MAX19712EVCMODU+ [MAXIM]

Low-Voltage and Low-Power Operation;
MAX19712EVCMODU+
型号: MAX19712EVCMODU+
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Low-Voltage and Low-Power Operation

文件: 总21页 (文件大小:685K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-0691; Rev 1; 6/07  
MAX19710–MAX19713 Evaluation  
Kits/Evaluation Systems  
Evluate:0–MAX9713  
General Description  
Features  
ADC/DAC Sampling Rates from 7.5Msps to  
The MAX19710–MAX19713 evaluation systems (EV  
systems) consist of MAX19710–MAX19713 evaluation  
kits (EV kits), a companion Maxim command module  
(CMODUSB) interface board, and software. Order the  
complete EV system (see the Ordering Information) for  
comprehensive evaluation of the MAX19710–MAX19713  
using a personal computer. Order the EV kit if the  
command module has already been purchased with a  
previous Maxim EV system, or for custom use in other  
microcontroller-based (µC) systems.  
45Msps  
Low-Voltage and Low-Power Operation  
Adjustable-Gain, Low-Speed DAC Buffers  
On-Board Clock-Shaping Circuitry  
On-Board Level-Translating I/O Drivers  
Assembled and Tested  
Downloadable Windows 98SE/2000/XP-Compatible  
Software  
The MAX19710–MAX19713 EV kits are fully assembled  
and tested PCBs that contain all the components  
necessary to evaluate the performance of the  
MAX19710–MAX19713 analog front-ends (AFEs).  
These AFEs integrate a dual-receive analog-to-digital  
converter (Rx ADC), a dual-transmit digital-to-analog  
converter (Tx DAC), a 1.024V internal voltage refer-  
ence, three low-speed serial DACs, and one low-speed  
serial ADC. The EV kit boards accept AC- or DC-  
coupled, differential or single-ended analog inputs for  
the Rx ADC and include circuitry that converts the Tx  
DAC differential output signals to single-  
ended analog outputs. The EV kits include circuitry that  
generates a clock signal from an AC sine-wave input  
signal. The EV kits operate from a +3.0V analog power  
supply, a +1.8V digital power supply, a +3.0V clock  
power supply, and ±±V bipolar power supplies.  
Ordering Information  
SPI  
INTERFACE  
TYPE  
TEMP  
RANGE* PACKAGE  
IC  
PART  
0°C to  
+70°C  
0°C to  
+70°C  
0°C to  
+70°C  
0°C to  
+70°C  
0°C to  
+70°C  
0°C to  
+70°C  
0°C to  
+70°C  
0°C to  
+70°C  
±6 TQFN-  
EP**  
±6 TQFN-  
EP**  
±6 TQFN-  
EP**  
±6 TQFN-  
EP**  
±6 TQFN-  
EP**  
±6 TQFN-  
EP**  
±6 TQFN-  
EP**  
±6 TQFN-  
EP**  
Not  
included  
MAX19710EVKIT+  
MAX19710EVCMODU+  
MAX19711EVKIT+  
MAX19711EVCMODU+  
MAX19712EVKIT+  
MAX19712EVCMODU+  
MAX19713EVKIT+  
MAX19713EVCMODU+  
CMODUSB  
Not  
included  
CMODUSB  
Not  
included  
CMODUSB  
Not  
included  
The Maxim command module interface board  
(CMODUSB) allows a PC to use its USB port to emulate  
an SPI™ 3-wire interface. Windows® 98SE/2000/XP-  
compatible software, which can be downloaded from  
www.maxim-ic.com/evkitsoftware, provides a user-  
friendly interface to exercise the features of the  
MAX19710–MAX19713. The program is menu driven  
and offers a graphical user interface (GUI) with control  
buttons and a status display.  
CMODUSB  
+Denotes a lead-free and RoHS-compliant EV Kit.  
*This limited temperature range applies to the EV kit PCB only. The  
MAX19710–MAX19713 IC temperature range is -40°C to +8±°C.  
**EP = Exposed paddle.  
Note: The MAX19710–MAX19713 EV kit software is available  
online; however, the CMODUSB board is required to interface  
the EV kit to the computer when using the software.  
SPI is a trademark of Motorola, Inc.  
Windows is a registered trademark of Microsoft Corp.  
MAX19710–MAX19713 EV Kit  
Software Files  
PROGRAM  
DESCRIPTION  
Part Selection Table  
INSTALL.EXE  
Installs the EV kit software  
PART  
SPEED (Msps)  
Tx CDMA FILTERS  
MAX19710.EXE, MAX19711.EXE,  
MAX19712.EXE, MAX19713.EXE  
MAX19710EVKIT+  
MAX19711EVKIT+  
MAX19712EVKIT+  
MAX19713EVKIT+  
7.±  
11  
22  
4±  
No  
Yes  
No  
Application program*  
UNINST.INI  
Uninstalls the EV kit software  
USB driver installation  
help file  
TROUBLESHOOTING_USB.PDF  
*EV Kit software dependant.  
No  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642,  
or visit Maxim’s website at www.maxim-ic.com.  
MAX19710–MAX19713 Evaluation  
Kits/Evaluation Systems  
Common Component List  
DESIGNATION QTY  
DESCRIPTION  
DESIGNATION QTY  
DESCRIPTION  
Dual-row, 40-pin header  
Dual-row, 20-pin header  
2-pin headers  
J2  
J3  
1
1
3
1
1
C1–C6, C17, C21,  
C23, C24, C2±, C28,  
0.1µF ±20ꢀ, 10V X±R ceramic  
capacitors (0402)  
TDK C100±X±R1A104M  
C29, C37–C40,  
C4±–C48, C73–C76,  
C78, C80, C81  
28  
J4, J±, JU2  
JU1  
Jumper, dual-row, 8-pin header  
Jumper, 3-pin header  
JU3  
22pF ±±ꢀ, ±0V C0G ceramic  
capacitors (0402)  
TDK C100±C0G1H220J  
R1–R4, R±±,  
R±6, R61  
C7–C10  
4
7
49.9Ω ±1ꢀ resistors (0603)  
C11, C31–C36  
C12  
0
0
Not installed, capacitors (0402)  
Not installed, capacitor (0603)  
R±–R16, R37–R42  
R17–R20  
0
4
0
Not installed, resistors (0402)  
24.9Ω ±1ꢀ resistors (0402)  
Not installed, resistors (0603)  
1000pF ±±ꢀ, ±0V C0G ceramic  
capacitors (0603)  
TDK C1608C0G1H102J  
C13, C14, C82  
C1±, C16  
3
2
9
3
7
R21–R36,  
R43–R46, R62, R66  
0.33µF ±10ꢀ, 10V X7R ceramic  
capacitors (0603)  
Murata GRM188R71C334K  
R47–R±4  
R±7, R±8  
R±9  
8
2
1
1
1
10kΩ ±1ꢀ resistors (0603)  
4.02kΩ ±1ꢀ resistors (0603)  
6.04kΩ ±1ꢀ resistor (0603)  
2.0kΩ ±1ꢀ resistor (0603)  
±kΩ potentiometer, 19-turn, 3/8in  
1.0µF ±20ꢀ, 6.3V X±R ceramic  
capacitors (0402)  
TDK C100±X±R0J10±M  
0.1µF ±20ꢀ, 6.3V X±R ceramic  
capacitors (0201)  
C18, C19, C20,  
C67–C72  
R60  
R63  
C22,  
C26, C27  
100Ω ±±ꢀ resistor arrays (1206-16L)  
Panasonic EXB-2HV-101J  
RA1–RA2  
RA3–RA6  
T1, T2  
2
4
2
TDK C0603X±R0J104M  
±1Ω ±±ꢀ resistor arrays (1206-16L)  
Panasonic EXB-2HV-±10J  
2.2µF ±20ꢀ, 6.3V X±R ceramic  
capacitors (0603)  
TDK C1608X±R0J22±M  
C30, C41–C44,  
C77, C84  
1:1 RF transformers  
Coilcraft TTWB3010-1L  
220µF ±20ꢀ, 6.3V tantalum  
C49–C60  
C61–C66  
C79  
12 capacitors (C-case)  
AVX TPSC227M006R02±0  
10µF ±20ꢀ, 10V X±R ceramic  
 X
TP1–TP4  
TP±  
4
1
Test points (red)  
Test point (black)  
Note: See the EV Kit-Specific  
Component List  
6
1
1
capacitors (1210)  
TDK C322±X±R1A106M  
U1  
1
0.01µF ±±ꢀ, 2±V C0G ceramic  
capacitor (0603)  
TDK C1608C0G1E103J  
16-bit buffer/driver  
(48-pin TSSOP)  
Texas Instruments  
SN74ALVCH16244DGGR  
U2  
1
0.33µF ±10ꢀ, 10V X±R ceramic  
capacitor (0402)  
C83  
Dual LVDS line receiver  
Maxim MAX9113ESA+ (8-pin SO)  
Murata GRM1±±R61A334K  
U3  
1
2
CLOCK, IA, IAN,  
IAP, ID, QA, QAN,  
QAP, QD  
400MHz ultra-low-distortion op amps  
Maxim MAX4108ESA+ (8-pin SO)  
9
SMA PC mount connectors  
U4, U±  
Low-noise, low-distorion, wide-  
band, rail-to-rail op amp  
Maxim MAX4478AUD+ (14-pin  
TSSOP)  
Dual Schottky diode (SOT23)  
Central Semiconductor CMPD6263S  
Vishay BAS70-04  
U6  
1
D1  
J1  
1
1
Diodes Inc BAS70-04  
2 x 20 right-angle female connector  
2
_______________________________________________________________________________________  
MAX19710–MAX19713 Evaluation  
Kits/Evaluation Systems  
Evluate:0–MAX9713  
Common Component List  
(continued)  
Component Suppliers  
SUPPLIER  
AVX Corp.  
PHONE  
WEBSITE  
843-946-0238 www.avxcorp.com  
DESIGNATION QTY  
DESCRIPTION  
Central  
Semiconductor  
Quad-level translator  
Maxim MAX3023EUD+ (14-pin TSSOP)  
Shunts  
631-43±-1110 www.centralsemi.com  
U7  
1
6
1
Coilcraft  
Diodes Inc.  
Murata  
847-639-6400 www.coilcraft.com  
80±-446-4800 www.diodes.com  
770-436-1300 www.murata.com  
714-373-7366 www.panasonic.com  
847-803-6100 www.component.tdk.com  
203-268-6261 www.vishay.com  
PCB: MAX19710/1/2/3  
Evaluation Kit+  
Panasonic  
TDK Corp.  
Vishay  
MAX19713EVCMODU  
(MAX19713 EV System)  
Component List  
Note: Indicate that you are using the MAX19710, MAX19711,  
MAX19712, or MAX19713 when contacting these component  
suppliers.  
PART  
QTY  
DESCRIPTION  
SPI interface board  
MAX19713 EV kit  
CMODUSB  
1
1
MAX19713EVKIT+  
• Analog bandpass filters (e.g., Allen Avionics, K&L  
Microwave) for input and clock signal  
• Two spectrum analyzers (e.g., HP/Agilent 8±60E)  
EV Kit-Specific Component List  
• One digital pattern generator with one 10-bit data  
pod (e.g., Tektronix DG2020A)  
EV KIT PART  
NUMBER  
DESIGNATION  
DESCRIPTION  
Maxim MAX19713ETN+ (±6-  
pin, 7mm x 7mm Thin QFN-EP)  
Procedure  
The MAX19710–MAX19713 EV kits are fully assembled  
and tested surface-mount boards. Follow the steps below  
to verify board operation. Caution: Do not turn on  
power supplies or enable signal/data generators until  
all connections are completed.  
Note: In the following sections, software-related items  
are identified by bolding. Text in bold refers to items  
directly from the EV kit software. Text in bold and  
underlined refers to items from the Windows  
98SE/2000/XP operating system.  
MAX19713EVKIT+  
MAX19712EVKIT+  
MAX19711EVKIT+  
MAX19710EVKIT+  
Maxim MAX19712ETN+ (±6-  
pin, 7mm x 7mm Thin QFN-EP)  
U1  
Maxim MAX19711ETN+ (±6-  
pin, 7mm x 7mm Thin QFN-EP)  
Maxim MAX19710ETN+ (±6-  
pin, 7mm x 7mm Thin QFN-EP)  
Quick Start  
Recommended Equipment  
Command Module Setup (CMODUSB)  
• DC power supplies:  
Analog (VDD)  
1) Visit the Maxim website (www.maxim-ic.com/evkit-  
software) to download the latest version of the EV  
kit software. Save the EV kit software to a temporary  
folder and uncompress the ZIP file.  
+3.0V, 100mA  
+3.0V, 100mA  
+1.8V, 100mA  
Clock (CVDD)  
Digital (OVDD)  
2) Install the EV kit software on your computer by run-  
ning the INSTALL.EXE program inside the temporary  
folder. The program files are copied and icons are  
created in the Windows Start | Programs menu.  
3) Place a shunt across pins 2-3 of the VDD select  
jumper (command module working voltage set  
to 3.3V).  
Op-amp positive (VOP)  
Op-amp negative (VON)  
±.0V, 2±0mA  
-±.0V, 2±0mA  
• Signal generator with low phase noise and low jitter  
for clock input signal (e.g., HP/Agilent 8662A,  
HP/Agilent 8644B)  
• Two signal generators with low phase noise for ana-  
log signal inputs (e.g., HP/Agilent 8662A, HP/Agilent  
8644B)  
4) Connect a USB cable from the computer’s USB  
port to the command module (CMODUSB) interface  
board. Use a standard USB A-B cable. A Building  
• Logic analyzer or data-acquisition system with one  
data pod (e.g., HP/Agilent 16±00C, TLA621)  
_______________________________________________________________________________________  
3
MAX19710–MAX19713 Evaluation  
Kits/Evaluation Systems  
Driver Database window appears in addition to a  
New Hardware Found message if this is the first  
time the EV kit board is connected to the PC. If you  
do not see a window that is similar to the one  
described above after 30 seconds, remove the USB  
cable from the CMODUSB and reconnect it.  
Administrator privileges are required to install the  
USB device driver on Windows 2000/XP. Refer to  
the document TROUBLESHOOTING_USB.PDF  
included with the software if you have any problems.  
1±) Connect the output of the clock bandpass filter to  
the EV kit SMA connector labeled CLOCK.  
16) Connect the first analog signal generator to the  
input of the desired bandpass filter.  
17) Connect the output of the bandpass filter to the EV  
kit SMA connector labeled IA (I channel).  
18) Connect the second analog signal generator to the  
input of the desired bandpass filter.  
19) Connect the output of the bandpass filter to the EV  
kit SMA connector labeled QA (Q channel).  
±) Follow the directions of the Add New Hardware  
Wizard to install the USB device driver. Choose the  
Search for the best driver for your device option.  
Specify the location of the device driver to be  
C:\Program Files\MAX19713, \MAX19712,  
\MAX19711, or \MAX19710 (default installation  
directory) using the Browse button.  
20) Ensure that all signal generators are phase-locked to a  
common reference frequency for coherent sampling.  
21) Connect the logic analyzer to J2. Use the bit labels  
(AD_) located next to header J2 for proper bit align-  
ment or see the Digital Data Bit Locations section  
for header connections.  
22) Set the logic analyzer to capture 10-bit CMOS data  
on the falling edge for the I channel or the rising  
edge for the Q channel.  
23) Turn on the -±V power supply.  
24) Turn on all remaining power supplies.  
2±) Enable the signal generators.  
26) Set the clock signal generator to output a 4±MHz  
signal. The amplitude of the generator should  
be sufficient to produce a +16dBm signal at the SMA  
input of the EV kit. Insertion losses due to the  
series-connected filter (step 14) and the inter-  
connecting cables decrease the amount of power  
seen at the EV kit input. Account for these losses  
when setting the signal generator amplitude.  
27) Set the analog input signal generators to output the  
desired frequency. The amplitude of the generator  
should produce a signal that is no larger than  
+±dBm, as measured at the SMA input of the EV kit.  
Insertion losses, due to the series-connected filters  
(steps 17 and 19) and the interconnecting cables,  
decrease the amount of power seen at the EV kit  
input. Account for these losses when setting the  
signal generator amplitude.  
EV Kit Setup  
6) Verify that shunts are installed in the following locations:  
JU1 (1-2) CS connected  
JU1 (3-4) SCLK connected  
JU1 (±-6) DIN connected  
JU1 (7-8) DOUT connected  
JU2 (Installed) Internal reference enabled  
JU3 (1-2) Power U2 with OVDD  
7) Connect a +3.0V, 100mA power supply to VDD.  
Connect the ground terminal of this supply to GND.  
8) Connect a +3.0V, 100mA power supply to CVDD.  
Connect the ground terminal of this supply to GND.  
9) Connect a +1.8V, 100mA power supply to OVDD.  
Connect the ground terminal of this supply to OGND.  
10) Connect a +±V, 2±0mA power supply to VOP.  
Connect the ground terminal of this supply to GND.  
11) Connect a -±V, 2±0mA power supply to VON.  
Connect the ground terminal of this supply to GND.  
12) Carefully align the 40-pin connector of the EV kit  
(J1) with the 40-pin header of the CMODUSB inter-  
face board (P4). Gently press them together.  
Evluate:0–MAX9713  
28) Start the MAX19710–MAX19713 program by open-  
ing its icon in the Start menu.  
29) Normal device operation can be verified by the Status:  
Interface Board Operational text in the Interface box  
of the program.  
13) The MAX19710–MAX19713 support two modes of  
operation:  
a. To connect a logic analyzer to the EV kit and  
test the Rx ADCs, skip to step 14.  
b. To connect a spectrum analyzer to the EV kit  
and test the Tx DACs, skip to step 34.  
30) Select the Maxim device that you are using from the  
Device combo box.  
31) Click the POR Reset button on the EV kit software  
GUI.  
32) Enable the logic analyzer.  
33) Capture data using the logic analyzer.  
Rx ADC Setup  
14) Connect the clock signal generator to the input of  
the clock bandpass filter.  
4
_______________________________________________________________________________________  
MAX19710–MAX19713 Evaluation  
Kits/Evaluation Systems  
Evluate:0–MAX9713  
Tx DAC Setup  
Detailed Description of Software  
34) Connect the clock signal generator to the input of  
User-Interface Panel  
The user interface (Figure 1) is easy to operate; use the  
mouse, or a combination of the Tab and arrow keys to  
manipulate the software. Each of the buttons corre-  
spond to bits in the command and configuration bytes  
of the Maxim IC. By selecting them, the correct SPI  
write operation is generated to update the internal reg-  
isters of the MAX19710–MAX19713.  
the clock bandpass filter.  
3±) Connect the output of the clock bandpass filter to  
the EV kit SMA connector labeled CLOCK.  
36) Connect the output of the clock signal generator to  
the data generator synchronization input.  
37) Connect the first spectrum analyzer to the EV kit  
SMA connector labeled QD (Q channel).  
38) Connect the second spectrum analyzer to the EV kit  
SMA connector labeled ID (I channel).  
39) Connect the data generator to J3. Use the bit labels  
(DA_) located next to header J3 for proper bit align-  
ment, or see the Digital Data Bit Locations section  
for header connections.  
40) Turn on the -±V power supply.  
41) Turn on all remaining power supplies.  
42) Enable the signal generator.  
43) Set the clock signal generator to output a 4±MHz  
signal. The amplitude of the generator should be  
sufficient to produce a +16dBm signal at the SMA  
input of the EV kit. Insertion losses, due to the  
series-connected filter (step 34) and the intercon-  
necting cables, decrease the amount of power  
seen at the EV kit input. Account for these losses  
when setting the signal generator amplitude.  
The software divides EV kit functions into logical  
blocks. The Interface box indicates the Device, the  
Register Address Sent, the Data Sent/Received for  
the last write operation, and the SPI Clock Frequency.  
This data is used to confirm proper device operation.  
Adjust the SPI Clock Frequency through the combo  
box. Use the Device combo box to select the proper  
AFE and features.  
The controls for the Tx DAC, Auxiliary DACs, and  
Auxiliary ADC are accessed through tab sheets.  
Device Control is accessed at the right-hand side of  
the main window. Return the EV kit to its power-on-reset  
state by selecting the POR Reset button.  
The MAX19710–MAX19713 EV kit software features  
additional functions to simplify operation. Automatic  
Diagnostics probes the command module board to  
make sure a connection exists between the PC and the  
command module.  
44) Load the desired test pattern into the data generator.  
Data clocked on the rising edge of the clock is trans-  
mitted to the Q channel. Data clocked on the falling  
edge of the clock is transmitted to the I channel.  
4±) Start the MAX19710–MAX19713 program by open-  
ing its icon in the Start menu.  
46) Normal device operation can be verified by the  
Status: Interface Board Operational text in the  
Interface box.  
47) Select the Maxim device that you are using in the  
Device combo box.  
48) Click the POR Reset button on the EV kit software  
GUI.  
49) Enable the data generator.  
±0) Enable the spectrum analyzers.  
±1) Analyze the data on the EV kit outputs (QD and ID)  
with the spectrum analyzers.  
Figure 1. MAX19713 EV Kit Software Main Window  
_______________________________________________________________________________________  
5
MAX19710–MAX19713 Evaluation  
Kits/Evaluation Systems  
The DAC I-Offset and Q-Offset voltages can be adjust-  
Device Control  
Configure the operating mode of the device through the  
intuitive controls in the Device Control box. Select a  
mode, as outlined in the MAX19710, MAX19711,  
MAX19712, MAX19713 data sheets, using the  
Operating Mode control. For a detailed description of  
the MAX19710–MAX19713 operating modes and their  
specific names, refer to Table 4 in the MAX19710,  
MAX19711, MAX19712, and MAX19713 data sheets.  
ed in 800µV increments by adjusting the appropriate  
slider in the Tx DAC Offset Control box. The  
MAX19711 allows for two adjustable full-scale ranges  
of 820mV  
(yields 800µV increments), and a full-scale  
P-P  
range of 1.0V  
(yields 980µV increments). The  
P-P  
MAX19710/MAX19712/MAX19713 only allow one full-  
scale range of 800mV , which yields 780µV incre-  
P-P  
ments. Alternatively, a value (specified in millivolts) can  
be directly entered in the boxes below each slider. If no  
value has been entered, 0.800/0.980 is used. The soft-  
ware automatically rounds the number to the nearest  
800µV/980µV increment and sends the proper data to  
the MAX19710–MAX19713.  
The MAX19710–MAX19713 feature an 8-bit SPI signaling  
mode to increase communications speed. Check the Use  
Enable-8 Signaling checkbox to use this mode. Refer to  
the MAX19710, MAX19711, MAX19712, and MAX19713  
data sheets for more details on Enable-8 signaling.  
Auxiliary DAC Control  
Access the MAX19710–MAX19713 auxiliary DACs  
through the Auxiliary DACs tab of the EV kit software  
(Figure 2). Set the output voltage of the desired auxiliary  
DAC by adjusting the Aux-DAC 1, Aux-DAC 2, or Aux-  
DAC 3 sliders. Enter a number in the edit box below the  
slider for precise adjustments. Enable each DAC by  
setting the checkbox below the slider.  
Tx DAC Control  
Adjust the Common Mode Voltage and the DAC Full  
Scale voltage by selecting the desired option from the  
pulldown box. Note that the DAC Full Scale control is  
only available when using the MAX19711. The DAC full-  
scale output of the MAX19710, MAX19712, and  
MAX19713 is fixed. Refer to the respective data sheet for  
more details.  
Evluate:0–MAX9713  
Figure 2. MAX19713 EV Kit Software Auxiliary DAC Control  
6
_______________________________________________________________________________________  
MAX19710–MAX19713 Evaluation  
Kits/Evaluation Systems  
Evluate:0–MAX9713  
Data bytes to be written: edit box is sent to the  
device. Eight-bit hexadecimal numbers should be  
comma delimited. Data appearing in the Data bytes  
received: box is data read from the device.  
Selecting the Send Now button in Figure 4 transmits  
the hexadecimal numbers 0x±± and 0xAA. 0x00 and  
0x00 are the received values from the device. For a  
detailed description of SPI communications, refer to the  
MAX19710, MAX19711, MAX19712, and MAX19713  
data sheets.  
Auxiliary ADC Controls  
Access the MAX19710–MAX19713 auxiliary ADC through  
the Auxiliary ADC tab (Figure 3) of the EV kit software.  
Although these AFEs feature only one 10-bit, low-speed  
ADC, they can multiplex four voltages onto their input.  
Select the desired ADC Input Source in the ADC  
Conversion box. Read the CODE and VOLTAGE of the  
ADC by selecting the Start Conversion and Read ADC  
Value button.  
Other ADC features, such as ADC Averaging and  
Conversion Clock Divide Ratio, are accessed  
through the ADC Control box. Disable the auxiliary  
ADC by checking the Shutdown Auxiliary ADC  
checkbox. These AFEs can use either the Internal  
2.048V reference or VDD (Internal VDD) for the auxil-  
iary ADC reference. If VDD is used for the reference  
voltage, enter the value of VDD in the box beside the  
Internal VDD checkbox.  
Detailed Description of Hardware  
The MAX19710–MAX19713 EV kits are fully assembled  
and tested PCBs that contain all the components nec-  
essary to evaluate the performance of the MAX19710,  
MAX19711, MAX19712, or MAX19713 AFEs.  
The AFE’s receive ADCs (Rx ADCs) accept differential  
input signals; however, on-board transformers (T1, T2)  
convert a user’s single-ended source output to the  
required differential signal. The input signals of the  
MAX19710–MAX19713 are measured using a differential  
oscilloscope probe at headers J4 and J±. A buffer/driver  
(U2) buffers the parallel ADC digital output signals. The  
digital ADC data is accessible at header J2.  
Simple SPI Commands  
There are two methods for communicating with the  
AFEs: through the normal GUI panel, or through the SPI  
commands available by selecting the 3-Wire Interface  
Diagnostic item from the Options pulldown menu. A  
window is displayed that executes an SPI read/write  
operation.  
The AFE’s transmit DACs (Tx DACs) are buffered with  
on-board ultra-low-distortion, split-supply op amps.  
The SPI (3-Wire Interface) dialog box accepts numeric  
data in hexadecimal format. Hexadecimal numbers  
should be prefixed by a $ or 0x. Data entered in the  
The EV kits are designed as four-layer PCBs to optimize  
the performance of the MAX19710–MAX19713.  
Figure 4. MAX19713 EV Kit Software 3-Wire Interface  
Diagnostics  
Figure 3. MAX19713 EV Kit Software Auxiliary ADC Control  
_______________________________________________________________________________________  
7
MAX19710–MAX19713 Evaluation  
Kits/Evaluation Systems  
Separate analog, digital, clock, and buffer power planes  
minimize noise coupling between analog and digital sig-  
nals. Analog ADC inputs and DAC outputs use 100Ω  
differential microstrip transmission lines, while ±0Ω  
microstrip transmission lines are used for all digital out-  
puts and the clock input. The trace lengths of the ADC  
input and DAC output paths are well matched to mini-  
mize layout-dependent input-signal skew.  
clock voltage supply (CVDD) is set to +3.0V. The clock  
signal is available at J2-3 (CLKOUT), which can be used  
to synchronize the output signal to the logic analyzer.  
Measure the clock signal with an oscilloscope at TP3.  
Rx ADC Inputs  
Although the MAX19710–MAX19713 AFEs accept differ-  
ential analog input signals, the EV kits only require a  
single-ended analog input signal provided by the user.  
Connect the single-ended sources to the IA SMA con-  
nector (I channel) and QA SMA connector (Q channel).  
Insertion losses due to series-connected bandpass  
filters and the interconnecting cables decrease the  
amount of power seen at the EV kit input. Account for  
these losses when setting the signal generator  
amplitude. On-board transformers (T1, T2) convert the  
single-ended analog input signals and generate differ-  
ential analog signals at the ADC’s differential input pins.  
The AFEs also accept single-ended input signals. See  
the Configuring for Single-Ended ADC Operation sec-  
tion for details on how to modify the EV kits to support  
this mode of operation.  
Power Supplies  
For optimal performance, the MAX19710–MAX19713  
EV kits require separate analog, digital, clock, and  
buffer power supplies; however, two separate +3.0V  
and +1.8V power supplies are recommended to power  
the analog (VDD) and digital (OVDD) portions of the  
AFEs, respectively. The clock circuitry (CVDD) is pow-  
ered by a +3.0V power supply. The DAC outputs are  
buffered by split-supply op amps. Power the positive  
rail (VOP) with a +±V supply and the negative rail  
(VON) with a -±V supply. A separate +1.8V power sup-  
ply (BVCC) can be used to isolate the power source to  
the buffer driver (U2). See Table 1 for the proper  
jumper configurations for JU3.  
Configuring for Single-Ended ADC Operation  
The MAX19710–MAX19713 can be configured to  
accept AC-coupled, single-ended signals presented at  
the input. Configure the EV kit to support this mode of  
operation by completing the following steps:  
Table 1. U2 Power Source (JU3)  
SHUNT  
POSITION  
DESCRIPTION  
1-2*  
2-3  
U2 is powered through OVDD.  
1) Cut open the traces at locations R11–R14.  
2) Install 0Ω resistors at locations R7–R10, R1±,  
and R16.  
U2 is powered through BVCC.  
(Note: BVCC must equal OVDD.)  
*Default configuration.  
3) Install 2kΩ ±1ꢀ resistors at locations R21–R24.  
Evluate:0–MAX9713  
4) Connect the single-ended sources to the IAP  
connector (I channel) and/or to the QAP SMA  
connector (Q channel).  
If the OVDD current is measured at the OVDD and  
OGND pads on the EV kit, a measurement error occurs  
due to the extra current flowing into U2. Power U2  
through BVCC for a more accurate measurement of the  
OVDD current into the AFEs.  
Configure the EV kit for DC-coupled, single-ended sig-  
nals by removing capacitors C1 and C2, removing resis-  
tors R9 and R10, and installing 0Ω resistors at locations  
R± and R6.  
Clock  
An on-board clock-shaping circuit generates a clock  
signal from an AC sine-wave signal applied to the  
CLOCK SMA connector. The frequency of the signal  
should not exceed 4±MHz for the MAX19713 (see the  
Part Selection Table for the maximum sampling rate of  
other devices). The frequency of the sinusoidal input  
Tx DAC Outputs  
By default, on-board ultra-low-distortion op amps (U4 and  
U±) buffer the DAC outputs on the MAX19710–  
MAX19713 EV kits. The op amps convert the differential  
signal from the AFEs to a single-ended ±0Ω signal.  
Measure the buffered output signals at the QD SMA con-  
nector (Q channel) and the ID SMA connector  
(I channel).  
signal determines the sampling frequency (f  
) of the  
CLK  
AFEs. A differential line receiver (U3) processes the  
input signal to generate the CMOS clock signal. The  
signal’s duty cycle can be adjusted with potentiometer  
R63. A clock signal with a ±0ꢀ duty cycle (recom-  
mended) is achieved by adjusting R63 until 1.32V is  
produced across test points TP4 and TP± when the  
Measure the differential output of the AFEs at the  
IDN/IDP and QDN/QDP pads. Full-scale output, offset  
voltage, and common-mode voltage functions are con-  
trolled through the EV kit software.  
8
_______________________________________________________________________________________  
MAX19710–MAX19713 Evaluation  
Kits/Evaluation Systems  
Evluate:0–MAX9713  
Reference  
The MAX19710–MAX19713 feature two reference oper-  
ation modes. The EV kits can be configured to use  
either the internal (1.024V) reference or an external  
user-supplied reference applied at the REFIN pad. The  
AFEs generate the REFP and REFN voltages from the  
selected reference voltage (refer to the MAX19710,  
MAX19711, MAX19712, and MAX19713 data sheets for  
more details). Measure the REFP and REFN voltages at  
TP1 and TP2, respectively. Jumper JU2 controls the ref-  
erence mode. See Table 2 for jumper configurations.  
Digital Data Headers  
The MAX19710–MAX19713 EV kits feature two 10-bit  
parallel data buses used for full-duplex operation. The two  
data buses are accessed on the EV kit through header  
connectors J2 (Rx ADC bus) and J3 (Tx DAC bus).  
Digital Data Bit Locations  
Driver U2 buffers the digital outputs of the Rx ADC. This  
driver is able to drive large capacitive loads, which may  
be present at the logic analyzer connection. The out-  
puts of the buffer are connected to a 40-pin header  
(J2). The 20-pin header (J3) is used to connect to the  
digital input of the Tx DAC. See Table 3 for bit locations  
on headers J2 and J3.  
Table 2. Reference Shunt Settings (JU2)  
SHUNT POSITION  
DESCRIPTION  
Configuring the Low-Speed DAC Buffers  
The MAX19710–MAX19713 EV kits feature on-board  
configurable buffers. By default, these buffers are config-  
ured for unity gain. Measure the buffered voltage at the  
BDAC1, BDAC2, and BDAC3 pads. Measure the  
unbuffered voltage at the DAC1, DAC2, and DAC3 pads.  
Installed*  
Internal reference mode.  
External reference mode.  
Apply an external reference voltage to  
the REFIN pad.  
Not installed  
*Default configuration.  
Table 3. Digital Data Bit Locations  
SIGNAL  
AD0  
LOCATION  
TYPE  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
DESCRIPTION  
Data Bit 0 (LSB)  
Data Bit 1  
J2-37  
J2-3±  
J2-33  
J2-31  
J2-29  
J2-27  
J2-2±  
J2-23  
J2-21  
J2-19  
J2-3  
AD1  
AD2  
Data Bit 2  
AD3  
Data Bit 3  
AD4  
Data Bit 4  
AD±  
Data Bit ±  
AD6  
Data Bit 6  
AD7  
Data Bit 7  
AD8  
Data Bit 8  
AD9  
Data Bit 9 (MSB)  
Incoming Clock Signal  
CLKOUT  
Aux-ADC Digital Output  
(requires R38 short)  
BDOUT  
J2-9  
Output  
DA0  
DA1  
DA2  
DA3  
DA4  
DA±  
DA6  
DA7  
DA8  
DA9  
J3-19  
J3-17  
J3-1±  
J3-13  
J3-11  
J3-9  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Data Bit 0 (LSB)  
Data Bit 1  
Data Bit 2  
Data Bit 3  
Data Bit 4  
Data Bit ±  
J3-7  
Data Bit 6  
J3-±  
Data Bit 7  
J3-3  
Data Bit 8  
J3-1  
Data Bit 9 (MSB)  
Note: Pins 1, ±, 7, 11, 13, 1±, 17, and 39 of J2 are open. All other pins are connected to OGND.  
_______________________________________________________________________________________  
9
MAX19710–MAX19713 Evaluation  
Kits/Evaluation Systems  
Configure the on-board buffers for a positive (noninverting)  
gain by performing the following steps:  
Disconnect the buffers from the AFEs by cutting the  
trace at locations R28, R29, and R30. Connect the low-  
speed DAC loads to the DAC1, DAC2, and DAC3 pads  
on the EV kit. If the load capacitance is between ±pF  
and 1±pF, cut the trace and install 10kΩ resistors at  
locations R2±, R26, and R27. Resistors are not required  
if the load is less than ±pF.  
1) Cut open the trace at locations R31, R33, and R3±.  
2) Select a value of 10kΩ for resistors R32, R34, and  
R36.  
3) Calculate resistors R31, R33, and R3± using the  
equations below.  
Using an Alternative SPI Interface  
The EV kits provide pads and jumpers that allow an  
alternative SPI interface to be used. Connect the inter-  
face to the CS, SCLK, DIN, DOUT, and OGND pads.  
Ensure that the SPI voltages are compatible with all of  
the AFE’s working voltages. Refer to the individual  
MAX19710, MAX19711, MAX19712, and MAX19713  
data sheets for suitable SPI interface voltages. Remove  
the shunts from jumper JU1. See Table 4 for jumper  
configurations.  
4) Install R31, R33, and R3± in their respective locations:  
BDAC1  
DAC1  
R
R
R
= R  
x
1  
31  
33  
3±  
32  
BDAC2  
DAC2  
= R  
= R  
x
1  
34  
Table 4. Alternative SPI Interface (JU1)  
BDAC3  
DAC3  
x
1  
SHUNT POSITION  
DESCRIPTION  
36  
1-2*  
3-4*  
±-6*  
7-8*  
Normal Operation.  
Four shunts are installed across  
pins 1-2, 3-4, ±-6, and 7-8.  
where:  
BDAC_  
= Desired noninverting gain of buffer  
DAC_  
Alternative SPI Interface.  
No shunts are installed on JU1, connect  
the SPI signals to the CS, SCLK, DIN,  
DOUT, and OGND pads.  
R
32  
= R = R = 10kΩ  
Not installed  
34  
36  
Driving Unbuffered Loads  
The low-speed buffers (U6) on the EV kits are optional and,  
if desired, can be disconnected from the DAC outputs of  
the AFEs.  
Evluate:0–MAX9713  
*Default configuration.  
10 ______________________________________________________________________________________  
MAX19710–MAX19713 Evaluation  
Kits/Evaluation Systems  
Evluate:0–MAX9713  
A D 9  
A D 8  
A D 9  
A D 8  
A D 7  
A D 6  
A D 5  
A D 4  
A D 3  
A D 2  
A D 1  
A D 0  
D D  
O V  
A D 7  
A D 6  
A D 5  
A D 4  
A D 3  
A D 2  
A D 1  
A D 0  
D D  
V
D D  
V
D D  
V
D D  
V
D D  
V
D D  
V
D D  
V
Figure ±a. MAX19710 EV Kit Schematic (Sheet 1 of 2)  
______________________________________________________________________________________ 11  
MAX19710–MAX19713 Evaluation  
Kits/Evaluation Systems  
A D 9  
A D 8  
A D 9  
A D 8  
A D 7  
A D 6  
A D 5  
A D 4  
A D 3  
A D 2  
A D 1  
A D 0  
D D  
O V  
A D 7  
A D 6  
A D 5  
A D 4  
A D 3  
A D 2  
A D 1  
A D 0  
D D  
V
D D  
V
Evluate:0–MAX9713  
D D  
V
D D  
V
D D  
V
D D  
V
D D  
V
Figure ±b. MAX19711 EV Kit Schematic (Sheet 1 of 2)  
12 ______________________________________________________________________________________  
MAX19710–MAX19713 Evaluation  
Kits/Evaluation Systems  
Evluate:0–MAX9713  
A D 9  
A D 8  
A D 9  
A D 8  
A D 7  
A D 6  
A D 5  
A D 4  
A D 3  
A D 2  
A D 1  
A D 0  
D D  
O V  
A D 7  
A D 6  
A D 5  
A D 4  
A D 3  
A D 2  
A D 1  
A D 0  
D D  
V
D D  
V
D D  
V
D D  
V
D D  
V
D D  
V
D D  
V
Figure ±c. MAX19712 EV Kit Schematic (Sheet 1 of 2)  
______________________________________________________________________________________ 13  
MAX19710–MAX19713 Evaluation  
Kits/Evaluation Systems  
A D 9  
A D 8  
A D 9  
A D 8  
A D 7  
A D 6  
A D 5  
A D 4  
A D 3  
A D 2  
A D 1  
A D 0  
D D  
O V  
A D 7  
A D 6  
A D 5  
A D 4  
A D 3  
A D 2  
A D 1  
A D 0  
D D  
V
D D  
V
Evluate:0–MAX9713  
D D  
V
D D  
V
D D  
V
D D  
V
D D  
V
Figure ±d. MAX19713 EV Kit Schematic (Sheet 1 of 2)  
14 ______________________________________________________________________________________  
MAX19710–MAX19713 Evaluation  
Kits/Evaluation Systems  
Evluate:0–MAX9713  
C C  
V
G N D  
AM9X13  
Figure 6. MAX19710–MAX19713 EV Kit Schematic (Sheet 2 of 2)  
______________________________________________________________________________________ 15  
MAX19710–MAX19713 Evaluation  
Kits/Evaluation Systems  
Evluate:0–MAX9713  
Figure 7. MAX19710–MAX19713 EV Kit Component Placement Guide—Component Side  
16 ______________________________________________________________________________________  
MAX19710–MAX19713 Evaluation  
Kits/Evaluation Systems  
Evluate:0–MAX9713  
Figure 8. MAX19710–MAX19713 EV Kit PCB Layout—Component Side  
______________________________________________________________________________________ 17  
MAX19710–MAX19713 Evaluation  
Kits/Evaluation Systems  
Evluate:0–MAX9713  
Figure 9. MAX19710–MAX19713 EV Kit PCB Layout (Inner Layer 2)—Ground Planes  
18 ______________________________________________________________________________________  
MAX19710–MAX19713 Evaluation  
Kits/Evaluation Systems  
Evluate:0–MAX9713  
Figure 10. MAX19710–MAX19713 EV Kit PCB Layout (Inner Layer 3)—Power Planes  
______________________________________________________________________________________ 19  
MAX19710–MAX19713 Evaluation  
Kits/Evaluation Systems  
Evluate:0–MAX9713  
Figure 11. MAX19710–MAX19713 EV Kit PCB Layout—Solder Side  
20 ______________________________________________________________________________________  
MAX19710–MAX19713 Evaluation  
Kits/Evaluation Systems  
Evluate:0–MAX9713  
Figure 12. MAX19710–MAX19713 EV Kit Component Placement Guide—Solder Side  
___________________Revision History  
Pages changed at Rev 1: 1–6, 8, 9, 11–18  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ____________________ 21  
© 2007 Maxim Integrated Products  
is a registered trademark of Maxim Integrated Products, Inc.  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY