MAX1927REUB+T [MAXIM]

Switching Regulator, Current-mode, 0.8A, 1200kHz Switching Freq-Max, BICMOS, PDSO10, MICRO MAX PACKAGE-10;
MAX1927REUB+T
型号: MAX1927REUB+T
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Switching Regulator, Current-mode, 0.8A, 1200kHz Switching Freq-Max, BICMOS, PDSO10, MICRO MAX PACKAGE-10

信息通信管理 开关 光电二极管
文件: 总12页 (文件大小:303K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-2527; Rev 0; 7/02  
Low-Output-Voltage, 800mA, PWM Step-Down  
DC-DC Converters  
General Description  
Features  
The MAX1927/MAX1928 800mA step-down converters  
power low-voltage microprocessors in compact equip-  
ment requiring the highest possible efficiency. The  
MAX1927/MAX1928 are optimized for generating low  
output voltages (down to 750mV) at high efficiency  
using small external components. The supply voltage  
range is from 2.6V to 5.5V and the guaranteed minimum  
output current is 800mA. 1MHz pulse-width modulation  
(PWM) switching allows for small external components.  
A unique control scheme minimizes ripple at light loads,  
while maintaining a low 140µA quiescent current.  
o 800mA Output Current  
o Output Voltages from 0.75V to 5V  
o 2.6V to 5.5V Input Voltage Range  
o Power-OK Output  
o No Schottky Diode Required  
o Selectable Forced PWM Operation  
o 1MHz Fixed-Frequency PWM Operation  
o 140µA Quiescent Current  
o Soft-Start  
The MAX1927/MAX1928 include a low on-resistance  
internal MOSFET switch and synchronous rectifier to  
maximize efficiency and minimize external component  
count. No external diode is needed. 100% duty-cycle  
operation allows for a dropout voltage of only 340mV at  
800mA. Other features include internal soft-start,  
power-OK (POK) output, and selectable forced PWM  
operation for lower noise at all load currents.  
o 10-Pin µMAX Package  
The MAX1928 is available with several preset output  
voltages: 1.5V (MAX1928-15), 1.8V (MAX1928-18), and  
2.5V (MAX1928-25). The MAX1927R has adjustable  
output range down to 0.75V. The MAX1927/MAX1928  
are available in a tiny 10-pin µMAX package.  
Ordering Information  
PRESET  
OUTPUT  
VOLTAGE  
TEMP  
RANGE  
PIN-  
PACKAGE  
PART  
MAX1927REUB  
MAX1928EUB15  
MAX1928EUB18  
MAX1928EUB25  
Adj. to 0.75V -40°C to +85°C 10 µMAX  
1.5V  
1.8V  
2.5V  
-40°C to +85°C 10 µMAX  
-40°C to +85°C 10 µMAX  
-40°C to +85°C 10 µMAX  
Applications  
WCDMA Handsets  
PDAs and Palmtops  
DSP Core Power  
Battery-Powered Equipment  
Pin Configuration  
Typical Operating Circuit  
V
IN  
2.6V TO 5.5V  
PWM  
BATT  
TOP VIEW  
V
OUT  
L1  
C1  
0.75V AT 800mA  
LX  
FB  
PWM  
GND  
REF  
1
2
3
4
5
10 POK  
SHDN  
COMP  
C2  
9
8
7
6
BATT  
LX  
R
C
MAX1927R  
MAX1927R  
MAX1928  
POK  
C
C
f
C
FB  
PGND  
SHDN  
COMP  
PGND  
REF  
µMAX  
GND  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
Low-Output-Voltage, 800mA, PWM Step-Down  
DC-DC Converters  
ABSOLUTE MAXIMUM RATINGS  
BATT, PWM, POK, COMP, SHDN to GND ...............-0.3V to +6V  
PGND to GND .......................................................-0.3V to +0.3V  
LX, REF, FB to GND ................................-0.3V to (V  
Operating Temperature Range ...........................-40°C to +85°C  
Junction Temperature......................................................+150°C  
Storage Temperature Range.............................-65°C to +150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
+ 0.3V)  
BATT  
Continuous Power Dissipation (T = +70°C)  
A
10-Pin µMAX (derate 5.6mW/°C above +70°C)...........444mW  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(V  
BATT  
= 3.6V, SHDN = BATT, C  
= 0.1µF, T = 0°C to +85°C, unless otherwise noted. Typical values are at T = +25°C.)  
