itor is ne e d e d for the T/H.  
Figures 3a and 3b show the MAX187/MAX189 in their  
simplest configuration. The MAX187/MAX189 convert  
The MAX187 operates in one of two states: (1) internal  
reference and (2) external reference. Select internal  
reference operation by forcing SHDN high, and external  
reference operation by floating SHDN  
.
An a lo g In p u t  
input signals in the 0V to V  
range in 10µs, including  
Figure 4 illustrates the sampling architecture of the  
ADCs analog comparator. The full-scale input voltage  
depends on the voltage at REF.  
REF  
T/H acquisition time. The MAX187s internal reference  
is trimmed to 4.096V, while the MAX189 requires an  
external reference. Both devices accept external refer-  
ZERO  
SCALE  
FULL  
SCALE  
ence voltages from +2.5V to V . The serial interface  
DD  
REFERENCE  
requires only three digital lines, SCLK, CS, and DOUT,  
and provides easy interface to microprocessors (µPs).  
Internal Reference  
(MAX187 only)  
0V  
0V  
+4.096V  
Both converters have two modes: normal and shut-  
down. Pulling SHDN low shuts the device down and  
reduces supply current to below 10µA, while pulling  
SHDN high or leaving it floating puts the device into the  
op e ra tiona l mod e . A c onve rs ion is initia te d b y CS  
falling. The conversion result is available at DOUT in  
External Reference  
V
REF  
For specified accuracy, the external reference voltage  
range spans from +2.5V to V  
.
DD  
_______________________________________________________________________________________  
7
+5 V, Lo w -P o w e r, 1 2 -Bit S e ria l ADCs  
+5V  
3k  
DOUT  
DOUT  
7/MAX189  
3k  
C
= 100pF  
C
= 100pF  
LOAD  
LOAD  
DGND  
DGND  
MAX1  
a. High-Z to V and V to V  
b. High-Z to V and V to V  
OL OH OL  
OH  
OL OH  
Figure 1. Load Circuits for DOUT Enable Time  
+5V  
3k  
DOUT  
DOUT  
3k  
C
= 100pF  
C
= 100pF  
LOAD  
LOAD  
DGND  
DGND  
a. V to High-Z  
OH  
b. V to High-Z  
OL  
Figure 2. Load Circuits for DOUT Disable Time  
8
_______________________________________________________________________________________  
+5 V, Lo w -P o w e r, 1 2 -Bit S e ria l ADCs  
MAX1  
4.7µF  
0.1µF  
4.7µF  
0.1µF  
7/MAX189  
1
2
8
7
1
2
8
7
+5V  
V
SCLK  
+5V  
V
SCLK  
DD  
DD  
SERIAL  
INTERFACE  
MAX187  
ANALOG INPUT  
0V TO +5V  
SERIAL  
INTERFACE  
ANALOG INPUT  
0V TO +5V  
MAX189  
CS  
AIN  
CS  
AIN  
3
4
6
5
SHUTDOWN  
INPUT  
3
4
6
5
SHUTDOWN  
INPUT  
SHDN  
REF  
DOUT  
GND  
SHDN  
REF  
DOUT  
GND  
ON  
ON  
OFF  
REFERENCE  
INPUT  
OFF  
4.7µF  
0.1µF  
Figure 3b. MAX189 Operational Diagram  
Figure 3a. MAX187 Operational Diagram  
interval. At this instant, the T/H switches the input side  
of C to GND. The retained charge on C rep-  
HOLD  
HOLD  
resents a sample of the input, unbalancing the node  
ZERO at the comparators input.  
12-BIT CAPACITIVE DAC  
REF  
In hold mode, the capacitive DAC adjusts during the  
re ma inde r of the c onve rsion c yc le to re store nod e  
ZERO to 0V within the limits of a 12-bit resolution. This  
a c tion is e q uiva le nt to tra ns fe rring a c ha rg e from  
COMPARATOR  
C
HOLD  
TRACK  
AIN  
INPUT  
ZERO  
-
+
16pF  
C
to the binary-weighted capacitive DAC, which in  
HOLD  
HOLD  
5k  
turn forms a digital representation of the analog input  
R
IN  
C
SWITCH  
signal. At the conversions end, the input side of C  
C
HOLD  
PACKAGE  
HOLD  
switches back to AIN, and C  
signal again.  
charges to the input  
HOLD  
TRACK  
AT THE SAMPLING INSTANT,  
THE INPUT SWITCHES FROM  
AIN TO GND.  
The time required for the T/H to acquire an input signal  
is a function of how quickly its input capacitance is  
charged. If the input signal’s source impedance is  
high, the acquisition time lengthens and more time  
must be allowed between conversions. Acquisition time  
is calculated by:  
GND  
Figure 4. Equivalent Input Circuit  
t
= 9 (R + R ) 16pF,  
S IN  
ACQ  
where R = 5k, R = the source impedance of the  
IN  
S
Track/Hold  
input signal, and t  
is never less than 1.5µs. Source  
ACQ  
In track mode, the analog signal is acquired and stored  
in the internal hold capacitor. In hold mode, the T/H  
switch opens and maintains a constant input to the  
ADCs SAR section.  
impedances below 5kdo not significantly affect the  
AC performance of the ADC.  
During a c q uis ition, the a na log inp ut AIN c ha rg e s  
capacitor C  
. Bringing CS low ends the acquisition  
HOLD  
_______________________________________________________________________________________  
9
+5 V, Lo w -P o w e r, 1 2 -Bit S e ria l ADCs  
Input Bandwidth  
The ADCs input tracking circuitry has a 4.5MHz small-  
signal bandwidth, and an 8V/µs slew rate. It is possible  
to digitize high-speed transient events and measure  
periodic signals with bandwidths exceeding the ADC's  
sampling rate by using undersampling techniques. To  
avoid aliasing of unwanted high-frequency signals into  
the frequency band of interest, an anti-alias filter is rec-  
ommended. See the MAX274/MAX275 continuous-time  
filters data sheet.  
ed by the 75ksps sample rate of the MAX187/MAX189.  
Therefore, the maximum sinusoidal input frequency  
allowed is 37.5kHz. Higher-frequency signals cause  
aliasing problems unless undersampling techniques  
are used.  
Re fe re n c e  
The MAX187 can be used with an internal or external ref-  
erence, while the MAX189 requires an external reference.  
Internal Reference  
The MAX187 has an on-chip reference with a buffered  
te mp e ra ture -c omp e ns a te d b a nd g a p d iod e , la s e r-  
trimmed to +4.096V ±0.5%. Its output is connected to  
REF and also drives the internal DAC. The output can  
be used as a reference voltage source for other com-  
ponents and can source up to 0.6mA. Decouple REF  
with a 4.7µF c a p a c itor. The inte rna l re fe re nc e is  
enabled by pulling the SHDN pin high. Letting SHDN  
float disables the internal reference, which allows the  
us e of a n e xte rna l re fe re nc e , a s d e s c rib e d in the  
External Reference section.  
7/MAX189  
Input Protection  
Internal protection diodes that clamp the analog input  
allow the input to swing from GND - 0.3V to V + 0.3V  
DD  
without damage. However, for accurate conversions  
near full scale, the input must not exceed V by more  
DD  
than 50mV, or be lower than GND by 50mV.  
MAX1  
If the analog input exceeds the supplies by more than  
50mV beyond the supplies, limit the input current to  
2mA, since larger currents degrade conversion  
accuracy.  
Driving the Analog Input  
The input lines to AIN and GND should be kept as short  
as possible to minimize noise pickup. Shield longer  
leads. Also see the Input Protection section.  
External Reference  
The MAX189 operates with an external reference at the  
REF pin. To use the MAX187 with an external reference,  
disable the internal reference by letting SHDN float. Stay  
Because the MAX187/MAX189 incorporate a T/H, the  
drive requirements of the op amp driving AIN are less  
stringent than those for a successive-approximation  
ADC without a T/H. The typical input capacitance is  
16pF. The amplifier bandwidth should be sufficient to  
handle the frequency of the input signal. The MAX400  
and OP07 work well at lower frequencies. For higher-  
frequency operation, the MAX427 and OP27 are practi-  
cal choices. The allowed input frequency range is limit-  
within the voltage range +2.5V to V to achieve speci-  
DD  
fied accuracy. The minimum input impedance is 12kΩ  
for DC currents. During conversion, the external refer-  
ence must be able to deliver up to 350µA DC load cur-  
rent and have an output impedance of 10or less. The  
recommended minimum value for the bypass capacitor  
is 0.1µF. If the reference has higher output impedance  
or is noisy, bypass it close to the REF pin with a 4.7µF  
capacitor.  
COMPLETE CONVERSION SEQUENCE  
CS  
t
WAKE  
SHDN  
DOUT  
CONVERSION 0  
POWERED UP  
CONVERSION 1  
POWERED UP  
POWERED DOWN  
Figure 5. MAX187/MAX189 Shutdown Sequence  
10 ______________________________________________________________________________________  
+5 V, Lo w -P o w e r, 1 2 -Bit S e ria l ADCs  
MAX1  
10000  
1000  
3.0  
2.5  
2.0  
7/MAX189  
MAX187  
100  
10  
1
1.5  
1.0  
MAX189*  
0.5  
0
*REF CONNECTED TO V  
DD  
0.1  
1
10  
100 1000 10000 100000  
0.0001 0.001  
0.01  
0.1  
1
10  
CONVERSIONS PER SECOND  
TIME IN SHUTDOWN (sec)  
Figure 6. Average Supply Current vs. Conversion Rate  
Figure 7. t  
vs. Time in Shutdown (MAX187 only)  
WAKE  
Ex t e rn a l Clo c k  
____________________S e ria l In t e rfa c e  
The actual conversion does not require the external  
clock. This frees the µP from the burden of running the  
SAR conversion clock, and allows the conversion result  
to be read back at the µPs convenience at any clock  
rate from 0MHz to 5MHz. The clock duty cycle is unre-  
stricted if each clock phase is at least 100ns. Do not  
run the clock while a conversion is in progress.  
In it ia liza t io n Aft e r P o w e r-Up a n d  
S t a rt in g a Co n ve rs io n  
Whe n p owe r is firs t a p p lie d , it ta ke s the fully d is -  
charged 4.7µF reference bypass capacitor up to 20ms  
to provide adequate charge for specified accuracy.  
With SHDN not pulled low, the MAX187/MAX189 are  
now ready to convert.  
Tim in g a n d Co n t ro l  
Conversion-start and data-read operations are con-  
trolled by the CS and SCLK digital inputs. The timing  
diagrams of Figures 8 and 9 outline the operation of the  
serial interface.  
To start a conversion, pull CS low. At CSs falling edge,  
the T/H enters its hold mode and a conversion is initiat-  
ed. After an internally timed 8.5µs conversion period,  
the end of conversion is signaled by DOUT pulling  
high. Data can then be shifted out serially with the  
external clock.  
A
CS falling edge initiates a conversion sequence: The  
T/H stage holds input voltage, the ADC begins to con-  
vert, and DOUT changes from high impedance to logic  
low. SCLK must be kept inactive during the conversion.  
An internal register stores the data when the conversion  
is in progress.  
Us in g SHDN t o Re d u c e S u p p ly Cu rre n t  
Power consumption can be reduced significantly by  
shutting down the MAX187/MAX189 between conver-  
sions. This is shown in Figure 6, a plot of average sup-  
ply current vs. conversion rate. Because the MAX189  
uses an external reference voltage (assumed to be pre-  
sent continuously), it "wakes up" from shutdown more  
quickly, and therefore provides lower average supply  
End of conversion (EOC) is signaled by DOUT going  
high. DOUT’s rising edge can be used as a framing  
signal. SCLK shifts the data out of this register any time  
after the conversion is complete. DOUT transitions on  
SCLK’s falling edge. The next falling clock edge pro-  
duces the MSB of the conversion at DOUT, followed by  
the remaining bits. Since there are 12 data bits and one  
leading high bit, at least 13 falling clock edges are  
needed to shift out these bits. Extra clock pulses occur-  
ring after the conversion result has been clocked out,  
and prior to a rising edge of CS, produce trailing 0s at  
DOUT and have no effect on converter operation.  
currents. The wakeup-time, t  
is the time from  
WAKE,  
SHDN deasserted to the time when a conversion may  
be initiated. For the MAX187, this time is 2µs. For the  
MAX189, this time depends on the time in shutdown  
(see Figure 7) because the external 4.7µF reference  
bypass capacitor loses charge slowly during shutdown  
(see the specifications for shutdown, REF Input Current  
= 10µA max).  
______________________________________________________________________________________ 11  
+5 V, Lo w -P o w e r, 1 2 -Bit S e ria l ADCs  
CS  
1
4
8
12  
SCLK  
DOUT  
B11 B10 B9 B8 B7 B6 B5 B4 B3 B2 B1 B0  
EOC  
EOC  
CONVERSION  
IN PROGRESS  
TRAILING  
ZEROS  
1
CLOCK OUTPUT DATA  
TRACK  
INTERFACE IDLE  
IDLE  
CONVERSION  
0
CONV. 1  
A/D  
TRACK  
STATE  
0.5µs  
(t  
MAX1  
12 × 0.250µs = 3.25µs  
TOTAL = 12.25µs  
0µs  
8.5µs (t  
)
0µs  
CONV  
)
MINIMUM  
CYCLE TIME  
CS  
Figure 8. MAX187/MAX189 Interface Timing Sequence  
t
CS  
CS  
t
CS0  
t
CH  
SCLK  
t
DO  
t
CL  
t
TR  
t
CONV  
t
DV  
DOUT  
B2  
B1  
B0  
t
APR  
(TRACK)  
(HOLD)  
(TRACK)  
INTERNAL  
T/H  
Figure 9. MAX187/MAX189 Detailed Serial-Interface Timing  
12 ______________________________________________________________________________________  
+5 V, Lo w -P o w e r, 1 2 -Bit S e ria l ADCs  
MAX1  
20  
OUTPUT CODE  
f
= 75ksps  
S
0
-20  
FULL-SCALE  
TRANSITION  
f = 10kHz  
T
T = +25°C  
A
7/MAX189  
11111  
11110  
11101  
-40  
-60  
FS = +4.096V  
FS  
4096  
1LSB =  
-80  
00011  
00010  
00001  
-100  
-120  
-140  
00000  
0
1
2
3
FS  
INPUT VOLTAGE (LSBs)  
FS - 3/2LSB  
0
18.75  
FREQUENCY (kHz)  
37.5  
Figure 11. MAX187/MAX189 FFT plot  
Figure 10. MAX187/MAX189 Unipolar Transfer Function,  
4.096V = Full Scale  
Minimum cycle time is accomplished by using DOUTs  
rising edge as the EOC signal. Clock out the data with  
13 clock cycles at full speed. Raise CS after the conver-  
sions LSB has been read. After the specified minimum  
input frequency. ADCs have traditionally been evaluat-  
ed by specifications such as Zero and Full-Scale Error,  
Integral Nonlinearity (INL), and Differential Nonlinearity  
(DNL). Such parameters are widely accepted for speci-  
fying performance with DC and slowly varying signals,  
but are less useful in signal-processing applications,  
where the ADCs impact on the system transfer function  
is the main concern. The significance of various DC  
errors does not translate well to the dynamic case, so  
different tests are required.  
time, t  
, CS can be pulled low again to initiate the  
ACQ  
next conversion.  
Ou t p u t Co d in g a n d Tra n s fe r Fu n c t io n  
The data output from the MAX187/MAX189 is binary,  
and Figure 10 depicts the nominal transfer function.  
Code transitions occur halfway between successive  
inte g e r LSB va lue s . If VREF  
1 LSB = 1.00mV or 4.096V/4096.  
=
+ 4.096V, the n  
S ig n a l-t o -No is e Ra t io a n d  
Effe c t ive Nu m b e r o f Bit s  
Signal-to-noise plus distortion (SINAD) is the ratio of the  
fundamental input frequencys RMS amplitude to the  
RMS amplitude of all other ADC output signals. The  
input bandwidth is limited to frequencies above DC and  
below one-half the ADC sample (conversion) rate.  
_____________Dyn a m ic P e rfo rm a n c e  
High-speed sampling capability and a 75ksps through-  
put make the MAX187/MAX189 ideal for wideband sig-  
nal processing. To support these and other related  
applications, Fast Fourier Transform (FFT) test tech-  
niques are used to guarantee the ADCs dynamic fre-  
quency response, distortion, and noise at the rated  
throughput. Specifically, this involves applying a low-  
distortion sine wave to the ADC input and recording the  
digital conversion results for a specified time. The data  
is then analyzed using an FFT algorithm that deter-  
mines its spectral content. Conversion errors are then  
seen as spectral elements outside of the fundamental  
The theoretical minimum ADC noise is caused by quan-  
tization error and is a direct result of the ADCs resolu-  
tion: SINAD = (6.02N + 1.76)dB, where N is the number  
of bits of resolution. An ideal 12-bit ADC can, therefore,  
d o no b e tte r tha n 74d B. An FFT p lot of the outp ut  
shows the output level in various spectral bands. Figure  
11 shows the result of sampling a pure 10kHz sine  
wave at a 75ksps rate with the MAX187/MAX189.  
______________________________________________________________________________________ 13  
+5 V, Lo w -P o w e r, 1 2 -Bit S e ria l ADCs  
12.2  
12.0  
I/O  
CS  
11.8  
11.6  
11.4  
11.2  
11.0  
SCK  
SCLK  
DOUT  
MISO  
+5V  
MAX187  
MAX189  
8
10.8  
10.6  
10.4  
10.2  
SS  
(UNDERSAMPLED)  
100 1000  
a. SPI  
1
10  
INPUT FREQUENCY (kHz)  
CS  
SCK  
CS  
SCLK  
DOUT  
Figure 12. Effective Bits vs. Input Frequency  
MISO  
+5V  
MAX187  
MAX189  
The effective resolution (effective number of bits) the  
ADC provides can be determined by transposing the  
a b ove e q ua tion a nd s ub s tituting in the me a s ure d  
SINAD: N = (SINAD - 1.76)/6.02. Figure 12 shows the  
effective number of bits as a function of the input fre-  
quency for the MAX187/MAX189.  
SS  
b. QSPI  
I/O  
SK  
SI  
CS  
To t a l Ha rm o n ic Dis t o rt io n  
If a pure sine wave is sampled by an ADC at greater  
than the Nyquist frequency, the nonlinearities in the  
ADCs transfer function create harmonics of the input  
frequency present in the sampled output data.  
SCLK  
DOUT  
Total Harmonic Distortion (THD) is the ratio of the RMS  
sum of all the harmonics (in the frequency band above  
DC and below one-half the sample rate, but not includ-  
ing the DC component) to the RMS amplitude of the  
fundamental frequency. This is expressed as follows:  
MAX187  
MAX189  
c. MICROWIRE  
2
2
2
2
V + V + V + … V  
N
2
3
4
THD = 20log  
V
1
Figure 13. Common Serial-Interface Connections to the  
MAX187/MAX189  
where V is the fundamental RMS amplitude, and V  
through V are the amplitudes of the 2nd through Nth  
1
2
N
ha rmonic s . The THD s p e c ific a tion in the Ele c tric a l  
Cha ra c te ris tic s inc lud e s the 2nd throug h 5th  
harmonics.  
14 ______________________________________________________________________________________  
+5 V, Lo w -P o w e r, 1 2 -Bit S e ria l ADCs  
MAX1  
SCLK’s falling edge and is available in MSB-first for-  
____________Ap p lic a t io n s In fo rm a t io n  
mat. Observe the SCLK to DOUT valid timing charac-  
teristic. Data can be clocked into the µP on SCLKs  
rising edge.  
Co n n e c t io n t o S t a n d a rd In t e rfa c e s  
The MAX187/MAX189 serial interface is fully compatible  
with SPI, QSPI, a nd Mic rowire s ta nd a rd s e ria l  
interfaces.  
4. Pull CS high at or after the 13th falling clock edge. If  
CS remains low, trailing zeros are clocked out after  
the LSB.  
7/MAX189  
If a serial interface is available, set the CPUs serial  
interface in master mode so the CPU generates the ser-  
ial clock. Choose a clock frequency up to 2.5MHz.  
5. With CS = high, wait the minimum specified time, t  
CS  
,
before launching a new conversion by pulling CS  
low. If a conversion is aborted by pulling CS high  
before the conversions end, wait for the minimum  
1. Use a general-purpose I/O line on the CPU to pull CS  
low. Keep SCLK low.  
2. Wait the for the maximum conversion time specified  
b e fore a c tiva ting SCLK. Alte rna tive ly, look for a  
DOUT ris ing e d g e to d e te rmine the e nd of  
conversion.  
a c q uis ition time , t  
conversion.  
, b e fore s ta rting a ne w  
ACQ  
Data can be output in 1-byte chunks or continuously, as  
shown in Figure 8. The bytes will contain the result of  
the conversion padded with one leading 1, and trailing  
0s if SCLK is still active with CS kept low.  
3. Activate SCLK for a minimum of 13 clock cycles. The  
first falling clock edge will produce the MSB of the  
DOUT conversion. DOUT output data transitions on  
1ST BYTE READ  
2ND BYTE READ  
SCLK  
CS  
t
CONV  
HI-Z  
HI-Z  
MSB D10 D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1 LSB  
DOUT  
EOC  
Figure 14. SPI/Microwire Serial Interface Timing (CPOL = CPHA = 0)  
SCLK  
CS  
t
CONV  
HI-Z  
HI-Z  
DOUT  
MSB D10 D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1 LSB  
EOC  
Figure 15. QSPI Serial Interface Timing (CPOL = CPHA = 0)  
______________________________________________________________________________________ 15  
+5 V, Lo w -P o w e r, 1 2 -Bit S e ria l ADCs  
12 bits of data with no trailing 0s (Figure 15). The maxi-  
mum clock frequency to ensure compatibility with QSPI  
is 2.77MHz.  
S P I a n d Mic ro w ire  
When using SPI or QSPI, set CPOL = 0 and CPHA = 0.  
Conversion begins with a CS falling edge. DOUT goes  
low, indicating a conversion in progress. Wait until  
DOUT goes high or the maximum specified 8.5µs con-  
ve rs ion time . Two c ons e c utive 1-b yte re a d s a re  
required to get the full 12 bits from the ADC. DOUT out-  
p ut d a ta tra ns itions on SCLKs fa lling e d g e a nd is  
clocked into the µP on SCLKs rising edge.  
Op t o -Is o la t e d In t e rfa c e ,  
S e ria l-t o -P a ra lle l Co n ve rs io n  
Many industrial applications require electrical isolation  
to separate the control electronics from hazardous  
electrical conditions, provide noise immunity, or pre-  
vent excessive current flow where ground disparities  
exist between the ADC and the rest of the system.  
Isolation amplifiers typically used to accomplish these  
tasks are expensive. In cases where the signal is even-  
tually converted to a digital form, it is cost effective to  
isolate the input using opto-couplers in a serial link.  
The first byte contains a leading 1 and 7 bits of conver-  
sion result. The second byte contains the remaining 5  
bits and 3 trailing 0s. See Figure 13 for connections  
and Figure 14 for timing.  
7/MAX189  
QS P I  
Set CPOL = CPHA = 0. Unlike SPI, which requires two  
1-byte reads to acquire the 12 bits of data from the  
ADC, QSPI allows the minimum number of clock cycles  
necessary to clock in the data. The MAX187/MAX189  
require 13 clock cycles from the µP to clock out the  
The MAX187 is ide a l in this a pp lic a tion b e c a use it  
inc lud e s b oth T/H a mp lifie r a nd volta g e re fe re nc e ,  
operates from a single supply, and consumes very little  
power (Figure 16).  
MAX1  
CS/START  
+5V ON THIS SIDE OF  
BARRIER MUST BE ISOLATED POWER  
SCLK/INPUT CLOCK  
+5V  
6N136  
+5V  
8
1
7
QH  
QG  
QF  
QE  
QD  
QC  
QB  
QA  
200Ω  
14  
7
2
3
4
6
5
4
3
2
1
SER  
74HC595  
3k  
6
11  
12  
10  
SCK  
5
10µF  
D11 (MSB)  
D10  
D9  
74HC04  
74HC04  
RCK  
MAX187  
6N136  
6N136  
0.1µF  
1
2
4
5
3
7
8
6
8
7
6
5
1
2
3
4
15  
16  
V
SHDN  
CS  
SCLR  
D8  
+5V  
DD  
200Ω  
AIN  
3k  
13  
8
REF  
GND  
SCLK  
DOUT  
0.1µF  
ANALOG  
INPUT  
4.7µF  
470Ω  
9
QH′  
7
QH  
QG  
QF  
QE  
QD  
QC  
QB  
QA  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
14  
1
2
3
4
8
7
6
5
6
SER  
74HC595  
5
8.2k  
11  
12  
4
3
2
1
SIGNAL  
GROUND  
SCK  
RCK  
15  
16  
10  
D0(LSB)  
+5V  
+5V  
SCLR  
13  
8
0.1µF  
Figure 16. 12-Bit Isolated ADC  
16 ______________________________________________________________________________________  
+5 V, Lo w -P o w e r, 1 2 -Bit S e ria l ADCs  
MAX1  
The ADC results are transmitted across a 1500V isola-  
tion barrier provided by three 6N136 opto-isolators.  
Isolated power must be supplied to the converter and  
the isolated side of the opto-couplers. 74HC595 three-  
state shift registers are used to construct a 12-bit paral-  
lel data output. The timing sequence is identical to the  
timing shown in Figure 8. Conversion speed is limited  
by the delay through the opto-isolators. With a 140kHz  
clock, conversion time is 100µs.  
7/MAX189  
SUPPLIES  
+5V  
GND  
The universal 12-bit parallel data output can also be  
used without the isolation stage when a parallel inter-  
face is required. Clock frequencies up to 2.9MHz are  
possible without violating the 20ns shift-register setup  
time. Delay or invert the clock signal to the shift regis-  
ters beyond 2.9MHz.  
R* = 10Ω  
4.7µF  
0.01µF  
La yo u t , Gro u n d in g , Byp a s s in g  
For best performance, use printed circuit boards. Wire-  
wra p b oa rd s a re not re c omme nd e d . Boa rd la yout  
should ensure that digital and analog signal lines are  
separated from each other. Do not run analog and digi-  
tal (especially clock) lines parallel to one another, or  
digital lines underneath the ADC package.  
V
AGND  
DGND  
+5V DGND  
DD  
DIGITAL  
CIRCUITRY  
MAX187  
MAX189  
*OPTIONAL  
Figure 17 shows the recommended system ground  
c onne c tions . A s ing le -p oint a na log g round (“s ta r”  
ground point) should be established at GND, separate  
from the logic ground. All other analog grounds should  
be connected to this ground. The 16-pin versions also  
have a dedicated DGND pin available. Connect DGND  
to this star ground point for further noise reduction. No  
other digital system ground should be connected to  
this single-point analog ground. The ground return to  
the power supply for this ground should be low imped-  
ance and as short as possible for noise-free operation.  
Figure 17. Power-Supply Grounding Condition  
High-frequency noise in the V  
power supply may  
DD  
affect the ADCs high-speed comparator. Bypass this  
supply to the single-point analog ground with 0.01µF  
and 4.7µF bypass capacitors. Minimize capacitor lead  
le ng ths for b e s t s up p ly-nois e re je c tion. If the +5V  
power supply is very noisy, a 10resistor can be con-  
nected as a lowpass filter to attenuate supply noise  
(Figure 17).  
______________________________________________________________________________________ 17  
+5 V, Lo w -P o w e r, 1 2 -Bit S e ria l ADCs  
__Ord e rin g In fo rm a t io n (c o n t in u e d )  
____P in Co n fig u ra t io n s (c o n t in u e d )  
ERROR  
(LSB)  
PART  
TEMP. RANGE PIN-PACKAGE  
MAX187AEPA -40°C to +85°C  
MAX187BEPA -40°C to +85°C  
MAX187CEPA -40°C to +85°C  
MAX187AEWE -40°C to +85°C  
MAX187BEWE -40°C to +85°C  
MAX187CEWE -40°C to +85°C  
MAX187AMJA -55°C to +125°C  
MAX187BMJA -55°C to +125°C  
8 Plastic DIP  
8 Plastic DIP  
8 Plastic DIP  
16 Wide SO  
16 Wide SO  
16 Wide SO  
8 CERDIP**  
8 CERDIP**  
8 Plastic DIP  
8 Plastic DIP  
8 Plastic DIP  
16 Wide SO  
16 Wide SO  
16 Wide SO  
Dice*  
±1⁄  
±1  
2
V
SCLK  
CS  
DD  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
±2  
N.C.  
AIN  
N.C.  
±1⁄  
±1  
±2  
2
N.C.  
N.C.  
MAX187  
MAX189  
7/MAX189  
N.C.  
SHDN  
N.C.  
DOUT  
DGND  
AGND  
N.C.  
±1⁄  
2
±1  
MAX189ACPA  
MAX189BCPA  
MAX189CCPA  
MAX189ACWE  
MAX189BCWE  
MAX189CCWE  
MAX189BC/D  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
±1⁄  
±1  
±2  
2
REF  
MAX1  
Wide SO  
±1⁄  
±1  
±2  
±1  
2
MAX189AEPA -40°C to +85°C  
MAX189BEPA -40°C to +85°C  
MAX189CEPA -40°C to +85°C  
MAX189AEWE -40°C to +85°C  
MAX189BEWE -40°C to +85°C  
MAX189CEWE -40°C to +85°C  
MAX189AMJA -55°C to +125°C  
MAX189BMJA -55°C to +125°C  
8 Plastic DIP  
8 Plastic DIP  
8 Plastic DIP  
16 Wide SO  
16 Wide SO  
16 Wide SO  
8 CERDIP**  
8 CERDIP**  
±1⁄  
±1  
±2  
2
±1⁄  
±1  
±2  
2
±1⁄  
2
±1  
* Dice are specified at TA = +25°C, DC parameters only.  
**Contact factory for availability and processing to MIL-STD-883.  
18 ______________________________________________________________________________________  
+5 V, Lo w -P o w e r, 1 2 -Bit S e ria l ADCs  
MAX1  
___________________Ch ip To p o g ra p h y  
MAX187/MAX189  
7/MAX189  
V
DD  
SCLK  
CS  
AIN  
0. 151"  
(3. 84mm)  
DOUT  
DGND  
SHDN  
REF  
0. 117"  
AGND  
AGND  
(2. 97mm)  
TRANSISTOR COUNT: 2278;  
SUBSTRATE CONNECTED TO V  
.
DD  
______________________________________________________________________________________ 19  
+5 V, Lo w -P o w e r, 1 2 -Bit S e ria l ADCs  
________________________________________________________________P a c k a g e In fo rm a t io n  
INCHES  
MILLIMETERS  
DIM  
MIN  
MAX  
0.200  
MIN  
MAX  
5.08  
E
A
A2  
A3  
E1  
A1 0.015  
A2 0.125  
A3 0.055  
0.38  
3.18  
1.40  
0.41  
1.14  
0.20  
1.27  
15.24  
13.34  
2.54  
15.24  
D
A
0.175  
0.080  
0.020  
0.065  
0.012  
0.090  
0.625  
0.575  
4.45  
2.03  
0.51  
1.65  
0.30  
2.29  
15.88  
14.61  
B
0.016  
B1 0.045  
0.008  
D1 0.050  
0.600  
E1 0.525  
0.100  
eA 0.600  
0°-15°  
C
A1  
e
C
L
E
eA  
eB  
B1  
B
e
D1  
eB  
L
0.700  
0.150  
17.78  
3.81  
7/MAX189  
0.120  
3.05  
P PACKAGE  
PLASTIC  
DUAL-IN-LINE  
INCHES  
MILLIMETERS  
DIM  
PINS  
MIN  
MAX MIN MAX  
D
D
D
24  
28  
40  
1.230 1.270 31.24 32.26  
1.430 1.470 36.32 37.34  
2.025 2.075 51.44 52.71  
INCHES  
MILLIMETERS  
DIM  
MIN  
MAX  
0.104  
0.012  
0.019  
0.013  
0.299  
MIN  
2.35  
0.10  
0.35  
0.23  
7.40  
MAX  
2.65  
0.30  
0.49  
0.32  
7.60  
D
A
0.093  
A1 0.004  
0°- 8°  
B
C
E
e
0.014  
0.009  
0.291  
A
0.101mm  
0.005in.  
1.27  
0.050  
e
B
A1  
H
L
0.394  
0.016  
0.419  
0.050  
10.00  
0.40  
10.65  
1.27  
C
L
INCHES  
MILLIMETERS  
MAX  
PINS  
DIM  
MIN MAX MIN  
E
H
W PACKAGE  
SMALL  
OUTLINE  
0.398 0.413 10.10 10.50  
0.447 0.463 11.35 11.75  
0.496 0.512 12.60 13.00  
0.598 0.614 15.20 15.60  
0.697 0.713 17.70 18.10  
21-0042A  
D
D
D
D
D
16  
18  
20  
24  
28  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
20 __________________Ma x im In t e g ra t e d P ro d u c t s , 1 2 0 S a n Ga b rie l Drive , S u n n yva le , CA 9 4 0 8 6 (4 0 8 ) 7 3 7 -7 6 0 0  
© 1993 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

相关型号:

MAX1894

Advanced Li+ Battery-Pack Protectors
MAXIM

MAX1894-MAX1924

Advanced Li+ Battery-Pack Protectors
MAXIM

MAX1894EVKIT

Evaluation Kits for the MAX1894/MAX1924
MAXIM

MAX1894XEEE

Advanced Li+ Battery-Pack Protectors
MAXIM

MAX1894XEEE+

暂无描述
MAXIM

MAX1894XEEE-T

Power Supply Support Circuit, Fixed, 1 Channel, PDSO16, 0.150 INCH, 0.025 INCH PITCH, QSOP-16
MAXIM

MAX1895

High-Efficiency, Wide Brightness Range, CCFL Backlight Controllers
MAXIM

MAX1895EGI

High-Efficiency, Wide Brightness Range, CCFL Backlight Controllers
MAXIM

MAX1895EGI-T

Fluorescent Light Controller, Voltage-mode, 1A, 300kHz Switching Freq-Max, PQCC28, 5 X 5 MM, 0.90 MM HEIGHT, QFN-28
MAXIM

MAX1895ETI

High-Efficiency, Wide Brightness Range, CCFL Backlight Controllers
MAXIM

MAX1895EVSYS

Evaluation Systems for the MAX1895/MAX1995
MAXIM

MAX1896

1.4MHz SOT23 Current-Mode Step-Up DC-DC Converter
MAXIM