MAX19998 [MAXIM]

SiGe, High-Linearity, 2300MHz to 4000MHz Downconversion Mixer with LO Buffer; 的SiGe ,高线性度, 2300MHz至4000MHz的下变频混频器,带有LO缓冲器
MAX19998
型号: MAX19998
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

SiGe, High-Linearity, 2300MHz to 4000MHz Downconversion Mixer with LO Buffer
的SiGe ,高线性度, 2300MHz至4000MHz的下变频混频器,带有LO缓冲器

文件: 总28页 (文件大小:4987K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-4827; Rev 0; 10/09  
SiGe, High-Linearity, 2300MHz to 4000MHz  
Downconversion Mixer with LO Buffer  
General Description  
Features  
S 2300MHz to 4000MHz RF Frequency Range  
The MAX19998 single, high-linearity downconversion  
mixer provides 8.7dB of conversion gain, +24.3dBm  
input IP3, +11.3dBm 1dB input compression point,  
and a noise figure of 9.7dB for 2300MHz to 4000MHz  
WiMAXK, LTE, and MMDS receiver applications. With  
an ultra-wide LO 2600MHz to 4300MHz frequency  
range, the MAX19998 can be used in either low-side  
or high-side LO injection architectures for virtually all  
2.5GHz and 3.5GHz applications. For a 2.5GHz vari-  
ant tuned specifically for high-side injection, refer to the  
MAX19996A.  
S 2600MHz to 4300MHz LO Frequency Range  
S 50MHz to 500MHz IF Frequency Range  
S 8.7dB Conversion Gain  
S 9.7dB Noise Figure  
S +24.3dBm Typical Input IP3  
S +11.3dBm Typical Input 1dB Compression Point  
S 67dBc Typical 2RF - 2LO Spurious Rejection at  
P
RF  
= -10dBm  
In addition to offering excellent linearity and noise per-  
formance, the MAX19998 also yields a high level of  
component integration. This device includes a double-  
balanced passive mixer core, an IF amplifier, and an LO  
buffer. On-chip baluns are also integrated to allow for  
single-ended RF and LO inputs. The MAX19998 requires  
a nominal LO drive of 0dBm, and supply current is typi-  
S Integrated LO Buffer  
S Integrated RF and LO Baluns for Single-Ended  
Inputs  
S Low -3dBm to +3dBm LO Drive  
S Pin Compatible with the MAX19996/MAX19996A  
2000MHz to 3900MHz Mixers  
cally 230mA at V  
= 5.0V or 150mA at V  
= 3.3V.  
CC  
CC  
S Pin Similar with the MAX9984/MAX9986/  
MAX9986A Series of 400MHz to 1000MHz Mixers  
and the MAX9993/MAX9994/MAX9996 Series of  
1700MHz to 2200MHz Mixers  
The MAX19998 is pin compatible with the MAX19996/  
MAX19996A 2000MHz to 3900MHz mixer family. The  
device is also pin similar with the MAX9984/MAX9986/  
MAX9986A 400MHz to 1000MHz mixers and the  
MAX9993/MAX9994/MAX9996 1700MHz to 2200MHz  
mixers, making this entire family of downconverters ideal  
for applications where a common PCB layout is used for  
multiple frequency bands.  
S Single 5.0V or 3.3V Supply  
S External Current-Setting Resistors Provide Option  
for Operating Device in Reduced-Power/Reduced-  
Performance Mode  
The MAX19998 is available in a compact, 5mm x 5mm,  
20-pin thin QFN with an exposed pad. Electrical perfor-  
mance is guaranteed over the extended -40NC to +85NC  
temperature range.  
Ordering Information  
Applications  
2.5GHz WiMAX and LTE Base Stations  
2.7GHz MMDS Base Stations  
3.5GHz WiMAX and LTE Base Stations  
Fixed Broadband Wireless Access  
Wireless Local Loop  
PART  
TEMP RANGE  
-40NC to +85NC  
-40NC to +85NC  
PIN-PACKAGE  
20 Thin QFN-EP*  
20 Thin QFN-EP*  
MAX19998ETP+  
MAX19998ETP+T  
+Denotes a lead(Pb)-free/RoHS-compliant package.  
*EP = Exposed pad.  
T = Tape and reel.  
Private Mobile Radios  
Military Systems  
WiMAX is a trademark of WiMAX Forum.  
_______________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642,  
or visit Maxim’s website at www.maxim-ic.com.  
SiGe, High-Linearity, 2300MHz to 4000MHz  
Downconversion Mixer with LO Buffer  
ABSOLUTE MAXIMUM RATINGS  
CC  
IF+, IF-, LOBIAS, IFBIAS to GND............. -0.3V to (V  
V
to GND..........................................................-0.3V to +5.5V  
B
B
(Notes 2, 3)............................................................ +38NC/W  
(Notes 1, 3)............................................................ +13NC/W  
JA  
+ 0.3V)  
CC  
JC  
RF, LO Input Power.......................................................+12dBm  
RF, LO Current  
Operating Case Temperature Range  
(Note 4).................................................. T = -40NC to +85NC  
C
(RF and LO is DC shorted to GND through balun)........50mA  
Continuous Power Dissipation (Note 1) .................................5W  
Junction Temperature .....................................................+150NC  
Storage Temperature Range............................ -65NC to +150NC  
Lead Temperature (soldering, 10s) ................................+300NC  
Note 1: Based on junction temperature T = T + (B x V  
x I ). This formula can be used when the temperature of the  
CC  
J
C
JC  
CC  
exposed pad is known while the device is soldered down to a PCB. See the Applications Information section for details.  
The junction temperature must not exceed +150NC.  
Note 2: Junction temperature T = T + (B x V  
x I ). This formula can be used when the ambient temperature of the PCB is  
CC  
J
A
JA  
CC  
known. The junction temperature must not exceed +150NC.  
Note 3: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-  
layer board. For detailed information on package thermal considerations, refer to www.maxim-ic.com/thermal-tutorial.  
Note 4: T is the temperature on the exposed pad of the package. T is the ambient temperature of the device and PCB.  
C
A
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect device reliability.  
5.0V SUPPLY DC ELECTRICAL CHARACTERISTICS  
(Typical Application Circuit, R1 = 698ω, R2 = 604ω, V  
= 4.75V to 5.25V, no input RF or LO signals. T = -40NC to +85NC, unless  
C
CC  
otherwise noted. Typical values are at V  
= 5.0V, T = +25NC, all parameters are production tested.)  
C
CC  
PARAMETER  
Supply Voltage  
Supply Current  
SYMBOL  
CONDITIONS  
MIN  
TYP  
5.0  
MAX  
5.25  
247  
UNITS  
V
V
4.75  
CC  
CC  
I
Total supply current  
230  
mA  
3.3V SUPPLY DC ELECTRICAL CHARACTERISTICS  
(Typical Application Circuit, R1 = 845ω, R2 = 1.1kω, V  
= 3.0V to 3.6V, no input RF or LO signals. T = -40NC to +85NC, unless oth-  
C
CC  
erwise noted. Typical values are at V  
= 3.3V, T = +25NC, parameters are guaranteed by design, unless otherwise noted.) (Note 5)  
C
CC  
PARAMETER  
Supply Voltage  
SYMBOL  
CONDITIONS  
MIN  
TYP  
3.3  
MAX  
UNITS  
V
V
3.0  
3.6  
CC  
CC  
Supply Current  
I
Total supply current  
150  
mA  
RECOMMENDED AC OPERATING CONDITIONS  
PARAMETER  
RF Frequency Range  
LO Frequency  
SYMBOL  
CONDITIONS  
MIN  
2300  
2600  
TYP  
MAX  
4000  
4300  
UNITS  
MHz  
f
(Notes 5, 6)  
(Notes 5, 6)  
RF  
LO  
f
MHz  
Using a Mini-Circuits TC4-1W-17 4:1  
transformer as defined in the Typical  
Application Circuit, IF matching components  
affect the IF frequency range (Notes 5, 6)  
100  
500  
IF Frequency  
LO Drive  
f
MHz  
dBm  
IF  
Using a Mini-Circuits TC4-1W-7A 4:1  
transformer as defined in the Typical  
Application Circuit, IF matching components  
affect the IF frequency range (Notes 5, 6)  
50  
-3  
250  
+3  
P
LO  
0
2
______________________________________________________________________________________  
SiGe, High-Linearity, 2300MHz to 4000MHz  
Downconversion Mixer with LO Buffer  
5.0V SUPPLY AC ELECTRICAL CHARACTERISTICS—f  
LOW-SIDE LO INJECTION  
= 3100MHz to 3900MHz,  
RF  
(Typical Application Circuit, with tuning elements outlined in Table 1, R1 = 698ω, R2 = 604ω, V  
= 4.75V to 5.25V, RF and LO ports  
CC  
are driven from 50I sources, P = -3dBm to +3dBm, P = -5dBm, f = 3100MHz to 3900MHz, f = 300MHz, f = 2800MHz to  
LO  
RF  
RF  
IF  
LO  
3600MHz, f > f , T = -40NC to +85NC. Typical values are for T = +25NC, V  
= 5.0V, P = -5dBm, P = 0dBm, f = 3500MHz,  
RF LO RF  
RF  
LO  
C
C
CC  
f
= 3200MHz, f = 300MHz. All parameters are guaranteed by design and characterization, unless otherwise noted.) (Note 7)  
IF  
LO  
PARAMETER  
SYMBOL  
CONDITIONS  
= +25NC (Notes 8, 9)  
MIN  
TYP  
MAX  
UNITS  
Small-Signal Conversion Gain  
Gain Variation vs. Frequency  
G
C
T
7.6  
8.7  
9.4  
dB  
C
f
= 3100MHz to 3900MHz, any 100MHz  
band  
RF  
0.15  
0.3  
DG  
dB  
C
f
= 3100MHz to 3900MHz, any 200MHz  
band  
RF  
Conversion Gain Temperature  
Coefficient  
f
T
= 3100MHz to 3900MHz,  
= -40NC to +85NC  
RF  
TC  
-0.01  
11.4  
24.3  
dB/NC  
dBm  
dBm  
CG  
C
Input 1dB Compression Point  
IP  
(Note 10)  
10.0  
22  
1dB  
f
- f  
= 1MHz, P  
= P  
= -5dBm/tone,  
RF1 RF2  
RF1  
RF2  
Third-Order Input Intercept Point  
IIP3  
T
= +25NC (Note 9)  
C
f
P
= 3100MHz to 3900MHz, f  
- f  
= 1MHz,  
RF  
RF1 RF2  
IIP3 Variation with T  
Q0.2  
dBm  
dB  
C
= P = -5dBm/tone, T = -40NC to +85NC  
RF2 C  
RF1  
No blockers present (Note 5)  
9.7  
9.7  
12.5  
11.0  
Single-Sideband Noise Figure  
NF  
SSB  
No blockers present, T = +25NC (Note 5)  
C
Noise Figure Temperature  
Coefficient  
Single sideband, no blockers present,  
TC  
0.018  
dB/NC  
NF  
T
= -40NC to +85NC  
C
+8dBm blocker tone applied to RF port,  
f
f
= 3500MHz, f = 3200MHz,  
LO  
RF  
Noise Figure Under Blocking  
NF  
21  
25  
dB  
B
= 3750MHz, P = 0dBm,  
BLOCKER  
LO  
V
= +5.0V, T = +25NC (Notes 5, 11)  
C
CC  
P
P
P
P
= -10dBm (Note 5)  
= -5dBm (Note 9)  
= -10dBm (Note 5)  
= -5dBm (Note 9)  
63  
58  
80  
70  
67  
62  
85  
75  
RF  
RF  
RF  
RF  
2RF - 2LO Spur Rejection  
3RF - 3LO Spur Rejection  
RF Input Return Loss  
LO Input Return Loss  
IF Output Impedance  
2 x 2  
3 x 3  
f
f
= f + 150MHz  
dBc  
dBc  
dB  
dB  
I
SPUR  
LO  
= f + 100MHz  
SPUR  
LO  
LO on and IF terminated into a matched  
impedance  
RL  
RL  
25  
16  
RF  
LO  
IF  
RF and IF terminated into a matched  
impedance  
Nominal differential impedance at the IC’s IF  
outputs  
Z
200  
20  
f
= 450MHz,  
RF terminated into 50I, LO  
driven by 50Isource, IF  
transformed to 50Iusing  
external components shown  
in the Typical Application  
Circuit. See the Typical  
Operating Characteristics  
for performance vs. inductor  
values.  
IF  
L1 = L2 = 120nH  
f
= 350MHz,  
IF  
20  
L1 = L2 = 270nH  
IF Output Return Loss  
RL  
dB  
IF  
f
= 300MHz,  
IF  
20  
L1 = L2 = 390nH  
_______________________________________________________________________________________  
3
SiGe, High-Linearity, 2300MHz to 4000MHz  
Downconversion Mixer with LO Buffer  
5.0V SUPPLY AC ELECTRICAL CHARACTERISTICS—f  
LOW-SIDE LO INJECTION (continued)  
= 3100MHz to 3900MHz,  
RF  
(Typical Application Circuit, with tuning elements outlined in Table 1, R1 = 698ω, R2 = 604ω, V  
= 4.75V to 5.25V, RF and LO ports  
CC  
are driven from 50I sources, P = -3dBm to +3dBm, P = -5dBm, f = 3100MHz to 3900MHz, f = 300MHz, f = 2800MHz to  
LO  
RF  
RF  
IF  
LO  
3600MHz, f > f , T = -40NC to +85NC. Typical values are for T = +25NC, V  
= 5.0V, P = -5dBm, P = 0dBm, f = 3500MHz,  
RF LO RF  
RF  
LO  
C
C
CC  
f
= 3200MHz, f = 300MHz. All parameters are guaranteed by design and characterization, unless otherwise noted.) (Note 7)  
IF  
LO  
PARAMETER  
SYMBOL  
CONDITIONS  
= 3500MHz, P = +3dBm (Note 9)  
MIN  
TYP  
MAX  
UNITS  
RF-to-IF Isolation  
f
f
27  
29.5  
dB  
RF  
LO  
LO  
= 2800MHz to 3600MHz, P = +3dBm  
LO  
LO Leakage at RF Port  
-26  
dBm  
(Note 9)  
2LO Leakage at RF Port  
LO Leakage at IF Port  
P
LO  
P
LO  
= +3dBm  
-29  
-22  
dBm  
dBm  
= +3dBm (Note 9)  
3.3V SUPPLY AC ELECTRICAL CHARACTERISTICS—f  
LOW-SIDE LO INJECTION  
= 3100MHz to 3900MHz,  
RF  
(Typical Application Circuit, with tuning elements outlined in Table 1, R1 = 845ω, R2 = 1.1kω, RF and LO ports are driven from 50I  
sources, f > f . Typical values are for T = +25NC, V  
= 300MHz, unless otherwise noted.) (Note 7)  
= 3.3V, P  
= -5dBm, P = 0dBm, f = 3500MHz, f = 3200MHz, f  
LO RF LO IF  
RF  
LO  
C
CC  
RF  
CONDITIONS  
= 3100MHz to 3900MHz, any 100MHz  
PARAMETER  
SYMBOL  
MIN  
TYP  
MAX  
UNITS  
Small-Signal Conversion Gain  
G
8.4  
dB  
C
f
RF  
Gain Variation vs. Frequency  
DG  
0.15  
dB  
C
band  
Conversion Gain Temperature  
Coefficient  
f
T
= 3100MHz to 3900MHz,  
= -40NC to +85NC  
RF  
TC  
-0.01  
dB/NC  
CG  
C
Input 1dB Compression Point  
Third-Order Input Intercept Point  
IP  
IIP3  
(Note 10)  
- f  
7.7  
20.1  
dBm  
dBm  
1dB  
f
= 1MHz, P  
= P  
= -5dBm/tone  
= -5dBm/tone,  
RF1 RF2  
RF1  
RF2  
f
- f  
= 1MHz, P  
= P  
RF1 RF2  
RF1  
RF2  
IIP3 Variation with T  
Q0.2  
9.3  
dB  
dB  
C
T
= -40NC to +85NC  
C
Single-Sideband Noise Figure  
NF  
No blockers present  
Single sideband, no blockers present,  
SSB  
Noise Figure Temperature  
Coefficient  
TC  
0.018  
dB/NC  
NF  
T
= -40NC to +85NC  
C
P
P
P
P
= -10dBm  
= -5dBm  
= -10dBm  
= -5dBm  
64  
59  
74  
64  
RF  
RF  
RF  
RF  
2RF - 2LO Spur Rejection  
3RF - 3LO Spur Rejection  
RF Input Return Loss  
LO Input Return Loss  
IF Output Impedance  
2 x 2  
3 x 3  
f
f
= f + 150MHz  
dBc  
dBc  
dB  
dB  
I
SPUR  
LO  
= f + 100MHz  
SPUR  
LO  
LO on and IF terminated into a matched  
impedance  
RL  
RL  
30  
20  
RF  
LO  
IF  
RF and IF terminated into a matched imped-  
ance  
Nominal differential impedance at the IC’s IF  
outputs  
Z
200  
4
______________________________________________________________________________________  
SiGe, High-Linearity, 2300MHz to 4000MHz  
Downconversion Mixer with LO Buffer  
3.3V SUPPLY AC ELECTRICAL CHARACTERISTICS—f  
LOW-SIDE LO INJECTION (continued)  
= 3100MHz to 3900MHz,  
RF  
(Typical Application Circuit, with tuning elements outlined in Table 1, R1 = 845ω, R2 = 1.1kω, RF and LO ports are driven from 50I  
sources, f > f . Typical values are for T = +25NC, V  
= 3.3V, P  
= -5dBm, P = 0dBm, f = 3500MHz, f = 3200MHz, f  
RF LO RF LO IF  
RF  
LO  
C
CC  
= 300MHz, unless otherwise noted.) (Note 7)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
f
= 450MHz,  
RF terminated into 50I, LO  
driven by 50Isource, IF  
transformed to 50Iusing  
external components shown  
in the Typical Application  
Circuit. See the Typical  
Operating Characteristics  
for performance vs. inductor  
values.  
IF  
17  
L1 = L2 = 120nH  
f
= 350MHz,  
IF  
17  
17  
L1 = L2 = 270nH  
IF Output Return Loss  
RL  
dB  
IF  
f
= 300MHz,  
IF  
L1 = L2 = 390nH  
RF-to-IF Isolation  
f
f
f
f
= 3100MHz to 3900MHz, P = +3dBm  
27  
dB  
RF  
LO  
LO  
LO  
LO  
LO Leakage at RF Port  
2LO Leakage at RF Port  
LO Leakage at IF Port  
= 2800MHz to 3600MHz, P = +3dBm  
-30  
dBm  
dBm  
dBm  
LO  
= 2800MHz to 3600MHz, P = +3dBm  
-26.5  
-27.5  
LO  
= 2800MHz to 3600MHz, P = +3dBm  
LO  
5.0V SUPPLY AC ELECTRICAL CHARACTERISTICS—f  
HIGH-SIDE LO INJECTION  
= 3100MHz to 3900MHz,  
RF  
(Typical Application Circuit, with tuning elements outlined in Table 1, R1 = 698ω, R2 = 604ω, V  
= 4.75V to 5.25V, RF and LO ports  
CC  
are driven from 50I sources, P  
= -3dBm to +3dBm, P  
= -5dBm, f = 3100MHz to 3900MHz, f = 300MHz, f  
= 3400MHz  
LO  
LO  
RF  
RF  
IF  
to 4200MHz, f < f , T = -40NC to +85NC. Typical values are for T = +25NC, V  
= 5.0V, P = -5dBm, P  
= 0dBm, f  
RF  
=
RF  
LO  
C
C
CC  
RF  
LO  
3500MHz, f = 3800MHz, f = 300MHz, unless otherwise noted.) (Note 7)  
LO  
IF  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Small-Signal Conversion Gain  
Gain Variation vs. Frequency  
G
T
= +25NC  
8.4  
dB  
C
C
f
RF  
= 3100MHz to 3900MHz, any 100MHz  
0.15  
0.3  
band  
DG  
dB  
C
f
= 3100MHz to 3900MHz, any 200MHz  
RF  
band  
Conversion Gain Temperature  
Coefficient  
f
T
= 3100MHz to 3900MHz,  
= -40NC to +85NC  
RF  
TC  
-0.01  
11.4  
24.8  
dB/NC  
dBm  
dBm  
CG  
C
Input 1dB Compression Point  
IP  
1dB  
(Note 10)  
- f  
f
= 1MHz, P  
= P  
= -5dBm/tone,  
RF1 RF2  
RF1  
RF2  
Third-Order Input Intercept Point  
IIP3  
T
= +25NC  
C
f
P
= 3100MHz to 3900MHz, f  
- f  
= 1MHz,  
RF  
RF1 RF2  
IIP3 Variation with T  
Q0.2  
9.8  
dBm  
dB  
C
= P = -5dBm/tone, T = -40NC to +85NC  
RF2 C  
RF1  
Single-Sideband Noise Figure  
NF  
No blockers present  
SSB  
Noise Figure Temperature  
Coefficient  
Single sideband, no blockers present,  
TC  
0.018  
dB/NC  
NF  
T
= -40NC to +85NC  
C
P
RF  
P
RF  
P
RF  
P
RF  
= -10dBm  
= -5dBm  
= -10dBm  
= -5dBm  
70  
65  
89  
79  
2LO - 2RF Spur Rejection  
3LO - 3RF Spur Rejection  
2 x 2  
3 x 3  
f
f
= f - 150MHz  
dBc  
dBc  
SPUR  
LO  
= f - 100MHz  
SPUR  
LO  
_______________________________________________________________________________________  
5
SiGe, High-Linearity, 2300MHz to 4000MHz  
Downconversion Mixer with LO Buffer  
5.0V SUPPLY AC ELECTRICAL CHARACTERISTICS—f  
HIGH-SIDE LO INJECTION (continued)  
= 3100MHz to 3900MHz,  
RF  
(Typical Application Circuit, with tuning elements outlined in Table 1, R1 = 698ω, R2 = 604ω, V  
= 4.75V to 5.25V, RF and LO ports  
CC  
are driven from 50I sources, P  
= -3dBm to +3dBm, P  
= -5dBm, f = 3100MHz to 3900MHz, f = 300MHz, f  
= 3400MHz  
LO  
LO  
RF  
RF  
IF  
to 4200MHz, f < f , T = -40NC to +85NC. Typical values are for T = +25NC, V  
= 5.0V, P = -5dBm, P  
= 0dBm, f  
=
RF  
RF  
LO  
C
C
CC  
RF  
LO  
3500MHz, f = 3800MHz, f = 300MHz, unless otherwise noted.) (Note 7)  
LO  
IF  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
LO on and IF terminated into a matched  
impedance  
RF Input Return Loss  
LO Input Return Loss  
IF Output Impedance  
RL  
RL  
24  
dB  
RF  
LO  
IF  
RF and IF terminated into a matched  
impedance  
18  
200  
20  
dB  
Nominal differential impedance at the IC’s IF  
outputs  
Z
I
RF terminated into  
f
IF  
= 450MHz,  
50I, LO driven by 50I  
source, IF transformed  
to 50I using external  
components shown in  
the Typical Application  
Circuit. See the Typical  
Operating Characteristics  
for performance vs.  
inductor values.  
L1 = L2 = 120nH  
f
IF  
= 350MHz,  
20  
L1 = L2 = 270nH  
IF Output Return Loss  
RL  
dB  
IF  
f
IF  
= 300MHz,  
20  
L1 = L2 = 390nH  
RF-to-IF Isolation  
P
LO  
P
LO  
P
LO  
P
LO  
= +3dBm  
= +3dBm  
= +3dBm  
= +3dBm  
30  
-30.3  
-19  
dB  
LO Leakage at RF Port  
2LO Leakage at RF Port  
LO Leakage at IF Port  
dBm  
dBm  
dBm  
-23  
5.0V SUPPLY AC ELECTRICAL CHARACTERISTICS—f  
HIGH-SIDE LO INJECTION  
= 2300MHz to 2900MHz,  
RF  
(Typical Application Circuit, with tuning elements outlined in Table 1, R1 = 698ω, R2 = 604ω, V  
= 4.75V to 5.25V, RF and LO ports  
CC  
are driven from 50I sources, P  
= -3dBm to +3dBm, P  
= -5dBm, f = 2300MHz to 2900MHz, f = 300MHz, f  
= 2600MHz  
LO  
LO  
RF  
RF  
IF  
to 3200MHz, f < f , T = -40NC to +85NC. Typical values are for T = +25NC, V  
= 5.0V, P = -5dBm, P  
= 0dBm, f  
=
RF  
RF  
LO  
C
C
CC  
RF  
LO  
2600MHz, f = 2900MHz, f = 300MHz, unless otherwise noted.) (Note 7)  
LO  
IF  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Small-Signal Conversion Gain  
Gain Variation vs. Frequency  
G
T
= +25NC  
8.4  
dB  
C
C
f
RF  
= 2300MHz to 2900MHz, any 100MHz  
0.15  
0.3  
band  
DG  
dB  
C
f
RF  
= 2300MHz to 2900MHz, any 200MHz  
band  
Conversion Gain Temperature  
Coefficient  
f
T
= 2300MHz to 2900MHz,  
= -40NC to +85NC  
RF  
TC  
-0.01  
11.4  
25.0  
dB/NC  
dBm  
dBm  
CG  
C
Input 1dB Compression Point  
IP  
1dB  
(Note 10)  
- f  
f
= 1MHz, P  
= P  
= -5dBm/tone,  
RF1 RF2  
RF1  
RF2  
Third-Order Input Intercept Point  
IIP3  
T
= +25NC  
C
6
______________________________________________________________________________________  
SiGe, High-Linearity, 2300MHz to 4000MHz  
Downconversion Mixer with LO Buffer  
5.0V SUPPLY AC ELECTRICAL CHARACTERISTICS—f  
HIGH-SIDE LO INJECTION (continued)  
= 2300MHz to 2900MHz,  
RF  
(Typical Application Circuit, with tuning elements outlined in Table 1, R1 = 698ω, R2 = 604ω, V  
= 4.75V to 5.25V, RF and LO ports  
CC  
are driven from 50I sources, P  
= -3dBm to +3dBm, P  
= -5dBm, f = 2300MHz to 2900MHz, f = 300MHz, f  
= 2600MHz  
LO  
LO  
RF  
RF  
IF  
to 3200MHz, f < f , T = -40NC to +85NC. Typical values are for T = +25NC, V  
= 5.0V, P = -5dBm, P  
= 0dBm, f  
=
RF  
RF  
LO  
C
C
CC  
RF  
LO  
2600MHz, f = 2900MHz, f = 300MHz, unless otherwise noted. (Note 7)  
LO  
IF  
PARAMETER  
SYMBOL  
CONDITIONS  
= 2300MHz to 2900MHz, f  
MIN  
TYP  
Q0.2  
10.0  
MAX  
UNITS  
dBm  
dB  
f
P
- f = 1MHz,  
RF1 RF2  
RF  
IIP3 Variation with T  
C
= P = -5dBm/tone, T = -40NC to +85NC  
RF2 C  
RF1  
Single-Sideband Noise Figure  
NF  
No blockers present  
SSB  
Noise Figure Temperature  
Coefficient  
Single sideband, no blockers present,  
TC  
0.018  
dB/NC  
NF  
T
= -40NC to +85NC  
C
P
P
P
P
= -10dBm  
= -5dBm  
= -10dBm  
= -5dBm  
77  
72  
86  
76  
RF  
RF  
RF  
RF  
2LO - 2RF Spur Rejection  
3LO - 3RF Spur Rejection  
RF Input Return Loss  
LO Input Return Loss  
IF Output Impedance  
2 x 2  
3 x 3  
f
= f - 50MHz  
dBc  
dBc  
dB  
dB  
I
SPUR  
LO  
f
= f - 100MHz  
SPUR  
LO  
LO on and IF terminated into a matched  
impedance  
RL  
RL  
30  
18  
RF  
LO  
IF  
RF and IF terminated into a matched  
impedance  
Nominal differential impedance at the IC’s IF  
outputs  
Z
200  
25  
f
= 450MHz,  
IF  
RF terminated into 50I,  
LO driven by 50I source,  
IF transformed to 50I  
using external compo-  
nents shown in the Typical  
Application Circuit. See  
the Typical Operating  
L1 = L2 = 120nH  
f
= 350MHz,  
IF  
25  
L1 = L2 = 270nH  
IF Output Return Loss  
RL  
dB  
IF  
f
= 300MHz,  
IF  
25  
L1 = L2 = 390nH  
Characteristics for perfor-  
mance vs. inductor values.  
RF-to-IF Isolation  
P
LO  
P
LO  
P
LO  
P
LO  
= +3dBm  
= +3dBm  
= +3dBm  
= +3dBm  
45  
dB  
LO Leakage at RF Port  
2LO Leakage at RF Port  
-28.8  
-42.3  
-26.3  
dBm  
dBm  
dBm  
LO Leakage at IF Port  
Note 5: Not production tested.  
Note 6: Operation outside this range is possible, but with degraded performance of some parameters. See the Typical  
Operating Characteristics.  
Note 7: All limits reflect losses of external components, including a 0.8dB loss at f = 300MHz due to the 4:1 impedance trans-  
IF  
former. Output measurements were taken at IF outputs of the Typical Application Circuit.  
Note 8: Guaranteed by design and characterization.  
Note 9: 100% production tested for functional performance.  
Note 10: Maximum reliable continuous input power applied to the RF port of this device is +12dBm from a 50I source.  
Note 11: Measured with external LO source noise filtered so that the noise floor is -174dBm/Hz. This specification reflects the  
effects of all SNR degradations in the mixer including the LO noise, as defined in Application Note 2021: Specifications  
and Measurement of Local Oscillator Noise in Integrated Circuit Base Station Mixers.  
_______________________________________________________________________________________  
7
SiGe, High-Linearity, 2300MHz to 4000MHz  
Downconversion Mixer with LO Buffer  
Typical Operating Characteristics  
(Typical Application Circuit with tuning elements outlined in Table 1, V  
= 5.0V, f = 3100MHz to 3900MHz, LO is low-side injected  
RF  
CC  
for a 300MHz IF, P = -5dBm, P = 0dBm, T = +25NC, unless otherwise noted.)  
RF  
LO  
C
CONVERSION GAIN vs. RF FREQUENCY  
CONVERSION GAIN vs. RF FREQUENCY  
CONVERSION GAIN vs. RF FREQUENCY  
11  
10  
9
11  
10  
9
11  
10  
9
T
= -40°C  
C
T
= +25°C  
C
8
8
8
P
= -3dBm, 0dBm, +3dBm  
V
= 4.75V, 5.0V, 5.25V  
CC  
LO  
T
= +85°C  
3800  
7
7
7
C
6
6
6
3000  
3000  
3000  
3200  
3400  
3600  
4000  
3000  
3000  
3000  
3200  
3400  
3600  
3800  
4000  
3000  
3000  
3000  
3200  
3400  
3600  
3800  
4000  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
INPUT IP3 vs. RF FREQUENCY  
INPUT IP3 vs. RF FREQUENCY  
INPUT IP3 vs. RF FREQUENCY  
26  
25  
24  
23  
26  
25  
24  
23  
26  
25  
24  
23  
P
RF  
= -5dBm/TONE  
P
= -5dBm/TONE  
P
= -5dBm/TONE  
RF  
RF  
T
C
= +25°C  
V
= 5.25V  
= 5.0V  
CC  
T
= +85°C  
C
V
CC  
P
= -3dBm, 0dBm, +3dBm  
LO  
V
= 4.75V  
3800  
CC  
T
= -40°C  
3600  
C
3200  
3400  
3800  
4000  
3200  
3400  
3600  
3800  
4000  
3200  
3400  
3600  
4000  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
2RF - 2LO RESPONSE  
vs. RF FREQUENCY  
2RF - 2LO RESPONSE  
vs. RF FREQUENCY  
2RF - 2LO RESPONSE  
vs. RF FREQUENCY  
90  
80  
70  
60  
50  
90  
80  
70  
60  
50  
90  
80  
70  
60  
50  
P
= -5dBm  
P
= -5dBm  
P
= -5dBm  
RF  
RF  
RF  
P
= +3dBm  
LO  
T
C
= +85°C  
T
= +25°C  
C
P
= 0dBm  
LO  
P
= -3dBm  
V
= 4.75V, 5.0V, 5.25V  
LO  
CC  
T
C
= -40°C  
3200  
3400  
3600  
3800  
4000  
3200  
3400  
3600  
3800  
4000  
3200  
3400  
3600  
3800  
4000  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
8
______________________________________________________________________________________  
SiGe, High-Linearity, 2300MHz to 4000MHz  
Downconversion Mixer with LO Buffer  
Typical Operating Characteristics (continued)  
(Typical Application Circuit with tuning elements outlined in Table 1, V  
= 5.0V, f = 3100MHz to 3900MHz, LO is low-side injected  
RF  
CC  
for a 300MHz IF, P = -5dBm, P = 0dBm, T = +25NC, unless otherwise noted.)  
RF  
LO  
C
3RF - 3LO RESPONSE  
vs. RF FREQUENCY  
3RF - 3LO RESPONSE  
vs. RF FREQUENCY  
3RF - 3LO RESPONSE  
vs. RF FREQUENCY  
85  
75  
65  
55  
85  
75  
65  
55  
85  
75  
65  
55  
P
= -5dBm  
P
= -5dBm  
P
= -5dBm  
RF  
RF  
RF  
T
C
= -40°C, +25°C, +85°C  
P
= -3dBm, 0dBm, +3dBm  
V
= 4.75V, 5.0V, 5.25V  
CC  
LO  
3000  
3000  
3000  
3200  
3400  
3600  
3800  
4000  
3000  
3000  
3000  
3200  
3400  
3600  
3800  
4000  
3000  
3000  
3000  
3200  
3400  
3600  
3800  
4000  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
NOISE FIGURE vs. RF FREQUENCY  
NOISE FIGURE vs. RF FREQUENCY  
NOISE FIGURE vs. RF FREQUENCY  
12  
11  
10  
9
12  
11  
10  
9
12  
11  
10  
9
T
= +85°C  
C
T
= +25°C  
C
C
P
= -3dBm, 0dBm, +3dBm  
V
= 4.75V, 5.0V, 5.25V  
LO  
CC  
8
8
8
T
= -40°C  
3600  
7
7
7
3200  
3400  
3800  
4000  
3200  
3400  
3600  
3800  
4000  
3200  
3400  
3600  
3800  
4000  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
INPUT P  
vs. RF FREQUENCY  
INPUT P  
vs. RF FREQUENCY  
INPUT P vs. RF FREQUENCY  
1dB  
1dB  
1dB  
13  
12  
11  
10  
9
13  
12  
11  
10  
9
13  
12  
11  
10  
9
T
= +85°C  
C
V
= 5.25V  
CC  
V
= 5.0V  
CC  
T
= +25°C  
P
= -3dBm, 0dBm, +3dBm  
C
LO  
V
= 4.75V  
CC  
T
= -40°C  
C
3200  
3400  
3600  
3800  
4000  
3200  
3400  
3600  
3800  
4000  
3200  
3400  
3600  
3800  
4000  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
_______________________________________________________________________________________  
9
SiGe, High-Linearity, 2300MHz to 4000MHz  
Downconversion Mixer with LO Buffer  
Typical Operating Characteristics (continued)  
(Typical Application Circuit with tuning elements outlined in Table 1, V  
= 5.0V, f = 3100MHz to 3900MHz, LO is low-side injected  
RF  
CC  
for a 300MHz IF, P = -5dBm, P = 0dBm, T = +25NC, unless otherwise noted.)  
RF  
LO  
C
LO LEAKAGE AT IF PORT  
vs. LO FREQUENCY  
LO LEAKAGE AT IF PORT  
vs. LO FREQUENCY  
LO LEAKAGE AT IF PORT  
vs. LO FREQUENCY  
-10  
-20  
-30  
-40  
-10  
-20  
-30  
-40  
-10  
-20  
-30  
-40  
T
= +85°C  
C
P
= -3dBm, 0dBm, +3dBm  
LO  
V
= 4.75V, 5.0V, 5.25V  
CC  
T
C
= +25°C  
T
C
= -40°C  
2700  
3000  
2500  
2900  
3100  
3300  
3500  
3700  
2700  
3000  
2500  
2900  
3100  
3300  
3500  
3700  
4000  
4000  
2700  
3000  
2500  
2900  
3100  
3300  
3500  
3700  
4000  
4000  
LO FREQUENCY (MHz)  
LO FREQUENCY (MHz)  
LO FREQUENCY (MHz)  
RF-TO-IF ISOLATION  
vs. RF FREQUENCY  
RF-TO-IF ISOLATION  
vs. RF FREQUENCY  
RF-TO-IF ISOLATION  
vs. RF FREQUENCY  
50  
40  
30  
20  
10  
50  
40  
30  
20  
10  
50  
40  
30  
20  
10  
T
= +85°C  
C
V
= 4.75V, 5.0V, 5.25V  
CC  
T
C
= +25°C  
P
= -3dBm, 0dBm, +3dBm  
LO  
T
= -40°C  
C
3200  
3400  
3600  
3800  
4000  
3200  
3400  
3600  
3800  
3200  
3400  
3600  
3800  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
LO LEAKAGE AT RF PORT  
vs. LO FREQUENCY  
LO LEAKAGE AT RF PORT  
vs. LO FREQUENCY  
LO LEAKAGE AT RF PORT  
vs. LO FREQUENCY  
-20  
-25  
-30  
-35  
-40  
-20  
-25  
-30  
-35  
-40  
-20  
-25  
-30  
-35  
-40  
T
= -40°C  
= +25°C  
C
T
= +85°C  
V
= 4.75V, 5.0V, 5.25V  
CC  
P
= -3dBm, 0dBm, +3dBm  
C
LO  
T
C
3000  
3500  
4000  
3000  
3500  
3000  
3500  
LO FREQUENCY (MHz)  
LO FREQUENCY (MHz)  
LO FREQUENCY (MHz)  
10 _____________________________________________________________________________________  
SiGe, High-Linearity, 2300MHz to 4000MHz  
Downconversion Mixer with LO Buffer  
Typical Operating Characteristics (continued)  
(Typical Application Circuit with tuning elements outlined in Table 1, V  
= 5.0V, f = 3100MHz to 3900MHz, LO is low-side injected  
RF  
CC  
for a 300MHz IF, P = -5dBm, P = 0dBm, T = +25NC, unless otherwise noted.)  
RF  
LO  
C
2LO LEAKAGE AT RF PORT  
vs. LO FREQUENCY  
2LO LEAKAGE AT RF PORT  
vs. LO FREQUENCY  
2LO LEAKAGE AT RF PORT  
vs. LO FREQUENCY  
-10  
-20  
-30  
-40  
-50  
-10  
-20  
-30  
-40  
-50  
-10  
-20  
-30  
-40  
-50  
T
C
= +25°C  
T
C
= -40°C  
T
C
= +85°C  
V
= 4.75V, 5.0V, 5.25V  
CC  
P
= -3dBm, 0dBm, +3dBm  
LO  
2500  
3000  
3500  
4000  
2500  
3000  
3500  
4000  
2500  
3000  
3500  
4000  
LO FREQUENCY (MHz)  
LO FREQUENCY (MHz)  
LO FREQUENCY (MHz)  
RF PORT RETURN LOSS  
vs. RF FREQUENCY  
IF PORT RETURN LOSS  
vs. IF FREQUENCY  
0
10  
20  
30  
40  
0
10  
20  
30  
40  
50  
f
IF  
= 300MHz  
f
= 3600MHz  
LO  
V
= 4.75V, 5.0V, 5.25V  
CC  
P
= -3dBm, 0dBm, +3dBm  
LO  
3000  
3200  
3400  
3600  
3800  
4000  
50  
140  
230  
320  
410  
500  
RF FREQUENCY (MHz)  
IF FREQUENCY (MHz)  
SUPPLY CURRENT  
vs. TEMPERATURE (T )  
LO PORT RETURN LOSS  
vs. LO FREQUENCY  
C
250  
240  
230  
220  
210  
200  
0
10  
20  
30  
V
= 5.25V  
CC  
V
= 5.0V  
CC  
P
= -3dBm  
LO  
V
CC  
= 4.75V  
P
= 0dBm  
LO  
P
= +3dBm  
3650  
LO  
-40  
-15  
10  
35  
60  
85  
2600  
2950  
3300  
4000  
TEMPERATURE (°C)  
LO FREQUENCY (MHz)  
______________________________________________________________________________________ 11  
SiGe, High-Linearity, 2300MHz to 4000MHz  
Downconversion Mixer with LO Buffer  
Typical Operating Characteristics (continued)  
(Typical Application Circuit with tuning elements outlined in Table 1, V = 3.3V, f = 3100MHz to 3900MHz, LO is low-side injected  
CC  
RF  
for a 300MHz IF, P = -5dBm, P = 0dBm, T = +25NC, unless otherwise noted.)  
RF  
LO  
C
CONVERSION GAIN vs. RF FREQUENCY  
CONVERSION GAIN vs. RF FREQUENCY  
CONVERSION GAIN vs. RF FREQUENCY  
10  
9
10  
9
10  
9
T
C
= -40NC  
V
= 3.3V  
V
CC  
= 3.3V  
CC  
T
C
= +25NC  
8
8
8
V
= 3.0V, 3.3V, 3.6V  
P
= -3dBm, 0dBm, +3dBm  
CC  
LO  
7
7
7
T
C
= +85NC  
6
6
6
3000  
3200  
3400  
3600  
3800  
4000  
4000  
4000  
3000  
3000  
3000  
3200  
3400  
3600  
3800  
4000  
4000  
4000  
3000  
3000  
3000  
3200  
3400  
3600  
3800  
4000  
4000  
4000  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
INPUT IP3 vs. RF FREQUENCY  
INPUT IP3 vs. RF FREQUENCY  
INPUT IP3 vs. RF FREQUENCY  
22  
21  
20  
19  
18  
22  
21  
20  
19  
18  
22  
21  
20  
19  
18  
P
RF  
= -5dBm/TONE  
V
= 3.3V  
V
= 3.3V  
CC  
CC  
P
RF  
= -5dBm/TONE  
P
RF  
= -5dBm/TONE  
V
= 3.6V  
CC  
T
C
= +85NC  
V
= 3.3V  
CC  
T
C
= +25NC  
V
= 3.0V  
CC  
P
= -3dBm, 0dBm, +3dBm  
LO  
T
= -40NC  
C
3000  
3200  
3400  
3600  
3800  
3200  
3400  
3600  
3800  
3200  
3400  
3600  
3800  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
2RF - 2LO RESPONSE  
vs. RF FREQUENCY  
2RF - 2LO RESPONSE  
vs. RF FREQUENCY  
2RF - 2LO RESPONSE  
vs. RF FREQUENCY  
90  
80  
70  
60  
50  
40  
90  
80  
70  
60  
50  
40  
90  
80  
70  
60  
50  
40  
V
= 3.3V  
V
P
= 3.3V  
= -5dBm  
P
= -5dBm  
RF  
CC  
CC  
RF  
P
= -5dBm  
RF  
T
C
= +25NC  
P
= +3dBm  
LO  
T
C
= +85NC  
P
= 0dBm  
LO  
V
= 3.0V, 3.3V, 3.6V  
CC  
T
= -40NC  
C
P
= -3dBm  
LO  
3000  
3200  
3400  
3600  
3800  
3200  
3400  
3600  
3800  
3200  
3400  
3600  
3800  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
12 _____________________________________________________________________________________  
SiGe, High-Linearity, 2300MHz to 4000MHz  
Downconversion Mixer with LO Buffer  
Typical Operating Characteristics (continued)  
(Typical Application Circuit with tuning elements outlined in Table 1, V = 3.3V, f = 3100MHz to 3900MHz, LO is low-side injected  
CC  
RF  
for a 300MHz IF, P = -5dBm, P = 0dBm, T = +25NC, unless otherwise noted.)  
RF  
LO  
C
3RF - 3LO RESPONSE  
vs. RF FREQUENCY  
3RF - 3LO RESPONSE  
vs. RF FREQUENCY  
3RF - 3LO RESPONSE  
vs. RF FREQUENCY  
75  
70  
65  
60  
55  
50  
75  
70  
65  
60  
55  
50  
75  
70  
65  
60  
55  
50  
V
= 3.3V  
= -5dBm  
V
CC  
= 3.3V  
= -5dBm  
P
RF  
= -5dBm  
CC  
P
RF  
P
RF  
V
CC  
= 3.0V  
V = 3.6V  
CC  
T
C
= -40°C, +25°C, +85°C  
P
LO  
= -3dBm, 0dBm, +3dBm  
V
CC  
= 3.3V  
3000  
3000  
3000  
3200  
3400  
3600  
3800  
4000  
3000  
3000  
3000  
3200  
3400  
3600  
3800  
4000  
4000  
4000  
3000  
3000  
3000  
3200  
3400  
3600  
3800  
4000  
4000  
4000  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
NOISE FIGURE vs. RF FREQUENCY  
NOISE FIGURE vs. RF FREQUENCY  
NOISE FIGURE vs. RF FREQUENCY  
12  
11  
10  
9
12  
11  
10  
9
12  
11  
10  
9
V
= 3.3V  
V
= 3.3V  
CC  
CC  
T
C
= +85NC  
T
C
= +25NC  
T
= -40NC  
C
V
= 3.0V, 3.3V, 3.6V  
P
LO  
= -3dBm, 0dBm, +3dBm  
CC  
8
8
8
7
7
7
3200  
3400  
3600  
3800  
4000  
3200  
3400  
3600  
3800  
3200  
3400  
3600  
3800  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
INPUT P  
vs. RF FREQUENCY  
INPUT P  
vs. RF FREQUENCY  
INPUT P vs. RF FREQUENCY  
1dB  
1dB  
1dB  
9
8
7
6
9
8
7
6
9
8
7
6
V
= 3.3V  
V
= 3.3V  
CC  
CC  
T
C
= +85NC  
V
CC  
= 3.6V  
V
CC  
= 3.3V  
P
LO  
= -3dBm, 0dBm, +3dBm  
V
= 3.0V  
CC  
T
C
= +25NC  
T
= -40NC  
C
3200  
3400  
3600  
3800  
4000  
3200  
3400  
3600  
3800  
3200  
3400  
3600  
3800  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
______________________________________________________________________________________ 13  
SiGe, High-Linearity, 2300MHz to 4000MHz  
Downconversion Mixer with LO Buffer  
Typical Operating Characteristics (continued)  
(Typical Application Circuit with tuning elements outlined in Table 1, V = 3.3V, f = 3100MHz to 3900MHz, LO is low-side injected  
CC  
RF  
for a 300MHz IF, P = -5dBm, P = 0dBm, T = +25NC, unless otherwise noted.)  
RF  
LO  
C
LO LEAKAGE AT IF PORT  
vs. LO FREQUENCY  
LO LEAKAGE AT IF PORT  
vs. LO FREQUENCY  
LO LEAKAGE AT IF PORT  
vs. LO FREQUENCY  
-10  
-20  
-30  
-40  
-50  
-10  
-20  
-30  
-40  
-50  
-10  
-20  
-30  
-40  
-50  
V
CC  
= 3.3V  
V
CC  
= 3.3V  
V
= 3.6V  
CC  
T
C
= -40°C, +25°C, +85°C  
P
= -3dBm, 0dBm, +3dBm  
V
CC  
= 3.0V  
3500  
LO  
V
= 3.3V  
2900  
CC  
2700  
3000  
2500  
2900  
3100  
3300  
3500  
3700  
4000  
4000  
2700  
3000  
2500  
2900  
3100  
3300  
3500  
3700  
4000  
4000  
2700  
3100  
3300  
3700  
4000  
4000  
LO FREQUENCY (MHz)  
LO FREQUENCY (MHz)  
LO FREQUENCY (MHz)  
RF-TO-IF ISOLATION  
vs. RF FREQUENCY  
RF-TO-IF ISOLATION  
vs. RF FREQUENCY  
RF-TO-IF ISOLATION  
vs. RF FREQUENCY  
50  
40  
30  
20  
10  
50  
40  
30  
20  
10  
50  
40  
30  
20  
10  
V
= 3.3V  
V
= 3.3V  
CC  
CC  
T
= +85NC  
C
V
= 3.0V, 3.3V, 3.6V  
CC  
T
C
= +25NC  
P
LO  
= -3dBm, 0dBm, +3dBm  
T
= -40NC  
C
3200  
3400  
3600  
3800  
3200  
3400  
3600  
3800  
3000  
3200  
3400  
3600  
3800  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
LO LEAKAGE AT RF PORT  
vs. LO FREQUENCY  
LO LEAKAGE AT RF PORT  
vs. LO FREQUENCY  
LO LEAKAGE AT RF PORT  
vs. LO FREQUENCY  
-20  
-25  
-30  
-35  
-40  
-20  
-25  
-30  
-35  
-40  
-20  
-25  
-30  
-35  
-40  
V
= 3.3V  
V
= 3.3V  
CC  
CC  
T
= -40°C, +25°C, +85°C  
P
= -3dBm, 0dBm, +3dBm  
C
LO  
V
= 3.6V  
CC  
V
CC  
= 3.3V  
V
CC  
= 3.0V  
3000  
3500  
3000  
3500  
2500  
3000  
3500  
LO FREQUENCY (MHz)  
LO FREQUENCY (MHz)  
LO FREQUENCY (MHz)  
14 _____________________________________________________________________________________  
SiGe, High-Linearity, 2300MHz to 4000MHz  
Downconversion Mixer with LO Buffer  
Typical Operating Characteristics (continued)  
(Typical Application Circuit with tuning elements outlined in Table 1, V = 3.3V, f = 3100MHz to 3900MHz, LO is low-side injected  
CC  
RF  
for a 300MHz IF, P = -5dBm, P = 0dBm, T = +25NC, unless otherwise noted.)  
RF  
LO  
C
2LO LEAKAGE AT RF PORT  
vs. LO FREQUENCY  
2LO LEAKAGE AT RF PORT  
vs. LO FREQUENCY  
2LO LEAKAGE AT RF PORT  
vs. LO FREQUENCY  
-10  
-20  
-30  
-40  
-50  
-10  
-20  
-30  
-40  
-50  
-10  
-20  
-30  
-40  
-50  
V
= 3.3V  
V
= 3.3V  
CC  
CC  
V
= 3.0V  
T
C
= +25NC  
CC  
T
= -40NC  
C
V
CC  
= 3.3V  
3500  
P
LO  
= -3dBm, 0dBm, +3dBm  
T
C
= +85NC  
V
CC  
= 3.6V  
2500  
3000  
3500  
4000  
2500  
3000  
3500  
4000  
2500  
3000  
4000  
LO FREQUENCY (MHz)  
LO FREQUENCY (MHz)  
LO FREQUENCY (MHz)  
RF PORT RETURN LOSS  
vs. RF FREQUENCY  
IF PORT RETURN LOSS  
vs. IF FREQUENCY  
0
10  
20  
30  
40  
0
10  
20  
30  
40  
50  
V
= 3.3V  
CC  
f
= 3600MHz  
LO  
f
= 300MHz  
IF  
P
LO  
= -3dBm, 0dBm, +3dBm  
V
= 3.0V, 3.3V, 3.6V  
CC  
3000  
3200  
3400  
3600  
3800  
4000  
50  
140  
230  
320  
410  
500  
RF FREQUENCY (MHz)  
IF FREQUENCY (MHz)  
LO PORT RETURN LOSS  
vs. LO FREQUENCY  
SUPPLY CURRENT  
vs. TEMPERATURE (T )  
C
0
10  
20  
30  
160  
150  
140  
130  
V
= 3.3V  
CC  
V
= 3.6V  
CC  
P
= -3dBm  
LO  
P
= 0dBm  
LO  
V
= 3.3V  
CC  
V
= 3.0V  
CC  
P
= +3dBm  
LO  
2600  
2950  
3300  
3650  
4000  
-40  
-15  
10  
35  
60  
85  
LO FREQUENCY (MHz)  
TEMPERATURE (°C)  
______________________________________________________________________________________ 15  
SiGe, High-Linearity, 2300MHz to 4000MHz  
Downconversion Mixer with LO Buffer  
Typical Operating Characteristics (continued)  
(Typical Application Circuit with tuning elements outlined in Table 1, V = 5.0V, f = 3100MHz to 3900MHz, LO is high-side injected  
CC  
RF  
for a 300MHz IF, P = -5dBm, P = 0dBm, T = +25NC, unless otherwise noted.)  
RF  
LO  
C
CONVERSION GAIN vs. RF FREQUENCY  
CONVERSION GAIN vs. RF FREQUENCY  
CONVERSION GAIN vs. RF FREQUENCY  
11  
10  
9
11  
10  
9
11  
10  
9
T
C
= -40°C  
T
= +25°C  
C
8
8
8
V
= 4.75V, 5.0V, 5.25V  
P
= -3dBm, 0dBm, +3dBm  
CC  
LO  
7
7
7
T
C
= +85°C  
6
6
6
3000  
3000  
3000  
3200  
3400  
3600  
3800  
4000  
3000  
3000  
3000  
3200  
3400  
3600  
3800  
4000  
4000  
4000  
3000  
3000  
3000  
3200  
3400  
3600  
3800  
4000  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
INPUT IP3 vs. RF FREQUENCY  
INPUT IP3 vs. RF FREQUENCY  
INPUT IP3 vs. RF FREQUENCY  
26  
25  
24  
23  
26  
25  
24  
23  
26  
25  
24  
23  
P
= -5dBm/TONE  
P
= -5dBm/TONE  
P
= -5dBm/TONE  
RF  
RF  
RF  
T
C
= +85°C  
V
= 5.25V  
CC  
T
= +25°C  
C
V
= 5.0V  
CC  
V
= 4.75V  
P
= -3dBm, 0dBm, +3dBm  
CC  
LO  
T
C
= -40°C  
3200  
3400  
3600  
3800  
4000  
3200  
3400  
3600  
3800  
3200  
3400  
3600  
3800  
4000  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
2LO - 2RF RESPONSE  
vs. RF FREQUENCY  
2LO - 2RF RESPONSE  
vs. RF FREQUENCY  
2LO - 2RF RESPONSE  
vs. RF FREQUENCY  
90  
80  
70  
60  
50  
90  
80  
70  
60  
50  
90  
80  
70  
60  
50  
P
= -5dBm  
P
= -5dBm  
P
= -5dBm  
RF  
RF  
RF  
P
P
= +3dBm  
LO  
T
C
= +85°C  
T
= +25°C  
3800  
C
P
= -3dBm  
3800  
LO  
V
= 4.75V, 5.0V, 5.25V  
= 0dBm  
3400  
CC  
LO  
T
C
= -40°C  
3200  
3400  
3600  
4000  
3200  
3600  
3200  
3400  
3600  
3800  
4000  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
16 _____________________________________________________________________________________  
SiGe, High-Linearity, 2300MHz to 4000MHz  
Downconversion Mixer with LO Buffer  
Typical Operating Characteristics (continued)  
(Typical Application Circuit with tuning elements outlined in Table 1, V = 5.0V, f = 3100MHz to 3900MHz, LO is high-side injected  
CC  
RF  
for a 300MHz IF, P = -5dBm, P = 0dBm, T = +25NC, unless otherwise noted.)  
RF  
LO  
C
3LO - 3RF RESPONSE  
vs. RF FREQUENCY  
3LO - 3RF RESPONSE  
vs. RF FREQUENCY  
3LO - 3RF RESPONSE  
vs. RF FREQUENCY  
95  
85  
75  
65  
55  
95  
85  
75  
65  
55  
95  
85  
75  
65  
55  
P
= -5dBm  
P
= -5dBm  
P
= -5dBm  
RF  
RF  
RF  
T
C
= +85°C  
T
C
= +25°C  
V
= 4.75V, 5.0V, 5.25V  
P
= -3dBm, 0dBm, +3dBm  
CC  
LO  
T
= -40°C  
C
3000  
3000  
3000  
3200  
3400  
3600  
3800  
4000  
3700  
4000  
3000  
3000  
3000  
3200  
3400  
3600  
3800  
4000  
3000  
3000  
3000  
3200  
3400  
3600  
3800  
4000  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
NOISE FIGURE vs. RF FREQUENCY  
NOISE FIGURE vs. RF FREQUENCY  
NOISE FIGURE vs. RF FREQUENCY  
12  
11  
10  
9
12  
11  
10  
9
12  
11  
10  
9
T
= +85°C  
C
T
= +25°C  
C
V
= 4.75V, 5.0V, 5.25V  
CC  
P
= -3dBm, 0dBm, +3dBm  
LO  
8
8
8
T
= -40°C  
C
7
7
7
3175  
3350  
3525  
3175  
3350  
3525  
3700  
3175  
3350  
3525  
3700  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
INPUT P  
vs. RF FREQUENCY  
INPUT P  
vs. RF FREQUENCY  
INPUT P  
vs. RF FREQUENCY  
1dB  
1dB  
1dB  
13  
12  
11  
10  
9
13  
12  
11  
10  
9
13  
12  
11  
10  
9
T
C
= +85°C  
V
= 5.25V  
CC  
V
= 5.0V  
CC  
T
= +25°C  
C
P
= -3dBm, 0dBm, +3dBm  
LO  
V
= 4.75V  
CC  
T
C
= -40°C  
3200  
3400  
3600  
3800  
3200  
3400  
3600  
3800  
4000  
3200  
3400  
3600  
3800  
4000  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
______________________________________________________________________________________ 17  
SiGe, High-Linearity, 2300MHz to 4000MHz  
Downconversion Mixer with LO Buffer  
Typical Operating Characteristics (continued)  
(Typical Application Circuit with tuning elements outlined in Table 1, V = 5.0V, f = 3100MHz to 3900MHz, LO is high-side injected  
CC  
RF  
for a 300MHz IF, P = -5dBm, P = 0dBm, T = +25NC, unless otherwise noted.)  
RF  
LO  
C
LO LEAKAGE AT IF PORT  
vs. LO FREQUENCY  
LO LEAKAGE AT IF PORT  
vs. LO FREQUENCY  
LO LEAKAGE AT IF PORT  
vs. LO FREQUENCY  
-10  
-20  
-30  
-40  
-10  
-20  
-30  
-40  
-10  
-20  
-30  
-40  
T
C
= -40°C  
T
C
= +25°C  
T
C
= +85°C  
V
= 4.75V, 5.0V, 5.25V  
CC  
P
= -3dBm, 0dBm, +3dBm  
LO  
3000  
3000  
3300  
3500  
3700  
3900  
4100  
4300  
3000  
3000  
3300  
3500  
3700  
3900  
4100  
4300  
4000  
4300  
3000  
3000  
3300  
3500  
3700  
3900  
4100  
4300  
4000  
4300  
LO FREQUENCY (MHz)  
LO FREQUENCY (MHz)  
LO FREQUENCY (MHz)  
RF-TO-IF ISOLATION  
vs. RF FREQUENCY  
RF-TO-IF ISOLATION  
vs. RF FREQUENCY  
RF-TO-IF ISOLATION  
vs. RF FREQUENCY  
50  
40  
30  
20  
10  
50  
40  
30  
20  
10  
50  
40  
30  
20  
10  
T
= +85°C  
C
P
= -3dBm, 0dBm, +3dBm  
V
= 4.75V, 5.0V, 5.25V  
LO  
CC  
T
= +25°C  
3600  
C
T
= -40°C  
C
3200  
3400  
3800  
4000  
3200  
3400  
3600  
3800  
3200  
3400  
3600  
3800  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
LO LEAKAGE AT RF PORT  
vs. LO FREQUENCY  
LO LEAKAGE AT RF PORT  
vs. LO FREQUENCY  
LO LEAKAGE AT RF PORT  
vs. LO FREQUENCY  
-20  
-25  
-30  
-35  
-40  
-20  
-25  
-30  
-35  
-40  
-20  
-25  
-30  
-35  
-40  
T
= +85°C  
C
T
C
= +25°C  
V
= 4.75V, 5.0V, 5.25V  
CC  
P
= -3dBm, 0dBm, +3dBm  
LO  
T
= -40°C  
4050  
C
3550  
3800  
4300  
3550  
3800  
4050  
3550  
3800  
4050  
LO FREQUENCY (MHz)  
LO FREQUENCY (MHz)  
LO FREQUENCY (MHz)  
18 _____________________________________________________________________________________  
SiGe, High-Linearity, 2300MHz to 4000MHz  
Downconversion Mixer with LO Buffer  
Typical Operating Characteristics (continued)  
(Typical Application Circuit with tuning elements outlined in Table 1, V = 5.0V, f = 3100MHz to 3900MHz, LO is high-side injected  
CC  
RF  
for a 300MHz IF, P = -5dBm, P = 0dBm, T = +25NC, unless otherwise noted.)  
RF  
LO  
C
2LO LEAKAGE AT RF PORT  
vs. LO FREQUENCY  
2LO LEAKAGE AT RF PORT  
vs. LO FREQUENCY  
2LO LEAKAGE AT RF PORT  
vs. LO FREQUENCY  
-10  
-20  
-30  
-40  
-10  
-20  
-30  
-40  
-10  
-20  
-30  
-40  
P
= +3dBm  
LO  
T
= -40°C  
C
T
C
= +85°C  
P
= -3dBm  
LO  
T
C
= +25°C  
V
= 4.75V, 5.0V, 5.25V  
CC  
P
= 0dBm  
LO  
3300  
3550  
3800  
4050  
4300  
3300  
3550  
3800  
4050  
4300  
3300  
3550  
3800  
4050  
4300  
LO FREQUENCY (MHz)  
LO FREQUENCY (MHz)  
LO FREQUENCY (MHz)  
RF PORT RETURN LOSS  
vs. RF FREQUENCY  
IF PORT RETURN LOSS  
vs. IF FREQUENCY  
0
10  
20  
30  
40  
0
10  
20  
30  
40  
50  
f
IF  
= 300MHz  
f
= 4100MHz  
LO  
V
= 4.75V, 5.0V, 5.25V  
CC  
P
= -3dBm, 0dBm, +3dBm  
LO  
3000  
3200  
3400  
3600  
3800  
4000  
50  
140  
230  
320  
410  
500  
RF FREQUENCY (MHz)  
IF FREQUENCY (MHz)  
LO PORT RETURN LOSS  
vs. LO FREQUENCY  
SUPPLY CURRENT  
vs. TEMPERATURE (T )  
C
0
10  
20  
30  
250  
240  
230  
220  
210  
200  
V
= 5.25V  
CC  
V
= 5.0V  
CC  
P
= -3dBm  
LO  
V
= 4.75V  
CC  
P
= 0dBm  
LO  
P
= +3dBm  
LO  
2700  
3100  
3500  
3900  
4300  
-40  
-15  
10  
35  
60  
65  
LO FREQUENCY (MHz)  
TEMPERATURE (°C)  
______________________________________________________________________________________ 19  
SiGe, High-Linearity, 2300MHz to 4000MHz  
Downconversion Mixer with LO Buffer  
Typical Operating Characteristics (continued)  
(Typical Application Circuit with tuning elements outlined in Table 1, V = 5.0V, f = 2300MHz to 2900MHz, LO is high-side injected  
CC  
RF  
for a 300MHz IF, P = -5dBm, P = 0dBm, T = +25NC, unless otherwise noted.)  
RF  
LO  
C
CONVERSION GAIN vs. RF FREQUENCY  
CONVERSION GAIN vs. RF FREQUENCY  
CONVERSION GAIN vs. RF FREQUENCY  
11  
10  
9
11  
10  
9
11  
10  
9
T
= -40°C  
C
T
C
= +25°C  
8
8
8
P
= -3dBm, 0dBm, +3dBm  
LO  
V
= 4.75V, 5.0V, 5.25V  
CC  
7
7
7
T
C
= +85°C  
2600  
6
6
6
2300  
2300  
2300  
2450  
2750  
2900  
2300  
2300  
2300  
2450  
2600  
2750  
2900  
2900  
2900  
2300  
2300  
2300  
2450  
2600  
2750  
2900  
2900  
2900  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
INPUT IP3 vs. RF FREQUENCY  
INPUT IP3 vs. RF FREQUENCY  
INPUT IP3 vs. RF FREQUENCY  
27  
26  
25  
24  
23  
27  
26  
25  
24  
23  
27  
26  
25  
24  
23  
P
RF  
= -5dBm/TONE  
P
RF  
= -5dBm/TONE  
P
= -5dBm/TONE  
RF  
T
= +85°C  
C
T
C
= +25°C  
V
= 5.25V  
CC  
P
= -3dBm, 0dBm, +3dBm  
LO  
V
= 5.0V  
V
= 4.75V  
CC  
CC  
T
C
= -40°C  
2450  
2600  
2750  
2900  
2450  
2600  
2750  
2450  
2600  
2750  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
2LO - 2RF RESPONSE  
vs. RF FREQUENCY  
2LO - 2RF RESPONSE  
vs. RF FREQUENCY  
2LO - 2RF RESPONSE  
vs. RF FREQUENCY  
90  
80  
70  
60  
50  
90  
80  
70  
60  
50  
90  
80  
70  
60  
50  
P
= -5dBm  
P
= -5dBm  
P
= -5dBm  
RF  
RF  
RF  
T
C
= +85NC  
V
CC  
= 4.75V  
P
= +3dBm  
LO  
V
CC  
= 5.25V  
P
= -3dBm  
LO  
P
= 0dBm  
2750  
V
= 5.0V  
2750  
T
= -40NC  
LO  
CC  
C
T
= +25NC  
C
2450  
2600  
2750  
2900  
2450  
2600  
2450  
2600  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
20 _____________________________________________________________________________________  
SiGe, High-Linearity, 2300MHz to 4000MHz  
Downconversion Mixer with LO Buffer  
Typical Operating Characteristics (continued)  
(Typical Application Circuit with tuning elements outlined in Table 1, V = 5.0V, f = 2300MHz to 2900MHz, LO is high-side injected  
CC  
RF  
for a 300MHz IF, P = -5dBm, P = 0dBm, T = +25NC, unless otherwise noted.)  
RF  
LO  
C
3LO - 3RF RESPONSE  
vs. RF FREQUENCY  
3LO - 3RF RESPONSE  
vs. RF FREQUENCY  
3LO - 3RF RESPONSE  
vs. RF FREQUENCY  
95  
85  
75  
65  
55  
95  
85  
75  
65  
55  
95  
85  
75  
65  
55  
P
= -5dBm  
P
RF  
= -5dBm  
P
= -5dBm  
RF  
RF  
T
C
= +85NC  
T
C
= +25NC  
V
= 4.75V, 5.0V, 5.25V  
CC  
T
= -40NC  
P
LO  
= -3dBm, 0dBm, +3dBm  
C
2300  
2450  
2600  
2750  
2900  
2900  
2900  
2300  
2300  
2300  
2450  
2600  
2750  
2900  
2900  
2900  
2300  
2300  
2300  
2450  
2600  
2750  
2900  
2900  
2900  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
NOISE FIGURE vs. RF FREQUENCY  
NOISE FIGURE vs. RF FREQUENCY  
NOISE FIGURE vs. RF FREQUENCY  
13  
12  
11  
10  
9
13  
12  
11  
10  
9
13  
12  
11  
10  
9
T
C
= +85NC  
V
= 4.75V  
CC  
P
= -3dBm, 0dBm, +3dBm  
V
= 5.0V  
CC  
LO  
T
= +25NC  
C
T
= -40NC  
C
V
= 5.25V  
CC  
8
8
8
2300  
2450  
2600  
2750  
2450  
2600  
2750  
2450  
2600  
2750  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
INPUT P  
vs. RF FREQUENCY  
INPUT P  
vs. RF FREQUENCY  
INPUT P  
vs. RF FREQUENCY  
1dB  
1dB  
1dB  
13  
12  
11  
10  
9
13  
12  
11  
10  
9
13  
12  
11  
10  
9
T
C
= +85NC  
V
= 5.25V  
CC  
V
= 5.0V  
CC  
P
= -3dBm, 0dBm, +3dBm  
LO  
V
CC  
= 4.75V  
T
C
= +25NC  
T
= -40NC  
C
2300  
2450  
2600  
2750  
2450  
2600  
2750  
2450  
2600  
2750  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
______________________________________________________________________________________ 21  
SiGe, High-Linearity, 2300MHz to 4000MHz  
Downconversion Mixer with LO Buffer  
Typical Operating Characteristics (continued)  
(Typical Application Circuit with tuning elements outlined in Table 1, V = 5.0V, f = 2300MHz to 2900MHz, LO is high-side injected  
CC  
RF  
for a 300MHz IF, P = -5dBm, P = 0dBm, T = +25NC, unless otherwise noted.)  
RF  
LO  
C
LO LEAKAGE AT IF PORT  
vs. LO FREQUENCY  
LO LEAKAGE AT IF PORT  
vs. LO FREQUENCY  
LO LEAKAGE AT IF PORT  
vs. LO FREQUENCY  
-10  
-20  
-30  
-40  
-10  
-20  
-30  
-40  
-10  
-20  
-30  
-40  
T = +25°C  
C
T
C
= +85°C  
P
LO  
= -3dBm, 0dBm, +3dBm  
V
= 4.75V, 5.0V, 5.25V  
CC  
T
= -40°C  
C
2600  
2300  
2500  
2750  
2900  
3050  
3200  
2900  
4000  
2600  
2300  
2500  
2750  
2900  
3050  
3200  
2900  
4000  
2600  
2300  
2500  
2750  
2900  
3050  
3200  
2900  
4000  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
LO FREQUENCY (MHz)  
RF-TO-IF ISOLATION  
vs. RF FREQUENCY  
RF-TO-IF ISOLATION  
vs. RF FREQUENCY  
RF-TO-IF ISOLATION  
vs. RF FREQUENCY  
60  
50  
40  
30  
60  
50  
40  
30  
60  
50  
40  
30  
V
V
= 5.25V  
= 5.0V  
CC  
T
= +85NC  
C
CC  
T
C
= +25NC  
V
CC  
= 4.75V  
P
LO  
= -3dBm, 0dBm, +3dBm  
T
= -40NC  
C
2450  
2600  
2750  
2450  
2600  
2750  
2450  
2600  
2750  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
LO LEAKAGE AT RF PORT vs.  
LO FREQUENCY  
LO LEAKAGE AT RF PORT vs.  
LO FREQUENCY  
LO LEAKAGE AT RF PORT vs.  
LO FREQUENCY  
-20  
-25  
-30  
-35  
-40  
-20  
-25  
-30  
-35  
-40  
-20  
-25  
-30  
-35  
-40  
T
= -40NC  
C
V
= 4.75V, 5.0V, 5.25V  
CC  
P
= -3dBm, 0dBm, +3dBm  
LO  
T
C
= +25NC  
T
C
= +85NC  
3000  
3500  
3000  
3500  
3000  
3500  
LO FREQUENCY (MHz)  
LO FREQUENCY (MHz)  
LO FREQUENCY (MHz)  
22 _____________________________________________________________________________________  
SiGe, High-Linearity, 2300MHz to 4000MHz  
Downconversion Mixer with LO Buffer  
Typical Operating Characteristics (continued)  
(Typical Application Circuit with tuning elements outlined in Table 1, V = 5.0V, f = 2300MHz to 2900MHz, LO is high-side injected  
CC  
RF  
for a 300MHz IF, P = -5dBm, P = 0dBm, T = +25NC, unless otherwise noted.)  
RF  
LO  
C
2LO LEAKAGE AT RF PORT vs.  
LO FREQUENCY  
2LO LEAKAGE AT RF PORT vs.  
LO FREQUENCY  
2LO LEAKAGE AT RF PORT vs.  
LO FREQUENCY  
-20  
-30  
-40  
-50  
-60  
-20  
-30  
-40  
-50  
-60  
-20  
-30  
-40  
-50  
-60  
T
C
= -40NC  
P
= +3dBm  
LO  
V
= 4.75V  
V
= 5.0V  
CC  
CC  
T
C
= +25NC  
V
= 5.25V  
CC  
P
= 0dBm  
LO  
T
C
= +85NC  
P
= -3dBm  
LO  
2500  
3000  
3500  
4000  
2500  
3000  
3500  
4000  
2500  
3000  
3500  
4000  
LO FREQUENCY (MHz)  
LO FREQUENCY (MHz)  
LO FREQUENCY (MHz)  
IF PORT RETURN LOSS vs.  
IF FREQUENCY  
RF PORT RETURN LOSS vs.  
RF FREQUENCY  
0
10  
20  
30  
40  
0
10  
20  
30  
40  
50  
f
= 300MHz  
f
= 3000MHz  
LO  
IF  
V
= 4.75V, 5.0V, 5.25V  
CC  
P
LO  
= -3dBm, 0dBm, +3dBm  
2300  
2450  
2600  
2750  
2900  
50  
140  
230  
320  
410  
500  
RF FREQUENCY (MHz)  
IF FREQUENCY (MHz)  
LO PORT RETURN LOSS vs.  
LO FREQUENCY  
SUPPLY CURRENT vs.  
TEMPERATURE (T )  
C
0
10  
20  
30  
250  
240  
230  
220  
210  
200  
V
= 5.25V  
CC  
V
= 5.0V  
CC  
P
= -3dBm  
LO  
V
CC  
= 4.75V  
P
= 0dBm  
P
= +3dBm  
3650  
LO  
LO  
2600  
2950  
3300  
4000  
-40  
-15  
10  
35  
60  
85  
LO FREQUENCY (MHz)  
TEMPERATURE (°C)  
______________________________________________________________________________________ 23  
SiGe, High-Linearity, 2300MHz to 4000MHz  
Downconversion Mixer with LO Buffer  
Pin Configuration/Functional Diagram  
TOP VIEW  
20  
19  
18  
17  
16  
V
15 GND  
1
2
3
4
5
CC  
RF  
MAX19998  
V
CC  
14  
13 GND  
12 GND  
GND  
GND  
GND  
EP  
11  
LO  
6
7
8
9
10  
Pin Description  
PIN  
NAME  
FUNCTION  
1, 6, 8, 14  
V
CC  
Power Supply. Bypass to GND with 0.01FF capacitors as close as possible to the pin.  
Single-Ended 50IRF Input. Internally matched and DC shorted to GND through a balun. Provide an  
input DC-blocking capacitor if required.  
2
RF  
3, 9, 13, 15  
GND  
Ground. Not internally connected. Pins can be grounded.  
4, 5, 10, 12,  
17  
Ground. Internally connected to the exposed pad. Connect all ground pins and the exposed pad  
(EP) together.  
GND  
LO Amplifier Bias Control. Output bias resistor for the LO buffer. Connect a 604I(5V, 230mA bias  
condition) from LOBIAS to ground.  
7
LOBIAS  
LO  
11  
Local Oscillator Input. This input is internally matched to 50I. Requires an input DC-blocking capacitor.  
External Inductor Connection. Connect a low-ESR 4.7nH inductor from this pin to ground to increase  
the RF-to-IF and LO-to-IF isolation. Connect this pin directly to ground to reduce the component  
count at the expense of reduced RF-to-IF and LO-to-IF isolation.  
16  
LEXT  
Mixer Differential IF Output. Connect pullup inductors from each of these pins to V  
Application Circuit).  
(see the Typical  
CC  
18, 19  
20  
IF-, IF+  
IFBIAS  
IF Amplifier Bias Control. IF bias resistor connection for the IF amplifier. Connect a 698I(5V, 230mA  
bias condition) from IFBIAS to GND.  
Exposed Pad. Internally connected to GND. Solder this exposed pad to a PCB pad that uses multiple  
ground vias to provide heat transfer out of the device into the PCB ground planes. These multiple via  
grounds are also required to achieve the noted RF performance.  
EP  
24 _____________________________________________________________________________________  
SiGe, High-Linearity, 2300MHz to 4000MHz  
Downconversion Mixer with LO Buffer  
would require higher L1 and L2 inductor values to main-  
tain a good IF match. The differential, open-collector IF  
output ports require that these inductors be connected  
Detailed Description  
The MAX19998 provides high linearity and low noise  
figure for a multitude of 2300MHz to 4000MHz WiMAX,  
to V  
.
CC  
LTE, and MMDS base-station applications. This device  
operates over a 2600MHz to 4300MHz LO range and  
a 50MHz to 500MHz IF range. Integrated baluns and  
matching circuitry allow 50I single-ended interfaces to  
the RF and LO ports. The integrated LO buffer provides a  
high drive level to the mixer core, reducing the LO drive  
required at the MAX19998’s input to a range of -3dBm  
to +3dBm. The IF port incorporates a differential output,  
which is ideal for providing enhanced 2RF - 2LO and  
2LO - 2RF performance.  
Note that these differential ports are ideal for provid-  
ing enhanced 2RF - 2LO performance. Single-ended  
IF applications require a 4:1 (impedance ratio) balun to  
transform the 200I differential IF impedance to a 50I  
single-ended system. Use the TC4-1W-17 4:1 transform-  
er for IF frequencies above 200MHz and the TC4-1W-7A  
4:1 transformer for frequencies below 200MHz. The user  
can use a differential IF amplifier or SAW filter on the  
mixer IF port, but a DC block is required on both IF+/  
IF- ports to keep external DC from entering the IF ports  
of the mixer.  
RF Input and Balun  
The MAX19998 RF input provides a 50I match when  
combined with a series DC-blocking capacitor. This  
DC-blocking capacitor is required as the input is inter-  
nally DC shorted to ground through the on-chip balun.  
When using an 8.2pF DC-blocking capacitor, the RF port  
input return loss is typically 17dB over the RF frequency  
range of 3200MHz to 3900MHz. See Table 1 for lower  
band tuning.  
Applications Information  
Input and Output Matching  
The RF and LO inputs provide 50I matches when  
combined with the proper tuning. Use an 8.2pF capaci-  
tor value on the RF port for frequencies ranging from  
3000MHz to 4000MHz. Use a 3.3nH series inductor and  
a 0.3pF shunt capacitor on the RF port for frequencies  
ranging from 2300MHz to 2900MHz. On the LO port, use  
a 2pF DC-blocking capacitor to cover operations span-  
ning the 2600MHz to 4300MHz range.  
LO Inputs, Buffer, and Balun  
The LO input is internally matched to 50I, requiring  
only a 2pF DC-blocking capacitor. A two-stage internal  
LO buffer allows for a -3dBm to +3dBm LO input power  
range. The on-chip low-loss balun, along with an LO  
buffer, drives the double-balanced mixer. All interfacing  
and matching components from the LO inputs to the IF  
outputs are integrated on-chip.  
The IF output impedance is 200I(differential). For evalu-  
ation, an external low-loss 4:1 (impedance ratio) balun  
transforms this impedance down to a 50I single-ended  
output (see the Typical Application Circuit).  
Reduced-Power Mode  
The MAX19998 has two pins (LOBIAS, IFBIAS) that allow  
external resistors to set the internal bias currents. See  
Table 1 for nominal values for these resistors. Larger  
value resistors can be used to reduce power dissipa-  
tion at the expense of some performance loss. If Q1%  
resistors are not readily available, substitute with Q5%  
resistors.  
High-Linearity Mixer  
The core of the MAX19998 is a double-balanced, high-  
performance passive mixer. Exceptional linearity is pro-  
vided by the large LO swing from the on-chip LO buffer.  
When combined with the integrated IF amplifier, IIP3,  
2RF - 2LO rejection, and noise-figure performance are  
typically +24.3dBm, 67dBc, and 9.7dB, respectively,  
for low-side LO injection architectures covering the  
3000MHz to 4000MHz RF band.  
Significant reductions in power consumption can also  
be realized by operating the mixer with an optional  
supply voltage of 3.3V. Doing so reduces the overall  
power consumption by 57% (typ). See the 3.3V Supply  
AC Electrical Characteristics table and the relevant 3.3V  
curves in the Typical Operating Characteristics section  
to evaluate the power vs. performance trade-offs.  
Differential IF Output Amplifier  
The MAX19998 has a 50MHz to 500MHz IF frequency  
range, where the low-end frequency depends on the  
frequency response of the external IF components. The  
MAX19998 mixer is tuned for a 300MHz IF using 390nH  
external pullup bias inductors. Lower IF frequencies  
______________________________________________________________________________________ 25  
SiGe, High-Linearity, 2300MHz to 4000MHz  
Downconversion Mixer with LO Buffer  
does not exceed several picofarads. For the best per-  
formance, route the ground pin traces directly to the  
exposed pad under the package. The PCB exposed pad  
MUST be connected to the ground plane of the PCB. It is  
suggested that multiple vias be used to connect this pad  
to the lower level ground planes. This method provides a  
good RF/thermal-conduction path for the device. Solder  
the exposed pad on the bottom of the device package  
to the PCB. The MAX19998 evaluation kit can be used  
as a reference for board layout. Gerber files are available  
upon request at www.maxim-ic.com.  
LEXT Inductor  
Short LEXT to ground using a 0I resistor. For applica-  
tions requiring improved RF-to-IF and LO-to-IF isolation,  
L3 can be changed to optimize performance (see the  
Typical Operating Characteristics). However, the load  
impedance presented to the mixer must be such that any  
capacitances from IF- and IF+ to ground do not exceed  
several picofarads to ensure stable operating conditions.  
Since approximately 120mA flows through LEXT, it is  
important to use a low-DCR wire-wound inductor.  
Layout Considerations  
A properly designed PCB is an essential part of any RF/  
microwave circuit. Keep RF signal lines as short as pos-  
sible to reduce losses, radiation, and inductance. The  
load impedance presented to the mixer must be such  
that any capacitance from both IF- and IF+ to ground  
Power-Supply Bypassing  
Proper voltage supply bypassing is essential for high-  
frequency circuit stability. Bypass each V  
pin with the  
CC  
capacitors shown in the Typical Application Circuit and  
see Table 1 for component values.  
Table 1. Component Values  
DESIGNATION  
QTY  
DESCRIPTION  
COMPONENT SUPPLIER  
8.2pF microwave capacitor (0402). Use for RF  
frequencies ranging from 3000MHz to 4000MHz.  
Murata Electronics North America, Inc.  
Coilcraft, Inc.  
C1  
1
3.3nH microwave inductor (0402). Use for RF  
frequencies ranging from 2300MHz to 2900MHz.  
C2, C6, C8, C11  
C3, C9  
4
0
1
2
1
0.01FF microwave capacitors (0402)  
Not installed, capacitors  
Murata Electronics North America, Inc.  
C10  
2pF microwave capacitor (0402)  
1000pF microwave capacitors (0402)  
82pF microwave capacitor (0402)  
Murata Electronics North America, Inc.  
Murata Electronics North America, Inc.  
Murata Electronics North America, Inc.  
C13, C14  
C15  
Not installed for RF frequencies ranging from  
3000MHz to 4000MHz  
C16  
1
0.3pF microwave capacitor (0402). Use for RF  
frequencies ranging from 2300MHz to 2900MHz.  
Murata Electronics North America, Inc.  
L1, L2  
L3  
2
1
390nH wire-wound high-Q inductors* (0805)  
4.7nH wire-wound high-Q inductor (0603)  
Coilcraft, Inc.  
Coilcraft, Inc.  
698I Q1% resistor (0402). Use for V  
applications.  
= 5.0V  
= 3.3V  
= 5.0V  
= 3.3V  
CC  
CC  
CC  
R1  
R2  
1
1
Digi-Key Corp.  
Digi-Key Corp.  
845I Q1% resistor (0402). Use for V  
applications.  
604I Q1% resistor (0402). Use for V  
applications.  
1.1kI Q1% resistor (0402). Use for V  
CC  
applications.  
R3  
T1  
U1  
1
1
1
0I resistor (1206)  
Digi-Key Corp.  
4:1 IF balun TC4-1W-17*  
MAX19998 IC (20 Thin QFN-EP)  
Mini-Circuits  
Maxim Integrated Products, Inc.  
*Use larger value inductors and a TC4-1W-7A 4:1 balun for IF frequencies below 200MHz.  
26 _____________________________________________________________________________________  
SiGe, High-Linearity, 2300MHz to 4000MHz  
Downconversion Mixer with LO Buffer  
heat from the EP. In addition, provide the EP with a low-  
inductance path to electrical ground. The EP MUST be  
soldered to a ground plane on the PCB, either directly or  
through an array of plated via holes.  
Exposed Pad RF/Thermal Considerations  
The exposed pad (EP) of the MAX19998’s 20-pin thin  
QFN-EP package provides a low thermal-resistance  
path to the die. It is important that the PCB on which  
the MAX19998 is mounted be designed to conduct  
Typical Application Circuit  
C15  
L1  
3
6
4
IF  
OUTPUT  
C13  
T1  
2
1
L2  
R1  
R3  
C14  
4:1  
L3  
+5.0V  
20  
19  
18  
17  
16  
C3  
C2  
V
CC  
GND  
15  
14  
13  
12  
11  
1
U1  
C1  
RF  
V
CC  
RF  
INPUT  
MAX19998  
+5.0V  
2
3
4
5
C11  
C16*  
GND  
GND  
GND  
GND  
GND  
LO  
EP  
C10  
LO  
INPUT  
6
7
8
9
10  
+5.0V  
R2  
C6  
NOTE: PINS 4, 5, 10, 12, AND 17 ARE ALL INTERNALLY  
CONNECTED TO THE EXPOSED GROUND PAD. CONNECT  
THESE PINS TO GROUND TO IMPROVE ISOLATION.  
+5.0V  
PINS 3, 9, 13, AND 15 HAVE NO INTERNAL CONNECTION, BUT CAN BE  
EXTERNALLY GROUNDED TO IMPROVE ISOLATION.  
C8  
C9  
*C16 NOT USED FOR 3000MHz TO 4000MHz APPLICATIONS.  
______________________________________________________________________________________ 27  
SiGe, High-Linearity, 2300MHz to 4000MHz  
Downconversion Mixer with LO Buffer  
Chip Information  
Package Information  
PROCESS: SiGe BiCMOS  
For the latest package outline information and land pat-  
terns, go to www.maxim-ic.com/packages. Note that  
a “+”, “#”, or “-” in the package code indicates RoHS  
status only. Package drawings may show a different suf-  
fix character, but the drawing pertains to the package  
regardless of RoHS status.  
PACKAGE TYPE PACKAGE CODE DOCUMENT NO.  
20 Thin QFN-EP  
T2055+3  
21-0140  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied.  
Maxim reserves the right to change the circuitry and specifications without notice at any time.  
28  
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
2009 Maxim Integrated Products Maxim is a registered trademark of Maxim Integrated Products, Inc.  
©

相关型号:

MAX19998ETP+

SiGe, High-Linearity, 2300MHz to 4000MHz Downconversion Mixer with LO Buffer
MAXIM

MAX19998ETP+T

SiGe, High-Linearity, 2300MHz to 4000MHz Downconversion Mixer with LO Buffer
MAXIM

MAX19999

Dual, SiGe High-Linearity, 3000MHz to 4000MHz Downconversion Mixer with LO Buffer
MAXIM

MAX19999ETX+

Dual, SiGe High-Linearity, 3000MHz to 4000MHz Downconversion Mixer with LO Buffer
MAXIM

MAX19999ETX+T

Dual, SiGe High-Linearity, 3000MHz to 4000MHz Downconversion Mixer with LO Buffer
MAXIM

MAX1999EEI

High-Efficiency, Quad Output, Main Power- Supply Controllers for Notebook Computers
MAXIM

MAX1999EEI+

Dual Switching Controller, Current-mode, 500kHz Switching Freq-Max, BICMOS, PDSO28, 0.150 INCH, 0.025 INCH PITCH, QSOP-28
MAXIM

MAX1999EVKIT

Evaluation Kit for the MAX1777/MAX1977/MAX1999
MAXIM

MAX199ACAI

Multi-Range (【4V, 【2V, +4V, +2V), +5V Supply, 12-Bit DAS with 8+4 Bus Interface
MAXIM

MAX199ACAI-T

Analog Circuit, 1 Func, PDSO28, SSOP-28
MAXIM

MAX199ACNI

Multi-Range (【4V, 【2V, +4V, +2V), +5V Supply, 12-Bit DAS with 8+4 Bus Interface
MAXIM

MAX199ACWI

Multi-Range (【4V, 【2V, +4V, +2V), +5V Supply, 12-Bit DAS with 8+4 Bus Interface
MAXIM