REF A A  
PARAMETER  
CONDITIONS  
MIN  
2.6  
TYP  
MAX  
5.5  
UNITS  
V
BATT Input Voltage  
2.55  
Undervoltage Lockout Threshold  
V
rising or falling (35mV hysteresis)  
2.15  
2.35  
140  
2
V
BATT  
No load, pulse skipping, PWM = GND  
1MHz switching  
240  
µA  
mA  
µA  
µA  
Quiescent Current  
Quiescent Current in Dropout  
Shutdown Supply Current  
190  
0.1  
340  
10  
SHDN = GND  
REFERENCE AND ERROR AMP  
MAX1927R  
MAX1928-15  
MAX1928-18  
MAX1928-25  
MAX1928  
0.738  
1.477  
1.773  
2.462  
5
0.75  
1.5  
1.8  
2.5  
10  
0.762  
1.523  
1.827  
2.538  
15  
FB Voltage Accuracy  
FB Input Current  
V
µA  
nA  
MAX1927R  
MAX1927R  
MAX1928-15  
MAX1928-18  
MAX1928-25  
10  
150  
250  
210  
175  
125  
1.25  
µS  
Transconductance (g )  
m
Reference Voltage Accuracy  
Reference Supply Rejection  
PWM CONTROLLER  
1.231  
1.269  
2
V
2.6V < V  
< 5.5V  
0.5  
mV  
BATT  
V
V
V
V
= 3.6V  
= 2.6V  
= 3.6V  
= 2.6V  
0.25  
0.3  
0.4  
0.5  
BATT  
BATT  
BATT  
BATT  
P-Channel On-Resistance  
0.17  
0.2  
0.3  
N-Channel On-Resistance  
0.35  
Current-Sense Transresistance (R  
)
0.48  
1.3  
V/A  
A
CS  
P-Channel Current-Limit Threshold  
1.1  
1.6  
P-Channel Pulse-Skipping Current Threshold  
N-Channel Negative Current-Limit Threshold  
0.11  
0.13  
-0.55  
0.15  
A
A
2
_______________________________________________________________________________________  
Low-Output-Voltage, 800mA, PWM Step-Down  
DC-DC Converters  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
BATT  
= 3.6V, SHDN = BATT, C  
= 0.1µF, T = 0°C to +85°C, unless otherwise noted. Typical values are at T = +25°C.)  
REF A A  
PARAMETER  
CONDITIONS  
MIN  
TYP  
20  
MAX  
UNITS  
N-Channel Synchronous Rectifier Turn-Off  
Threshold  
mA  
LX Leakage Current  
Maximum Duty Cycle  
V
= 5.5V, LX = GND or BATT  
-20  
0.1  
+20  
0
µA  
%
BATT  
100  
PWM = GND  
PWM = BATT  
Minimum Duty Cycle  
%
15  
1
Internal Oscillator Frequency  
Thermal Shutdown Threshold  
POK COMPARATOR  
0.85  
1
1.15  
MHz  
15°C hysteresis  
160  
Degrees  
BATT Operating Voltage Range  
Output Low Voltage  
I
= 0.1 mA  
5.5  
0.1  
V
V
POK  
V
V
= 0.5V, I  
= 1mA  
0.01  
FB  
POK  
Output High Leakage Current  
= 5.5V  
1
µA  
POK  
MAX1927R  
0.650  
1.305  
1.566  
2.175  
0.675  
1.350  
1.620  
2.250  
0.700  
1.395  
1.674  
2.325  
MAX1928-15  
MAX1928-18  
MAX1928-25  
POK Threshold  
V
POK transitions to high impedance 20ms  
after V > V  
Output Valid to POK Release Delay  
15  
20  
25  
ms  
FB  
POK  
LOGIC INPUTS (SHDN, PWM)  
Logic Input High  
2.6V < V  
2.6V < V  
< 5.5 V  
< 5.5 V  
1.6  
V
V
BATT  
BATT  
Logic Input Low  
0.6  
1
Logic Input Current  
V
= 5.5V  
0.1  
µA  
BATT  
ELECTRICAL CHARACTERISTICS  
(V  
BATT  
= 3.6V, SHDN = BATT, C  
= 0.1µF, T = -40°C to +85°C, unless otherwise noted.)  
REF  
A
PARAMETER  
CONDITIONS  
MIN  
2.6  
MAX  
5.5  
UNITS  
V
BATT Input Voltage  
2.55  
Undervoltage Lockout Threshold  
Quiescent Current  
V
rising or falling (35mV hysteresis)  
2.15  
V
BATT  
No load, pulse skipping, PWM = GND  
240  
340  
10  
µA  
µA  
µA  
Quiescent Current in Dropout  
Shutdown Supply Current  
REFERENCE AND ERROR AMP  
SHDN = GND  
MAX1927R  
MAX1928-15  
MAX1928-18  
MAX1928-25  
MAX1928  
0.732  
1.47  
1.764  
2.45  
5
0.768  
1.53  
1.836  
2.55  
15  
FB Voltage Accuracy  
FB Input Current  
V
µA  
_______________________________________________________________________________________  
3
Low-Output-Voltage, 800mA, PWM Step-Down  
DC-DC Converters  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
BATT  
= 3.6V, SHDN = BATT, C  
= 0.1µF, T = -40°C to +85°C, unless otherwise noted. Typical values are at T = +25°C.)  
REF A A  
PARAMETER  
CONDITIONS  
MIN  
MAX  
150  
1.269  
2
UNITS  
nA  
FB Input Current  
MAX1927R  
Reference Voltage Accuracy  
Reference-Supply Rejection  
PWM CONTROLLER  
1.22  
V
2.6V < V  
< 5.5V  
mV  
BATT  
V
V
V
V
= 3.6V  
= 2.6V  
= 3.6V  
= 2.6V  
0.4  
0.5  
BATT  
BATT  
BATT  
BATT  
P-Channel On-Resistance  
N-Channel On-Resistance  
0.30  
0.35  
1.6  
P-Channel Current-Limit Threshold  
P-Channel Pulse-Skipping Current Threshold  
LX Leakage Current  
1.1  
0.10  
-20  
0.10  
A
A
0.16  
+20  
V
= 5.5V, LX = GND or BATT  
µA  
%
BATT  
Maximum Duty Cycle  
100  
Minimum Duty Cycle  
PWM = GND  
0
%
Internal Oscillator Frequency  
POK COMPARATOR  
0.8  
1
1.2  
MHz  
BATT Operating Voltage Range  
I
= 0.1 mA  
5.5  
0.1  
V
V
POK  
Output Low Voltage  
V
V
= 0.5V, I  
= 1mA  
FB  
POK  
Output High Leakage Current  
= 5.5V  
1
µA  
POK  
MAX1927R  
MAX1928-15  
0.650  
1.305  
0.700  
1.395  
POK Threshold  
MAX1928-18  
MAX1928-25  
1.566  
2.175  
1.674  
2.325  
V
POK transitions to high impedance 20ms  
after V > V  
Output Valid to POK Release Delay  
15  
25  
ms  
FB  
POK  
LOGIC INPUTS (SHDN, PWM)  
Logic Input High  
2.6V < V  
2.6V < V  
< 5.5 V  
1.6  
V
V
BATT  
BATT  
Logic Input Low  
< 5.5 V  
0.6  
1
Logic Input Current  
V
= 5.5V  
µA  
BATT  
4
_______________________________________________________________________________________  
Low-Output-Voltage, 800mA, PWM Step-Down  
DC-DC Converters  
Typical Operating Characteristics  
(Circuits of Figure 3 and 4, T = +25°C, unless otherwise noted.)  
A
MAX1928-25  
EFFICIENCY vs. LOAD CURRENT  
MAX1928-18  
EFFICIENCY vs. LOAD CURRENT  
MAX1927R  
EFFICIENCY vs. LOAD CURRENT  
100  
90  
80  
70  
60  
50  
40  
100  
90  
80  
70  
60  
50  
40  
30  
100  
90  
80  
70  
60  
50  
40  
V
= 2.7V  
V
= 3.6V  
IN  
IN  
V
= 3.6V  
IN  
V
= 3.6V  
IN  
V
= 5V  
V
= 5V  
IN  
IN  
V
= 5V  
IN  
V
= 3.3V  
OUT  
V
= 1.8V  
OUT  
1
10  
100  
1000  
1
10  
100  
1000  
1
10  
100  
1000  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
MAX1927R  
EFFICIENCY vs. LOAD CURRENT  
MAX1928-25  
DROPOUT VOLTAGE vs. LOAD CURRENT  
MAX1928-15  
EFFICIENCY vs. LOAD CURRENT  
100  
90  
80  
70  
60  
50  
40  
30  
100  
90  
80  
70  
60  
50  
40  
30  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
V
= 2.7V  
IN  
V
= 2.7V  
IN  
V
= 5V  
IN  
V
= 5V  
IN  
V
= 3.6V  
V
= 3.6V  
IN  
IN  
V
= 1V  
V
= 1.5V  
OUT  
OUT  
V
= 2.5V  
IN  
0
1
10  
100  
1000  
1
10  
100  
1000  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0  
LOAD CURRENT (A)  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
MAX1928-18  
OUTPUT VOLTAGE vs. LOAD CURRENT  
OSCILLATOR FREQUENCY  
vs. INPUT VOLTAGE  
NO-LOAD INPUT CURRENT  
vs. INPUT VOLTAGE  
1.90  
1.88  
1.86  
1.84  
1.82  
1.80  
1.78  
1.76  
1.74  
1.72  
1.70  
1.06  
1.04  
1.02  
1.00  
0.98  
0.96  
0.94  
400  
350  
300  
250  
200  
150  
100  
50  
T
= +85°C  
A
T
= +25°C  
A
T
= -40°C  
A
V
= 3.6V  
IN  
0
0
100 200 300 400 500 600 700 800 900 1000  
LOAD CURRENT (mA)  
2.6  
3.1  
3.6  
4.1  
4.6  
5.1  
5.6  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
_______________________________________________________________________________________  
5
Low-Output-Voltage, 800mA, PWM Step-Down  
DC-DC Converters  
Typical Operating Characteristics (continued)  
(Circuits of Figure 3 and 4, T = +25°C, unless otherwise noted.)  
A
MAXIMUM LOAD CURRENT  
POK WAVEFORM  
vs. INPUT VOLTAGE  
STARTUP WAVEFORM  
MAX1927 toc11  
MAX1927 toc12  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
V
= 1V  
OUT  
5V/div  
SHDN  
POK  
SHDN  
5V/div  
V
= 1.8V  
V
= 2.5V  
OUT  
OUT  
1V/div  
V
2V/div  
2V/div  
OUT  
I
200mA/div  
V
IN  
OUT  
2.6  
3.1  
3.6  
4.1  
4.6  
5.1  
5.6  
20ms/div  
1ms/div  
INPUT VOLTAGE (V)  
HEAVY-LOAD SWITCHING WAVEFORMS  
LIGHT-LOAD SWITCHING WAVEFORMS  
MAX1927 toc13  
MAX1927 toc14  
V
V
OUT  
(AC-COUPLED)  
OUT  
10mV/div  
10mV/div  
(AC-COUPLED)  
I
200mA/div  
5V/div  
L
LX  
5V/div  
I
L
200mA/div  
LX  
400ns/div  
2ms/div  
LINE TRANSIENT  
LOAD TRANSIENT  
MAX1927 toc16  
MAX1927 toc15  
V
OUT  
100mV/div  
900mA  
(AC-COUPLED)  
V
OUT  
10mV/div  
(AC-COUPLED)  
4.2V  
3V  
V
IN  
500mA/div  
250mA  
I
2V/div  
LOAD  
1ms/div  
100µs/div  
6
_______________________________________________________________________________________  
Low-Output-Voltage, 800mA, PWM Step-Down  
DC-DC Converters  
Pin Description  
PIN  
NAME  
FUNCTION  
Forced-PWM Input. Drive to GND to use PWM at medium to heavy loads and pulse-skipping at light loads.  
Drive to BATT to force PWM operation at all loads.  
1
PWM  
2
3
GND  
REF  
Ground  
Internal 1.25V Reference. Bypass to GND with a 0.1µF capacitor.  
Output Feedback Sense Input. To set the output voltage to the preset voltage (MAX1928), connect FB directly  
to the output. To adjust the output voltage (MAX1927R), connect FB to the center of an external resistor-  
divider between the output and GND. FB regulation voltage is 0.75V.  
4
FB  
Compensation Input. See the Compensation, Stability, and Output Capacitor section for compensation  
component selection.  
5
COMP  
6
7
8
9
SHDN Shutdown Control Input. Drive low to shut down the converter. Drive high for normal operation.  
PGND Power Ground  
LX  
Inductor Connection to the drains of the internal power MOSFETs.  
BATT  
Supply Voltage Input. Connect to a 2.6V to 5.5V source. Bypass to GND with a low-ESR 10µF capacitor.  
Power-OK Open-Drain Output. Once the soft-start routine has completed, POK goes high impedance 20ms  
after FB exceeds 90% of its expected final value.  
10  
POK  
BATT  
COMP  
SLOPE  
COMPENSATION  
PWM  
COMPARATOR  
BIAS  
P
P
LX  
MAX1927  
MAX1928  
PFM CURRENT  
COMPARATOR  
1MHz  
OSC  
ILIM  
COMPARATOR  
PWM  
PWM  
CONTROL  
N
N
SHDN  
N-CHANNEL  
CURRENT COMPARATOR  
PGND  
TO  
COMP  
POK  
FB  
REF  
1.25V  
REFERENCE  
POWER-OK  
CONTROL  
MAX1927R  
ONLY  
MAX1928  
ONLY  
GND  
Figure 1. Simplified Functional Diagram  
_______________________________________________________________________________________  
7
Low-Output-Voltage, 800mA, PWM Step-Down  
DC-DC Converters  
the use of a small, low-valued, output filter capacitor.  
Detailed Description  
The resulting load regulation is 0.3% (typ) from 0 to  
The MAX1927/MAX1928 PWM step-down DC-DC con-  
800mA.  
verters accept inputs as low as 2.6V, while delivering  
800mA to output voltages as low as 0.75V. These  
devices operate in one of two modes to optimize noise  
and quiescent current. Under heavy loads, MAX1927/  
MAX1928 operate in pulse-width modulation (PWM)  
mode and switch at a fixed 1MHz frequency. Under  
light loads, they operate in PFM mode to reduce power  
consumption. In addition, both devices provide selec-  
table forced PWM operation for minimum noise at all  
load currents.  
Forced PWM Operation  
To force PWM-only operation, connect PWM to BATT.  
Forced PWM operation is desirable in sensitive RF and  
data-acquisition applications to ensure that switching  
noise does not interfere with sensitive IF and data sam-  
pling frequencies. A minimum load is not required dur-  
ing forced PWM operation because the synchronous  
rectifier passes reverse inductor current as needed to  
allow constant frequency operation with no load.  
Forced PWM operation has higher quiescent current  
than PFM (2mA typ compared to 140µA) due to contin-  
uous switching.  
PFM Operation and PWM Control Scheme  
The PFM mode improves efficiency and reduces quies-  
cent current to 140µA at light loads. The MAX1927/  
MAX1928 initiate pulse-skipping PFM operation when  
the peak inductor current drops below 130mA. During  
PFM operation, the MAX1927/MAX1928 switch only as  
necessary to service the load, reducing the switching  
frequency and associated losses in the internal switch,  
synchronous rectifier, and inductor.  
100% Duty-Cycle Operation  
The maximum on-time can exceed one internal oscilla-  
tor cycle, which permits operation at 100% duty cycle.  
As the input voltage drops, the duty cycle increases  
until the internal P-channel MOSFET stays on continu-  
ously. Dropout voltage at 100% duty cycle is the output  
current multiplied by the sum of the internal PMOS on-  
resistance (typically 0.25) and the inductor resis-  
tance. Near dropout, switching cycles can be skipped,  
reducing switching frequency. However, voltage ripple  
remains small because the current ripple is still low.  
During PFM mode, a switching cycle initiates when the  
error amplifier senses that the output voltage has  
dropped below the regulation point. If the output volt-  
age is low, the P-channel MOSFET switch turns on and  
conducts current to the output filter capacitor and load.  
The PMOS switch turns off when the PWM comparator  
is satisfied. The MAX1927/MAX1928 then wait until the  
error amplifier senses a low output voltage to start  
again. Some jitter is normal during the transition from  
PFM to PWM with loads around 100mA. This has no  
adverse impact on regulation.  
Synchronous Rectification  
An N-channel synchronous rectifier eliminates the need  
for an external Schottky diode and improves efficiency.  
The synchronous rectifier turns on during the second  
half of each cycle (off-time). During this time, the volt-  
age across the inductor is reversed, and the inductor  
current falls. In normal mode, the synchronous rectifier  
is turned off when either the output falls out of regula-  
tion (and another on-time begins) or when the inductor  
current approaches zero. In forced PWM mode, the  
synchronous rectifier remains active until the beginning  
of a new cycle.  
At loads greater than 130mA, the MAX1927/MAX1928  
use a fixed-frequency, current-mode, PWM controller  
capable of achieving 100% duty cycle. Current-mode  
feedback provides cycle-by-cycle current limiting,  
superior load and line response, as well as overcurrent  
protection for the internal MOSFET and synchronous  
rectifier. A comparator at the P-channel MOSFET switch  
detects overcurrent conditions exceeding 1.1A.  
Shutdown Mode  
Driving SHDN to GND places the MAX1927/MAX1928  
in shutdown mode. In shutdown, the reference, control  
circuitry, internal switching MOSFET, and synchronous  
rectifier turn off and the output becomes high imped-  
ance. Drive SHDN high for normal operation. Input cur-  
rent falls to 0.1µA (typ) during shutdown mode.  
During PWM operation, the MAX1927/MAX1928 regu-  
late output voltage by switching at a constant frequency  
and then modulating the power transferred to the load  
using the PWM comparator (Figure 1). The error-amp  
output, the main switch current-sense signal, and the  
slope compensation ramp are all summed at the PWM  
comparator. The comparator modulates the output  
power by adjusting the peak inductor current during the  
first half of each cycle based on the output-error volt-  
age. The MAX1927/MAX1928 have relatively low AC-  
loop gain coupled with a high-gain integrator to enable  
POK Output  
POK is an open-drain output that goes high impedance  
20ms after the soft-start ramp has concluded and V  
FB  
is within 90% of the threshold. POK is low impedance  
when in shutdown.  
8
_______________________________________________________________________________________  
Low-Output-Voltage, 800mA, PWM Step-Down  
DC-DC Converters  
Table 1. FB Regulation Voltages  
PART  
PRESET OUTPUT VOLTAGE  
MAX1927R  
0.75V, Adjustable  
LX  
FB  
MAX1928-15  
MAX1928-18  
MAX1928-25  
1.5 V  
1.8 V  
2.5 V  
R1  
MAX1927R  
R2  
50k  
following equation to calculate the maximum RMS input  
current:  
I
OUT  
I
=
× V  
× V V  
(
)
RMS  
OUT  
IN  
OUT  
V
Figure 2. Setting the Adjustable Output Voltage  
IN  
Compensation, Stability, and  
Output Capacitor  
Applications Information  
The MAX1927/MAX1928 are externally compensated  
Output Voltage Selection  
The MAX1927/MAX1928 have preset output voltages.  
In addition, the MAX1927R has an adjustable output.  
To set the output voltage at the preset voltage, connect  
FB to the output. See Table 1 for a list of the preset volt-  
ages and their corresponding part numbers.  
with a resistor and a capacitor (see Figure 3, R and  
C
C ) in series from COMP to GND. An additional capaci-  
C
tor (C ) may be required from COMP to GND if high-  
f
ESR output capacitors are used. The capacitor inte-  
grates the current from the transimpedance amplifier,  
averaging output capacitor ripple. This sets the device  
speed for transient response and allows the use of  
small ceramic output capacitors because the phase-  
shifted capacitor ripple does not disturb the current  
regulation loop. The resistor sets the proportional gain  
The output voltage for the MAX1927R is adjustable  
from 0.75V to the input voltage by connecting FB to a  
resistor-divider between the output and GND (Figure  
2). To determine the values of the resistor-divider, first  
select a value for feedback resistor R2 between 5kto  
50k. R1 is then given by:  
of the output error voltage by a factor g R .  
m
C
Increasing this resistor also increases the sensitivity of  
the control loop to output ripple.  
V
V
OUT  
R1=R2×  
1  
The resistor and capacitor set a compensation zero  
that defines the systems transient response. The load  
creates a dynamic pole, shifting in frequency with  
changes in load. As the load decreases, the pole fre-  
quency decreases. System stability requires that the  
compensation zero must be placed to ensure adequate  
phase margin (at least 30° at unity gain). The following  
is a design procedure for the compensation network:  
FB  
where V is 0.75V.  
FB  
Input Capacitor Selection  
Capacitor equivalent series resistance (ESR) is a major  
contributor to input ripple in high-frequency DC-DC  
converters. Ordinary aluminum-electrolytic capacitors  
have high ESR and should be avoided. Low-ESR alu-  
minum electrolytic capacitors are acceptable and rela-  
tively inexpensive. Low-ESR tantalum capacitors or  
polymer capacitors are better and provide a compact  
solution for space-constrained surface-mount designs.  
Ceramic capacitors have the lowest ESR overall.  
1) Select an appropriate converter bandwidth (f ) to  
C
stabilize the system while maximizing transient  
response. This bandwidth should not exceed 1/10  
of the switching frequency.  
2) Calculate the compensation capacitor, C , based  
C
on this bandwidth:  
The input filter capacitor reduces peak currents and  
noise at the input voltage source. Connect a low-ESR  
bulk capacitor (10µF typ) to the input. Select this bulk  
capacitor to meet the input ripple requirements and  
voltage rating rather than capacitance value. Use the  
For the MAX1927:  
V
1
R2  
R1+R2  
1
2πf  
C
OUT  
C
=
×
× g  
×
×
C
m
I
R
OUT(MAX)   
CS  
_______________________________________________________________________________________  
9
Low-Output-Voltage, 800mA, PWM Step-Down  
DC-DC Converters  
For the MAX1928:  
cel out the dominant pole created by the output  
load and the output capacitance:  
V
1
1
2πf  
C
OUT  
C
=
×
× g  
×
(
)
C
m
1
1
I
R
=
OUT(MAX)   
CS  
2π ×RL ×COUT 2π ×RC ×CC  
Resistors R1 and R2 are external to the MAX1927 (see  
the Setting the Output Voltage section). I is the  
Solving for R gives:  
OUT(MAX)  
= 0.48V/A, and g  
C
maximum output current, R  
=
m
CS  
250µS for the MAX1927. See the Electrical Characteristics  
table for MAX1928 g values. Select the closest standard  
C
R ×C  
L
OUT  
R
=
m
C
C
C
C value that gives an acceptable bandwidth.  
3) Calculate the equivalent load impedance, R , by:  
5) Calculate the high-frequency compensation pole to  
L
cancel the zero created by the output capacitors ESR:  
V
OUT  
OUT(MAX)  
R =  
L
1
1
I
=
2π ×R  
×C  
2π ×R ×C  
C f  
ESR  
OUT  
4) Calculate the compensation resistance (R ) to can-  
C
V
IN  
PWM  
2.6V TO 5.5V  
L1  
BATT  
CDRH4D18  
4.7µH  
V
C1  
OUT  
1.8V AT 800mA  
10µF  
LX  
FB  
C2  
10µF  
SHDN  
MAX1928-18  
GND  
COMP  
REF  
POK  
C
C
R
C
C
f
1200pF  
18kΩ  
22pF  
PGND  
C3  
0.1µF  
Figure 3. Applications Circuit for the MAX1928  
V
IN  
PWM  
2.6V TO 5.5V  
L1  
BATT  
V
CDRH4D18  
4.7µH  
OUT  
1V AT 800mA  
C1  
10µF  
LX  
FB  
C2  
10µF  
SHDN  
COMP  
REF  
R1  
16.5kΩ  
1%  
MAX1927R  
GND  
POK  
PGND  
C
C
R
C
C
f
R2  
49.9kΩ  
1%  
680pF  
15kΩ  
22pF  
C3  
0.1µF  
Figure 4. Applications Circuit for the MAX1927  
10 ______________________________________________________________________________________  
Low-Output-Voltage, 800mA, PWM Step-Down  
DC-DC Converters  
Solving for C gives:  
ground pins at a single common node in a star ground  
configuration. The external voltage feedback network  
should be very close to the FB pin, within 0.2in (5mm).  
Keep noisy traces, such as those from the LX pin, away  
from the voltage feedback network. Position the bypass  
capacitors as close as possible to their respective pins  
to minimize noise coupling. For optimum performance,  
place input and output capacitors as close to the  
device as possible. Connect GND and PGND to the  
highest quality system ground. The MAX1928 evalua-  
tion kit illustrates an example PC board layout and rout-  
ing scheme.  
f
R
×C  
OUT  
ESR  
C =  
f
R
C
or 22pF, whichever is greater.  
Standard Application Circuits  
Figures 3 and 4 are standard applications circuits for  
the MAX1927/MAX1928. Figure 3 illustrates the preset  
output voltages (MAX1928), while Figure 4 shows the  
adjustable configuration (MAX1927). Table 2 lists part  
numbers and suppliers for the components used in  
these circuits.  
Chip Information  
TRANSISTORS: 3282  
PC Board Layout and Routing  
PROCESS: BiCMOS  
High switching frequencies and large peak currents  
make PC board layout a very important part of design.  
Good design minimizes EMI, noise on the feedback  
paths, and voltage gradients in the ground plane, all of  
which can result in instability or regulation errors.  
Connect the inductor, input filter capacitor, and output  
filter capacitor as close together as possible and keep  
their traces short, direct, and wide. Connect their  
Table 2. Suggested Parts/Suppliers  
PART  
PART NUMBER  
MANUFACTURER  
PHONE  
WEBSITE  
USA 847-956-0666  
Japan 81-3-3607-5111  
Inductor  
CDRH3D16-4R7  
Sumida  
www.sumida.com  
Input/Output Capacitors  
COMP Capacitor  
REF Capacitor  
JMK212BJ106MG  
GRM1881X1H561J  
EMK107BJ104KA  
Taiyo Yuden  
Murata  
408-573-4150  
770-436-1300  
408-573-4150  
www.t-yuden.com  
www.murata.com  
www.t-yuden.com  
Taiyo Yuden  
______________________________________________________________________________________ 11  
Low-Output-Voltage, 800mA, PWM Step-Down  
DC-DC Converters  
Package Information  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,  
go to www.maxim-ic.com/packages.)  
e
4X S  
10  
10  
INCHES  
MAX  
MILLIMETERS  
MAX  
1.10  
0.15  
0.95  
3.05  
3.00  
3.05  
3.00  
5.05  
0.70  
DIM MIN  
MIN  
-
A
-
0.043  
0.006  
0.037  
0.120  
0.118  
0.120  
0.118  
0.199  
A1  
A2  
D1  
D2  
E1  
E2  
H
0.002  
0.030  
0.116  
0.114  
0.116  
0.114  
0.187  
0.05  
0.75  
2.95  
2.89  
2.95  
2.89  
4.75  
0.40  
H
ÿ 0.50±0.1  
0.6±0.1  
L
0.0157 0.0275  
0.037 REF  
L1  
b
0.940 REF  
0.007  
0.0106  
0.177  
0.270  
0.200  
1
1
e
0.0197 BSC  
0.500 BSC  
0.6±0.1  
c
0.0035 0.0078  
0.0196 REF  
0.090  
BOTTOM VIEW  
0.498 REF  
S
α
TOP VIEW  
0  
6∞  
0∞  
6∞  
D2  
E2  
GAGE PLANE  
A2  
c
A
E1  
b
L
α
A1  
D1  
L1  
FRONT VIEW  
SIDE VIEW  
PROPRIETARY INFORMATION  
TITLE:  
PACKAGE OUTLINE, 10L uMAX/uSOP  
APPROVAL  
DOCUMENT CONTROL NO.  
REV.  
1
21-0061  
I
1
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
12 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
© 2002 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY