MAX19541EVKIT [MAXIM]

Low-Voltage and Low-Power Operation;
MAX19541EVKIT
型号: MAX19541EVKIT
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Low-Voltage and Low-Power Operation

文件: 总14页 (文件大小:441K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-3535; Rev 1; 5/07  
MAX19541/MAX19542 Evaluation Kits  
General Description  
Features  
Up to 170Msps Sampling Rate Using the MAX19542  
Up to 125Msps Sampling Rate Using the MAX19541  
Low-Voltage and Low-Power Operation  
Fully Differential Input Signal Configuration  
On-Board Output Buffers  
The MAX19541/MAX19542 evaluation kits (EV kits) are  
fully assembled and tested printed-circuit boards  
(PCBs) that contain all the components necessary to  
evaluate the performance of the MAX19541 (125Msps)  
and MAX19541/MAX19542 (170Msps) 12-bit analog-to-  
digital converters (ADCs). The MAX19541/MAX19542  
accept differential analog inputs; however, the EV kits  
generate this signal from a user-provided, single-ended  
signal source. The digital outputs produced by the ADC  
are CMOS compatible and can be easily captured with  
a user-provided, high-speed logic analyzer or data-  
acquisition system. The EV kits operate from 1.8V and  
3.3V power supplies and include circuitry that generates  
a clock signal from a user-provided AC signal.  
Fully Assembled and Tested  
Ordering Information  
PART  
TEMP RANGE  
0°C to +70°C*  
0°C to +70°C*  
IC PACKAGE  
68 QFN-EP**  
68 QFN-EP**  
MAX19541EVKIT+  
MAX19542EVKIT+  
+Denotes a lead-free and RoHS-compliant EV kit.  
*This limited temperature range applies to the EV kit PCB only.  
The MAX19541/MAX19542 IC temperature range is -40°C to  
+85°C.  
**EP = Exposed paddle.  
Component List  
DESIGNATION  
QTY  
DESCRIPTION  
INP, CLK,  
ꢁESET  
SMA PC board vertical-mount  
connectors  
3
0
0.1µF 10ꢀ, 10V X5ꢁ ceramic  
capacitors (0402)  
TDK C1005X5ꢁ1A104K  
C1, C2, C3,  
C5–C27  
26  
Not installed, vertical-mount SMA  
connector  
INN  
J1, J2  
JU1–JU6, JU8  
JU7  
2
7
1
Dual-row 40-pin headers  
3-pin headers  
Not installed, ceramic capacitor  
(0402)  
C4  
0
3
Dual-row 8-pin header  
0.22µF 10ꢀ, 6.3V X5ꢁ ceramic  
capacitors (0402)  
TDK C1005X5ꢁ0J224K  
C28, C29, C30  
ꢁ1, ꢁ2, ꢁ11,  
ꢁ12, ꢁ14,  
ꢁ15, ꢁ22  
0
Not installed, resistors (0603)  
47µF 10ꢀ, 10V tantalum  
capacitors (C case)  
AVX TAJC476K010  
C31–C34  
C35–C38  
C39–C42  
4
4
4
ꢁ3–ꢁ7  
ꢁ8, ꢁ9  
5
2
2
49.9Ω 1ꢀ resistors (0603)  
510Ω 5ꢀ resistors (0603)  
0Ω resistors (0603)  
ꢁ10, ꢁ13  
10µF 20ꢀ, 6.3V X5ꢁ ceramic  
capacitors (0805)  
TDK C2012X5ꢁ0J106M  
24.9Ω 0.1ꢀ resistors (0603)  
IꢁC PFC-W0603ꢁLF-02-24ꢁ9-B  
Panasonic EꢁA3HB24ꢁ9V  
ꢁ16, ꢁ17  
2
1.0µF 10ꢀ, 10V X5ꢁ ceramic  
capacitors (0603)  
TDK C1608X5ꢁ1A105K  
ꢁ18, ꢁ19  
ꢁ20  
2
1
1
0
24.9Ω 1ꢀ resistors (0603)  
100kΩ, 12-turn, 1/4in  
potentiometer  
0.01µF 20ꢀ, 25V X7ꢁ ceramic  
capacitor (0402)  
TDK C1005X7ꢁ1E103M  
C43  
1
0
ꢁ21  
13kΩ 1ꢀ resistor (0603)  
Not installed, shorted by PC  
trace (0603)  
ꢁ23–ꢁ26  
Not installed, shorted by PC trace  
(0603)  
C44, C45  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
MAX19541/MAX19542 Evaluation Kits  
Component List (continued)  
DESIGNATION  
QTY  
DESCRIPTION  
DESIGNATION  
QTY  
DESCRIPTION  
100Ω 5ꢀ resistor arrays (1206)  
Panasonic EXB-2HV-101J  
ꢁA1–ꢁA4  
4
Low-voltage, 16-bit flip-flops  
(48-pin TSSOP)  
Pericom PI74ALVTC16374AE  
U3, U4  
2
22Ω 5ꢀ resistor arrays (1206)  
Panasonic EXB-2HV-220J  
ꢁA5–ꢁA8  
4
Dual two-input exclusive-Oꢁ gate  
(8-pin VSSOP)  
TI SN74AUC2G86DCUꢁE4  
1:1 800MHz ꢁF transformers  
Mini-Circuits ADT1-1WT+  
T1, T2  
TP1, TP2, TP3  
U1  
2
3
1
U5  
1
1
Test points (black)  
PCB: MAX19541/MAX19542  
Evaluation Kit+  
See the EV Kit-Specific  
Component List  
3.3V ECL differential receiver  
(8-pin SO)  
ON Semiconductor  
MC100LVEL16DG  
EV Kit-Specific Component list  
U2  
1
EV KIT PART  
NUMBER  
REFERENCE  
DESIGNATOR  
DESCRIPTION  
MAX19541EGK+  
MAX19541EVKIT+  
MAX19542EVKIT+  
(68-pin QFN with EP,  
10mm x 10mm x 0.9mm)  
U1  
MAX19542EGK+  
(68-pin QFN with EP,  
10mm x 10mm x 0.9mm)  
Component Suppliers  
SUPPLIER  
PHONE  
FAX  
WEBSITE  
www.avxcorp.com  
AVX Corp.  
843-946-0238  
361-992-7900  
714-373-7183  
847-803-6100  
843-626-3123  
361-992-3377  
714-373-7939  
847-390-4405  
IꢁC, Inc.  
www.irctt.com  
Panasonic Corp.  
TDK Corp.  
www.panasonic.com  
www.component.tdk.com  
Note: Indicate that you are using the MAX19541/MAX19542 when contacting these component suppliers.  
• Logic analyzer or data-acquisition system (e.g., HP  
Quick Start  
Recommended Equipment  
16500C with high-speed state card such as the HP  
16517A  
• DC power supplies:  
Analog (AVCC)  
Clock (CVCC)  
Buffers (BVCC)  
Digital (OVCC)  
• Digital voltmeter  
1.8V, 1A  
Procedure  
The MAX19541/MAX19542 EV kits are fully assembled  
and tested surface-mount boards. Follow the steps below  
for board operation. Caution: Do not turn on power  
supplies or enable signal generators until all connec-  
tions are completed:  
3.3V, 500mA  
1.8V, 500mA  
1.8V, 1A  
• Signal generator with low phase noise for clock input  
signal (e.g., HP 8662A, HP 8644B)  
1) Verify that shunts are installed in the following  
locations:  
• Signal generator for analog input signal (e.g., HP  
8662A, HP 8644B)  
a) JU1 (1-2)—Divide-by-two disabled  
b) JU2 (2-3)—Parallel mode selected  
2
_______________________________________________________________________________________  
MAX19541/MAX19542 Evaluation Kits  
c) JU3 (2-3)—Demux parallel mode selected if  
load signals that can be captured by a wide variety of  
logic analyzers. The buffered CMOS outputs can be  
accessed at headers J1 and J2.  
JU2 is pulled high  
d) JU4 (2-3)—Two’s-complement output selected  
e) JU5 (1-2)—Noninverted DCLKP selected  
f) JU6 (2-3)—Noninverted DCLKN selected  
g) JU7 (3-4)—Internal reference enabled  
Each EV kit is designed as a four-layer PCB to optimize  
the performance of the MAX19541/MAX19542. Separate  
analog, digital, clock, and buffer power planes minimize  
noise coupling between analog and digital signals; 50Ω  
coplanar transmission lines are used for analog and  
clock inputs. The trace lengths of the 50Ω CMOS lines  
are matched to within a few thousandths of an inch to  
minimize layout-dependent delays.  
2) Connect the clock signal generator to the SMA  
connector labeled CLK.  
3) Connect the analog input signal generator to the  
SMA connector labeled INP.  
Power Supplies  
The MAX19541/MAX19542 EV kits require separate  
analog, digital, clock, and buffer power supplies for  
best performance. Two separated 1.8V power supplies  
are used to power the analog and digital portions of the  
MAX19541/MAX19542. The on-board clock circuitry is  
powered by another 3.3V power supply, and a 1.8V  
power supply is used to power the output buffers (U3  
and U4) on the EV kits.  
4) Connect the logic analyzer’s high-speed state card  
probe connectors to header J1 (CMOS-compatible  
signals); see Table 5 for header connections.  
5) Connect a 1.8V, 1A power supply to AVCC.  
Connect the ground terminal of this supply to the  
GND pad closest to the AVCC pad.  
6) Connect a 3.3V, 500mA power supply to CVCC.  
Connect the ground terminal of this supply to the  
GND pad closest to the CVCC pad.  
Clock  
The MAX19541/MAX19542 require a differential clock  
signal. However, if only a single-ended clock signal  
source is available, the EV kit’s on-board level transla-  
tor helps to convert a single-ended clock to the  
required differential signal. An on-board clock-shaping  
circuit generates a differential clock signal from an AC-  
coupled sine-wave signal applied to the clock input  
SMA connector CLK. The input signal amplitude should  
7) Connect a 1.8V, 500mA power supply to BVCC.  
Connect the ground terminal of this supply to the  
GND pad closest to the BVCC pad.  
8) Connect a 1.8V, 1A power supply to OVCC.  
Connect the ground terminal of this supply to the  
GND pad closest to the OVCC pad.  
9) Turn on all the power supplies.  
10) Enable the signal generators. Set the clock signal  
not exceed 2.6V . The frequency of the clock signal  
P-P  
generator to output a 170MHz signal, with a 2.4V  
P-P  
should not exceed 170MHz. The frequency of the sinu-  
soidal input clock signal determines the sampling fre-  
amplitude. Set the analog input signal generato to  
output the desired frequency with an amplitude  
quency (f  
) of the ADC. A differential line receiver  
CLK  
2V . For coherent sampling, the signal genera-  
P-P  
(U2) processes the input signal to generate the  
required clock signal.  
tors should be synchronized.  
11) Enable the logic analyzer.  
Clock Divider  
The MAX19541/MAX19542 feature an internal divide-  
by-two clock divider. Use jumper JU1 to enable/disable  
this feature. See Table 1 for shunt positions.  
12) Collect data using the logic analyzer.  
Detailed Description  
The MAX19541/MAX19542 EV kits are fully assembled  
and tested PCBs that contain all the components nec-  
essary to evaluate the performance of the  
MAX19541/MAX19542. The MAX19541/MAX19542 can  
Table 1. Clock-Divider Shunt Settings  
(JU1)  
be evaluated with a maximum clock frequency (f  
170MHz.  
) of  
CLK  
SHUNT  
POSITION  
MAX19541/MAX19542  
CLKDIV PIN  
DESCRIPTION  
The MAX19541/MAX19542 accept differential inputs.  
Applications that only have a single-ended signal source  
available can use the on-board transformer (T2) to con-  
vert a single-ended signal to a differential signal.  
Clock signal  
divided by 1  
1-2*  
Connected to AVCC  
Connected to GND  
Clock signal  
divided by 2  
2-3  
Output buffers (U3 and U4) buffer the digital output sig-  
nals of the MAX19541/MAX19542 to higher capacitive  
*Default position.  
_______________________________________________________________________________________  
3
MAX19541/MAX19542 Evaluation Kits  
Input Signal  
Reference Voltage  
The MAX19541/MAX19542 accept differential analog  
input signals. However, the EV kits only require a sin-  
gle-ended analog input signal with an amplitude of less  
There are two methods to set the full-scale range of the  
MAX19541/MAX19542. Both EV kits can be configured  
to use the MAX19541/MAX19542’s internal reference, or  
a stable, low-noise, external reference can be applied to  
the ꢁEFIO pad. Jumper JU7 controls which reference  
source is used. See Table 2 for shunt settings.  
than 2V  
provided by the user. An on-board trans-  
P-P  
former then takes the single-ended analog input and  
generates a differential analog signal, which is applied  
to the ADC’s differential input pins.  
Output Mode  
The MAX19541/MAX19541/MAX19542 feature three  
modes of operation: parallel mode, demux parallel  
mode, and demux interleaved mode. In each mode of  
operation, the digital data is output in a different format  
and is controlled by the ADC’s DEMUX and ITL pins.  
The EV kits incorporate jumpers JU2 and JU3 to control  
the DEMUX and ITL pins, respectively. See Table 3 for  
shunt settings.  
Optional Input Transformer  
The MAX19541/MAX19542 EV kits use a second trans-  
former to enhance THD and SFDꢁ performance at high  
input frequencies (>100MHz). This transformer helps to  
reduce the increase of even-order harmonics at high  
frequencies. To use only the primary transformer, follow  
the directions below:  
1) ꢁemove ꢁ10 and ꢁ13.  
2) Install a 0.1µF capacitor on C4.  
3) Install a 0Ω resistor at ꢁ22.  
4) Install an SMA connector on INN.  
5) Connect the analog signal source to INN instead  
of INP.  
Table 2. Reference Shunt Settings (JU7)  
SHUNT  
DESCRIPTION  
POSITION  
Internal ꢁeference Disabled. Apply an  
1-2  
external reference voltage to the ꢁEFIO pad.  
Internal ꢁeference Enabled. ꢁEFIO is the  
output of the internal reference.  
3-4*  
Increases FSꢁ through trim potentiometer  
ꢁ20.  
5-6  
Decreases FSꢁ through trim potentiometer  
ꢁ20.  
7-8  
*Default position.  
Table 3. Output-Mode Shunt Settings (JU2 and JU3)  
JU2 SHUNT  
POSITION  
JU3 SHUNT  
POSITION  
DEMUX PIN  
ITL PIN  
OUTPUT MODE  
Parallel mode  
OUTPUT PORT  
Port A  
2-3  
1-2  
Connected to GND  
Connected to AV  
2-3  
Connected to GND  
Demux parallel mode  
Ports A and B  
CC  
Demux interleaved  
mode  
1-2  
Connected to AV  
1-2  
Connected to AV  
CC  
Ports A and B  
CC  
4
_______________________________________________________________________________________  
MAX19541/MAX19542 Evaluation Kits  
Output Format  
The digital output coding can be chosen to be either in  
two’s complement or straight offset-binary format by  
configuring jumper JU4. See Table 4 for shunt settings.  
Output Bit Locations  
The buffered digital outputs of the ADC are connected  
to two 40-pin headers (J1 and J2). PCB trace lengths  
are matched to minimize output skew and improve per-  
formance of the device. The buffers are able to drive  
large capacitive loads, which may be present at the  
logic analyzer connection. See Table 5 for headers J1  
and J2 bit locations.  
Table 4. Output-Format Shunt Settings (JU4)  
SHUNT POSITION  
T/B PIN  
DESCRIPTION  
1-2  
Connected to AV  
Digital data appears in straight offset-binary code.  
Digital data appears in two’s-complement code.  
CC  
2-3*  
Connected to GND  
Table 5. Output Bit Locations (J1 and J2)  
PORT A  
BIT  
BUFFERED  
OUTPUT  
BUFFERED  
OUTPUT  
LABEL  
NAME  
LABEL NAME  
PORT B BIT  
DESCRIPTION  
OꢁA  
DA11  
DA10  
DA9  
J1-35  
J1-31  
J1-29  
J1-27  
J1-25  
J1-23  
J1-21  
J1-19  
J1-17  
J1-15  
J1-13  
J1-11  
J1-9  
BOꢁA  
BDA11  
BDA10  
BDA9  
BDA8  
BDA7  
BDA6  
BDA5  
BDA4  
BDA3  
BDA2  
BDA1  
BDA0  
CLKA  
OꢁB  
DB11  
DB10  
DB9  
J2-35  
J2-31  
J2-29  
J2-27  
J2-25  
J2-23  
J2-21  
J2-19  
J2-17  
J2-15  
J2-13  
J2-11  
J2-9  
BOꢁB  
BDB11  
BDB10  
BDB9  
BDB8  
BDB7  
BDB6  
BDB5  
BDB4  
BDB3  
BDB2  
BDB1  
BDB0  
CLKB  
Overrange bit  
Bit 11 (MSB)  
DA8  
DB9  
DA7  
DB7  
DA6  
DB6  
Bits 10–1  
DA5  
DB5  
DA4  
DB4  
DA3  
DB3  
DA2  
DB2  
DA1  
DB1  
DA0  
DB0  
Bit 0 (LSB)  
DCLKP  
J1-3  
DCLKN  
J2-3  
Clock output signal  
_______________________________________________________________________________________  
5
MAX19541/MAX19542 Evaluation Kits  
C C  
O V  
O V  
A G N D  
C C  
C C  
O V  
O V  
O V  
O G N D  
O G N D  
O G N D  
C C  
C C  
A G N D  
A G N D  
A G N D  
A G N D  
C C  
A V  
C C  
A V  
C C  
A V  
C C  
A V  
A G N D  
A G N D  
A G N D  
A G N D  
A G N D  
C C  
A V  
C C  
A V  
C C  
A V  
C C  
A V  
C C  
A V  
C C  
A V  
C C  
A V  
Figure 1a. MAX19541/MAX19542 EV Kits Schematic (Sheet 1 of 3)  
6
_______________________________________________________________________________________  
MAX19541/MAX19542 Evaluation Kits  
C C  
O V  
A G N D  
C C  
C C  
C C  
C C  
O V  
O V  
O V  
O V  
O G N D  
O G N D  
O G N D  
A G N D  
A G N D  
A G N D  
A G N D  
A G N D  
A G N D  
A G N D  
A G N D  
A G N D  
C C  
C C  
C C  
C C  
C C  
C C  
A V  
A V  
A V  
A V  
A V  
A V  
A V  
A V  
A V  
A V  
A V  
C C  
C C  
C C  
C C  
C C  
Figure 1b. MAX19541/MAX19542 EV Kits Schematic (Sheet 2 of 3)  
_______________________________________________________________________________________  
7
MAX19541/MAX19542 Evaluation Kits  
BVCC  
CLKA  
48  
CLKA  
48  
7
18  
31 42  
RA5  
22Ω  
RA1  
100Ω  
J1  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
26  
27  
29  
30  
32  
33  
35  
36  
23  
22  
20  
19  
17  
16  
14  
13  
J1-39  
J1-37  
J1-40  
J1-38  
2D8  
2Q8  
2Q7  
2Q6  
2Q5  
2Q4  
2Q3  
2Q2  
2Q1  
2D7  
2D6  
2D5  
2D4  
2D3  
2D2  
2D1  
J1-35  
J1-31  
J1-29  
J1-27  
J1-36  
J1-32  
J1-30  
J1-28  
ORA  
DA11  
DA10  
DA9  
J1-25  
J1-33  
J1-26  
J1-34  
DA8  
U3  
PI74ALVC16374  
RA6  
RA2  
22Ω  
100Ω  
12  
11  
9
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
37  
38  
40  
41  
43  
44  
46  
47  
DA7  
DA6  
DA5  
DA4  
DA3  
DA2  
DA1  
DA0  
J1-23  
J1-21  
J1-24  
J1-22  
1D8  
1D7  
1D6  
1D5  
1D4  
1D3  
1D2  
1D1  
1Q8  
1Q7  
1Q6  
1Q5  
1Q4  
1Q3  
1Q2  
1Q1  
J1-19  
J1-17  
J1-15  
J1-13  
J1-20  
J1-18  
J1-16  
J1-14  
8
6
5
3
J1-11  
J1-9  
J1-7  
J1-5  
J1-12  
J1-10  
J1-8  
J1-6  
J1-4  
J1-2  
2
1
1OE  
2OE  
24  
J1-3  
J1-1  
CLKA  
4
10 15 21 28 34 45 39  
BVCC  
CLKB  
CLKB  
48  
48  
7
18  
31 42  
RA7  
22Ω  
RA3  
100Ω  
J2  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
26  
27  
29  
30  
32  
33  
35  
36  
23  
22  
20  
19  
17  
16  
14  
13  
J2-39  
J2-37  
J2-40  
J2-38  
2D8  
2D7  
2D6  
2D5  
2D4  
2D3  
2D2  
2D1  
2Q8  
2Q7  
2Q6  
2Q5  
2Q4  
2Q3  
2Q2  
2Q1  
J2-35  
J2-31  
J2-29  
J2-27  
J2-36  
J2-32  
J2-30  
J2-28  
ORB  
DB11  
DB10  
DB9  
J2-25  
J2-33  
J2-26  
J2-34  
DB8  
U4  
PI74ALVC16374  
RA8  
RA4  
22Ω  
100Ω  
12  
11  
9
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
37  
38  
40  
41  
43  
44  
46  
47  
DB7  
DB6  
DB5  
DB4  
DB3  
DB2  
DB1  
DB0  
J2-23  
J2-21  
J2-24  
J2-22  
1D8  
1D7  
1D6  
1D5  
1D4  
1D3  
1D2  
1D1  
1Q8  
1Q7  
1Q6  
1Q5  
1Q4  
1Q3  
1Q2  
1Q1  
J2-19  
J2-17  
J2-15  
J2-13  
J2-20  
J2-18  
J2-16  
J2-14  
8
6
5
3
J2-11  
J2-9  
J2-7  
J2-5  
J2-12  
J2-10  
J2-8  
J2-6  
J2-4  
J2-2  
2
BVCC  
1
1OE  
2OE  
J2-3  
J2-1  
CLKB  
1
2
3
24  
JU8  
4
10 15 21 28 34 45 39  
Figure 1c. MAX19541/MAX19542 EV Kits Schematic (Sheet 3 of 3)  
_______________________________________________________________________________________  
8
MAX19541/MAX19542 Evaluation Kits  
Figure 2. MAX19541/MAX19542 EV Kits Component Placement Guide—Component Side  
_______________________________________________________________________________________  
9
MAX19541/MAX19542 Evaluation Kits  
Figure 3. MAX19541/MAX19542 EV Kits PCB Layout—Component Side  
10 ______________________________________________________________________________________  
MAX19541/MAX19542 Evaluation Kits  
Figure 4. MAX19541/MAX19542 EV Kits PCB Layout—Ground Plane (Inner Layer 2)  
______________________________________________________________________________________ 11  
MAX19541/MAX19542 Evaluation Kits  
Figure 5. MAX19541/MAX19542 EV Kits PCB Layout—Power Planes (Inner Layer 3)  
12 ______________________________________________________________________________________  
MAX19541/MAX19542 Evaluation Kits  
Figure 6. MAX19541/MAX19542 EV Kits PCB Layout—Solder Side  
______________________________________________________________________________________ 13  
MAX19541/MAX19542 Evaluation Kits  
Figure 7. MAX19541/MAX19542 EV Kits Component Placement Guide—Solder Side  
Revision History  
Pages changed at ꢁev 1: Title Change—all pages,  
1–13  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
14 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
© 2007 Maxim Integrated Products  
is a registered trademark of Maxim Integrated Products, Inc.  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY