MAX20010E [MAXIM]

Automotive Single 6A Step-Down Converters;
MAX20010E
型号: MAX20010E
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Automotive Single 6A Step-Down Converters

文件: 总23页 (文件大小:803K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Click here to ask about the production status of specific part numbers.  
MAX20010C/MAX20010D/  
MAX20010E  
Automotive Single 6A Step-Down Converters  
General Description  
Benefits and Features  
The MAX20010C/MAX20010D/MAX20010E ICs are high-  
efficiency, synchronous step-down converters that oper-  
ate with a 3.0V to 5.5V input voltage range and provide  
a 0.5V to 1.5875V output voltage range. The wide input/  
output voltage range and the ability to provide up to 6A  
load current make these ICs ideal for on-board point-of-  
load and post-regulation applications. The ICs achieve  
±2% output error over load, line, and temperature ranges.  
The MAX20010D/MAX20010E offers improved transient  
response.  
● Fully Integrated, Synchronous 6A DC-DC Converter  
Enables Small Solution Size  
• 3.0V to 5.5V Operating Supply Voltage  
● High-Precision Voltage Regulator for Applications  
Processors  
• ±2% Output-Voltage Accuracy  
• Differential Remote Voltage Sensing  
2
• I C-Controlled Output Voltage of 0.5V to 1.27V in  
10mV Steps, or 0.625V to 1.5875V in 12.5mV  
Steps  
The ICs feature a 2.2MHz fixed-frequency PWM mode for  
better noise immunity and load-transient response, and a  
pulse-frequency modulation mode (skip) for increased ef-  
ficiency during light-load operation. The 2.2MHz frequen-  
cy operation allows the use of all-ceramic capacitors and  
minimizes the solution footprint. The programmable  
spread-spectrum frequency modulation minimizes radiat-  
• Excellent Load-Transient Performance  
● Low-Noise Feature Reduces EMI  
• 2.2MHz Operation  
• Spread-Spectrum Option  
• Frequency-Synchronization Input/Output  
• Current-Mode, Forced-PWM, and Skip Operation  
● Robust for the Automotive Environment  
• PGOOD Output  
ed electromagnetic emissions. Integrated low  
RDS(ON)  
switches improve efficiency at heavy loads and make the  
layout a much simpler task with respect to discrete solu-  
tions.  
• Overtemperature and Short-Circuit Protection  
• 20-Pin (4mm x 4mm) TQFN with an Exposed Pad  
• -40°C to +125°C Operating Temperature Range  
• AECQ-100 Qualified  
The ICs are offered with factory-preset output voltages  
2
(see the Ordering Information for options). The I C inter-  
face supports dynamic voltage adjustment with program-  
mable slew rates. Other features include programmable  
soft-start, overcurrent, and overtemperature protections.  
Ordering Information appears at end of data sheet.  
Typical Application Circuits  
PV  
Applications  
PV  
RS+  
● Automotive  
PGND  
AV  
MAX20010C  
MAX20010D  
MAX20010E  
PV  
LX  
VOUT  
PGND  
RS-  
GND  
SYNC  
EN  
ADDR  
SCL  
SDA  
PG  
EP  
19-100153; Rev 6; 2/20  
MAX20010C/MAX20010D/  
MAX20010E  
Automotive Single 6A Step-Down Converters  
Absolute Maximum Ratings  
PV, AV to GND......................................................... -0.3V to +6V  
Continuous Power Dissipation (T = +70°C)  
A
ADDR, EN, PG, RS+, RS-, SYNC to GND....-0.3V to V + 0.3V  
SDA, SCL to GND .................................................... -0.3V to +6V  
GND to PGND ....................................................... -0.3V to +0.3V  
TQFN (derate 30.3mW/°C above +70°C).................2424.2mW  
Operating Temperature Range...........................-40°C to +125°C  
Junction Temperature.......................................................+150°C  
Storage Temperature Range ..............................-65ºC to +150ºC  
Lead Temperature (soldering, 10s)...................................+300ºC  
Soldering Temperature (reflow) ........................................+260ºC  
AV  
LX to PGND (Note 1).....................................-0.3V to V + 0.3V  
PV  
Output Short-Circuit Duration ..................................... Continuous  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the  
device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for  
extended periods may affect device reliability.  
Package Information  
20 TQFN-EP  
Package Code  
T2044+4C  
21-100172  
90-0409  
Outline Number  
Land Pattern Number  
20 SW TQFN-EP  
Package Code  
T2044Y+4C  
21-100068  
90-0409  
Outline Number  
Land Pattern Number  
THERMAL RESISTANCE, SINGLE-LAYER BOARD  
Junction-to-Ambient (θ  
)
33°C/W  
2°C/W  
JA  
Junction-to-Case Thermal Resistance (θ  
)
JC  
Note 1: Self-protected against transient voltages exceeding these limits for ≤ 50ns under normal operation and loads up  
to the maximum rating output current.  
Note 2: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7,  
using a four-layer board. For detailed information on package thermal considerations, refer to  
www.maximintegrated.com/thermal-tutorial.  
For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages.  
Note that a “+”, “#”, or “-” in the package code indicates RoHS status only. Package drawings may show a different  
suffix character, but the drawing pertains to the package regardless of RoHS status.  
Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a  
four-layer board. For detailed information on package thermal considerations, refer to www.maximintegrated.com/  
thermal-tutorial.  
Electrical Characteristics  
(V  
= V  
= 5.0V. T = T = -40°C to +125°C, unless otherwise noted. Typical values are at T = +25°C under normal conditions,  
AV A J A  
PV  
unless otherwise noted.) (Note 3 )  
PARAMETER  
SYMBOL  
CONDITIONS  
Fully operational  
MIN  
TYP  
MAX  
5.5  
3
UNITS  
Supply Voltage Range  
V
IN  
3.0  
V
Rising  
Falling  
2.85  
2.55  
Undervoltage Lockout  
UVLO  
V
www.maximintegrated.com  
Maxim Integrated | 2  
 
MAX20010C/MAX20010D/  
MAX20010E  
Automotive Single 6A Step-Down Converters  
Electrical Characteristics (continued)  
(V  
= V  
= 5.0V. T = T = -40°C to +125°C, unless otherwise noted. Typical values are at T = +25°C under normal conditions,  
AV A J A  
PV  
unless otherwise noted.) (Note 3 )  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
2.5  
MAX  
UNITS  
T
T
= +25°C  
5
Shutdown Supply  
Current  
A
I
I
EN = low  
µA  
IN  
= +125°C  
4.5  
A
EN = high, I  
skip mode  
= 0mA,  
OUT  
Supply Current  
300  
µA  
IN  
PWM Switching  
Frequency  
f
Internally generated  
CONFIG.SS = 1  
2.0  
2.2  
+3  
2.4  
MHz  
%
SW  
Spread Spectrum  
I
= 0A to 6A,  
0.80V to  
1.5875V  
LOAD  
-2  
+2  
%
3.0V ≤ V ≤ 5.5V  
PV  
Voltage Accuracy  
V
OUT  
I
= 0A to 6A,  
0.50V to  
0.79V  
LOAD  
-16  
+21  
mV  
3.0V ≤ V ≤ 5.5V  
PV  
pMOS On-Resistance  
nMOS On-Resistance  
V
= V = 5V, I = 1A  
31  
18  
55  
31  
mΩ  
mΩ  
PV  
PV  
AV  
LX  
V
= V = 5V, I = 1A  
AV  
LX  
pMOS Current-Limit  
Threshold  
7.76  
9.70  
60  
11.64  
A
nMOS Zero Crossing  
Threshold  
mA  
V
= V  
T
T
= +25°C  
0.5  
4
5
PV  
AV  
A
LX Leakage Current  
= 6V, LX =  
PGND or PV  
µA  
= +125°C  
A
Duty-Cycle Range  
PWM mode  
100  
75  
%
Minimum On-Time  
36  
ns  
THERMAL OVERLOAD  
Thermal-Shutdown  
Temperature  
T rising  
J
165  
15  
°C  
°C  
Hysteresis  
POWER-GOOD OUTPUT (PG)  
Percentage of  
nominal output,  
output voltage  
rising, blanked  
during slewing  
0.5V < V  
< 0.79V  
OUT  
OUT  
104  
105  
88  
108  
108  
92  
112  
111  
96  
PG Overvoltage (OV)  
Threshold, Rising  
%
%
0.8V < V  
< 1.5875V  
Percentage of  
nominal output,  
output  
voltage falling,  
blanked during  
slewing  
0.5V < V  
< 0.79V  
OUT  
PG Undervoltage (UV)  
Threshold, Falling  
0.8V < V  
< 1.5875V  
OUT  
89  
92  
95  
Active Timeout Period  
256  
5
Clocks  
µs  
UV/OV Propagation  
Delay  
PG Output High-  
Leakage Current  
1
µA  
www.maximintegrated.com  
Maxim Integrated | 3  
MAX20010C/MAX20010D/  
MAX20010E  
Automotive Single 6A Step-Down Converters  
Electrical Characteristics (continued)  
(V  
= V  
= 5.0V. T = T = -40°C to +125°C, unless otherwise noted. Typical values are at T = +25°C under normal conditions,  
AV A J A  
PV  
unless otherwise noted.) (Note 3 )  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
3.0V ≤ V ≤ 5.5V, 3.0V ≤ V  
PV  
≤ 5.5V, sinking -2mA  
AV  
PG Output Low Level  
0.2  
V
DIGITAL INPUTS (SYNC, EN, ADDR)  
Input High Level  
Input Low Level  
Input Hysteresis  
V
1.5  
V
V
V
IH  
V
0.5  
IL  
0.1  
0.1  
EN Input Leakage  
Current  
0V ≤ V ≤ 5.5V,  
PV  
µA  
0V ≤ V ≤ 5.5V  
AV  
Enable Time  
Rising EN to beginning of soft-start  
140  
100  
µs  
SYNC Input Pulldown  
150  
2.6  
kΩ  
SYNC Input Frequency  
Range  
1.8  
MHz  
SYNC OUTPUT  
Output Low  
V
I
= 3mA  
SINK  
0.4  
0.5  
V
V
OL  
Output High  
V
OH  
V
= V = 5.0V, I = 3mA  
SOURCE  
4.2  
1.3  
PV  
AV  
DIGITAL INPUTS (SDA, SCL)  
Input High Level  
Input Low Level  
Input Hysteresis  
V
V
V
V
IH_I2C  
V
IL_I2C  
0.1  
0.1  
0V ≤ V ≤ 5.5V,  
0V ≤ V ≤ 5.5V  
PV  
Input Leakage Current  
µA  
AV  
2
I C INTERFACE  
Clock Frequency  
f
3.4  
MHz  
ns  
SCL  
Setup Time (Repeated)  
START  
t
(Note 4)  
(Note 4)  
160  
160  
SU:STA  
Hold Time (Repeated)  
START  
t
ns  
HD:STA  
SCL Low Time  
SCL High Time  
Data Setup Time  
Data Hold Time  
t
(Note 4)  
(Note 4)  
(Note 4)  
(Note 4)  
160  
60  
50  
0
ns  
ns  
ns  
ns  
LOW  
t
HIGH  
t
SU:DAT  
HD:DAT  
t
t
70  
Setup Time for STOP  
Condition  
(Note 4)  
(Note 4)  
160  
ns  
SU:STO  
Spike Suppression  
SDA Output Low  
20  
ns  
V
V
I
= 13mA  
SINK  
0.4  
OL_SDA  
Note 1: All units are 100% production tested at T = +25°C. All temperature limits are guaranteed by design.  
A
Note 2: Guaranteed by design. Not production tested.  
www.maximintegrated.com  
Maxim Integrated | 4  
MAX20010C/MAX20010D/  
MAX20010E  
Automotive Single 6A Step-Down Converters  
Typical Operating Characteristics  
(T = +25°C, unless otherwise noted.)  
A
LOAD-TRANSIENT RESPONSE (PWM)  
toc06  
SUPPLY CURRENT vs. INPUT VOLTAGE (SKIP)  
SUPPLY CURRENT vs. TEMPERATURE (PWM)  
toc04  
toc05  
400  
33  
32  
31  
30  
29  
28  
27  
CONFIG BIT3 = 0  
380  
ILOAD = 0A  
360  
340  
320  
300  
280  
260  
240  
220  
200  
VOUT = 0.95V  
50mV/div  
(AC-  
COUPLED)  
VOUT  
4.2A  
0A  
ILOAD  
CONFIG BIT3 = 1  
VIN = 5V  
ILOAD = 0A  
VOUT = 0.95V  
20μs/div  
3
3.5  
4
4.5  
5
5.5  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
TEMPERATURE (°C)  
INPUT VOLTAGE (V)  
www.maximintegrated.com  
Maxim Integrated | 5  
MAX20010C/MAX20010D/  
MAX20010E  
Automotive Single 6A Step-Down Converters  
Typical Operating Characteristics (continued)  
(T = +25°C, unless otherwise noted.)  
A
www.maximintegrated.com  
Maxim Integrated | 6  
MAX20010C/MAX20010D/  
MAX20010E  
Automotive Single 6A Step-Down Converters  
Pin Configuration  
TOP VIEW  
15  
14  
13  
12  
11  
16  
10  
9
AV  
RS-  
SCL  
SDA  
ADDR 17  
MAX20010C  
MAX20010D  
MAX20010E  
PV  
18  
19  
20  
8
7
PV  
PV  
PGND  
PGND  
6
+
1
2
3
4
5
TQFN  
(4mm x 4mm)  
Pin Description  
PIN  
NAME  
FUNCTION  
Inductor Connection. Connect LX to the switched side of the inductor. Connect all LX pins  
together.  
1–4  
LX  
5–7  
8
PGND  
SDA  
SCL  
RS-  
Power Ground. Connect all PGND pins together.  
2
I C Data I/O  
2
9
I C Clock Input  
10  
11  
Buck Regulator Remote Voltage-Sense Negative Input  
Buck Regulator Remote Voltage-Sense Positive Input  
RS+  
Open-Drain Power-Good Output. This output remains low for 120μs after the output has reached  
its regulation level (see the Electrical Characteristics table). To obtain a logic signal, pull up PG  
with an external resistor.  
12  
13  
PG  
EN  
Active-High Enable Input. When EN is high, the device enters soft-start. When EN is low, the  
device enters soft-shutdown.  
SYNC I/O. When configured as an input, connect SYNC to GND or leave unconnected to enable  
skipmode operation under light loads. Connect SYNC to AV or an external clock to enable fixed-  
frequency, forced-PWM (FPWM) mode operation. When configured as an output, connect SYNC  
to other devices’ SYNC inputs.  
14  
SYNC  
15  
16  
GND  
AV  
Analog Ground  
Analog Input Supply. Filter AV using a 100Ω resistor from PV and a 1μF ceramic capacitor from  
AV to GND.  
2
2
17  
ADDR  
PV  
I C Address Select. See the Ordering Information table for default I C settings.  
Power Input Supply. Connect a 4.7μF or larger ceramic capacitor from PV to PGND. Connect all  
PV pins together.  
18–20  
Exposed Pad. Connect EP to ground. Connecting the exposed pad to ground does not remove the  
requirement for proper ground connections to PGND. The exposed pad is attached with epoxy to  
the substrate of the die, making it an excellent path to remove heat from the IC.  
-
EP  
www.maximintegrated.com  
Maxim Integrated | 7  
 
MAX20010C/MAX20010D/  
MAX20010E  
Automotive Single 6A Step-Down Converters  
Detailed Description  
The MAX20010C/MAX20010D/MAX20010E ICs are high-efficiency, synchronous step-down converters that operate with  
a 3.0V to 5.5V input voltage range and provide a 0.5V to 1.5875V output voltage range. The ICs deliver up to 6A of  
load current and achieve ±2% output error over load, line, and temperature ranges. The MAX20010D/MAX20010E offers  
improved transient performance.  
Optional spread-spectrum frequency modulation minimizes radiated electromagnetic emissions due to the switching  
2
frequency. The I C-programmable I/O (SYNC) enables system synchronization.  
Integrated low R  
switches help improve efficiency at heavy loads and make the layout a much simpler task with  
DS(ON)  
respect to discrete solutions. The ICs are offered with a factory-preset output voltage that is dynamically adjustable  
2
through the I C interface. The output voltage can be set to any desired value between 0.5V and 1.27V in 10mV steps,  
and between 0.625V and 1.5875V in 12.5mV steps.  
Additional features include adjustable soft-start, power-good delay, DVS rate, overcurrent, and overtemperature  
protections (see Figure 1).  
www.maximintegrated.com  
Maxim Integrated | 8  
MAX20010C/MAX20010D/  
MAX20010E  
Automotive Single 6A Step-Down Converters  
MAX20010C  
MAX20010D  
MAX20010E  
CURRENT-SENSE  
AMP  
PV  
SKIP CURRENT  
COMP  
CLK  
PV  
PEAK CURRENT  
COMP  
RAMP  
GENERATOR  
LX  
PGND  
PV  
CONTROL  
LOGIC  
PWM COMP  
COMP  
PGND  
CURRENT-LIMIT  
COMP  
VID[6:0]  
VREF  
FPWM CLK  
EAMP  
PGND  
7-BIT DAC  
PGOOD  
COMP  
RS+  
RS-  
POK  
VREF  
VSTEP  
VPVA  
UVLO  
AV  
CLK  
SYNC  
SS  
OSC  
CLK180  
FPWM  
GND  
VOLTAGE  
REFERENCE  
VREF  
P-OK  
AGND  
PG  
EN  
SDA  
I2C AND  
CONTROL  
LOGIC  
SCL  
ADDR  
VID[6:0]  
Figure 1. Internal Block Diagram  
2
I C Interface  
2
The ICs feature an I C, 2-wire serial interface consisting of a serial-data line (SDA) and serial-clock line (SCL). SDA  
and SCL facilitate communication between the ICs and the master at clock rates up to 3.4MHz. The master, typically a  
microcontroller, generates SCL and initiates data transfer on the bus. Figure 2 shows the 2-wire interface timing diagram.  
A master device communicates with the ICs by transmitting the proper address followed by the data word. Each transmit  
sequence is framed by a START (S) or Repeated START (Sr) condition and a STOP (P) condition. Each word transmitted  
over the bus is 8 bits long and is always followed by an acknowledge clock pulse.  
The SDA line operates as both an input and an open-drain output. A pullup resistor greater than 500Ω is required on the  
www.maximintegrated.com  
Maxim Integrated | 9  
MAX20010C/MAX20010D/  
MAX20010E  
Automotive Single 6A Step-Down Converters  
SDA bus. The SCL line operates as an input only. A pullup resistor greater than 500Ω is required on SCL if there are  
multiple masters on the bus, or if the master in a single-master system has an open-drain SCL output. Series resistors in  
line with SDA and SCL are optional. The SCL and SDA inputs suppress noise spikes to assure proper device operation  
even on a noisy bus.  
SDA  
tBUF  
tSU, DAT  
tLOW  
tSU,STA  
tSP  
tSU,STO  
tHD,DAT  
tHD,DAT  
SCL  
tHIGH  
tHD,STA  
tR  
tF  
START CONDITION  
REPEATED START  
CONDITION  
STOP  
CONDITION  
START  
CONDITION  
2
Figure 2. I C Timing Diagram  
Bit Transfer  
One data bit is transferred during each SCL cycle. The data on SDA must remain stable during the high period of the  
SCL pulse. Changes in SDA while SCL is high are control signals (see the START and STOP Conditions section). SDA  
and SCL idle high when the I2C bus is not busy.  
START and STOP Conditions  
A master device initiates communication by issuing a START condition. A START condition is a high-to-low transition on  
SDA with SCL high. A STOP condition is a low-to-high transition on SDA while SCL is high (Figure 3).  
A START (S) condition from the master signals the beginning of a transmission to the IC. The master terminates  
transmission, and frees the bus, by issuing a STOP (P) condition. The bus remains active if a Repeated START (Sr)  
condition is generated instead of a STOP condition.  
S
Sr  
P
SCL  
SDA  
Figure 3. START, STOP, and Repeated START Conditions  
www.maximintegrated.com  
Maxim Integrated | 10  
 
 
MAX20010C/MAX20010D/  
MAX20010E  
Automotive Single 6A Step-Down Converters  
Early STOP Condition  
The ICs recognize a STOP condition at any point during data transmission, except if the STOP condition occurs in the  
same high pulse as a START condition.  
Clock Stretching  
2
2
In general, the clock-signal generation for the I C bus is the responsibility of the master device. The I C specification  
allows slow slave devices to alter the clock signal by holding down the clock line. The process in which a slave device  
holds down the clock line is typically called clock stretching. The ICs do not use any form of clock stretching to hold down  
the clock line.  
2
I C General Call Address  
The ICs do not implement the I C specification’s “general call address.” If the IC sees the general call address  
2
(0b0000_0000), it does not issue an acknowledge.  
Slave Address  
2
Once the device is enabled, the I C slave address is defined as the 7 most significant bits (MSBs) followed by the R/W  
bit which completes the 8-bit I C transaction. Set the R/W bit to 0 to configure the IC to write mode. Set the R/W bit to 1  
2
to configure the IC to read mode. The address is the first byte of information sent to the device after the START condition.  
2
2
The ADDR pin (A0) can be used to change the default I C slave address. See Table 1 for the 7-bit I C slave addresses  
and the 8-bit Write/Read addresses.  
Acknowledge  
The acknowledge bit (ACK) is a clocked 9th bit that the ICs use to handshake receipt each byte of data (Figure 4). The  
device pulls down SDA during the master-generated 9th clock pulse. The SDA line must remain stable and low during  
the high period of the acknowledge clock pulse. Monitoring ACK allows for detection of unsuccessful data transfers.  
An unsuccessful data transfer occurs if a receiving device is busy or if a system fault has occurred. In the event of an  
unsuccessful data transfer, the bus master can reattempt communication.  
CLOCK PULSE FOR  
ACKNOWLEDGMENT  
START  
CONDITION  
SCL  
1
2
8
9
NOT ACKNOWLEDGE  
SDA  
ACKNOWLEDGE  
Figure 4. Acknowledge Condition  
2
Table 1. I C Slave Addresses  
2
A6  
A5  
A4  
A3  
A2*  
A1*  
A0  
0
I C ADDR  
WRITE  
0x70  
0x72  
0x74  
0x76  
0x78  
0x7A  
READ  
0x71  
0x73  
0x75  
0x77  
0x79  
0x7B  
0
1
1
1
0
0
0
1
1
0
0
0x38  
0x39  
0x3A  
0x3B  
0x3C  
0x3D  
0
1
1
1
0
1
0
1
1
1
0
0
0
1
1
1
0
1
0
1
1
1
1
0
0
1
1
1
1
1
www.maximintegrated.com  
Maxim Integrated | 11  
 
 
MAX20010C/MAX20010D/  
MAX20010E  
Automotive Single 6A Step-Down Converters  
2
Table 1. I C Slave Addresses (continued)  
2
A6  
A5  
A4  
A3  
A2*  
A1*  
A0  
0
I C ADDR  
WRITE  
0x7C  
READ  
0x7D  
0x7F  
0
1
1
1
1
1
0x3E  
0x3F  
0
1
1
1
1
1
1
0x7E  
*See the Ordering Information for the 7-bit default settings for ADDR=0.  
Write Data Format  
A write to the device includes:  
● Transmission of a START condition  
● Slave address with the write bit set to 0  
● 1 byte of data to the register address  
● 1 byte of data to the command register  
● STOP condition. .  
(Figure 5 illustrates the proper format for one frame)  
Read Data Format  
A read from the device includes:  
● Transmission of a START condition  
● Slave address with the write bit set to 0  
● 1 byte of data to the register address  
● Restart condition  
● Slave address with the read bit set to 1  
● 1 byte of data to the command register  
● STOP condition  
(Figure 5 illustrates the proper format for one frame)  
Writing to a Single Register  
Figure 6 shows the protocol for the I C master device to write 1 byte of data to the ICs. This protocol is the same as the  
SMBus specification’s “write byte” protocol.  
2
The “write byte” protocol is as follows:  
1. Master sends a START command (S).  
2. Master sends the 7-bit slave address followed by awrite bit (R/W = 0).  
3. Addressed slave asserts an acknowledge (A) by pulling SDA low.  
4. Master sends an 8-bit register pointer.  
5. Slave acknowledges the register pointer.  
6. Master sends a data byte.  
7. Slave updates with the new data.  
8. Slave acknowledges or not acknowledges the databyte. The next rising edge on SDA loads the data byteinto its target  
register and the data becomes active.  
9. Master sends a STOP condition (P) or a RepeatedSTART condition (Sr).  
Writing Multiple Bytes Using Register-Data Pairs  
2
Figure 7 shows the protocol for the I C master device to write multiple bytes to the ICs using register-data pairs. This  
2
protocol allows the I C master device to address the slave only once and then send data to multiple registers in a random  
order. Registers can be written continuously until the master issues a STOP condition.  
The “multiple byte register-data pair” protocol is as follows:  
1. Master sends a START command.  
www.maximintegrated.com  
Maxim Integrated | 12  
MAX20010C/MAX20010D/  
MAX20010E  
Automotive Single 6A Step-Down Converters  
2. Master sends the 7-bit slave address followed by a write bit.  
3. Addressed slave asserts an acknowledge by pulling SDA low.  
4. Master sends an 8-bit register pointer.  
5. Save acknowledges the register pointer.  
6. Master sends a data byte.  
7. Slave acknowledges the data byte. The next rising edge on SDA loads the data byte into its target register and the  
data becomes active.  
8. Steps 4–7 are repeated as many times as the master requires.  
9. Master sends a STOP condition. During the rising edge of the stop-related SDA edge, the data byte that was  
previously written is loaded into the target register and becomes active.  
WRITE BYTE  
SLAVE WRITE  
ADDRESS  
REGISTER  
ADDRESS  
S
A
A
A
A
DATA  
NA  
A
P
WRITE MULTIPLE BYTES  
SLAVE WRITE  
ADDRESS  
REGISTER  
ADDRESS  
REGISTER  
ADDRESS  
REGISTER  
ADDRESS  
. . .  
S
DATA 1  
A
DATA 2  
A
DATA 2  
A
P
READ BYTE  
SLAVE WRITE  
ADDRESS  
REGISTER  
ADDRESS  
SLAVE READ  
ADDRESS  
S
A
A
Sr  
Sr  
A
A
DATA  
NA P  
READ SEQUENTIAL BYTES  
SLAVE WRITE  
REGISTER  
ADDRESS  
SLAVE READ  
ADDRESS  
. . .  
DATA N  
NA P  
S
A
A
DATA 1  
ADDRESS  
2
Figure 5. Data Format of I C Interface  
LEGEND  
MASTER TO SLAVE  
SLAVE TO MASTER  
NUMBER  
OF BITS  
1
7
1
0
1
8
1
8
1
1
A OR  
nA  
P OR  
Sr  
S
A
SLAVE ADDRESS  
A
REGISTER POINTER  
DATA  
R/W  
THE DATA IS LOADED INTO  
THE TARGET REGISTER  
SDA  
B1  
7
B2  
8
A
9
SCL  
Figure 6. Write Byte Format  
www.maximintegrated.com  
Maxim Integrated | 13  
MAX20010C/MAX20010D/  
MAX20010E  
Automotive Single 6A Step-Down Converters  
PG Output  
The ICs feature an open-drain PGOOD output that asserts low when the output voltage exceeds the PG_OV and PG_UV  
thresholds. PG remains low for a fixed timeout period after the output is within the regulation window. Connect PG to a  
logic supply using a pullup resistor.  
Soft-Start  
The ICs include a programmable startup fixed soft-start rate. Soft-start time limits startup inrush current by forcing the  
output voltage to ramp up towards its regulation point.  
Shutdown  
During shutdown, the output voltage is ramped down at the 5.5mV/μs slew rate. Once the controlled ramp is stopped,  
the output voltage is typically around 0.15V at no load.  
Spread-Spectrum Option  
The ICs, featuring spread-spectrum (SS) operation, vary the internal operating frequency down by 3% relative to the  
internally generated operating frequency of 2.2MHz (typ). This function does not apply to externally applied oscillation  
frequency.  
Synchronization (SYNC)  
SYNC is factory-programmable I/O (see Ordering Information for the available options). When SYNC is configured as  
an input, a logic-high on the FPWM bit enables SYNC to accept signal frequencies in the range of 1.8MHz < f  
2.6MHz. When SYNC is configured as an output, it outputs the internal PWM switching frequency.  
<
SYNC  
Current-Limit/Short-Circuit Protection  
The current-limit feature protects the ICs against short-circuit and overload conditions at the output. After soft-start is  
completed, if V is less than 50% of the set value and the IC is in current limit, the IC shuts off for 4ms (at 2.2MHz  
OUT  
switching frequency) and repeats soft-start. This cycle repeats until the short or overload condition is removed. See the  
short-circuit (PWM) waveform for an example.  
www.maximintegrated.com  
Maxim Integrated | 14  
MAX20010C/MAX20010D/  
MAX20010E  
Automotive Single 6A Step-Down Converters  
LEGEND  
MASTER TO SLAVE  
SLAVE TO MASTER  
1
7
1
0
1
8
1
8
1
NUMBER  
OF BITS  
• • •  
S
SLAVE ADDRESS  
A
REGISTER POINTER X  
A
DATA X  
A
a
R/W  
8
1
8
1
NUMBER  
OF BITS  
REGISTER POINTER n  
A
DATA n  
A
• • •  
a
1
1
8
1
8
NUMBER  
OF BITS  
REGISTER POINTER Z  
A
DATA Z  
A
P
ß
THE DATA IS LOADED INTO  
THE TARGET REGISTER  
B1  
7
B0  
A
9
B7  
SDA  
SCL  
8
1
DETAIL : a  
THE DATA IS LOADED INTO  
THE TARGET REGISTER  
B1  
7
B0  
A
SDA  
SCL  
8
9
DETAIL : ß  
Figure 7. Write Register (Data-Pair Format)  
Table 2. Register Map  
POWER-  
ON  
RESET  
REGISTER R/  
REG  
BIT 7  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
ADDRESS  
W
ID  
DEV3  
DEV2  
DEV1  
DEV0  
R3  
R2  
R1  
R0  
0x00  
R
0x00  
0x00  
R/  
W
0x01  
www.maximintegrated.com  
Maxim Integrated | 15  
MAX20010C/MAX20010D/  
MAX20010E  
Automotive Single 6A Step-Down Converters  
Table 2. Register Map (continued)  
POWER-  
ON  
RESET  
REGISTER R/  
REG  
BIT 7  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
ADDRESS  
W
R/  
W
VIDMAX  
VMAX6  
VMAX5  
VMAX4  
VMAX3  
VMAX2  
VMAX1  
VMAX0  
0x02  
OTP  
R/  
W
Reserved* Reserved*  
VRHOT  
UV  
OV  
OC  
SS  
Reserved* Reserved*  
0x03  
0x04  
0x05  
0x02  
0x00  
OTP  
STATUS  
CONFIG  
INTERR TRKERR  
VMERR  
SO1  
0
R
R/  
W
VSTEP  
FPWM  
SO0  
R/  
W
SLEW  
VID  
SR3  
SR2  
SR1  
SR0  
0x06  
0x07  
0x2B  
OTP  
OTP  
0x00  
R/  
W
VID6  
VID5  
VID4  
VID3  
VID2  
VID1  
VID0  
R/  
W
Reserved*  
Reserved* Reserved* Reserved* Reserved* Reserved* Reserved*  
*Note: Reserved registers and bits are not used for readback; they are reserved for internal use.  
Table 3. Identification Registers (ID)  
ID  
BIT NO.  
NAME  
POR  
BIT 7  
DEV3  
0
BIT 6  
DEV2  
0
BIT 5  
DEV1  
0
BIT 4  
DEV0  
0
BIT 3  
R3  
BIT 2  
R2  
BIT 1  
R1  
BIT 0  
R0  
0
0
0
0
BIT  
BIT DESCRIPTION  
DEV[7:4]  
R[3:0]  
Device ID: MAX20010C/MAX20010D/MAX20010E = 0x0  
0x3  
Table 4. Maximum Voltage-Setting Registers (VIDMAX)  
VIDMAX  
BIT NO.  
NAME  
POR  
7
6
5
4
3
2
1
0
VMAX6  
OTP  
VMAX5  
OTP  
VMAX4  
OTP  
VMAX3  
OTP  
VMAX2  
OTP  
VMAX1  
OTP  
VMAX0  
OTP  
OTP  
BIT  
BIT DESCRIPTION  
Maximum Voltage Setting:  
VMAX[6:0] If VID[] > VMAX[], a fault is set and the actual voltage will be capped by VMAX[]. See Table 9 for voltage selections.  
Table 5. Configuration Registers (CONFIG)  
CONFIG  
BIT NO.  
NAME  
POR  
BIT 7  
VSTEP  
OTP  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
FPWM  
OTP  
BIT 2  
SS  
BIT 1  
SO1  
OTP  
BIT 0  
SO0  
OTP  
OTP  
OTP  
OTP  
OTP  
BIT  
BIT DESCRIPTION  
Voltage Step Size—Sets the voltage step size for the LSB of SETVOUT: 0 = 10mV  
1 = 12.5mV  
VSTEP  
www.maximintegrated.com  
Maxim Integrated | 16  
MAX20010C/MAX20010D/  
MAX20010E  
Automotive Single 6A Step-Down Converters  
BIT  
BIT DESCRIPTION  
Forced-PWM Mode:  
0 = Mode controlled by SYNC pin. When SYNC is output device is always FPWM mode.  
1 = Forced-PWM Mode. Overrides SYNC skip mode setting when SYNC is an input.  
FPWM  
SS  
Spread-Spectrum Clock Setting:  
0 = Disabled  
1 = +3% spread  
SYNC I/O Select:  
00 = Master: Input, rising edge starts cycle  
01 = Master: Input, falling edge starts cycle  
10 = Master: Output, falling edge starts cycle  
11 = Unused  
SO[1:0]  
Table 6. Status Registers (STATUS)  
STATUS  
BIT 5  
BIT NO.  
NAME  
POR  
BIT 7  
INTERR  
0
BIT 6  
Reserved*  
0
BIT 4  
UV  
0
BIT 3  
OV  
0
BIT 2  
OC  
0
BIT 1  
VMERR  
0
BIT 0  
VRHOT  
0
0
0
BIT  
BIT DESCRIPTION  
Internal Hardware Error:  
This bit is set to 1 when ATE trimming and testing is not complete.  
INTERR  
Reserved Reserved registers and bits are not used for readback; they are reserved for internal use.  
Thermal-Shutdown Indication:  
VRHOT  
This bit indicates if thermal shutdown has occurred since the last time the STATUS register was read.  
VOUT Undervoltage:  
This bit indicates if the output is currently under the target voltage.  
UV  
OV  
VOUT Overvoltage:  
This bit indicates if the output is currently over the target voltage.  
VOUT Overcurrent:  
OC  
This bit indicates if an overcurrent event has occurred since the last time the STATUS register was read.  
VMERR  
VOUT MAX Error: Set to 1 if VID[] > VOUTMAX[] is in normal mode.  
Table 7. Slew-Rate Registers (SLEW)  
SLEW  
BIT 4  
BIT NO.  
NAME  
POR  
BIT 7  
BIT 6  
BIT 5  
BIT 3  
SR3  
BIT 2  
SR2  
BIT 1  
SR1  
BIT 0  
SR0  
OTP  
OTP  
OTP  
OTP  
OTP  
OTP  
OTP  
OTP  
SR[3:0]  
SOFT-START SLEW RATE (mV/μs)*  
DVS SLEW RATE (mV/μs)*  
XXXX0000  
XXXX0001  
XXXX0010  
XXXX0011  
XXXX0100  
XXXX0101  
XXXX0110  
XXXX0111  
22  
11  
5.5  
11  
5.5  
44  
22  
11  
22  
22  
22  
11  
11  
44  
44  
44  
www.maximintegrated.com  
Maxim Integrated | 17  
MAX20010C/MAX20010D/  
MAX20010E  
Automotive Single 6A Step-Down Converters  
SR[3:0]  
XXXX1000  
SOFT-START SLEW RATE (mV/μs)*  
DVS SLEW RATE (mV/μs)*  
5.5  
5.5  
44  
5.5  
XXXX1001  
XXXX1010―XXXX1111  
Reserved  
Reserved  
*Note: VSTEP = ‘0’; when VSTEP = ‘1’, increase by a factor of 1.25.  
Table 8. Output-Voltage Registers, VID  
VID  
BIT NO.  
NAME  
POR  
BIT 7  
BIT 6  
VID6  
OTP  
BIT 5  
VID5  
OTP  
BIT 4  
VID4  
OTP  
BIT 3  
VID3  
OTP  
BIT 2  
BIT 1  
VID1  
OTP  
BIT 0  
VID2  
OTP  
VID0  
OTP  
OTP  
BIT  
BIT DESCRIPTION  
Target Voltage Setting:  
VID[6:0] VOUT ramps at the programmed DVS ramp until it reaches VSET. See Table 9 for voltage selections.  
Table 9. VID Output-Voltage Selections  
VOUT (V)  
(VSTEP = 0)  
VOUT (V)  
(VSTEP = 1)  
VOUT (V)  
(VSTEP = 0)  
VOUT (V)  
(VSTEP = 1)  
VOUT (V)  
(VSTEP = 0)  
VOUT (V)  
(VSTEP = 1)  
VID[6:0]  
VID[6:0]  
VID[6:0]  
0x00  
0x01  
0x02  
0x03  
0x04  
0x05  
0x06  
0x07  
0x08  
0x09  
0x0A  
0x0B  
0x0C  
0x0D  
0x0E  
0x0F  
0x10  
0x11  
0x12  
0x13  
0x14  
0x15  
0x16  
0x17  
0x18  
OFF  
OFF  
0x20  
0x21  
0x22  
0x23  
0x24  
0x25  
0x26  
0x27  
0x28  
0x29  
0x2A  
0x2B  
0x2C  
0x2D  
0x2E  
0x2F  
0x30  
0x31  
0x32  
0x33  
0x34  
0x35  
0x36  
0x37  
0x38  
0.810  
0.820  
0.830  
0.840  
0.850  
0.860  
0.870  
0.880  
0.890  
0.900  
0.910  
0.920  
0.930  
0.940  
0.950  
0.960  
0.970  
0.980  
0.990  
1.000  
1.010  
1.020  
1.030  
1.040  
1.050  
1.0125  
1.0250  
1.0375  
1.0500  
1.0625  
1.0750  
1.0875  
1.1000  
1.1125  
1.1250  
1.1375  
1.1500  
1.1625  
1.1750  
1.1875  
1.2000  
1.2125  
1.2250  
1.2375  
1.2500  
1.2625  
1.2750  
1.2875  
1.3000  
1.3125  
0x40  
0x41  
0x42  
0x43  
0x44  
0x45  
0x46  
0x47  
0x48  
0x49  
0x4A  
0x4B  
0x4C  
0x4D  
0x4E  
1.130  
1.140  
1.150  
1.160  
1.170  
1.180  
1.190  
1.200  
1.210  
1.220  
1.230  
1.240  
1.250  
1.260  
1.270  
1.4125  
1.4250  
1.4375  
1.4500  
1.4625  
1.4750  
1.4875  
1.5000  
1.5125  
1.5250  
1.5375  
1.5500  
1.5625  
1.5750  
1.5875  
0.500  
0.510  
0.520  
0.530  
0.540  
0.550  
0.560  
0.570  
0.580  
0.590  
0.600  
0.610  
0.620  
0.630  
0.640  
0.650  
0.660  
0.670  
0.680  
0.690  
0.700  
0.710  
0.720  
0.730  
0.6250  
0.6375  
0.6500  
0.6625  
0.6750  
0.6875  
0.7000  
0.7125  
0.7250  
0.7375  
0.7500  
0.7625  
0.7750  
0.7875  
0.8000  
0.8125  
0.8250  
0.8375  
0.8500  
0.8625  
0.8750  
0.8875  
0.9000  
0.9125  
www.maximintegrated.com  
Maxim Integrated | 18  
 
MAX20010C/MAX20010D/  
MAX20010E  
Automotive Single 6A Step-Down Converters  
Table 9. VID Output-Voltage Selections (continued)  
VOUT (V)  
(VSTEP = 0)  
VOUT (V)  
(VSTEP = 1)  
VOUT (V)  
(VSTEP = 0)  
VOUT (V)  
(VSTEP = 1)  
VOUT (V)  
(VSTEP = 0)  
VOUT (V)  
(VSTEP = 1)  
VID[6:0]  
VID[6:0]  
VID[6:0]  
0x19  
0x1A  
0x1B  
0x1C  
0x1D  
0x1E  
0x1F  
0.740  
0.750  
0.760  
0.770  
0.780  
0.790  
0.800  
0.9250  
0.9375  
0.9500  
0.9625  
0.9750  
0.9875  
1.0000  
0x39  
0x3A  
0x3B  
0x3C  
0x3D  
0x3E  
0x3F  
1.060  
1.070  
1.080  
1.090  
1.100  
1.110  
1.120  
1.3250  
1.3375  
1.3500  
1.3625  
1.3750  
1.3875  
1.4000  
PWM/Skip Modes  
The ICs feature a SYNC input that puts the converter either in skip mode or forced-PWM mode of operation. See the Pin  
Description table for mode details. In PWM mode, the converter switches at a constant frequency with variable on-time.  
In skip mode, the converter’s switching frequency is load-dependent until the output load reaches a certain threshold. At  
higher load current, the switching frequency does not change and the operating mode is similar to the PWM mode. Skip  
mode helps improve efficiency in light-load applications by transferring more energy to the output during each on cycle,  
so the converter does not switch MOSFETs on and off as often as is the case in PWM mode. Consequently, the gate  
charge and switching losses are much lower in skip mode.  
Overtemperature Protection  
Thermal-overload protection limits the total power dissipation in the ICs. When the junction temperature exceeds 165°C  
(typ), an internal thermal sensor shuts down the internal bias regulator and the step-down controller, allowing the ICs to  
cool. The thermal sensor turns on the ICs again after the junction temperature cools by 15°C.  
www.maximintegrated.com  
Maxim Integrated | 19  
MAX20010C/MAX20010D/  
MAX20010E  
Automotive Single 6A Step-Down Converters  
Applications Information  
Input Capacitor  
The input filter capacitor reduces peak currents drawn from the power source and reduces noise and voltage ripple on  
the input caused by the circuit’s switching.  
The input capacitor RMS current requirement (I  
) is defined by the following equation:  
RMS  
V
(V  
V  
)
OUT PV_  
OUT  
I
= I  
LOAD(MAX)  
RMS  
V
PV_  
I
I
has a maximum value when the input voltage equals twice the output voltage (V  
= 2V  
), so I  
=
RMS(MAX)  
RMS  
PV_  
OUT  
/2.  
LOAD(MAX)  
Choose an input capacitor that exhibits less than +10°C self-heating temperature rise at the RMS input current for optimal  
long-term reliability:  
V  
ESR  
ESP  
=
IN  
I  
L
I
+
OUT  
2
where:  
(V  
V  
) × V  
PV_  
V
OUT  
× f  
OUT  
× L  
I =  
L
PV_ SW  
and:  
I
× D(1 − D)  
OUT  
C
=
IN  
V × f  
Q
SW  
and:  
V
OUT  
D =  
V
PV_  
I
is the maximum output current, D is the duty cycle.  
OUT  
Inductor Selection  
The ICs are optimized to use a nominal 0.22μH inductor value. 0.15μH to 0.33μH inductors can also be used.  
Inductors are rated for maximum saturation current. The maximum inductor current equals the maximum load current in  
addition to half the peak-to-peak ripple current:  
I  
INDUCTOR  
I
= I  
+
PEAK  
LOAD(MAX)  
2
The actual peak-to-peak inductor ripple current is calculated in the previous ΔI equation.  
L
The saturation current should be > I  
, or at least in a range where the inductance does not degrade significantly.  
PEAK  
Output Capacitor  
The MAX20010C is stable with 2x47μF (typ) or more of X7R ceramic capacitance on the output, while the MAX20010D/  
MAX20010E is stable with 3x47μF (typ). Phase and gain margin must be measured with the worst-case-derated output  
capacitance to ensure stability. Larger capacitance values can be used to minimize V  
transients.  
and V  
during load  
SOAR  
SAG  
Setting the Output Voltage Externally  
An external resistive divider can be used to set the output voltage higher than the programmed VID voltage. This should  
only be done with MAX20010EATPA/V+. To set the output voltage, connect a resistive divider from the output (OUT) to  
www.maximintegrated.com  
Maxim Integrated | 20  
MAX20010C/MAX20010D/  
MAX20010E  
Automotive Single 6A Step-Down Converters  
RS+ to GND, as shown in Figure 8 V  
should not exceed 5V. Select RFB2 (RS+ to GND resistor) ≤ 50kΩ. Calculate  
OUT  
R
(OUT to RS+ resistor) with the following equation:  
FB  
V
V
OUT  
R
= R [(  
) − 1]  
FB1  
FB2  
RS+  
where V  
= programmed VID voltage. Capacitor C  
can help improve the phase margin when using a resistive  
FB1  
RS+  
divider. Determine C  
from the following equation:  
FB1  
C
= 1 (2 × π × R  
× 80k)  
/
FB1  
FB1  
When setting the output voltage externally, scale the inductance according to the V  
/V  
ratio. MAX20010EATPA/  
OUT RS+  
V+ parts are programmed with double internal slope compensation to allow for smaller inductance values. Set the  
inductance using the following equation:  
L = V  
V
RS  
+
× 220nH 2  
/
OUT  
/
V
OUT  
R
R
FB1  
C
FB1  
RS+  
FB2  
Figure 8. Adjustable Output-Voltage Setting  
www.maximintegrated.com  
Maxim Integrated | 21  
 
MAX20010C/MAX20010D/  
MAX20010E  
Automotive Single 6A Step-Down Converters  
Ordering Information  
PIN-  
V
OUT  
(V)  
2
I C ADDR = 0  
PART  
PACKAGE  
20 TQFN-EP*  
20 TQFN-EP*  
20 TQFN-EP*  
20 TQFN-EP*  
20 TQFN-EP*  
20 TQFN-EP*  
20 TQFN-EP*  
20 TQFN-EP*  
20 TQFN-EP*  
20 SW TQFN-EP*  
20 TQFN-EP*  
20 TQFN-EP*  
20 TQFN-EP*  
20 TQFN-EP*  
VMAX[6:0]  
0x3C (1.09V)  
0x29 (0.90V)  
0x4C (1.25V)  
0x42 (1.15V)  
0x3D (1.10V)  
0x1F (0.80V)  
0x3B (1.08V)  
0x42 (1.15V)  
0x42 (1.15V)  
0x42 (1.15V)  
0x42 (1.15V)  
0x42 (1.15V)  
0x42 (1.15V)  
0X4C (1.25)  
CONFIG  
0x0E  
0x08  
0x08  
0x06  
0x08  
0x08  
0x0C  
0x08  
0x08  
0x08  
0x08  
0x08  
0x08  
0x08  
VID[6:0]  
SLEW  
0x09  
0x09  
0x03  
0x03  
0x03  
0x03  
0x00  
0x03  
0x03  
0x03  
0x03  
0x00  
0x03  
0x03  
MAX20010CATPD/V+  
MAX20010CATPE/V+  
MAX20010CATPJ/V+  
MAX20010CATPL/V+  
MAX20010CATPM/V+  
MAX20010CATPQ/V+  
MAX20010CATPU/V+  
MAX20010DATPN/V+  
MAX20010DATPO/V+  
MAX20010DATPO/VY+  
MAX20010DATPP/V+  
MAX20010DATPR/V+  
MAX20010DATPT/V+  
MAX20010EATPA/V+  
0.82  
0.80  
1.20  
1.00  
1.00  
0.60  
1.03  
1.00  
0.91  
0.91  
0.87  
0.90  
0.75  
1.2  
0x21 (0.82V)  
0x1F (0.80V)  
0x47 (1.20V)  
0x33 (1.00V)  
0x33 (1.00V)  
0x0B (0.60V)  
0x36 (1.03V)  
0x33 (1.00V)  
0x2A (0.91V)  
0x2A (0.91V)  
0x26 (0.87V)  
0x29 (0.90V)  
0x1A (0.75V)  
0x47 (1.2V)  
0x38  
0x3A  
0x38  
0x38  
0x38  
0x38  
0x38  
0x38  
0x38  
0x38  
0x38  
0x38  
0x38  
0x38  
/V denotes an automotive qualified part.  
+Denotes a lead(Pb)-free/RoHS-compliant package.  
*EP = Exposed pad.  
**Future product—contact factory for availability.  
www.maximintegrated.com  
Maxim Integrated | 22  
MAX20010C/MAX20010D/  
MAX20010E  
Automotive Single 6A Step-Down Converters  
Revision History  
REVISION REVISION  
PAGES  
DESCRIPTION  
CHANGED  
NUMBER  
DATE  
0
1
9/17  
Initial release  
3/18  
Updated Table 7, Output Capacitor section, and Ordering Information  
16, 18–19  
2, 16, 19  
Updated Package Information table and Table 7. Added MAX20010DATPR/V+ as a future  
product to the Ordering Information table.  
2
3
4/18  
8/18  
Updated equation in the Setting the Output Voltage Externally section. Added MAX-  
20010CATPE/V+** as a future product and removed future product designation from  
MAX20010DATPR/V+ in the Ordering Information table.  
19  
Updated Package Information table. Added MAX20010DATPT/V+ and MAX20010DAT-  
PO/VY+ to the Ordering Information table. Added MAX20010CATPU/V+as a future product  
to the Ordering Information table.  
4
5
11/18  
3/19  
2, 19  
19  
Removed future-product notation from MAX20010CATPE/V+ and MAX20010CATPU/V+ in  
the Ordering Information table  
Added MAX20010E product variant to the following sections: General description, Typical  
Application Circuit, Pin configuration, Detailed Description, Figure 1: Internal Block  
Diagram, Table3: Identification Registers (ID) - Dev[7.4], Output Capacitor. Updated and  
added equations to: Setting the Output Voltage Externally section. Added MAX20010E-  
ATPA/V+ to the Ordering Information table. Updated ordering table to use 7-bit addresses.  
1, 7, 8, 14,  
18, 19  
6
2/20  
For pricing, delivery, and ordering information, please visit Maxim Integrated’s online storefront at https://www.maximintegrated.com/en/storefront/storefront.html.  
Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent  
licenses are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max  
limits) shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.  
Maxim Integrated and the Maxim Integrated logo are trademarks of Maxim Integrated Products, Inc.  
© 2020 Maxim Integrated Products, Inc.  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY