MAX1958ETP [MAXIM]

SMPS Controller ; SMPS控制器\n
MAX1958ETP
型号: MAX1958ETP
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

SMPS Controller
SMPS控制器\n

电信集成电路 信息通信管理 控制器
文件: 总24页 (文件大小:795K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-2659; Rev 0; 10/02  
W-CDMA/N-CDMA Cellular Phone HBT PA  
Management ICs  
General Description  
Features  
The MAX1958/MAX1959 power amplifier (PA) power-  
management ICs (PMICs) integrate an 800mA, dynami-  
cally adjustable step-down converter, a 5mA Rail-to-  
Rail® operational amplifier (op amp), and a precision  
temperature sensor to power a heterojunction bipolar  
transistor (HBT) PA in W-CDMA and N-CDMA cell  
phones.  
Step-Down Converter  
Dynamically Adjustable Output Voltage from  
0.75V to 3.4V (MAX1958)  
Dynamically Adjustable Output Voltage from  
1V to 3.6V (MAX1959)  
800mA Guaranteed Output Current  
130mV IC Dropout at 600mA Load  
Low Quiescent Current  
The high-efficiency, pulse-width modulated (PWM), DC-  
to-DC buck converter is optimized to provide a guaran-  
teed output current of 800mA. The output voltage is  
dynamically controlled to produce any fixed-output volt-  
age in the range of 0.75V to 3.4V (MAX1958) or 1V to  
3.6V (MAX1959), with settling time less than 30µs for a  
full-scale change in voltage and current. The 1MHz PWM  
switching frequency allows the use of small external  
components while pulse-skip mode reduces quiescent  
current to 190µA with light loads. The converter utilizes a  
low on-resistance internal MOSFET switch and synchro-  
nous rectifier to maximize efficiency and minimize  
external component count. The 100% duty-cycle opera-  
tion allows for an IC dropout voltage of only 130mV (typ)  
at 600mA load.  
190µA (typ) in Skip Mode (MAX1958)  
3mA (typ) in PWM Mode  
0.1µA (typ) in Shutdown Mode  
1MHz Fixed-Frequency PWM operation  
16% to 100% Duty-Cycle Operation  
No External Schottky Diode Required  
Soft-Start  
Operational Amplifier  
5mA Rail-to-Rail Output  
Active Discharge in Shutdown  
800kHz Gain-Bandwidth Product  
120dB Open-Loop Voltage Gain (R = 100k)  
L
Temperature Sensor  
Accurate Sensor -11.7mV/°C Slope  
-40°C to +125°C-Rated Temperature Range  
The micropower op amp is used to provide bias to the  
HBT PA to maximize efficiency. The amplifier features  
active discharge in shutdown for full PA bias control. It  
has 5mA rail-to-rail drive capability, 800kHz gain-band-  
width product, and 120dB open-loop voltage gain.  
20-Pin Thin QFN (5mm 5mm), 0.8mm Height (max)  
Ordering Information  
The precision temperature sensor measures tempera-  
tures between -40°C to +125°C, with linear tempera-  
ture-to-voltage analog output characteristics.  
PART  
TEMP RANGE  
-40°C to +85°C  
-40°C to +85°C  
PIN-PACKAGE  
20 Thin QFN-EP*  
20 Thin QFN-EP  
MAX1958ETP  
MAX1959ETP  
The MAX1958/MAX1959 are available in a 20-pin 5mm ✕  
5mm thin QFN package (0.8mm max height).  
*EP = Exposed paddle.  
Pin Configuration  
TOP VIEW  
Applications  
W-CDMA and N-CDMA Cellular Phones  
AOUT  
SHDN2  
AGND  
TOUT  
REF  
1
2
3
4
5
15 PWM  
14 INP  
13 IN  
Wireless PDAs and Modems  
MAX1958/  
MAX1959  
12  
11  
LX  
PGND  
Typical Operating Circuit and Functional Diagram appear at  
end of data sheet.  
THIN QFN  
5mm x 5mm  
Rail-to-Rail is a registered trademark of Nippon Motorola, Ltd.  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
W-CDMA/N-CDMA Cellular Phone HBT PA  
Management ICs  
ABSOLUTE MAXIMUM RATINGS  
IN, INP, OUT, ADJ, SHDN1, SHDN2,  
Continuous Power Dissipation (T = +70°C)  
20-Pin Thin QFN 5mm x 5mm  
A
SHDN3, PWM, V to PGND ...................................-0.3V to +6V  
CC  
(derate 20.8mW/°C above +70°C).............................1670mW  
Operating Temperature Range ...........................-40°C to +85°C  
Junction Temperature......................................................+150°C  
Storage Temperature Range.............................-65°C to +150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
AGND to PGND.....................................................-0.3V to +0.3V  
COMP, REF to AGND ....................................-0.3 to (V + 0.3V)  
IN  
VCC  
IN+, IN-, AOUT, TOUT to AGND ................-0.3 to (V  
+ 0.3V)  
LX Current (Note 1)............................................................. 1.6A  
Output Short-Circuit Duration.....................................Continuous  
Note 1: LX has internal clamp diodes to PGND and INP. Applications that forward bias these diodes should take care not to exceed  
the ICs package power dissipation limits.  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS (STEP-DOWN CONVERTER)  
(V  
= V = V  
= V  
= 3.6V, V  
= V  
= V  
= V  
= V  
= 0, V  
= 1.25V, COMP = IN- = IN+ = AOUT  
INP  
IN  
VCC  
SHDN1  
PWM  
PGND  
AGND  
SHDN2  
SHDN3  
ADJ  
= TOUT = unconnected, C  
= 0.1µF, T = 0°C to +85°C, V  
for MAX1958 = 2.2V, V  
for MAX1959 = 1.7V, unless otherwise  
REF  
A
OUT  
OUT  
noted. Typical values are at T = +25°C.)  
A
PARAMETER  
CONDITIONS  
MIN  
2.6  
TYP  
MAX  
5.5  
UNITS  
Supply Voltage Range  
V
V
Undervoltage Lockout Threshold  
Rising or falling, hysteresis is 1%  
MAX1958, PWM = AGND  
MAX1959, PWM = AGND  
2.20  
2.35  
190  
280  
3
2.55  
300  
450  
µA  
mA  
µA  
µA  
Quiescent Current  
V
= V  
IN  
PWM  
MAX1958  
MAX1959  
295  
330  
0.1  
550  
600  
6
Quiescent Current in Dropout  
Shutdown Supply Current  
V
= 0  
SHDN1  
ERROR AMPLIFIER  
V
V
V
V
V
V
V
V
V
V
V
V
= 1.932V, I  
= 0.426V, I  
= 0.426V, I  
= 0 to 600mA, V  
= V = 3.8V  
3.38  
0.739  
0.739  
3.58  
0.985  
0.985  
2
3.40  
0.750  
0.750  
3.60  
1.00  
1.00  
4
3.42  
0.761  
0.761  
3.62  
1.015  
1.015  
6
ADJ  
ADJ  
ADJ  
ADJ  
ADJ  
ADJ  
OUT  
OUT  
OUT  
OUT  
ADJ  
ADJ  
LOAD  
LOAD  
LOAD  
PWM  
IN  
OUT Voltage Accuracy  
(MAX1958)  
= 0 to 30mA, V  
= 0 to 30mA, V  
= 0  
V
V
PWM  
PWM  
= V = 4.2V  
IN  
= 2.2V, I  
= 0.9V, I  
= 0.9V, I  
= 0.75V  
= 3.4V  
= 0 to 600mA, V  
= V = 4V  
LOAD  
LOAD  
LOAD  
PWM IN  
OUT Voltage Accuracy  
(MAX1959)  
= 0 to 30mA, V  
= 0  
PWM  
PWM  
= 0 to 30mA, V  
= V = 4.2V  
IN  
OUT Input Current (MAX1958)  
OUT Input Current (MAX1959)  
µA  
µA  
11  
17  
25  
= 1V  
2.5  
4.0  
6.5  
= 3.6V  
10  
16  
23  
ADJ Input Current (MAX1958)  
ADJ Input Current (MAX1959)  
= 0.426V to 1.932V  
= 0.9V to 2.2V  
-150  
-150  
+1  
+150  
+150  
nA  
nA  
+1  
Positive COMP Output Current  
(MAX1958)  
V
V
= 1V, V  
= 1.5V, V = 1.25V  
COMP  
-27  
-27  
-14  
-14  
-7  
-7  
µA  
µA  
ADJ  
ADJ  
OUT  
OUT  
Positive COMP Output Current  
(MAX1959)  
= 1V, V  
= 1V, V  
= 1.25V  
COMP  
2
_______________________________________________________________________________________  
W-CDMA/N-CDMA Cellular Phone HBT PA  
Management ICs  
ELECTRICAL CHARACTERISTICS (STEP-DOWN CONVERTER) (continued)  
(V  
= V = V  
= V  
= 3.6V, V  
= 0.1µF, T = 0°C to +85°C, V  
= V  
= V  
= V  
= V  
= 0, V  
= 1.25V, COMP = IN- = IN+ = AOUT  
for MAX1959 = 1.7V, unless otherwise  
INP  
IN  
VCC  
SHDN1  
PWM  
A
PGND  
AGND  
SHDN2  
SHDN3  
ADJ  
= TOUT = unconnected, C  
for MAX1958 = 2.2V, V  
REF  
OUT  
OUT  
noted. Typical values are at T = +25°C.)  
A
PARAMETER  
CONDITIONS  
= 2V, V = 1.25V  
MIN  
TYP  
MAX  
UNITS  
Negative COMP Output Current  
(MAX1958)  
V
V
= 1V, V  
= 1V, V  
7
14  
27  
µA  
ADJ  
ADJ  
OUT  
COMP  
Negative COMP Output Current  
(MAX1959)  
= 1.4V, V  
= 1.25V  
7
14  
27  
µA  
OUT  
COMP  
REFERENCE  
REF Output Voltage  
REF Load Regulation  
Undervoltage Lockout Threshold  
Supply Rejection  
1.225  
0.85  
1.250  
2.50  
1.00  
0.07  
1.275  
6.25  
1.10  
1.7  
V
mV  
V
10µA < I  
< 100µA  
REF  
Rising or falling, 1% hysteresis  
2.6V < V < 5.5V  
mV/V  
IN  
CONTROLLER  
I
I
I
I
= 180mA, V = 3.6V  
0.21  
0.25  
0.18  
0.21  
0.5  
0.40  
0.5  
LX  
LX  
LX  
LX  
IN  
P-Channel On-Resistance  
= 180mA, V = 2.6V  
IN  
= 180mA, V = 3.6V  
0.30  
0.35  
IN  
N-Channel On-Resistance  
V/A  
A
= 180mA, V = 2.6V  
IN  
Current-Sense Transresistance  
P-Channel Current-Limit  
Threshold  
1.1  
1.37  
0.15  
-0.5  
1.6  
P-Channel Pulse-Skipping  
Current Threshold  
V
V
= 0  
= V  
= 0  
0.12  
0.17  
A
A
PWM  
PWM  
PWM  
N-Channel Current-Limit  
Threshold  
IN  
N-Channel Zero-Crossing  
Comparator  
V
V
20  
mA  
LX Leakage Current  
LX RMS Current  
= 5.5V  
-20.0  
100  
+0.1  
+20.0  
1.0  
µA  
A
IN  
(Note 1)  
Maximum Duty Cycle  
%
V
V
= 0  
0
PWM  
PWM  
Minimum Duty Cycle  
%
= V = 4.2V  
16  
IN  
Oscillator Frequency  
Thermal-Shutdown Threshold  
LOGIC INPUTS (PWM, SHDN1)  
Logic Input High  
0.85  
1.6  
1.00  
160  
1.15  
MHz  
Hysteresis = +15°C  
2.6 V < V < 5.5 V  
°C  
V
V
IN  
Logic Input Low  
2.6 V < V < 5.5 V  
0.6  
1
IN  
Logic Input Current  
V
= 5.5V  
0.1  
µA  
IN  
_______________________________________________________________________________________  
3
W-CDMA/N-CDMA Cellular Phone HBT PA  
Management ICs  
ELECTRICAL CHARACTERISTICS (OP AMP)  
(V  
= V = V  
= V  
= 2.7V, V  
= V  
/2, R = connected from AOUT to V  
/2, V  
= V  
= V  
=
SHDN1  
INP  
IN  
= V  
VCC  
= V  
SHDN2  
AOUT  
VCC  
L
VCC  
PGND  
AGND  
V
= 0, OUT = LX = TOUT = REF = COMP = unconnected, V  
= 0, T = 0°C to +85°C, unless otherwise  
SHDN3  
PWM  
ADJ  
CM A  
noted. Typical values are at T = +25°C.)  
A
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
5.5  
UNITS  
Supply Voltage Range  
2.6  
V
V
V
V
V
V
V
V
= 2.6V  
= 5V  
320  
375  
0.1  
0.4  
10  
1
800  
900  
2.0  
VCC  
VCC  
Supply Current  
µA  
= 0, V  
= 5.5V  
SHDN2  
VCC  
Input Offset Voltage  
Input Bias Current  
Input Offset Current  
Input Resistance  
- 0.1V V  
- 0.1V V  
- 0.1V V  
V  
V  
V  
+ 0.1V  
+ 0.1V  
+ 0.1V  
3.0  
mV  
nA  
AGND  
AGND  
AGND  
CM  
CM  
CM  
VCC  
VCC  
VCC  
100  
10  
nA  
- V  
IN+  
10mV  
4
MΩ  
IN-  
Input Common-Mode Voltage  
V
+
VCC  
0.1  
-0.1  
60  
V
Range, V  
CM  
Common-Mode Rejection Ratio,  
CMRR  
V
- 0.1V V  
V  
+ 0.1V  
80  
90  
dB  
dB  
AGND  
CM  
VCC  
Power-Supply Rejection Ratio,  
PSRR  
2.6V < V  
< 5.5V  
70  
VCC  
V
V
+ 0.05V V  
- 0.05V  
AGND  
AOUT  
R = 100kΩ  
120  
110  
L
VCC  
Large-Signal Voltage Gain, AVOL  
dB  
V
V
+ 0.20V V  
AGND  
AOUT  
R = 2kΩ  
L
85  
- 0.20V  
VCC  
R = 100kΩ  
1
L
Output Voltage Swing High, VOH V  
-V  
mV  
mV  
mA  
V
VCC VOH  
R = 2kΩ  
L
35  
1
90  
90  
R = 100kΩ  
L
Output Voltage Swing Low, VOL  
Output Short-Circuit Current  
SHDN2 Logic Low  
V  
- V  
VOL AGND  
RL = 2kΩ  
30  
11  
30  
Sourcing, V  
= 5V  
VCC  
Sinking, V  
= 5V  
VCC  
0.3 x  
2.6V < V  
2.6V < V  
< 5.5V  
< 5.5V  
VCC  
V
VCC  
0.7 x  
SHDN2 Logic High  
V
VCC  
V
VCC  
SHDN2 Input Current  
Gain Bandwidth Product, GBW  
Phase Margin, φM  
0 < V  
< V  
0.5  
1
120  
nA  
MHz  
Degrees  
dB  
SHDN2  
VCC  
70  
20  
0.4  
52  
0.1  
Gain Margin, GM  
Slew Rate, SR  
V/µs  
Input Voltage Noise Density  
Input Current Noise Density  
Capacitive-Load Stability  
Shutdown Delay Time  
Enable Delay Time  
f = 10kHz  
f = 10kHz  
nV/Hz  
pA/Hz  
pF  
AVCL = 1V/V (Note 2)  
470  
3
4
µs  
µs  
4
_______________________________________________________________________________________  
W-CDMA/N-CDMA Cellular Phone HBT PA  
Management ICs  
ELECTRICAL CHARACTERISTICS (OP AMP) (continued)  
(V  
= V = V  
= V  
= 2.7V, V  
= V  
/2, R = connected from AOUT to V  
/2, V  
= V  
= V  
=
SHDN1  
INP  
IN  
= V  
VCC  
= V  
SHDN2  
AOUT  
VCC  
L
VCC  
PGND  
AGND  
V
= 0, OUT = LX = TOUT = REF = COMP = unconnected, V  
= 0, T = 0°C to +85°C, unless otherwise  
SHDN3  
PWM  
ADJ  
CM A  
noted. Typical values are at T = +25°C.)  
A
PARAMETER  
Power-On Time  
CONDITIONS  
MIN  
TYP  
4
MAX  
UNITS  
µs  
Input Capacitance  
2.5  
pF  
f =10kHz, V  
= 2V , AVCL =1, V  
= 5V,  
AOUT  
P-P  
VCC  
Total Harmonic Distortion  
Settling Time to 0.01%  
0.01  
10  
%
µs  
R
= 100kto V  
/2  
VCC  
AOUT  
V  
= 4V step, V  
= 5V, AVCL = 1  
AOUT  
VCC  
Active Discharge Output  
Impedance  
V
= 0, I  
= 1mA  
100  
500  
SHDN2  
AOUT  
ELECTRICAL CHARACTERISTICS (TEMPERATURE SENSOR)  
(V  
= V = V  
= V  
= 2.7V, V  
= V  
= V  
= V  
= V  
= V  
= 0, IN- = IN+ = AOUT = COMP = LX =  
INP  
IN  
VCC  
SHDN3  
AGND  
PGND  
PWM  
SHDN1  
SHDN2  
ADJ  
OUT = REF = unconnected, C  
= 0.01µF (min), T = 0°C to +85°C, unless otherwise noted. Typical values are at T = +25°C.)  
TOUT  
A
A
PARAMETER  
CONDITIONS  
MIN  
-3.5  
-2.5  
-2.5  
TYP  
MAX  
+3.5  
+2.5  
+2.5  
UNITS  
T
T
T
= 0°C (Note 2)  
= +25°C (Note 2)  
= +85°C  
A
A
A
Temperature Sensor Error  
(Note 3)  
°C  
Output Voltage at +27°C  
Sensor Gain (Note 4)  
Nonlinearity  
1.56  
-11.64  
0.4  
V
mV/°C  
%
Load Regulation  
0 I  
15µA  
-5  
-2.3  
18  
mV  
mV/V  
µA  
LOAD  
Line Regulation  
2.6V V  
2.6V V  
5.5V  
VCC  
VCC  
Quiescent Current  
SHDN3 Logic High Voltage  
SHDN3 Logic Low Voltage  
SHDN3 Current  
5.5V  
< 5.5V  
< 5.5V  
10  
2.6V < V  
2.6V < V  
1.6  
V
VCC  
VCC  
0.6  
1.0  
V
V
= 5.5V  
0.1  
µA  
VCC  
_______________________________________________________________________________________  
5
W-CDMA/N-CDMA Cellular Phone HBT PA  
Management ICs  
ELECTRICAL CHARACTERISTICS (STEP-DOWN CONVERTER)  
(V  
= V = V  
= V  
= 3.6V, V  
= V  
= V  
= V  
= V  
= 0, V  
= 1.25V, COMP = IN- = IN+ =  
ADJ  
INP  
IN  
VCC  
SHDN1  
PWM  
PGND  
AGND  
SHDN2  
SHDN3  
AOUT = TOUT = unconnected, C  
otherwise noted.) (Note 5)  
= 0.1µF, T = -40°C to +85°C, V  
for MAX1958 = 2.2V, V  
for MAX1959 = 1.7V, unless  
REF  
A
OUT  
OUT  
PARAMETER  
Supply Voltage Range  
CONDITIONS  
MIN  
TYP  
MAX  
5.5  
UNITS  
2.6  
V
V
Undervoltage Lockout Threshold  
Rising or falling, hysteresis is 1%  
PWM = AGND (MAX1958)  
PWM = AGND (MAX1959)  
MAX1958  
2.20  
2.55  
300  
450  
550  
600  
6
Quiescent Current  
µA  
Quiescent Current in Dropout  
µA  
µA  
MAX1959  
Shutdown Supply Current  
V
= 0  
SHDN1  
ERROR AMPLIFIER  
V
V
V
V
V
V
V
V
V
V
V
V
= 1.932V, I  
= 0.426V, I  
= 0.426V, I  
= 0 to 600mA, V  
= V = 3.8V  
3.36  
0.739  
0.739  
3.570  
0.98  
0.98  
2
3.44  
0.761  
0.761  
3.625  
1.02  
1.02  
6
ADJ  
ADJ  
ADJ  
ADJ  
ADJ  
ADJ  
OUT  
OUT  
OUT  
OUT  
ADJ  
ADJ  
LOAD  
LOAD  
LOAD  
PWM  
IN  
OUT Voltage Accuracy  
(MAX1958)  
V
V
= 0 to 30mA, V  
= 0 to 30mA, V  
= 0  
PWM  
PWM  
= V = 4.2V  
IN  
= 2.2V, I  
= 0.9V, I  
= 0.9V, I  
= 0.75V  
= 3.4V  
= 0 to 600mA, V  
= V = 4V  
LOAD  
LOAD  
LOAD  
PWM IN  
OUT Voltage Accuracy  
(MAX1959)  
= 0 to 30mA, V  
= 0 to 30mA, V  
= 0  
PWM  
PWM  
= V = 4.2V  
IN  
OUT Input Current (MAX1958)  
OUT Input Current (MAX1959)  
µA  
µA  
11  
25  
= 1V  
2.5  
6.5  
= 3.6V  
10.0  
-150  
-150  
23.0  
+150  
+150  
ADJ Input Current (MAX1958)  
ADJ Input Current (MAX1959)  
= 0.426V to 1.932V  
= 0.9V to 2.2V  
nA  
nA  
Positive COMP Output Current  
(MAX1958)  
V
V
V
V
= 1V, V  
= 1V, V  
= 1V, V  
= 1V, V  
= 1.5V, V = 1.25V  
COMP  
-27.0  
-27.0  
6.5  
-6.5  
-6.5  
27.0  
27.0  
µA  
µA  
µA  
µA  
ADJ  
ADJ  
ADJ  
ADJ  
OUT  
OUT  
OUT  
OUT  
Positive COMP Output Current  
(MAX1959)  
=1V, V  
= 1.25V  
COMP  
Negative COMP Output Current  
(MAX1958)  
= 2V, V  
= 1.25V  
COMP  
Negative COMP Output Current  
(MAX1959)  
= 1.4V, V  
=1.25V  
6.5  
COMP  
REFERENCE  
REF Output Voltage  
REF Load Regulation  
Undervoltage Lockout Threshold  
Supply Rejection  
1.226  
0.85  
1.275  
6.25  
1.10  
1.7  
V
mV  
V
10µA < I  
< 100µA  
REF  
Rising or falling, 1% hysteresis  
2.6V < V < 5.5V  
mV/V  
IN  
6
_______________________________________________________________________________________  
W-CDMA/N-CDMA Cellular Phone HBT PA  
Management ICs  
ELECTRICAL CHARACTERISTICS (STEP-DOWN CONVERTER) (continued)  
(V  
= V = V  
= V  
= 3.6V, V  
= V  
A
= V  
= V  
= V  
= 0, V  
= 1.25V, COMP = IN- = IN+ =  
INP  
IN  
VCC  
SHDN1  
PWM  
PGND  
AGND  
SHDN2  
OUT  
SHDN3  
ADJ  
AOUT = TOUT = unconnected, C  
otherwise noted.) (Note 5)  
= 0.1µF, T = -40°C to +85°C, V  
for MAX1958 = 2.2V, V  
for MAX1959 = 1.7V, unless  
REF  
OUT  
PARAMETER  
CONTROLLER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
I
I
I
I
= 180mA, V = 3.6V  
0.4  
0.5  
LX  
LX  
LX  
LX  
IN  
P-Channel On-Resistance  
N-Channel On-Resistance  
A
A
= 180mA, V = 2.6V  
IN  
= 180mA, V = 3.6V  
0.3  
IN  
= 180mA, V = 2.6V  
0.35  
IN  
P-Channel Current-Limit  
Threshold  
1.1  
1.6  
P-Channel Pulse-Skipping  
Current Threshold  
V
= 0  
0.11  
-20  
0.18  
PWM  
LX Leakage Current  
LX RMS Current  
V
= 5.5V  
+20  
1.0  
µA  
A
IN  
(Note 1)  
Maximum Duty Cycle  
Minimum Duty Cycle  
Oscillator Frequency  
LOGIC INPUTS (PWM, SHDN1)  
Logic Input High  
100  
0.8  
1.6  
%
V
= 0  
0
%
PWM  
1.2  
MHz  
2.6V < V < 5.5V  
V
V
IN  
Logic Input Low  
2.6V < V < 5.5V  
0.6  
1
IN  
Logic Input Current  
V
= 5.5V  
µA  
IN  
_______________________________________________________________________________________  
7
W-CDMA/N-CDMA Cellular Phone HBT PA  
Management ICs  
ELECTRICAL CHARACTERISTICS (OP AMP)  
(V  
= V = V  
= V  
= 2.7V, V  
= V  
/2, R = connected from AOUT to V  
/2, V  
= V  
= V  
=
SHDN1  
INP  
IN  
= V  
VCC  
= V  
SHDN2  
AOUT  
VCC  
L
VCC  
PGND  
AGND  
V
= 0, OUT = LX = TOUT = REF = COMP = unconnected, V  
= 0, T = -40°C to +85°C, unless otherwise  
SHDN3  
PWM  
ADJ  
CM A  
noted.) (Note 5)  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
5.5  
UNITS  
Supply Voltage Range  
2.6  
V
V
V
V
V
V
V
= 2.6V  
= 5V  
800  
900  
2.0  
VCC  
VCC  
µA  
Supply Current  
= 0, V  
= 5.5V  
SHDN2  
VCC  
Input Offset Voltage  
Input Bias Current  
Input Offset Current  
- 0.1V V  
- 0.1V V  
- 0.1V V  
V  
V  
V  
+ 0.1V  
+ 0.1V  
+ 0.1V  
3.0  
mV  
nA  
nA  
AGND  
AGND  
AGND  
CM  
CM  
CM  
VCC  
VCC  
VCC  
100  
10  
Input Common-Mode Voltage  
V
V
VCC  
+ 0.1V  
AGND  
V
Range, V  
- 0.1V  
CM  
Common-Mode Rejection Ratio,  
CMRR  
V
- 0.1V V  
V  
+ 0.1V  
60  
dB  
AGND  
CM  
VCC  
Power-Supply Rejection Ratio,  
PSRR  
2.6V < V  
< 5.5V  
70  
85  
dB  
dB  
VCC  
Large-Signal Voltage Gain, AVOL  
V
+ 0.20V V  
V - 0.20V, R = 2kΩ  
VCC L  
AGND  
OUT  
Output Voltage Swing High, VOH V  
- V  
, R = 2kΩ  
90  
90  
VCC  
VOH  
L
Output Voltage Swing Low, VOL  
V  
VOL  
- V  
AGND  
, RL = 2kΩ  
mV  
V
0.3 x  
SHDN2 Logic Low  
2.6V < V  
2.6V < V  
< 5.5V  
VCC  
V
VCC  
0.7 x  
SHDN2 Logic High  
< 5.5V  
V
VCC  
V
VCC  
SHDN2 Input Current  
0 < V  
< V  
120  
nA  
pF  
SHDN2  
VCC  
Capacitive-Load Stability  
AVCL = 1V/V (Note 2)  
470  
500  
Active Discharge Output  
Impedance  
V
= 0, I = 1mA  
SHDN2  
AOUT  
8
_______________________________________________________________________________________  
W-CDMA/N-CDMA Cellular Phone HBT PA  
Management ICs  
ELECTRICAL CHARACTERISTICS (TEMPERATURE SENSOR)  
(V  
= V = V  
= V  
= 2.7V, V  
= V  
= V  
= V  
= V  
= V  
= 0, IN- = IN+ = AOUT = COMP = LX =  
INP  
IN  
VCC  
SHDN3  
AGND  
PGND  
PWM  
SHDN1  
SHDN2  
ADJ  
OUT = REF = unconnected, C  
= 0.01µF (min), T = -40°C to +85°C, unless otherwise noted.) (Note 5)  
TOUT  
A
PARAMETER  
CONDITIONS  
MIN  
-7  
TYP  
MAX  
+4  
UNITS  
T
T
T
= -40°C (Note 2)  
= +25°C (Note 2)  
= +85°C  
A
A
A
Temperature Sensor Error  
(Note 3)  
°C  
-2.5  
-2.5  
+2.5  
+2.5  
-5  
Load Regulation  
0 I  
15µA  
mV  
mV/V  
µA  
V
LOAD  
Line Regulation  
2.6V V  
2.6V V  
5.5V  
-2.3  
18  
VCC  
VCC  
Quiescent Current  
SHDN3 Logic High Voltage  
SHDN3 Logic Low Voltage  
SHDN3 Current  
5.5V  
< 5.5V  
< 5.5V  
2.6V < V  
2.6V < V  
1.6  
VCC  
VCC  
0.6  
1
V
V
= 5.5V  
µA  
VCC  
Note 2: Guaranteed by design, not production tested.  
-6  
2
-2  
Note 3: V  
= (-4 x 10 ) (T °C) - (1.13 10 ) (T°C) + 1.8708V.  
TOUT  
Note 4: Linearized gain = V  
= -11.64mV/°C + 1.8778V.  
TOUT  
Note 5: Specifications to -40°C are guaranteed by design and not subject to production test.  
Typical Operating Characteristics  
(T = +25°C, unless otherwise noted.)  
A
EFFICIENCY vs. LOAD CURRENT  
EFFICIENCY vs. LOAD CURRENT  
EFFICIENCY vs. LOAD CURRENT  
100  
100  
90  
80  
70  
60  
50  
40  
30  
100  
90  
80  
70  
60  
50  
40  
SKIP MODE  
= 3.6V  
95  
V
IN  
SKIP MODE  
90  
SKIP MODE  
V
= 3.6V  
IN  
V
IN  
= 3.6V  
85  
80  
75  
70  
65  
60  
SKIP MODE  
= 4.2V  
SKIP MODE  
= 4.2V  
SKIP MODE  
V = 4.2V  
IN  
PWM  
= 3.6V  
V
IN  
V
IN  
V
IN  
PWM  
= 3.6V  
PWM  
= 3.6V  
V
IN  
V
IN  
PWM  
= 4.2V  
V
IN  
PWM  
= 4.2V  
PWM  
= 4.2V  
V
IN  
V
IN  
V
= 1.5V  
V
= 2.5V  
V
= 3.4V  
OUT  
OUT  
OUT  
10  
100  
LOAD CURRENT (mA)  
1000  
10  
100  
LOAD CURRENT (mA)  
1000  
10  
100  
LOAD CURRENT (mA)  
1000  
_______________________________________________________________________________________  
9
W-CDMA/N-CDMA Cellular Phone HBT PA  
Management ICs  
Typical Operating Characteristics (continued)  
(T = +25°C, unless otherwise noted.)  
A
SUPPLY CURRENT vs. INPUT VOLTAGE  
SKIP MODE  
DROPOUT VOLTAGE ACROSS P-CHANNEL  
SUPPLY CURRENT vs. INPUT VOLTAGE  
FORCED PWM  
MOSFET vs. LOAD CURRENT  
250  
230  
210  
190  
170  
150  
130  
110  
90  
300  
6
5
4
3
2
1
0
PWM = AGND  
V
= 0.75V  
OUT  
V
= 1.5V  
OUT  
MAX1958  
PWM = IN  
MAX1958  
250  
200  
150  
100  
50  
70  
50  
0
2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
INPUT VOLTAGE (V)  
0
100 200 300 400 500 600 700 800  
LOAD CURRENT (mA)  
2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
INPUT VOLTAGE (V)  
MEDIUM-LOAD SWITCHING WAVEFORMS  
(I = 300mA)  
HEAVY-LOAD SWITCHING WAVEFORMS  
(I = 600mA)  
LOAD  
LOAD  
MAX1958/59 toc08  
MAX1958/59 toc07  
5V/div  
5V/div  
LX  
LX  
I
I
LX  
LX  
100mA/div  
100mA/div  
V
V
OUT  
AC-COUPLED  
OUT  
AC-COUPLED  
10mV/div  
10mV/div  
400ns/div  
400ns/div  
LIGHT-LOAD SWITCHING WAVEFORMS  
(PWM = IN, I = 30mA)  
LIGHT-LOAD SWITCHING WAVEFORMS  
(PWM = AGND, I = 30mA)  
LOAD  
LOAD  
MAX1958/59 toc09  
MAX1958/59 toc10  
5V/div  
5V/div  
LX  
LX  
I
I
LX  
LX  
100mA/div  
100mA/div  
V
V
OUT  
AC-COUPLED  
OUT  
AC-COUPLED  
10mV/div  
10mV/div  
400ns/div  
400ms/div  
10 ______________________________________________________________________________________  
W-CDMA/N-CDMA Cellular Phone HBT PA  
Management ICs  
Typical Operating Characteristics (continued)  
(T = +25°C, unless otherwise noted.)  
A
ENTERING AND EXITING SHUTDOWN  
MAX1958 ADJ TRANSIENT  
MAX1958/59 toc11  
MAX1958/59 toc12  
3.4V  
5V/div  
V
V
SHDN  
OUT  
0.75V  
I
IN  
50mA/div  
1V/div  
1.932V  
0.426V  
V
V
OUT  
ADJ  
400µs/div  
10µs/div  
LOAD TRANSIENT  
PWM = AGND  
LOAD TRANSIENT  
PWM = IN  
MAX1958/59 toc13  
MAX1958/59 toc14  
V
V
OUT  
AC-COUPLED  
OUT  
AC-COUPLED  
100mV/div  
100mV/div  
400mA  
30mA  
400mA  
30mA  
I
I
OUT  
OUT  
C
= 10µF  
C
= 10µF  
OUT  
OUT  
100µs/div  
100µs/div  
OP AMP SUPPLY CURRENT  
vs. INPUT VOLTAGE  
LOAD TRANSIENT  
MAX1958/59 toc15  
500  
450  
400  
350  
300  
250  
200  
T
= +125°C  
A
V
OUT  
AC-COUPLED  
10mV/div  
T
= +85°C  
= +25°C  
A
T
A
4V  
3V  
V
IN  
T
= -40°C  
A
2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
(V)  
1ms/div  
V
CC  
______________________________________________________________________________________ 11  
W-CDMA/N-CDMA Cellular Phone HBT PA  
Management ICs  
Typical Operating Characteristics (continued)  
(T = +25°C, unless otherwise noted.)  
A
OP AMP  
OP AMP  
INPUT OFFSET VOLTAGE  
vs. COMMON-MODE VOLTAGE  
INPUT OFFSET VOLTAGE  
vs. COMMON-MODE VOLTAGE  
600  
500  
400  
300  
200  
100  
0
600  
500  
400  
300  
200  
100  
0
T = +125°C  
T = +125°C  
A
A
V
= 5.5V  
V
= 2.5V  
VCC  
VCC  
T = +85°C  
A
T = +85°C  
A
T = +25°C  
A
T = +25°C  
A
T = -40°C  
A
T = -40°C  
A
0
0.5  
1.0  
1.5  
2.0  
2.5  
0
1
2
3
4
5
6
V
CM  
(V)  
V
(V)  
CM  
OP AMP  
OUTPUT SOURCE CURRENT  
vs. OUTPUT VOLTAGE  
OP AMP  
INPUT BIAS CURRENT  
vs. COMMON-MODE VOLTAGE  
14  
20  
V
= 5.5V  
VCC  
V
= 5.5V  
VCC  
T = -40°C  
A
12  
10  
8
15  
10  
5
T = +125°C  
A
T = +85°C  
A
V
= 2.5V  
VCC  
6
0
4
-5  
-10  
-15  
2
T = +25°C  
A
0
0
1
2
3
4
5
6
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
(V)  
V
(V)  
V
AOUT  
CM  
OP AMP  
OP AMP  
POWER-SUPPLY REJECTION RATIO  
vs. FREQUENCY  
OUTPUT SINK CURRENT  
vs. OUTPUT VOLTAGE  
0
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
V
= 5.5V  
= 2.5V  
VCC  
V
VCC  
0
5.0 5.5  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5  
(V)  
0.1  
1
10  
100  
1k  
10k  
V
FREQUENCY (Hz)  
AOUT  
12 ______________________________________________________________________________________  
W-CDMA/N-CDMA Cellular Phone HBT PA  
Management ICs  
Typical Operating Characteristics (continued)  
(T = +25°C, unless otherwise noted.)  
A
OP AMP  
SMALL-SIGNAL TRANSIENT  
RESPONSE (NONINVERTING)  
OP AMP  
GAIN AND PHASE vs. FREQUENCY  
MAX1958/59 toc24  
MAX1958/59 toc23  
80  
60  
90  
30  
2k|| 470pF  
20mV/div  
20mV/div  
40  
20  
-30  
-90  
IN  
PHASE  
GAIN  
100  
0
-150  
-210  
-20  
OUT  
-40  
-270  
0.1  
1
10  
1k  
10k  
4µs/div  
FREQUENCY (Hz)  
OP AMP  
OP AMP  
LARGE-SIGNAL TRANSIENT  
RESPONSE (NONINVERTING)  
SMALL-SIGNAL TRANSIENT  
RESPONSE (INVERTING)  
MAX1958/59 toc26  
MAX1958/59 toc25  
V
= 5V  
VCC  
IN  
2V/div  
2V/div  
20mV/div  
IN  
20mV/div  
OUT  
OUT  
40µs/div  
4µs/div  
OP AMP  
LARGE-SIGNAL TRANSIENT  
RESPONSE (INVERTING)  
TEMPERATURE SENSOR TOUT VOLTAGE  
vs. TEMPERATURE  
MAX1958/59 toc27  
V
= 5V  
VCC  
2.25  
IN  
2V/div  
2V/div  
1.75  
1.25  
0.75  
0.25  
OUT  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
40µs/div  
TEMPERATURE (°C)  
______________________________________________________________________________________ 13  
W-CDMA/N-CDMA Cellular Phone HBT PA  
Management ICs  
Typical Operating Characteristics (continued)  
(T = +25°C, unless otherwise noted.)  
A
TEMPERATURE SENSOR  
SUPPLY CURRENT vs. INPUT VOLTAGE  
TEMPERATURE SENSOR  
ERROR vs. TEMPERATURE  
20  
18  
16  
14  
12  
10  
8
1.5  
1.0  
0.5  
0
-0.5  
-1.0  
-1.5  
6
4
2
0
0
1
2
3
4
5
6
-40 -25 -10  
5
20 35 50 65 80 95  
INPUT VOLTAGE (V)  
TEMPERATURE (°C)  
Pin Description  
PIN  
NAME  
FUNCTION  
Op-Amp Output. AOUT discharges to AGND during shutdown.  
1
AOUT  
Shutdown Control Input for the Op Amp. Drive to AGND to shut down the op amp. Connect to V  
drive high for normal operation.  
or  
CC  
2
3
SHDN2  
Analog Ground. Ground for op amp, temperature sensor, and the precision circuits in the DC-to-DC  
regulator. Connect to pin 6.  
AGND  
4
5
6
TOUT  
REF  
Analog Voltage Output Representing the Die Temperature. Bypass to AGND with a 0.01µF capacitor.  
Internal 1.25V Reference. Bypass to AGND with a 0.1µF capacitor.  
Analog Ground. Connect to pin 3.  
AGND  
Compensation. Typically, connect a 22pF capacitor from COMP to AGND and a 9.1kresistor and  
560pF capacitor in series from COMP to AGND to stabilize the regulator (see the Compensation and  
Stability section).  
7
8
COMP  
ADJ  
External Reference Input. Connect ADJ to the output of a D/A converter for dynamic adjustment of the  
regulators output voltage. OUT regulates at (1.76 x V  
) for the MAX1958 and (2 x V  
- 0.8V) for  
ADJ  
ADJ  
the MAX1959.  
Shutdown Control Input for the Temperature Sensor. Drive to AGND to shut down the temperature  
sensor. Connect to V or drive high for normal operation.  
CC  
9
SHDN3  
Output Voltage Feedback. Connect OUT directly to the output. OUT is high impedance during  
shutdown.  
10  
OUT  
11  
12  
13  
PGND  
LX  
Power Ground for the DC-to-DC Converter  
Inductor Connection to the Internal Power MOSFETs  
Low-Current Supply Voltage Input. Connect to INP at the IC.  
IN  
14 ______________________________________________________________________________________  
W-CDMA/N-CDMA Cellular Phone HBT PA  
Management ICs  
Pin Description (continued)  
PIN  
NAME  
FUNCTION  
High-Current Supply Voltage Input. Connect to a 2.6V to 5.5V source. Bypass to PGND with a low-  
ESR 4.7µF capacitor. Connect to pin 16.  
14  
INP  
PWM/Skip-Mode Input. Drive low to use PWM mode at medium and heavy loads and pulse-skipping  
mode at light loads. Drive high to force PWM mode at all loads.  
15  
16  
17  
PWM  
INP  
Supply Voltage Input. Connect to pin 14.  
Shutdown Control Input for the Converter. Drive to AGND to shut down the converter. Connect to IN  
or drive high for normal operation.  
SHDN1  
18  
19  
20  
V
Supply Input for Op Amp and Temperature-Sensor Circuitry. Connect to INP through an RC filter.  
Noninverting Input for the Op Amp  
CC  
IN+  
IN-  
Inverting Input for the Op Amp  
Exposed  
Paddle  
Connect to Large AGND Plane. Internally connected to AGND.  
skipping operation when the peak inductor current  
Detailed Description  
PWM Step-Down DC-to-DC Converter  
drops below 150mA. During pulse-skipping operation,  
switching occurs only as necessary to service the load,  
thereby reducing the switching frequency and associat-  
ed losses in the internal switch, synchronous rectifier,  
and inductor.  
The PWM step-down DC-to-DC converter is optimized  
for low-voltage, battery-powered applications where high  
efficiency and small size are priorities. It is specifically  
intended to power the linear HBT PA in N-CDMA/  
W-CDMA handsets. An analog control signal (ADJ)  
dynamically adjusts the converters output voltage from  
0.75V to 3.4V (MAX1958) or 1V to 3.6V (MAX1959) with a  
settling time of approximately 30µs. The MAX1958/  
MAX1959 operate at a high 1MHz switching frequency  
that reduces external component size. The IC contains  
an internal synchronous rectifier that increases efficiency  
and eliminates the need for an external Schottky diode.  
The normal operating mode uses constant-frequency  
PWM switching at medium and heavy loads and pulse  
skips at light loads to reduce supply current and extend  
battery life. An additional forced-PWM mode switches at  
a constant frequency, regardless of load, to provide a  
well-controlled noise spectrum for easier filtering in  
noise-sensitive applications. The MAX1958/MAX1959  
are capable of 100% duty-cycle operation to increase  
efficiency in dropout. Battery life is maximized with a  
0.1µA (typ) logic-controlled shutdown mode.  
During pulse-skipping operation, a switching cycle initi-  
ates when the error amplifier senses that the output  
voltage has dropped below the regulation point. If the  
output voltage is low, the high-side P-channel MOSFET  
switch turns on and conducts current through the  
inductor to the output filter capacitor and load. The  
PMOS switch turns off when the output voltage rises  
above the regulation point and the error amplifier is sat-  
isfied. The MAX1958/MAX1959 then wait until the error  
amplifier senses an out-of-regulation output voltage to  
start the cycle again.  
At peak inductor currents above 150mA, the  
MAX1958/MAX1959 operate in PWM mode. During  
PWM operation, the output voltage is regulated by  
switching at a constant frequency and then modulating  
the power transferred to the load using the error com-  
parator. The error amplifier output, the main switch  
current-sense signal, and the slope compensation  
ramp are all summed at the PWM comparator (see the  
Functional Diagram). The comparator modulates the  
output power by adjusting the peak inductor current  
during the first half of each cycle based on the output  
error voltage. The MAX1958/MAX1959 have relatively  
low AC loop gain coupled with a high-gain integrator to  
enable the use of a small, low-valued output filter  
capacitor. The resulting load regulation is 1.5% from 0  
Normal-Mode Operation  
Connecting PWM to GND enables PWM/pulse-skipping  
operation. This proprietary control scheme uses pulse-  
skipping mode at light loads to improve efficiency and  
reduce quiescent current to 190µA for the MAX1958  
and 280µA for the MAX1959. With PWM/pulse-skipping  
mode enabled, the MAX1958/MAX1959 initiate pulse-  
______________________________________________________________________________________ 15  
W-CDMA/N-CDMA Cellular Phone HBT PA  
Management ICs  
to 600mA. Some jitter is normal during the transition from  
pulse-skipping mode to PWM mode with loads around  
75mA. This has no adverse impact on regulation.  
Undervoltage Lockout (UVLO)  
The DC-to-DC converter portion of the MAX1958/  
MAX1959 is disabled if battery voltage on IN is below the  
UVLO threshold of 2.35V (typ). LX remains high imped-  
ance until the supply voltage exceeds the UVLO thresh-  
old. This guarantees the integrity of the output voltage  
and prevents excessive current during startup and as  
the battery supply drops in voltage during use. The op  
amp and temperature sensor are not connected to the  
UVLO and therefore continue to operate normally.  
Forced-PWM Operation  
To force PWM operation at all loads, connect PWM to  
IN. Forced-PWM operation is desirable in sensitive  
RF and data-acquisition applications to ensure that  
switching-noise harmonics are predictable and can be  
easily filtered. This is to ensure that the switching noise  
does not interfere with sensitive IF and data sampling  
frequencies. A minimum load is not required during  
forced-PWM operation because the synchronous recti-  
fier passes reverse inductor current as needed to allow  
constant-frequency operation with no load. Forced-  
PWM operation has higher quiescent current than  
pulse-skipping mode (3mA typically compared to  
190µA) due to continuous switching.  
Synchronous Rectification  
An N-channel synchronous rectifier operates during the  
second half of each switching cycle (off-time). When the  
inductor current falls below the N-channel current-com-  
parator threshold or when the PWM reaches the end of  
the oscillator period, the synchronous rectifier turns off.  
This prevents reverse current flow from the output to  
the input in pulse-skipping mode. During PWM opera-  
tion, small amounts of reverse current flow through the  
N-channel MOSFET during light loads. This allows reg-  
ulation with a constant switching frequency and elimi-  
nates minimum load requirements for fixed-frequency  
operation. The N-channel reverse-current comparator  
threshold is -500mA. The N-channel zero-crossing  
threshold in pulse-skipping mode is 20mA (see the  
Forced-PWM Operation and Normal-Mode Operation  
sections)  
100% Duty-Cycle Operation  
The maximum on-time can exceed one internal oscillator  
cycle, which permits operation at 100% duty cycle. As  
the input voltage drops, the duty cycle increases until  
the internal P-channel MOSFET stays on continuously.  
Dropout voltage at 100% duty cycle is the output cur-  
rent multiplied by the sum of the internal PMOS on-  
resistance (typically 0.25) and the inductor  
resistance. Near dropout, cycles may be skipped,  
reducing switching frequency. However, voltage ripple  
remains small because the current ripple is still low.  
Shutdown Mode  
Driving SHDN1 to ground puts the DC-to-DC converter  
into shutdown mode. In shutdown mode, the reference,  
control circuitry, internal-switching MOSFET, and syn-  
chronous rectifier turn off and the output (LX) becomes  
high impedance. Input current falls to 0.1µA (typ) dur-  
ing shutdown mode. Drive SHDN1 high for normal  
operation.  
Dropout  
Dropout occurs when the desired output regulation  
voltage is higher than the input voltage minus the voltage  
drops in the circuit. In this situation, the duty cycle is  
100%, so the high-side P-channel MOSFET is held on  
continuously and supplies current to the output up to  
the current limit. The output voltage in dropout falls to  
the input voltage minus the voltage drops. The largest  
voltage drops occur across the inductor and high-side  
MOSFET. The dropout voltage increases as the load  
current increases.  
Thermal Limit  
The thermal limit is set at approximately +160°C and  
shuts down only the converter. In this state, both main  
MOSFETs are turned off. Once the IC cools by 15°C,  
the converter operates normally. A continuous overload  
condition results in a pulsed output. During thermal-  
limit conditions, the op amp and temperature sensor  
continue to operate.  
During dropout, the high-side, P-channel MOSFET  
turns on and the controller enters a low-current con-  
sumption mode. Every 6µs (six cycles), the MAX1958/  
MAX1959 check to see if the device is in dropout. The  
IC remains in this mode until it is no longer in dropout.  
Current-Sense Comparators  
The IC uses several internal current-sense comparators.  
In PWM operation, the current-sense amplifier, combined  
with the PWM comparator, sets the cycle-by-cycle cur-  
rent limit and provides improved load and line response.  
This allows tighter specification of the inductor-saturation  
current limit to reduce inductor cost. A second 150mA  
current-sense comparator monitors the current through  
COMP Clamp  
The MAX1958/MAX1959 compensation network has a  
1V to 2.25V error-regulation range. The clamp opti-  
mizes transient response by preventing the voltage on  
COMP from rising too high or falling too low.  
16 ______________________________________________________________________________________  
W-CDMA/N-CDMA Cellular Phone HBT PA  
Management ICs  
the P-channel switch and controls entry into pulse-skip-  
ping mode. A third current-sense comparator monitors  
current through the internal N-channel MOSFET to pre-  
vent excessive reverse currents and determines when to  
turn off the synchronous rectifier. A fourth comparator  
used at the P-channel MOSFET detects overcurrent. This  
protects the system, external components, and internal  
MOSFETs during overload conditions.  
Rail-to-Rail Op Amp  
The MAX1958/MAX1959 contain a rail-to-rail op amp  
that can be used to provide bias for the HBT PA. As the  
power needs of the PA change, the op amp can be  
used to dynamically change the bias point for the PA in  
order to optimize efficiency.  
Figure 1. Input Protection Circuit  
V
IN+  
2V/div  
Rail-to-Rail Input Stage  
The op amp in the MAX1958/MAX1959 has rail-to-rail  
input and output stages that are specifically designed  
for low-voltage, single-supply operation. The input  
stage consists of composite NPN and PNP differential  
stages, which operate together to provide a common-  
mode range extending beyond both supply rails. The  
crossover region of these two pairs occurs halfway  
between VCL and AGND. The input offset voltage is  
typically 400µV.  
V
AOUT  
2V/div  
Figure 2. Op-Amp Output Voltage Swing  
The MAX1958/MAX1959 op amp inputs are protected  
from large differential input voltages by internal 5.3kΩ  
series resistors and back-to-back triple-diode stacks  
across the inputs (Figure 1). For differential input volt-  
ages much less than 2.1V (three diode drops), input  
resistance is typically 4M. For differential voltages  
greater than 2.1V, input resistance is around 10.6k,  
and the input bias current can be approximated by the  
following equation:  
Rail-to-Rail Output Stage  
The MAX1958/MAX1959 op amp can drive down to a  
2kload and still typically swing within 35mV of the  
supply rails. Figure 2 shows the output voltage swing of  
the MAX1958 configured with A = 1.57V/V and with  
V
V
at 4.2V.  
VCC  
Temperature Sensor  
The MAX1958/MAX1959 analog temperature sensors  
output voltage is a linear function of its die temperature.  
The slope of the output voltage is approximately  
-11.64mV/°C and there is a 1.878V offset at 0°C to allow  
measurement of positive temperatures. The tempera-  
ture sensor functions from -40°C to +125°C .The tem-  
perature error is less than 2.5°C at temperatures from  
+25°C to +85°C.  
(V  
- 2.1V)  
10.6kΩ  
DIFF  
I
=
BIAS  
In the region where the differential input voltage  
increases to about 2.1V, the input resistance decreases  
exponentially from 4Mto 10.6kas the diodes begin  
to conduct. It follows that the bias current increases  
with the same curve.  
Nonlinearity  
The benefit of silicon analog temperature sensors over  
thermistors is the linearity over extended temperatures.  
The nonlinearity of the MAX1958/MAX1959 is typically  
0.4% over the 0°C to +85°C temperature range.  
______________________________________________________________________________________ 17  
W-CDMA/N-CDMA Cellular Phone HBT PA  
Management ICs  
Transfer Function  
The temperature-to-voltage transfer function has an  
approximately linear negative slope and can be  
described by the following equation:  
Compensation and Stability  
The MAX1958/MAX1959 are externally compensated  
with a resistor and a capacitor (R and C , Typical  
C
C
Application Circuit) in series from COMP to AGND. An  
additional capacitor (C ) is required from COMP to  
f
AGND. The capacitor, C , integrates the current from the  
C
mV  
V
= 11.64  
× T +1.878V  
TOUT  
transimpedance amplifier, averaging output capacitor  
ripple. This sets the device speed for transient response  
and allows the use of small ceramic output capacitors  
because the phase-shifted capacitor ripple does not dis-  
°C  
T is the die temperature in °C. Therefore:  
turb the current-regulation loop. The resistor, R , sets the  
C
proportional gain of the output error voltage by a factor of  
V
- 1.878V  
TOUT  
T =  
-11.64mV/ °C  
g
R . Increasing this resistor also increases the sen-  
C
m
sitivity of the control loop to output ripple.  
To account for the small amount of curvature in the  
transfer function, use the equation below to obtain a  
more accurate temperature reading:  
The series resistor and capacitor set a compensation  
zero that defines the systems transient response. The  
load creates a dynamic pole, shifting in frequency with  
changes in load. As the load decreases, the pole  
frequency decreases. System stability requires that the  
compensation zero must be placed to ensure adequate  
phase margin (at least 30° at unity gain). The following  
is a design procedure for the compensation network.  
-6  
2
-2  
V
= (-4 ×10 × T )+ (-1.13 ×10 × T)+1.8708V  
TOUT  
Applications Information  
PWM Step-Down DC-to-DC Converter  
Select an appropriate converter bandwidth (f ) to stabi-  
C
lize the system while maximizing transient response.  
This bandwidth should not exceed 1/10 of the switching  
frequency.  
Setting the Output Voltage  
The MAX1958/MAX1959 are optimized for highest sys-  
tem efficiency when applying power to a linear HBT PA  
in N-CDMA/W-CDMA handsets. The supply voltage to  
the PA is reduced (from 3.4V to as low as 0.75V for  
MAX1958) when transmitting at less than full power to  
greatly conserve supply current and extend battery life.  
The typical load profile for a W-CDMA PA can be seen  
in Figure 3. The MAX1958/MAX1959 dramatically  
reduce battery drain in these applications.  
Calculate the compensation capacitor, C , based on  
C
this bandwidth:  
V
1
R2  
R1+R2  
1
OUT  
OUT(MAX)  
C
=
×
× g ×  
m
×
C
I
R
2πf  
CS  
C
Resistors R1 and R2 are internal to the MAX1958/  
MAX1959. For the MAX1958, use R1 = 95kand R2 =  
125kas nominal values for calculations. For the  
MAX1959, use R1 = 125kand R2 = 125kas nominal  
The MAX1958 output voltage is dynamically adjustable  
from 0.75V to 3.4V and MAX1959 output voltage is  
dynamically adjustable from 1V to 3.6V using the ADJ  
input. The input voltage cannot be lower than the output  
values for calculations. I  
is the maximum out-  
m
OUT(MAX)  
put current, R  
= 0.5V/A, and g = 250µS. Select the  
CS  
voltage. V  
can be adjusted during operation by dri-  
OUT  
closest standard value C that gives an acceptable  
bandwidth.  
C
ving ADJ with an external DAC. The output voltage for  
the MAX1958 is determined as:  
Calculate the equivalent load impedance, R , by:  
L
V
=1.76× V  
ADJ  
OUT  
V
OUT  
OUT(MAX)  
R =  
L
The output voltage for the MAX1959 is determined as:  
= 2 × V - 0.8V  
I
V
OUT  
ADJ  
Calculate the compensation resistance (R ) to cancel  
C
out the dominant pole created by the output load and  
the output capacitance:  
The MAX1958/MAX1959 output voltage responds to a  
full-scale change in voltage and current in approxi-  
mately 30µs.  
1
1
=
2π × R × C  
2π × R × C  
C C  
L
OUT  
18 ______________________________________________________________________________________  
W-CDMA/N-CDMA Cellular Phone HBT PA  
Management ICs  
Solving for R gives:  
C
LIR  
2
I
=I  
+
×I  
LOAD(MAX)  
PEAK LOAD(MAX)  
R ×C  
L
OUT  
R
=
C
C
C
Input Capacitor Selection  
Calculate the high-frequency compensation pole to  
cancel the zero created by the output capacitors  
equivalent series resistance (ESR):  
The input capacitor (C ) reduces the current peaks  
IN  
drawn from the battery or input power source and  
reduces switching noise in the IC. The impedance of  
the input capacitor at the switching frequency should  
be less than that of the input source so that high-  
frequency switching currents are not required from the  
source.  
1
1
=
2π × R  
× C  
2π × R × C  
C f  
ESR  
OUT  
Solving for C gives:  
f
The input capacitor must meet the ripple current  
requirement (I  
) imposed by the switching currents.  
RMS  
R
×C  
Nontantalum chemistries (ceramic, aluminum, or organ-  
ic) are preferred due to their resistance to power-up  
ESR  
OUT  
Cf =  
R
C
surge currents. I  
is calculated as follows:  
RMS  
Use the calculated value for C or 22pF, whichever is  
f
larger.  
I
×
V
× (V - V  
)
LOAD  
OUT  
IN OUT  
I
=
RMS  
Inductor Selection  
There are several parameters that must be examined  
when determining an optimum inductor value. Input  
voltage, output voltage, load current, switching fre-  
quency, and LIR. LIR is the ratio of inductor current rip-  
ple to DC load current. A higher LIR value allows for a  
smaller inductor, but results in higher losses and higher  
output ripple current. A good compromise between  
size, efficiency, and cost is an LIR of 30%. Once all the  
parameters are chosen, the inductor value is deter-  
mined as follows:  
V
IN  
Output Capacitor Selection  
The output capacitor is required to keep the output  
voltage ripple small and to ensure stability of the regu-  
lation control loop. The output capacitor must have low  
impedance at the switching frequency. An additional  
constraint on the output capacitor is load transients. If it  
is desired for the output voltage to swing from 0.75V to  
3.4V in 30µs, the output capacitor should be approxi-  
mately 4.7µF or less. Ceramic capacitors are recom-  
mended. The output ripple is approximately:  
V
× V - V  
(
)
OUT  
IN OUT  
L =  
1
V
× f ×I  
× LIR  
IN  
S
LOAD(MAX)  
V
= LIR × I  
× ESR +  
RIPPLE  
LOAD(MAX)  
2π × f × C  
S
OUT  
where f is the switching frequency (1MHz). Choose a  
S
standard-value inductor close to the calculated value.  
The exact inductor value is not critical and can be adjust-  
ed in order to make trade-offs between size, cost, and  
efficiency. Lower inductor values minimize size and cost,  
but they also increase the output ripple and reduce the  
efficiency due to higher peak currents. On the other  
hand, higher inductor values increase efficiency, but  
eventually resistive losses due to extra turns of wire  
exceed the benefit gained from lower AC current levels.  
For any area-restricted applications, find a low-core-loss  
inductor having the lowest possible DC resistance. Ferrite  
cores are often the best choice. The inductors saturation  
current rating must exceed the expected peak inductor  
See the Compensation and Stability section for a dis-  
cussion of the influence of output capacitance and ESR  
on regulation control-loop stability.  
Rail-to-Rail Op Amp  
Shutdown Mode  
The MAX1958/MAX1959 op amp (Figure 4) features a  
low-power shutdown mode. When SHDN2 is pulled low,  
the supply current for the amplifier drops to 0.1µA, the  
amplifier is disabled, and the output is actively dis-  
charged to AGND with an internal 100switch. Pulling  
SHDN2 high enables the amplifier.  
Due to the output leakage currents of three-state  
devices and the small internal pullup current for  
SHDN2, do not leave SHDN2 unconnected. Floating  
current (I  
). Consult the inductor manufacturer for sat-  
PEAK  
uration current ratings. Determine I  
as:  
PEAK  
______________________________________________________________________________________ 19  
W-CDMA/N-CDMA Cellular Phone HBT PA  
Management ICs  
Power-Supply Bypass  
The power-supply voltage applied to V for the op  
3.4  
3.0  
CC  
amp and temperature sensor in the MAX1958/  
MAX1959 circuit is filtered from INP. Connect V to  
CC  
INP through an RC network (R2 and C7 in Figure 4) to  
ensure a quiet power supply.  
Temperature Sensor  
The temperature sensor provides information about the  
MAX1958/MAX1959 die temperature. The voltage at  
1.0  
TOUT (V  
) is related to die temperature as follows:  
TOUT  
-6  
2
-2  
V
= (-4 ×10 × T )+ (-1.13 ×10 × T)+1.8708V  
0.4  
0.0  
TOUT  
For stable operation, bypass TOUT to AGND with at  
least a 0.01µF capacitor.  
0 30  
300  
600  
PA SUPPLY CURRENT (mA)  
Temperature Sensor Error Due to Die Self-Heating  
When the 800mA converter and the op amp are both  
operated at heavy load while the temperature sensor is  
enabled, the indicated temperature at TOUT deviates  
several degrees from the actual ambient temperature  
due to die self-heating effects. At light loads, when die  
self-heating is low, TOUT tends to be a good approxi-  
mation of the ambient temperature. At heavier loads,  
the die self-heating is appreciable; TOUT gives a good  
approximation of the die temperature, which can be  
several degrees higher than the ambient temperature.  
Figure 3. Typical W-CDMA Power Amplifier Load Profile  
SHDN2 may result in indeterminate logic levels, and  
could adversely affect op-amp operation.  
Driving Capacitive Loads  
The MAX1958/MAX1959 op amp is unity-gain stable for  
capacitive loads up to 470pF. Applications that require  
a greater capacitive drive capability should use an iso-  
lation resistor (R  
) between the output and the  
ISO  
capacitive load (Figure 5). Note that this alternative  
results in a loss of gain accuracy because R forms a  
Sensing Circuit Board and Ambient Temperature  
Temperature sensors like those found in the  
MAX1958/MAX1959 that sense their own die tempera-  
ISO  
voltage-divider with R  
.
LOAD  
Table 1. Recommended Inductors  
RATED DC MAX  
CURRENT  
(mA)  
DIMENSIONS  
L x W x H  
(mm)  
INDUCTANCE  
DC RESISTANCE  
MANUFACTURER  
PART NO.  
(µH)  
(m)  
800mA Application  
Sumida  
CDRH3D16-4R7  
4.7  
4.7  
80  
900  
960  
3.8 x 3.8 x 1.8  
4.6 x 4.6 x 1.2  
Toko  
972AS-4R7M = P5  
220  
700mA Application  
Sumida  
CMD4D11-4R7  
976AS-4R7 = P5  
4.7  
4.7  
166  
320  
750  
740  
3.5 x 5.3 x 1.2  
3.6 x 3.6 x 1.2  
Toko  
400mA Application  
Murata  
LQH3C4R7M34  
CDRH2D11-4R7  
4.7  
4.7  
200  
170  
450  
500  
2.5 x 3.2 x 2  
Sumida  
3.2 x 3.2 x 1.2  
300mA Application  
Murata  
LQH1C4R7M04  
4.7  
650  
0.34  
1.6 x 3.2 x 2  
Note: Efficiency may vary depending upon the inductors characteristics. Consult the inductor manufacturer for saturation current ratings.  
20 ______________________________________________________________________________________  
W-CDMA/N-CDMA Cellular Phone HBT PA  
Management ICs  
V
IN  
2.6V TO 5.5V  
R6  
R7  
V
= V × 1+  
AOUT  
IN+  
R2  
20Ω  
INP  
SHDN2  
MAX1958/  
MAX1959  
V
CC  
C7  
0.1µF  
OFFSET  
IN+  
AOUT  
V
REF  
R6  
6.8kΩ  
IN-  
R7  
12kΩ  
HBT  
PA  
Figure 4. Op-Amp Configuration  
tures must be mounted on, or close to, the object  
whose temperature they are intended to measure.  
There is a good thermal path between the exposed  
paddle of the package and the IC die; therefore, the  
MAX1958/MAX1959 can accurately measure the  
temperature of the circuit board to which they are sol-  
dered. If the sensor is intended to measure the temper-  
ature of a heat-generating component on the circuit  
board, it should be mounted as close as possible to  
that component and should share supply and ground  
traces (if they are not noisy) with that component where  
possible. This maximizes the heat transfer from the  
component to the sensor.  
MAX1958/  
MAX1959  
R
ISO  
100Ω  
AOUT  
IN-  
R6  
R7  
C
R
LOAD  
LOAD  
The thermal path between the plastic package and the  
die is not as good as the path through the exposed  
paddle, so the MAX1958/MAX1959, like all temperature  
sensors in plastic packages, are less sensitive to the  
temperature of the surrounding air than they are to the  
temperature of its exposed paddle. They can be suc-  
cessfully used to sense ambient temperature if the cir-  
cuit board is designed to track the ambient  
temperature.  
Figure 5. Configuration for Driving Larger Capacitive Loads  
The junction-to-ambient thermal resistance (θ ) is the  
JA  
parameter used to calculate the rise of a device junc-  
tion temperature (T ) due to its power dissipation. The  
J
θ
for the 20-pin QFN package is +50°C/W. For the  
MAX1958/MAX1959, use the following equation to  
calculate the rise in die temperature:  
JA  
As with any IC, the wiring and circuits must be kept  
insulated and dry to avoid leakage and corrosion,  
especially if the part is operated at cold temperatures  
where condensation can occur.  
T
= T + Θ  
× P  
(
+ P  
D(OPAMP)  
+ P  
D(TEMPSENSOR)  
)
J
A
JA  
D(CONVERTER)  
The power dissipated by the DC-to-DC converter domi-  
nates in this equation. It is then reasonable to assume  
______________________________________________________________________________________ 21  
W-CDMA/N-CDMA Cellular Phone HBT PA  
Management ICs  
that the rise in die temperature due to the converter is a  
good approximation of the total rise in die temperature.  
Therefore:  
Connect the inductor, input filter capacitor, and output  
filter capacitor as close together as possible and keep  
their traces short, direct, and wide. Connect their  
ground pins at a single common node in a star ground  
configuration. Keep noisy traces, such as those from  
the LX pin, away from the output feedback network.  
Position the bypass capacitors as close as possible to  
their respective pins to minimize noise coupling. For  
optimum performance, place input and output capaci-  
tors as close to the device as possible. Connect AGND  
and PGND to the highest quality system ground. The  
MAX1958 evaluation kit illustrates an example PC  
board layout and routing scheme.  
T
T + Θ  
× P  
(
= T + Θ  
JA  
× (V ×I - V )  
×I  
)
J
A
JA  
D(CONVERTER)  
A
IN IN OUT OUT  
This equation assumes that the losses in the inductor  
are relatively small. For inductors with high DC resis-  
tance, inductor loss must be accounted for in the cal-  
culation. The temperature rise due to power dissipation  
by the converter can be quite significant.  
PC Board Layout and Routing  
High switching frequencies and large peak currents  
make PC board layout a very important part of design.  
Good design minimizes EMI, noise on the feedback  
paths, and voltage gradients in the ground plane, all of  
which can cause instability or regulation errors.  
Optimize performance of the op amp by decreasing the  
amount of stray capacitance at the op amps inputs  
and output. Decrease stray capacitance by placing  
external components as close to the device as possible  
to minimize trace lengths and widths.  
Typical Operating Circuit  
L1  
4.7µH  
SUMIDA  
INP  
V
IN  
CDRH3D16-4R7  
2.6V TO 5.5V  
IN  
LX  
C1  
4.7µF  
C2  
4.7µF  
PWM  
PGND  
SHDN1  
OUT  
R2  
20Ω  
AOUT  
V
V
CC  
REF  
R6  
6.8kΩ  
MAX1958/  
MAX1959  
V
CC  
IN-  
C7  
R7  
12kΩ  
0.1µF  
HBT  
PA  
SHDN2  
SHDN3  
TOUT  
V
TOUT  
R
C
C6  
0.01µF  
DAC  
9.1kΩ  
ADJ  
COMP  
C
C
f
C
22pF  
560pF  
REF  
OFFSET  
C5  
0.1µF  
IN+  
AGND  
EXPOSED  
PADDLE  
22 ______________________________________________________________________________________  
W-CDMA/N-CDMA Cellular Phone HBT PA  
Management ICs  
Functional Diagram  
IN  
INP  
REF  
1MHz  
OSCILLATOR  
REFERENCE  
MAX1958/  
MAX1959  
COMP  
COMP  
CLAMP  
ADJ  
LX  
ERROR  
AMPLIFIER  
PWM  
CONTROL  
SLOPE  
COMPENSATION  
PGND  
OUT  
PWM  
COMPARATOR  
CURRENT SENSE  
SHDN1  
PWM  
VCC  
IN+  
AOUT  
OP AMP  
IN-  
ACTIVE  
DISCHARGE  
SHDN2  
TOUT  
TEMPERATURE  
SENSOR  
AGND  
AGND  
SHDN3  
Chip Information  
TRANSISTOR COUNT: 3704  
PROCESS: BiCMOS  
______________________________________________________________________________________ 23  
W-CDMA/N-CDMA Cellular Phone HBT PA  
Management ICs  
Package Information  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,  
go to www.maxim-ic.com/packages.)  
D2  
0.15  
C A  
D
b
0.10 M  
C A B  
C
L
D2/2  
D/2  
k
PIN # 1  
I.D.  
0.15  
C
B
PIN # 1 I.D.  
0.35x45  
E/2  
E2/2  
C
(NE-1) X  
e
L
E2  
E
k
L
DETAIL A  
e
(ND-1) X  
e
C
C
L
L
L
L
e
e
0.10  
C
A
0.08  
C
C
A3  
A1  
PROPRIETARY INFORMATION  
TITLE:  
PACKAGE OUTLINE  
16, 20, 28, 32L, QFN THIN, 5x5x0.8 mm  
APPROVAL  
DOCUMENT CONTROL NO.  
REV.  
1
21-0140  
C
2
COMMON DIMENSIONS  
EXPOSED PAD VARIATIONS  
NOTES:  
1. DIMENSIONING & TOLERANCING CONFORM TO ASME Y14.5M-1994.  
2. ALL DIMENSIONS ARE IN MILLIMETERS. ANGLES ARE IN DEGREES.  
3. N IS THE TOTAL NUMBER OF TERMINALS.  
4. THE TERMINAL #1 IDENTIFIER AND TERMINAL NUMBERING CONVENTION SHALL CONFORM TO JESD 95-1  
SPP-012. DETAILS OF TERMINAL #1 IDENTIFIER ARE OPTIONAL, BUT MUST BE LOCATED WITHIN THE  
ZONE INDICATED. THE TERMINAL #1 IDENTIFIER MAY BE EITHER A MOLD OR MARKED FEATURE.  
5. DIMENSION b APPLIES TO METALLIZED TERMINAL AND IS MEASURED BETWEEN 0.25 mm AND 0.30 mm  
FROM TERMINAL TIP.  
6. ND AND NE REFER TO THE NUMBER OF TERMINALS ON EACH D AND E SIDE RESPECTIVELY.  
7. DEPOPULATION IS POSSIBLE IN A SYMMETRICAL FASHION.  
8. COPLANARITY APPLIES TO THE EXPOSED HEAT SINK SLUG AS WELL AS THE TERMINALS.  
9. DRAWING CONFORMS TO JEDEC MO220.  
PROPRIETARY INFORMATION  
TITLE:  
PACKAGE OUTLINE  
10. WARPAGE SHALL NOT EXCEED 0.10 mm.  
16, 20, 28, 32L, QFN THIN, 5x5x0.8 mm  
APPROVAL  
DOCUMENT CONTROL NO.  
REV.  
2
21-0140  
C
2
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
24 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
© 2002 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

相关型号:

MAX1958ETP+

Baseband Circuit, BICMOS, 5 X 5 MM, 0.80 MM HEIGHT, QFN-20
MAXIM

MAX1958ETP-T

Baseband Circuit, BICMOS, 5 X 5 MM, 0.80 MM HEIGHT, QFN-20
MAXIM

MAX1959

W-CDMA/N-CDMA Cellular Phone HBT PA Management ICs
MAXIM

MAX1959ETP

SMPS Controller
MAXIM

MAX1959ETP+

Baseband Circuit, BICMOS, 5 X 5 MM, 0.80 MM HEIGHT, QFN-20
MAXIM

MAX1959ETP-T

Baseband Circuit, BICMOS, 5 X 5 MM, 0.80 MM HEIGHT, QFN-20
MAXIM

MAX195ACDE

16-Bit, 85ksps ADC with 10レA Shutdown
MAXIM

MAX195AEDE

16-Bit, 85ksps ADC with 10レA Shutdown
MAXIM

MAX195AMDE

16-Bit, 85ksps ADC with 10レA Shutdown
MAXIM

MAX195BC/D

16-Bit, 85ksps ADC with 10レA Shutdown
MAXIM

MAX195BCPE

16-Bit, 85ksps ADC with 10レA Shutdown
MAXIM

MAX195BCPE+

暂无描述
MAXIM