MAX20067 [MAXIM]

Automotive 3-Channel Display Bias IC with VCOM Buffer, Level Shifter, and I2C Interface;
MAX20067
型号: MAX20067
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Automotive 3-Channel Display Bias IC with VCOM Buffer, Level Shifter, and I2C Interface

文件: 总39页 (文件大小:4711K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Click here to ask about the production status of specific part numbers.  
MAX20067/MAX20067B  
Automotive 3-Channel Display Bias IC with  
VCOM Buffer, Level Shifter, and I C Interface  
2
General Description  
Benefits and Features  
The MAX20067/MAX20067B are complete TFT bias solu-  
tions for automotive applications. They include a current-  
mode boost converter and two push-pull charge-pump dri-  
vers.  
● Versatile TFT Display Power Section  
• Integrated Synchronous Boost Converter with  
Output Voltages Up to 18V and High-power  
(MAX20067) or Lower-power (MAX20067B)  
Options  
The ICs also include a gate-shading push-pull level shifter  
that can be used to improve display uniformity (when  
needed), and a DAC and VCOM buffer. All blocks on the  
• Integrated Charge-Pump Drivers for the VGON  
(+32V, max) and VGOFF (-24V, min) Outputs  
2
ICs can be used in stand-alone mode or through the I C  
● Low EMI Operation  
interface.  
• Programmable Switching Frequencies of 440kHz or  
2.2MHz  
• Programmable Spread Spectrum  
Comprehensive control functions are included using the  
2
built-in I C interface, as well as diagnostics and monitor-  
2
ing.  
● Full Sequencing Flexibility Through I C, Along with  
Preset Sequences Using SEQ Pin  
● Extended Diagnostics Using I C Interface  
The ICs are intended to operate with 2.7V to 5.5V sup-  
plies.  
2
• Undervoltage/Overvoltage on HVINP, VGON, and  
VGOFF  
• Overcurrent on AVDD  
The MAX20067/MAX20067B are available in a 32-pin  
TQFN package and operate in the -40°C to +105°C tem-  
perature range.  
• Temperature Warning  
● Built-In Gate-Shading Circuit Controlled by CTL Input  
● 8-Bit DAC-Controlled VCOM Buffer  
● Robust  
Applications  
● Infotainment Displays  
● Central Information Displays  
● Instrument Clusters  
• -40°C to +105°C Operating Temperature Range  
• Internal Temperature Shutdown  
• AEC-Q100 Qualified  
● Compact 32-Pin (5mm x 5mm) TQFN Package  
Ordering Information appears at end of datasheet.  
19-100112; Rev 2; 1/21  
 
 
MAX20067/MAX20067B  
Automotive 3-Channel Display Bias IC with VCOM  
2
Buffer, Level Shifter, and I C Interface  
Simplified Block Diagram  
DGND ADD FLT ENP SEQ  
CONTROL  
INA  
SDA  
SCL  
REF  
BANDGAP  
REFERENCE  
GND  
VCINH  
DAC  
VCOMP  
VCOM  
BST  
MODE  
DEL  
BOOST  
LXP  
CONTROL  
CTL  
SRC  
PGND  
FBP  
GATE  
SHADING  
GATES  
DRN  
1.25V  
MAX20067/B  
HVINP  
AVDD  
HVINP  
POSITIVE  
OSC.  
SOFT-START &  
DISCHARGE  
PCP_ON  
PGVDD  
DRVP  
VGOFF  
FBGL  
NEGATIVE CP  
POSITIVE  
CP  
HVINP  
FBGH VGON  
DRVN  
www.maximintegrated.com  
Maxim Integrated | 2  
 
MAX20067/MAX20067B  
Automotive 3-Channel Display Bias IC with VCOM  
2
Buffer, Level Shifter, and I C Interface  
TABLE OF CONTENTS  
General Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Benefits and Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Simplified Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
Absolute Maximum Ratings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Package Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
32-Pin TQFN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Typical Operating Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Pin Configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
MAX20067 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Pin Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Functional Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Typical Application Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Detailed Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
TFT Power Section. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Source-Driver Power Supplies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Gate-Driver Power Supplies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Operation of the Positive Charge Pump . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Operation of the Negative Charge Pump . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Fault Protection on the TFT Section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Output Control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Power-Up/Power-Down Sequencing and Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Gate-Shading Level Shifter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Table 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
VCOM Buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Table 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
FLTB Output. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Stand-Alone Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Table 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Table 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
I2C Serial Interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
I2C Protocol. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Table 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Individual Output Control Through I2C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Autosequencing Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Figure 1. Sample Sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Register Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
www.maximintegrated.com  
Maxim Integrated | 3  
MAX20067/MAX20067B  
Automotive 3-Channel Display Bias IC with VCOM  
2
Buffer, Level Shifter, and I C Interface  
TABLE OF CONTENTS (CONTINUED)  
Register Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Register Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Applications Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Boost Converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Inductor Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Capacitor Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Output-Voltage Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Boost Converter Operation at low INA and high Output Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Charge-Pump Regulators. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Selecting the Number of Charge-Pump Stages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Flying Capacitors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Charge-Pump Output Capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Power Dissipation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
PCB Layout Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Layout Example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
www.maximintegrated.com  
Maxim Integrated | 4  
MAX20067/MAX20067B  
Automotive 3-Channel Display Bias IC with VCOM  
2
Buffer, Level Shifter, and I C Interface  
LIST OF FIGURES  
Figure 1. Layout Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
www.maximintegrated.com  
Maxim Integrated | 5  
MAX20067/MAX20067B  
Automotive 3-Channel Display Bias IC with VCOM  
2
Buffer, Level Shifter, and I C Interface  
LIST OF TABLES  
Table 1. Gate-Shading Operating Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Table 2. VCOM DAC Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Table 3. Output Sequencing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Table 4. FLTB Output Duty Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
2
Table 5. I C Slave Addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
www.maximintegrated.com  
Maxim Integrated | 6  
MAX20067/MAX20067B  
Automotive 3-Channel Display Bias IC with VCOM  
2
Buffer, Level Shifter, and I C Interface  
Absolute Maximum Ratings  
INA, SDA, SCL, ENP, FLTB, CTL to GND ............... -0.3V to +6V  
DEL, REF, FBP, FBGH, FBGL, SEQ, MODE, ADD to GND ...... -  
0.3V to INA + 0.3V  
LXP, BST to GND..................................................... -0.3V to 26V  
BST to LXP............................................................... -0.3V to +6V  
HVINP, VCOMP to GND ........................................ -0.3V to +26V  
DRVP, DRVN to PGND ............................-0.3V to HVINP + 0.3V  
GND to PGND........................................................-0.3V to +0.3V  
GND to DGND .......................................................-0.3V to +0.3V  
LXP Continuous Current........................................................2.4A  
Continuous Power Dissipation (Multilayer Board) (T = +70°C)...  
A
W to 2.758W  
Package Thermal Resistance......................................... 1.7°C/W  
ESDHB..................................................................... -2kV to +2kV  
ESDMM................................................................-200V to +200V  
Operating Temperature.........................................-40°C to 105°C  
Junction Temperature.........................................-40°C to +150°C  
Storage Temperature Range ..............................-65°C to +150°C  
Lead Temperature Range.................................................+300°C  
VCINH, VCOM to GND............................ -0.3V to V  
+ 0.3V  
COMP  
VCINH to VCOM..................................................................... +1V  
AVDD, PGVDD to HVINP......................... -0.3V to HVINP + 0.3V  
VGON, SRC, DRN to GND..................................... -0.3V to +34V  
DRN to GATES........................................................ -34V to +34V  
GATES to GND ............................................-0.3V to SRC + 0.3V  
VGOFF to GND ...................................................... -26V to +0.3V  
Note 1: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a 4-layer  
board. For detailed information on package thermal considerations see www.maximintegrated.com/thermal-tutorial.  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the  
device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for  
extended periods may affect device reliability.  
Package Information  
32-Pin TQFN  
Package Code  
T3255+4C  
21-0140  
90-0012  
Outline Number  
Land Pattern Number  
Thermal Resistance, Single-Layer Board:  
Junction to Ambient (θ  
)
47  
JA  
Junction to Case (θ  
)
JC  
1.7  
Thermal Resistance, Four-Layer Board:  
Junction to Ambient (θ  
)
29  
JA  
Junction to Case (θ  
)
JC  
1.7  
For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a “+”, “#”, or “-” in the package code indicates  
RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.  
Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer board. For detailed information on package thermal  
considerations, refer to www.maximintegrated.com/thermal-tutorial.  
Electrical Characteristics  
(V  
= 3.6V, Limits are 100% tested at T = +25°C and T = +105°C. Limits over the operating temperature range and relevant  
INA  
A A  
supply voltage range are guaranteed by design and characterization. Specifications marked "GBD" are guaranteed by design and not  
production tested. T = T = -40°C to +105°C, unless otherwise noted. Typical values are at T = +25°C, unless otherwise noted)  
A
J
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
INA POWER INPUT  
INA Supply Voltage  
Range  
V
2.7  
5.5  
V
V
INA  
INA Undervoltage-  
Lockout Threshold,  
Rising  
UVLO  
2.45  
2.55  
2.65  
R
www.maximintegrated.com  
Maxim Integrated | 7  
MAX20067/MAX20067B  
Automotive 3-Channel Display Bias IC with VCOM  
2
Buffer, Level Shifter, and I C Interface  
Electrical Characteristics (continued)  
(V  
= 3.6V, Limits are 100% tested at T = +25°C and T = +105°C. Limits over the operating temperature range and relevant  
INA  
A A  
supply voltage range are guaranteed by design and characterization. Specifications marked "GBD" are guaranteed by design and not  
production tested. T = T = -40°C to +105°C, unless otherwise noted. Typical values are at T = +25°C, unless otherwise noted)  
A
J
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
INA Undervoltage-  
Lockout Threshold,  
Falling  
UVLO  
2.45  
V
F
Supply Current  
Shutdown Current  
OSCILLATOR  
I
ENP = 1 or ENP bit = 1, no switching  
1.8  
7
3
mA  
µA  
INA  
ENP = 0 and ENP bit = 0, total current  
INA + HVINP  
I
15  
SD  
Boost Converter  
Switching Frequency  
f
SWFREQ bit = 0  
1.98  
2.2  
2.42  
MHz  
SW0  
SW1  
Boost Converter  
Switching Frequency,  
Low Setting  
f
SWFREQ bit = 1  
SSOFF bit = 1  
390  
-4  
440  
490  
+4  
kHz  
%
Frequency Dither  
REFERENCE  
REF Output Voltage  
REF Load Regulation  
REF Line Regulation  
BOOST CONVERTER  
V
REF  
1.238  
1.25  
10  
1.262  
20  
V
I
from 0μA to 100μA  
mV  
mV  
REF  
2.7V < V  
< 5.5V, no load  
5
INA  
AVDD Output Voltage  
Range  
V
AVDD  
V
+ 1  
18  
V
A
INA  
MAX20067B, 75% duty-cycle  
MAX20067, 85% duty cycle  
0.75  
2.1  
1
1.25  
2.9  
LXP Current Limit  
2.5  
Low-Side Switch On-  
Resistance  
R
0.2  
0.4  
5
Ω
μA  
Ω
LXP  
LXP Leakage Current  
I
V
= 18V, T = +25°C  
LXP  
LXP A  
Synchronous Rectifier  
On-Resistance  
R
SYNC  
0.25  
140  
0.5  
Synchronous Rectifier  
Zero-Crossing  
Threshold  
I
2.2MHz  
mA  
SYNCZ  
Maximum Duty Cycle  
DC  
90  
94  
98  
%
MAX  
Current-Limit Ramp  
Time at Startup  
t
12.5  
ms  
RAMP  
FBP Regulation Voltage  
FBP Load Regulation  
FBP Line Regulation  
V
1.225  
1.25  
-1  
1.275  
V
%
%
FPB  
1mA < I  
< 200mA  
AVDD  
V
INA  
= 2.7V to 5.5V  
-0.4  
75  
+0.4  
85  
FBP Undervoltage-Fault  
Threshold  
V
80  
%
%
FBPUV  
FBP Overvoltage-Fault  
Threshold  
V
110  
115  
120  
FBPOV  
www.maximintegrated.com  
Maxim Integrated | 8  
MAX20067/MAX20067B  
Automotive 3-Channel Display Bias IC with VCOM  
2
Buffer, Level Shifter, and I C Interface  
Electrical Characteristics (continued)  
(V  
= 3.6V, Limits are 100% tested at T = +25°C and T = +105°C. Limits over the operating temperature range and relevant  
INA  
A A  
supply voltage range are guaranteed by design and characterization. Specifications marked "GBD" are guaranteed by design and not  
production tested. T = T = -40°C to +105°C, unless otherwise noted. Typical values are at T = +25°C, unless otherwise noted)  
A
J
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
FBP Input Bias Current  
I
200  
nA  
FBP  
HVINP-AVDD Switch  
On-Resistance  
R
0.5  
1.5  
1
2
Ω
HA  
AVDD Discharge  
Resistance  
R
AVDD  
1
kΩ  
After soft-start  
During soft-start  
240  
120  
HVINP-AVDD Switch  
Current Limit  
I
mA  
LIMHA  
POSITIVE CHARGE-PUMP REGULATOR  
PGVDD Operating  
Voltage Range  
V
6
18  
32  
V
PGVDD  
VGON Output Voltage  
Range  
V
V
VGON  
DRVP Current Limit  
I
40  
mA  
kHz  
LIM_P  
Positive Charge-Pump  
Switching Frequency  
440  
1.25  
80  
FBGH Regulation  
Voltage  
V
1.225  
75  
1.275  
85  
V
%
FBGH  
FBGH Undervoltage-  
Fault Threshold  
V
FBGHUV  
FBGHOV  
FBGH Overvoltage-  
Fault Threshold  
V
110  
115  
120  
60  
%
DRVP On-Resistance  
High  
R
Ω
ONH_DRVP  
DRVP On-Resistance  
Low  
R
30  
Ω
ONL_DRVP  
HVINP-PGVDD Switch  
On-Resistance  
R
30  
12  
60  
Ω
HP  
HVINP-PGVDD Current  
Limit  
40  
8
mA  
kΩ  
VGON Discharge  
Resistance  
16  
-4  
NEGATIVE CHARGE-PUMP REGULATOR  
VGOFF Output Voltage  
Range  
-24  
15  
V
DRVN Current Limit  
I
mA  
kHz  
LIMN  
Negative Charge-Pump  
Switching Frequency  
440  
1
FBGL Regulation  
Voltage  
V
FBGL  
V
- V  
FBGL  
0.98  
400  
1.02  
500  
V
REF  
FBGL Undervoltage-  
Fault Threshold  
V
Rising  
450  
mV  
FBGLUV  
www.maximintegrated.com  
Maxim Integrated | 9  
MAX20067/MAX20067B  
Automotive 3-Channel Display Bias IC with VCOM  
2
Buffer, Level Shifter, and I C Interface  
Electrical Characteristics (continued)  
(V  
= 3.6V, Limits are 100% tested at T = +25°C and T = +105°C. Limits over the operating temperature range and relevant  
INA  
A A  
supply voltage range are guaranteed by design and characterization. Specifications marked "GBD" are guaranteed by design and not  
production tested. T = T = -40°C to +105°C, unless otherwise noted. Typical values are at T = +25°C, unless otherwise noted)  
A
J
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
FBGL Overvoltage-Fault  
Threshold  
V
Falling  
20  
50  
100  
mV  
FBGLOV  
DRVN On-Resistance  
High  
R
60  
30  
16  
Ω
Ω
ONH_DRVN  
DRVN On-Resistance  
Low  
VGOFF Discharge  
Resistance  
8
12  
kΩ  
GATE-SHADING CIRCUIT  
SRC Input Voltage  
Range  
V
32  
20  
V
Ω
Ω
SRC  
SRC-to-GATES Switch  
On-Resistance  
R
R
10  
10  
SRC_GATES  
DRN_GATES  
DRN-to-GATES Switch  
On-Resistance  
20  
6
DEL Pullup Current  
DEL Enable Threshold  
CTL-to-GATES Delay  
4
5
µA  
V
1.25  
150  
C
= 1nF  
ns  
GATES  
MODE Switch On-  
Resistance  
1250  
Ω
MODE Voltage  
Threshold  
MODE rising  
2
V
μA  
V
MODE Pullup Current  
80  
100  
1.7  
120  
18  
MODE Current-Source  
Stop Threshold  
VCOM BUFFER  
VCOMP Voltage Range  
5
V
VCOMP Quiescent  
Supply Current  
I
= 0mA, V  
= 12V  
COMP  
1.8  
500  
0.5  
mA  
kΩ  
VCOMP  
VCINH Input Impedance  
VCINH/VCOMP Division  
Ratio  
V/V  
VCOM Output Current  
Limit  
130  
-8  
mA  
mV  
V
VCOM Offset Voltage  
+8  
VCOM Output Voltage  
Range  
V
-
COMP  
1.5V  
1.5  
VCOM DAC Step Size  
19.5  
mV  
V
VCOM DAC Voltage  
Range  
V
/
COMP  
2 + 2.5V  
www.maximintegrated.com  
Maxim Integrated | 10  
MAX20067/MAX20067B  
Automotive 3-Channel Display Bias IC with VCOM  
2
Buffer, Level Shifter, and I C Interface  
Electrical Characteristics (continued)  
(V  
= 3.6V, Limits are 100% tested at T = +25°C and T = +105°C. Limits over the operating temperature range and relevant  
INA  
A A  
supply voltage range are guaranteed by design and characterization. Specifications marked "GBD" are guaranteed by design and not  
production tested. T = T = -40°C to +105°C, unless otherwise noted. Typical values are at T = +25°C, unless otherwise noted)  
A
J
A
PARAMETER  
SYMBOL  
CONDITIONS  
VCINH - VCOM, falling  
MIN  
TYP  
MAX  
UNITS  
VCOM Undervoltage-  
Detection Threshold  
-0.55  
0.04  
-0.35  
-0.15  
V
VCOM Overvoltage-  
Detection Threshold  
VCINH - VCOM, rising  
tfault[1:0] = 01  
0.25  
60  
0.41  
20  
V
VCOM Fault Detection  
Filter Time  
ms  
kΩ  
VCOM Discharge  
Resistance  
6
13  
TFT FAULT PROTECTION  
Fault Timeout  
tfault[1:0] = 01  
60  
2.4  
1
ms  
s
Fault Retry Time  
FLTB Output Frequency  
Stand-alone mode only  
0.88  
1.12  
kHz  
FLTB Output Duty  
Cycle, VGON or VGOFF  
Fault  
75  
%
FLTB Output Duty  
Cycle, HVINP Fault  
50  
25  
%
%
%
%
%
V
FLTB Output Duty  
Cycle, AVDD Fault  
AVDD Undervoltage-  
Fault Threshold  
Relative measurement between HVINP  
and AVDD  
70  
30  
30  
0.8  
75  
80  
50  
50  
0.9  
FBP Short-Circuit Fault  
Threshold  
40  
FBGH Short-Circuit  
Fault Threshold  
40  
FBGL Short-Circuit Fault  
Threshold  
0.85  
10  
Short-Circuit and  
Overload Fault Delay  
µs  
THERMAL PROTECTION  
Thermal Shutdown  
T
165  
15  
°C  
°C  
SHDN  
Thermal-Shutdown  
Hysteresis  
T
SHDN_HYS  
LOGIC INPUT AND OUTPUTS  
FLTB, DEL Low Output  
Voltage  
V
I
= 5mA  
SINK  
0.4  
+1  
V
µA  
V
OL  
FLTB, DEL, SDA  
Leakage Current  
I
-1  
ILEAK  
SDA Output Voltage  
Low  
V
0.8  
OLSDA  
ENPPD  
ENP Pulldown Resistor  
Value  
R
50  
75  
kΩ  
www.maximintegrated.com  
Maxim Integrated | 11  
MAX20067/MAX20067B  
Automotive 3-Channel Display Bias IC with VCOM  
2
Buffer, Level Shifter, and I C Interface  
Electrical Characteristics (continued)  
(V  
= 3.6V, Limits are 100% tested at T = +25°C and T = +105°C. Limits over the operating temperature range and relevant  
INA  
A A  
supply voltage range are guaranteed by design and characterization. Specifications marked "GBD" are guaranteed by design and not  
production tested. T = T = -40°C to +105°C, unless otherwise noted. Typical values are at T = +25°C, unless otherwise noted)  
A
J
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
ENP Glitch Filter Time  
t
10  
μs  
ENP  
ENP, CTL, SCL, SDA,  
ADD Input Voltage Low  
V
0.8  
V
V
IL  
ENP, CTL, SCL, SDA,  
ADD Input Voltage High  
V
IH  
2
I2C INTERFACE  
Clock Frequency  
f
400  
kHz  
ns  
SCL  
Setup Time (Repeated)  
START  
t
260  
260  
SU:STA  
Hold Time (Repeated)  
START  
t
ns  
HD:STA  
SCL Low Time  
SCL High Time  
Data Setup Time  
Data Hold Time  
t
350  
260  
50  
ns  
ns  
ns  
ns  
LOW  
t
HIGH  
t
SU:DAT  
HD:DAT  
t
t
0
Setup Time for STOP  
Condition  
260  
ns  
ns  
SU:STO  
Spike Suppression  
50  
Note 2: Note 1: Limits are 100% tested at T = +25°C. Limits over the operating temperature range and relevant supply voltage range  
A
are guaranteed by design and characterization.  
www.maximintegrated.com  
Maxim Integrated | 12  
MAX20067/MAX20067B  
Automotive 3-Channel Display Bias IC with VCOM  
2
Buffer, Level Shifter, and I C Interface  
Typical Operating Characteristics  
((V  
= 3.3V, f  
= 2.2MHz, C  
= 1μF, T = +25°C unless otherwise noted.))  
VCOM A  
INA  
SW  
www.maximintegrated.com  
Maxim Integrated | 13  
MAX20067/MAX20067B  
Automotive 3-Channel Display Bias IC with VCOM  
2
Buffer, Level Shifter, and I C Interface  
Typical Operating Characteristics (continued)  
((V  
= 3.3V, f  
= 2.2MHz, C  
= 1μF, T = +25°C unless otherwise noted.))  
VCOM A  
INA  
SW  
www.maximintegrated.com  
Maxim Integrated | 14  
MAX20067/MAX20067B  
Automotive 3-Channel Display Bias IC with VCOM  
2
Buffer, Level Shifter, and I C Interface  
Typical Operating Characteristics (continued)  
((V  
= 3.3V, f  
= 2.2MHz, C  
= 1μF, T = +25°C unless otherwise noted.))  
VCOM A  
INA  
SW  
www.maximintegrated.com  
Maxim Integrated | 15  
MAX20067/MAX20067B  
Automotive 3-Channel Display Bias IC with VCOM  
2
Buffer, Level Shifter, and I C Interface  
Typical Operating Characteristics (continued)  
((V  
= 3.3V, f  
= 2.2MHz, C  
= 1μF, T = +25°C unless otherwise noted.))  
VCOM A  
INA  
SW  
www.maximintegrated.com  
Maxim Integrated | 16  
MAX20067/MAX20067B  
Automotive 3-Channel Display Bias IC with VCOM  
2
Buffer, Level Shifter, and I C Interface  
Pin Configuration  
MAX20067  
TOP VIEW  
24 23 22 21 20 19 18 17  
25  
26  
27  
28  
29  
30  
31  
32  
16  
ENP  
DRN  
15  
14  
13  
12  
11  
10  
9
GATES  
SRC  
DGND  
ADD  
SDA  
SCL  
FLTB  
FBP  
MAX20067  
MAX20067B  
PGND  
LXP  
HVINP  
AVDD  
BST  
+
REF  
1
2
3
4
5
6
7
8
TQFN  
5mm x 5mm  
Pin Description  
REF  
SUPPLY  
PIN  
NAME  
FUNCTION  
Positive Charge-Pump Feedback Connection. FBGH is regulated to 1.25V.  
Connect a resistor-divider from VGON to GND with its midpoint connected to  
FBGH.  
1
FBGH  
Negative Charge-Pump Feedback Connection. FBGL is regulated to 0.25V.  
Connect a resistor-divider from REF to VGOFF with its midpoint connected to  
FBGL.  
2
FBGL  
3
4
5
6
7
GND  
VGOFF  
DRVN  
VGON  
DRVP  
Ground Connection  
Output of Negative Charge-Pump Block.  
Negative Charge-Pump Push-Pull Drive Output  
Output of Positive Charge-Pump Block  
Positive Charge-Pump Push-Pull Drive Output  
Supply voltage for positive charge-pump. PGVDD is connected to HVINP by  
means of an internal switch when the positive charge-pump is enabled. Bypass  
PGVDD with a ceramic capacitor of at least 1μF to GND.  
8
PGVDD  
www.maximintegrated.com  
Maxim Integrated | 17  
MAX20067/MAX20067B  
Automotive 3-Channel Display Bias IC with VCOM  
2
Buffer, Level Shifter, and I C Interface  
Pin Description (continued)  
REF  
PIN  
NAME  
FUNCTION  
SUPPLY  
Bootstrap Capacitor Connection for Synchronous Rectifier Driver. Connect a  
0.1μF ceramic capacitor between BST and LXP.  
9
BST  
HVINP  
Switched Output of Boost Converter. Connect a bypass capacitor of at least 4.7μF  
from AVDD to PGND.  
10  
11  
12  
13  
AVDD  
HVINP  
LXP  
Boost Output and Input to Positive and Negative Charge Pumps. Bypass HVINP  
with the boost-converter output capacitor placed close to the pin.  
Switching Node of Boost Converter. Connect the boost inductor between LXP and  
INA.  
Ground Connection for Boost Switching Device and VCOM Buffer. Connect to  
GND using a low-impedance trace.  
PGND  
Source of Internal High-Side Switch in Gate-Shading Circuit. SRC is usually  
connected to VGON. Bypass SRC with a 0.1μF capacitor placed close to the pin.  
14  
15  
16  
SRC  
GATES  
DRN  
Switched Output of Gate-Shading Circuit  
Lower Input of Gate-Shading Circuit. Connect to an external source or GND  
through a discharge resistor.  
Supply Voltage for VCOM Buffer. Normally connected to AVDD. Bypass V  
with a 0.1μF ceramic capacitor placed close to the pin.  
COMP  
17  
18  
VCOMP  
VCOM  
Output of VCOM Amplifier. Bypass VCOM to GND with a 1μF ceramic capacitor.  
Noninverting Input of VCOM Amplifier. In stand-alone mode, drive VCINH to set  
19  
20  
21  
VCINH  
INA  
the VCOM output voltage. VCINH is prebiased to 50% of V  
resistor-divider comprising two 1MΩ resistors.  
with an internal  
COMP  
Supply Connection for Display Bias Circuitry. Bypass INA with a local 0.1μF  
capacitor.  
Mode Configuration Pin for Gate-Shading Level Shifter. MODE is used to adjust  
the timing of the gate-shading output. MODE is high impedance when connected  
to INA, and internally pulled down during UVLO or in shutdown.  
MODE  
Control Input for Gate-Shading Circuit. When CTL is high, the switch between  
GATES and SRC is on and the switch between GATES and DRN is off. When  
CTL is low, the switch between GATES and DRN is on and the switch between  
22  
23  
24  
CTL  
DEL  
SEQ  
GATES and SRC is off. CTL is inhibited by V  
1.25V.  
UVLO and when DEL is less than  
CC  
Gate-Shading Circuit Delay Input. Connect a capacitor from DEL to GND to set  
the turn-on delay.  
Logic-Level Sequencing Input Pin. The voltage level on SEQ determines whether  
the IC is serially controlled, or one of the predetermined sequences is used.  
Connect SEQ to INA or a resistive divider between INA and GND to set one of the  
preset stand-alone sequences (see Table 3). For serial control, connect SEQ to  
GND.  
Active-High Enable Input for Boost Converter. ENP also enables the VGON and  
VGOFF regulators in the set sequence. ENP has an internal pulldown resistor.  
When serial control is used, connect ENP low.  
25  
ENP  
26  
27  
28  
DGND  
ADD  
Digital Ground. Connect directly to the exposed pad of the package.  
2
I C Address-Selection Pin. Connect to GND for a base address of 0x20, or to INA  
for a base address of 0x28.  
2
SDA  
Bidirectional I C Data Pin  
www.maximintegrated.com  
Maxim Integrated | 18  
MAX20067/MAX20067B  
Automotive 3-Channel Display Bias IC with VCOM  
2
Buffer, Level Shifter, and I C Interface  
Pin Description (continued)  
REF  
PIN  
NAME  
FUNCTION  
SUPPLY  
29  
SCL  
Serial-Clock Input  
Open-Drain, Active-Low Fault Output. Connect a pullup resistor from FLTB to a  
logic supply ≤ 5V. In stand-alone mode, the duty cycle of the FLTB pin indicates  
an error condition, if present (see Table 4). When the serial interface is used,  
FLTB is either a 0 (indicating data to be read from the internal registers) or a 1. It  
does not output a PWM signal.  
30  
FLTB  
Boost Feedback Connection. FBP is regulated to 1.25V. Connect a resistor-divider  
from HVINP to GND with its midpoint connected to FBP.  
31  
FBP  
32  
-
REF  
EP  
Internal 1.25V Reference Output. Connect a 0.22μF capacitor from REF to GND.  
Exposed Pad. Connect EP to GND.  
www.maximintegrated.com  
Maxim Integrated | 19  
MAX20067/MAX20067B  
Automotive 3-Channel Display Bias IC with VCOM  
2
Buffer, Level Shifter, and I C Interface  
Functional Diagrams  
Typical Application Circuit  
VIN  
10mF  
10mH  
0.1mF  
10mF  
MODE  
ADD SEQ INA  
LXP  
BST HVINP  
FBP  
FLT  
SDA  
SCL  
PGND  
VCOM  
1mF  
VCOM  
VCINH  
VCOMP  
AVDD  
100pF  
AVDD  
4.7mF  
PGVDD  
DRVP  
0.1mF  
MAX20067/MAX20067B  
1mF  
SRC  
GS  
VGON  
0.1mF  
0.1mF  
VGON  
VGON  
AVDD  
DRN  
CTL  
From  
TCON  
2.2mF  
FBGH  
DRVN  
DEL  
VGOFF FBGL  
REF  
GND ENP DGND  
22nF  
0.1mF  
0.1mF  
0.22mF  
0.1mF  
2.2mF  
VGOFF  
www.maximintegrated.com  
Maxim Integrated | 20  
MAX20067/MAX20067B  
Automotive 3-Channel Display Bias IC with VCOM  
2
Buffer, Level Shifter, and I C Interface  
Detailed Description  
The MAX20067/MAX20067B are highly integrated power-supply ICs for automotive TFT-LCD applications. The ICs  
integrate one boost converter, two gate-driver supplies, a high-voltage “gate-shading” level shifter, and a high-current  
VCOM buffer.  
The main power-supply section, comprising the boost converter and gate-driver supplies, operates from a 2.7V to 5.5V  
supply. The boost converter operates at 440kHz or 2.2MHz and has built-in spread spectrum that can be disabled using  
the serial interface for reducing EMI.  
The boost converter provides an output voltage adjustable up to 18V, with up to 200mA output current and has two  
internal MOSFET switching elements.  
The ICs provide gate-driver supplies using positive and negative charge-pump regulators, with a current capability of  
10mA for the positive charge pump (using a doubler charge pump) and 3mA for the negative charge pump (assuming a  
2-stage charge pump). Output voltage is adjustable with a +32V (max) output on the positive charge pump and -24V on  
the negative charge pump.  
The startup and shutdown sequences for all power domains, controlled using one of the preset modes, are selected  
using the SEQ pin. Sequencing can also be controlled through the serial interface when the SEQ pin is grounded.  
TFT Power Section  
Source-Driver Power Supplies  
The source-driver power supply consists of a boost converter that generates +18V (max) and can deliver up to +200mA  
(+100mA for MAX20067B). The source-driver power supply’s regulation voltage (HVINP) is set by a resistor-divider  
on FBP. The source driver uses constant-frequency peak-current-mode control, with internal fixed-slope compensation.  
Internal compensation stabilizes the control loop. At low output power, the converter enters skip mode.  
The TFT boost converter has an internal error amplifier with a g of 13μS that has FBP and REF = 1.25V as inputs.  
m
There is an internal compensation network at the output of the error amplifier as follows:  
C
C
= 140pF, R = 500kΩ  
C
For the current loop, there is internal current sensing using a transresistance of R = 0.21V/A. The current-sense voltage  
T
(V  
= I_inductor x R ) is added to the slope compensation. The slope-compensation signal has a slope of 1250mV per  
CS  
T
microsecond.The resulting V  
= V  
+ V  
is compared to V  
(output of the error amplifier) at the input of  
COMP  
SUM  
CS  
SLOPE  
the PWM comparator to regulate the LXP duty cycle.  
Gate-Driver Power Supplies  
The positive gate-driver charge pump (VGON) generates +32V (max) and the negative gate-driver charge pump  
(VGOFF) generates -24V (min). The gate-driver supplies have a current capability of 10mA for the positive charge pump  
(using a doubler charge pump) and 3mA for the negative charge pump (assuming a 2-stage charge pump). The VGON  
and VGOFF regulation voltages are both set using the external resistor networks, as shown in the Typical Application  
Circuit. Both charge-pump regulators use a 440kHz switching frequency. The charge pumps regulate the output voltages  
by controlling the current that flows into the flying capacitors.  
Operation of the Positive Charge Pump  
The positive charge-pump regulator is typically used to generate the positive supply rail for the TFT-LCD gate-driver ICs.  
The output voltage is set with an external resistive voltage-divider from its output to GND, with the midpoint connected to  
FBGH. The number of charge-pump stages and the setting of the feedback-divider determine the output voltage of the  
positive charge-pump regulator. The charge pump push-pull output consists of a high-side p-channel MOSFET (P1) and  
a low-side n-channel MOSFET (N1) to control the power transfer.  
The positive charge pump uses a simple skipping control scheme. The feedback signal (FBGH) is compared with a 1.25V  
internal reference. The result of this comparison is sampled on every clock cycle. If the feedback signal is below 1.25V,  
www.maximintegrated.com  
Maxim Integrated | 21  
MAX20067/MAX20067B  
Automotive 3-Channel Display Bias IC with VCOM  
2
Buffer, Level Shifter, and I C Interface  
a DRVP cycle is initiated. In the first half period, the rising edge of the clock turns on N1 and turns off P1, allowing the  
flying capacitors to charge, while during the second half period, the falling edge of the clock turns off N1 allowing charge  
transfer to the output. During both phases, N1 and P1 act as current-limited switches with a current limit of at least 40mA.  
Alternatively, if the feedback signal is above 1.25V at the clock rising edge, the regulator ignores the clock period and N1  
and P1 remain off.  
The charge-pump regulator also includes a discharge switch from VGON to ground, turned off to discharge the output  
2
capacitors during the sequential turn-off of the output voltages, as programmed by the SEQ pin or through I C. The  
PGVDD node is internally connected through a switch to the HVINP voltage. See Table 3 for stand-alone sequencing  
options.  
Operation of the Negative Charge Pump  
The negative charge-pump regulator is typically used to generate the negative supply rail for the TFT-LCD gate-driver  
ICs. The output voltage is set with an external resistive voltage-divider from its output to REF, with the midpoint connected  
to FBGL. The number of charge-pump stages and the setting of the feedback-divider determine the output of the negative  
charge-pump regulator. The charge-pump controller includes a high-side p-channel MOSFET (P1) and a low-side n-  
channel MOSFET (N1) to control the power transfer.  
The feedback signal (FBGL) is compared with a 0.25V internal reference obtained by partitioning the main 1.25V  
reference. The result of this comparison is sampled on every clock cycle. If (REF - FBGL) is less than 1.25V - 0.25V or  
1V, a DRVN cycle is initiated. In the first half period, the rising edge of the clock turns on P1 and turns off N1, allowing  
the flying capacitors to charge, while during the second half period, the falling edge of the clock turns on N1 and turns off  
P1 allowing charge transfer to the output. During both phases, N1 and P1 act as current-limited switches with a current  
limit of at least 15mA.  
Alternatively, if (REF - FBGL) is less than 1V at the clock rising edge, the regulator ignores the clock period and N1 and  
P1 remain off.  
For sequencing of the output voltages at turn-off, a discharge switch is connected from VGOFF to ground. The desired  
2
sequence is programmable using the SEQ pin or through I C. See Table 3 for the stand-alone sequencing options.  
Fault Protection on the TFT Section  
The ICs have robust fault and overload protection. If any of the source-driver or gate-driver supplies fall below 80% (typ)  
or above 115% of the programmed regulation voltage for more than 60ms (typ, default), all the outputs turn off and a  
fault condition is set. If a short condition occurs on any of the source-driver supplies for more than 10μs, all the outputs  
turn off and a fault condition is set. A short condition is detected when the output voltage falls below 40% of the intended  
regulation voltage. The output with the fault turns off immediately, while the other outputs follow the turn-off sequence  
2
programmed by the SEQ pin or through I C. The fault condition is cleared when the ENP pin or INA supply is cycled  
or after the retry timer (2.4s typ, default) times out, if enabled. If needed, the retry time can be adjusted or this function  
disabled using the serial interface. In the case of a thermal fault, the ICs turn off immediately and remain off until the chip  
temperature drops by 15°C (typ).  
Output Control  
The sequencing of the source-driver and gate-driver outputs (AVDD, VGON, and VGOFF) is determined by the setting of  
2
the SEQ pin or through I C. All outputs are brought up with soft-start control to limit the inrush current. Table 3 lists the  
sequencing options using the SEQ pin.  
The outputs are also turned off in sequence, with the boost converter the last block to be disabled. Active pulldowns are  
provided on all outputs to facilitate a controlled discharge. The pulldowns remain active for 512ms after the boost has  
been disabled, at which point the ICs enter shutdown mode, if applicable.  
Power-Up/Power-Down Sequencing and Timing  
The ICs allow for flexible power-up/power-down sequencing and timing of the source-driver and gate-driver power  
supplies (AVDD, VGON, and VGOFF). Toggling the ENP pin from low to high initiates an adjustable preset power-up  
2
sequence. Alternatively, power-up sequencing can be controlled through I C. Toggling the ENP pin from high to low  
www.maximintegrated.com  
Maxim Integrated | 22  
MAX20067/MAX20067B  
Automotive 3-Channel Display Bias IC with VCOM  
2
Buffer, Level Shifter, and I C Interface  
initiates the power-down sequence. The ENP pin has an internal deglitching filter of 10μs (typ). Note: A glitch in the ENP  
signal with a period less than 10μs is ignored by the internal enable circuitry.  
Gate-Shading Level Shifter  
The gate-shading level shifter is enabled when the soft-start of all regulators is completed and the DEL pin exceeds its  
enable threshold. A capacitor on the DEL pin can be used to adjust the startup-delay time together with the internal 5μA  
current source. The delay can be calculated using the following equation:  
1.25V × C  
(
)
DEL  
Delay =  
5μA  
When the ICs are disabled, GATES is discharged to GND. After the ICs are enabled, the GATES switches are off and  
GATES is high impedance until the complete power sequence is finished (without a fault occurring) and DEL exceeds  
1.25V. When DEL exceeds 1.25V, the level shifter is activated and its state controlled by the CTL and MODE inputs  
according to Table 1. An external resistor and capacitor are used to produce the desired waveform where the rise of the  
output signal is fast, but the fall is an exponential decay controlled by the external values of the resistor and capacitor. In  
addition, a capacitor on the MODE pin can be used to delay the fall of the GATES output.  
Connect MODE to INA when the V  
according to the following equation:  
delay is not needed. Connect a capacitor from MODE to GND to set the delay  
GGS  
100μA × t  
(
)
DMODE  
C
=
MODE  
1.75V  
where t  
is the desired delay if the level shifter is not used to connect CTL to GND.  
DMODE  
Table 1  
Table 1. Gate-Shading Operating Modes  
CTL  
Low  
High  
Low  
High  
MODE  
High  
High  
Low  
GATES OUTPUT  
GATES shorted to DRN using internal device  
GATES shorted to SRC using internal device  
GATES shorted to DRN using internal device  
GATES shorted to SRC using internal device  
C
MODE  
DISCHARGE  
Off  
On  
Low  
VCOM Buffer  
The VCOM buffer is enabled when AVDD crosses its power-good threshold. The VCOM positive supply is V  
, which  
COMP  
is normally externally connected to the AVDD output, while its negative supply is ground. The output voltage is set by  
default to half of V through two 1000kΩ internal resistors. The VCOM buffer can be controlled either by driving  
COMP  
the VCINH pin or using the internal DAC that is written to through the serial interface. When driving the VCINH pin, the  
source impedance or the resistance of the external resistor-divider should be much lower than 500kΩ. In DAC mode,  
2
an 8-bit value is written through I C, which sets the VCOM output voltage in a nominal range of ±2.5V around AVDD/  
2. Table 2 shows the correspondence between the DAC value written and the VCOM output voltage. The VCOM output  
can source or sink a current up to a peak of 130mA. The LCD backplane consists of a distributed series capacitance and  
resistance, a load that can be easily driven by the buffer. In a short-circuit condition, the power dissipation of the VCOM  
buffer can lead to complete thermal shutdown of the ICs.  
The VCOM buffer should be used with an external 1μF ceramic capacitor connected from its output to GND.  
A VCOM buffer fault is detected if the voltage difference between VCINH and the VCOM output pin is greater than  
250mV. The VCOM fault detection is filtered internally and a VCOM buffer fault is latched. To clear a fault, write a 0 to the  
corresponding fault bit. In stand-alone mode, toggle the ENP pin or power down the device and then power it on again.  
www.maximintegrated.com  
Maxim Integrated | 23  
MAX20067/MAX20067B  
Automotive 3-Channel Display Bias IC with VCOM  
2
Buffer, Level Shifter, and I C Interface  
Table 2  
Table 2. VCOM DAC Values  
DAC VALUE  
0xFF  
0xFE  
...  
NOMINAL VCOM OUTPUT VOLTAGE WITH V  
= 12V  
AVDD  
8.5V  
8.5V  
...  
0x80  
0x7F  
0x7E  
...  
6.02V  
6V  
5.98V  
...  
0x01  
0x00  
3.52V  
3.5V  
FLTB Output  
The FLTB output pin is an active-low, open-drain output that can be used to signal various device faults (for operation in  
2
stand-alone mode, see the Stand-Alone Mode section). When the I C interface is used, the FLTB output can flag any or  
all of the following conditions:  
● Overtemperature fault  
● Overcurrent on AVDD  
● Undervoltage on HVINP, VGON, or VGOFF  
● Overvoltage on HVINP, VGON, or VGOFF  
● VCOM overvoltage or undervoltage  
Some of the above conditions can be masked from causing FLTB to go low by using the corresponding mask bit in the  
Fault Mask 1 (0x08) and Fault Mask 2 (0x09) registers.  
Stand-Alone Mode  
2
The ICs can be used either in stand-alone mode (when there is no local microcontroller), or in I C mode. In stand-alone  
mode, the SEQ pin sets the sequence according to Table 3.  
The ENP pin (active high) is used to turn on or off the complete device. In stand-alone mode, the open-drain FLTB output  
is high when there is no detected fault. When a fault is detected, the FLTB pin outputs a signal with a duty cycle that  
indicates what type of fault has been detected. This is summarized in Table 4.  
Table 3  
Table 3. Output Sequencing  
POWER-ON SEQUENCING  
POWER-OFF SEQUENCING  
NOMINAL SEQ PIN VOLTAGE  
1st  
2nd  
3rd  
1st  
2nd  
3rd  
2
GND  
INA/2  
INA  
I C CONTROL  
AVDD  
AVDD  
VGOFF  
VGON  
VGON  
VGOFF  
VGON  
VGOFF  
VGON  
AVDD  
AVDD  
VGOFF  
Table 4  
Table 4. FLTB Output Duty Cycle  
FLTB DUTY CYCLE  
Continuously high  
75%  
ERROR CONDITION  
No error  
VGON or VGOFF fault  
www.maximintegrated.com  
Maxim Integrated | 24  
MAX20067/MAX20067B  
Automotive 3-Channel Display Bias IC with VCOM  
2
Buffer, Level Shifter, and I C Interface  
Table 4. FLTB Output Duty Cycle (continued)  
50%  
25%  
1.5%  
HVINP fault  
AVDD fault  
Thermal shutdown  
I2C Serial Interface  
2
2
The ICs contain an I C serial interface and act as slave devices. The basic unit of data transfer is 8 bits. To select I C  
mode, connect the SEQ pin to GND. The state of the SEQ pin is sampled when the INA voltage exceeds approximately  
2V and the status is latched.  
2
Control of the power-up sequence through I C can be performed in two ways, manual or automatic. In manual mode, the  
2
I C host enables the outputs individually using the bits in the Regulator Control register (0x02). If a fault is detected in  
manual mode, the faulty output is disabled after the corresponding deglitch time and no other action is performed. Retry  
is disabled in manual mode.  
The bits in Fault registers 0x0A and 0x0B can be cleared by writing a 0 to the corresponding position in the register. If  
the values of the other bits are retained, a 1 should be written to them. (e.g., if the vgon_ov bit is cleared in register 0x0A,  
0x77 should be written to the register). In this manner, only bit 3 is cleared, and the other bits are left unchanged.  
In automatic mode, the sequence is preset using the autoseq_row1–autoseq_row3 and textd_dly1, textd_dly2 bits, and  
executed using the autoseq_ctrl bit. See the Automatic Sequencing Mode section for further details.  
I2C Protocol  
2
The I C address is chosen by connecting the ADD pin to either GND or INA (see Table 5). A master device  
communicates with the IC by transmitting the correct Slave ID followed by the register address and data word. Each  
transmit sequence is framed by a START (S) or Repeated START (Sr) condition and a STOP (P) condition. Each word  
transmitted over the bus is 8 bits long and is always followed by an acknowledge clock pulse.  
The SDA line operates as both an input and an open-drain output. A pullup resistor greater than 500Ω is required on  
the SDA bus, or the resistor has to be selected as a function of bus capacitance, such that the rise time on the bus is  
2
not greater than 120ns per the I C bus specification. The SCL line operates as an input only. A pullup resistor greater  
than 500Ω is required on SCL if there are multiple masters on the bus, or if the master in a single-master system has an  
open-drain SCL output. In general, for the SCL line resistor selection, the same recommendations as the SDA line apply.  
Series resistors in line with SDA and SCL are optional. The SCL and SDA inputs suppress noise spikes to ensure proper  
device operation even on a noisy bus.  
Table 5  
2
Table 5. I C Slave Addresses  
DEVICE ADDRESS  
WRITE  
ADDRESS  
READ  
ADDRESS  
ADD PIN CONNECTION  
A6  
0
A5  
1
A4  
0
A3  
0
A2  
0
A1  
0
A0  
0
GND  
INA  
0x40  
0x50  
0x41  
0x51  
0
1
0
1
0
0
0
Individual Output Control Through I2C  
Using the bits in the Regulator Control register (0x02), all outputs can be controlled individually by the local host  
microcontroller. When using this mode of operation, a fault on any output is signaled by the FLTB output pin (if not  
masked) and the fault bits. The output with the fault remains active until the microcontroller intervenes.  
When using the individual control bits, the boost converter must always be enabled first and disabled last in the sequence.  
Autosequencing Mode  
In autosequencing mode, a complete sequence is configured using the autoseq_row1-3[2:0] and textd_dly1-2 bits and  
www.maximintegrated.com  
Maxim Integrated | 25  
MAX20067/MAX20067B  
Automotive 3-Channel Display Bias IC with VCOM  
2
Buffer, Level Shifter, and I C Interface  
then executed by setting the autoseq_ctrl bit.  
To use autosequencing, set the en_autoseq bit in the Configurations register (0x01) to 1 and then configure the desired  
sequence using the autoseq_row1–autoseq_row3 bits in the Auto Sequencing ctrl1 (0x04) and Auto Sequencing ctrl2  
(0x05) registers. The 3 bits of autoseq_row1 correspond to the AVDD output and each bit represents one of three time  
slots. To enable AVDD during the first time slot, set autoseq_row1 to 100. To enable AVDD during the second time slot,  
set autoseq_row1 to 010, etc. In an analogous fashion, autoseq_row2 sets the VGON time slot and autoseq_row3 sets  
the VGOFF time slot.  
The delays between each of the time slots are configured using the textd_dly1 and textd_dly2 settings.  
When the complete configuration is set, the sequence is executed automatically by setting autoseq_ctrl in the Regulator  
Control register (0x02) to 1. The corresponding power-off sequence can be performed by setting autoseq_ctrl to 0. If a  
fault occurs in automatic mode, the faulty output is turned off and the other outputs are turned off in the set order. If retry  
is enabled, a retry is attempted after the appropriate delay.  
Note: If the manual control bits have been used to enable one or more of the outputs, automatic sequencing behaves  
differently: it starts immediately when the en_autoseq bit is set.  
Figure 1. Sample Sequence  
VGON  
AVDD  
0V  
textd_dly1  
textd_dly2  
VGOFF  
www.maximintegrated.com  
Maxim Integrated | 26  
MAX20067/MAX20067B  
Automotive 3-Channel Display Bias IC with VCOM  
2
Buffer, Level Shifter, and I C Interface  
Register Map  
Register Map  
ADDRESS  
bank 0  
0x00  
NAME  
MSB  
LSB  
Device Id[7:0]  
rev_id[3:0]  
fault_latc en_autos  
dev_id[3:0]  
dis_ss  
0x01  
0x02  
0x03  
0x04  
Configurations[7:0]  
tretry[1:0]  
tfault[1:0]  
swfrq  
en_bst  
bst_on  
h_dis  
eq  
autoseq_ dis_vco  
Regulator control[7:0]  
dis_gs  
gs_on  
en_vgoff en_vgon en_avdd  
vgoff_on vgon_on avdd_on  
ctrl  
m
Regulator power  
status[7:0]  
vcom_on  
Auto sequencing  
ctrl1[7:0]  
autoseq_row2[2:0]  
textd_dly1[1:0]  
vcom_dac[7:0]  
autoseq_row1[2:0]  
Auto sequencing  
ctrl2[7:0]  
0x05  
0x06  
0x07  
textd_dly2[1:0]  
autoseq_row3[2:0]  
– –  
VCOM voltage[7:0]  
UNUSED - do not write  
to this register[7:0]  
vgoff_uv vgoff_ov vgon_uv vgon_ov avdd_ovl hvinp_uv hvinp_ov  
0x08  
0x09  
Fault mask 1[7:0]  
Fault mask 2[7:0]  
_mask  
_mask  
_mask  
vcom_uv vcom_ov  
_mask _mask  
_mask  
d_mask  
_mask  
_mask  
avdd_ovl  
d
0x0A  
0x0B  
Fault register 1[7:0]  
Fault register 2[7:0]  
vgoff_uv vgoff_ov vgon_uv vgon_ov  
vcom_uv vcom_ov  
hvinp_uv hvinp_ov  
th_shdn  
hw_rst  
Register Details  
Device Id (0x00)  
Register to identify the device type and the revision number  
BIT  
7
6
5
4
3
2
1
0
Field  
rev_id[3:0]  
0x0  
dev_id[3:0]  
0x9  
Reset  
Access  
Type  
Read Only  
Read Only  
BITFIELD  
BITS  
7:4  
DESCRIPTION  
rev_id  
dev_id  
Revision ID. 0 = revision 1, etc.  
Device ID. Reads 0x9.  
3:0  
Configurations (0x01)  
Miscellaneous configurations needed for part operations  
www.maximintegrated.com  
Maxim Integrated | 27  
 
 
 
MAX20067/MAX20067B  
Automotive 3-Channel Display Bias IC with VCOM  
2
Buffer, Level Shifter, and I C Interface  
BIT  
Field  
7
6
5
4
3
2
1
0
fault_latch_  
dis  
en_autoseq  
0x0  
tretry[1:0]  
0x2  
tfault[1:0]  
0x1  
dis_ss  
0x0  
swfrq  
0x0  
Reset  
0x0  
Access  
Type  
Write, Read Write, Read  
Write, Read  
Write, Read  
Write, Read Write, Read  
BITFIELD  
BITS  
DESCRIPTION  
DECODE  
0x0: Fault register bits are latched fault flags  
0x1: Fault register bits are fault status bits (no  
latching)  
fault_latch_di  
s
Fault register control. When set to 0, the fault  
register bits are latched.  
7
6
When set to 1, this bit enables the automatic  
sequencing feature.  
0x0: Automatic sequencing is disabled  
0x1: Automatic sequencing is enabled  
en_autoseq  
tretry  
If retry is enabled (set to any value other than 0x0: Retry is disabled  
0x0), then this is the time that elapses before 0x1: Retry to power on regulator after 0.95s  
5:4  
3:2  
a new power-on is attempted after turn-off  
due to a regulator fault.  
0x2: Retry to power on regulator after 1.9s  
0x3: Retry to power on regulator after 3.8s  
0x0: 30ms  
0x1: 60ms  
0x2: 120ms  
0x3: 250ms  
Fault-deglitch duration. This is the time that a  
regulator fault must be continuously present  
before the fault is considered valid.  
tfault  
0x0: Boost spread spectrum enabled  
0x1: Boost spread spectrum disabled  
dis_ss  
swfrq  
1
0
Boost spread-spectrum-disable control bit.  
Boost converter switching-frequency  
selection.  
0x0: 2.2MHz boost switching frequency  
0x1: 440kHz boost switching frequency  
Regulator control (0x02)  
Direct control of regulators enable. This register can be used on I2C variant when "en_autoseq = 0" to control the  
manual sequencing of regulators, i.e. regulators sequencing is completely controlled by host software. Note that some  
controls are implemented in this registers. As an example the enable of any regulator is not allowed unless "en_bst" has  
been enabled and ready (bst_on = 1).  
BIT  
7
6
5
4
3
2
1
0
Field  
autoseq_ctrl  
0x0  
dis_vcom  
0x0  
dis_gs  
0x0  
en_vgoff  
0x0  
en_vgon  
0x0  
en_avdd  
0x0  
en_bst  
0x0  
Reset  
Access  
Type  
Write, Read Write, Read Write, Read Write, Read Write, Read Write, Read Write, Read  
BITFIELD  
BITS  
DESCRIPTION  
DECODE  
Controls the automatic sequencer. If the  
automatic sequencer is enabled, setting this  
bit to 1 starts the power-on sequence as  
programmed. Deasserting this bit to 0 starts  
the power-down sequence. Note that the  
sequence programming cannot be altered  
while the sequence is ongoing. Once the  
current sequence is completed, sequence  
programming is again enabled. If the  
en_autoseq bit is set to 0, this bit has no  
effect.  
0x0: If regulators are off, keep them as they are. If  
regulators are on, start the power off sequence and  
keep them off  
0x1: If regulators are off start the power on  
sequence and keep them on. Else keep them as  
they are.  
autoseq_ctrl  
6
www.maximintegrated.com  
Maxim Integrated | 28  
MAX20067/MAX20067B  
Automotive 3-Channel Display Bias IC with VCOM  
2
Buffer, Level Shifter, and I C Interface  
BITFIELD  
BITS  
DESCRIPTION  
DECODE  
VCOM buffer disable. By default, the VCOM  
buffer is enabled when the AVDD crosses its  
power-good threshold.  
0x0: VCOM buffer is enabled  
0x1: VCOM buffer has been disabled  
dis_vcom  
5
Gate-shading disable. By default, the gate-  
shading block is enabled when soft-start for  
all regulators is completed and when the DEL 0x1: Gate shading has been disabled  
pin exceeds its enable threshold.  
0x0: Gate shading is enabled  
dis_gs  
4
0x0: Negative charge pump is disabled  
Negative charge-pump enable.  
en_vgoff  
en_vgon  
3
2
0x1: Negative charge pump has been enabled  
0x0: Positive charge pump is disabled  
Positive charge-pump enable.  
0x1: Positive charge pump has been enabled  
Control bit for the switch between HVINP and  
0x0: Switch beween HVINP and AVDD is open  
AVDD. Note that any attempt to set this bit to  
0x1: Switch beween HVINP and AVDD is closed  
1 fails if the field "bst_ok" is 0.  
en_avdd  
en_bst  
1
0
0x0: Buck is disabled  
Boost converter enable.  
0x1: Buck is enabled  
Regulator power status (0x03)  
Status of the regulators. Each bit set to 1 means that related regulator is powered on (i.e. it has been enabled, the  
transient has completed and it's active ready)  
BIT  
7
6
5
4
3
2
1
0
Field  
vcom_on  
0x0  
gs_on  
0x0  
vgoff_on  
0x0  
vgon_on  
0x0  
avdd_on  
0x0  
bst_on  
0x0  
Reset  
Access  
Type  
Read Only  
Read Only  
Read Only  
Read Only  
Read Only  
Read Only  
BITFIELD  
BITS  
DESCRIPTION  
DECODE  
0x0: The VCOM buffer is off  
0x1: The VCOM buffer is on  
vcom_on  
5
This bit shows the status of the VCOM buffer.  
This bit shows the status of the gate-shading  
block.  
0x0: The gate shading is off  
0x1: The gate shading is on  
gs_on  
4
3
2
1
This bit shows the status of the negative  
charge pump.  
0x0: The charge pump is off  
0x1: The charge pump is on  
vgoff_on  
vgon_on  
avdd_on  
This bit shows the status of the positive  
charge pump.  
0x0: The charge pump is off  
0x1: The charge pump is on  
This bit shows the status of the switch  
between HVINP and AVDD.  
0x0: The switch is open  
0x1: The switch is closed  
When this bit is set to 1, the boost converter  
0x0: Boost has not been activated  
bst_on  
0
has been activated and its output voltage is in 0x1: Boost has been activated and power on  
range. transient completed  
Auto sequencing ctrl1 (0x04)  
Programming for the control of the automatic sequncing  
www.maximintegrated.com  
Maxim Integrated | 29  
MAX20067/MAX20067B  
Automotive 3-Channel Display Bias IC with VCOM  
2
Buffer, Level Shifter, and I C Interface  
BIT  
Field  
7
6
5
4
autoseq_row2[2:0]  
0x0  
3
2
1
autoseq_row1[2:0]  
0x0  
0
Reset  
Access  
Type  
Write, Read  
Write, Read  
BITFIELD  
BITS  
DESCRIPTION  
Autosequencing matrix row 2, corresponding to VGON. A 1 in this bit  
corresponds to start the regulator in slot 1, 2, or 3 depending on the position  
of the 1. If more than a 1 is present in the field, only the first one is considered  
valid.  
autoseq_row2  
autoseq_row1  
5:3  
2:0  
Autosequencing matrix row 1, corresponding to AVDD. A 1 in this bit  
corresponds to start the regulator in slot 1, 2, or 3 depending on the position  
of the 1. If more than a 1 is present in the field, only the first one is considered  
valid.  
Auto sequencing ctrl2 (0x05)  
Programming for the control of the automatic sequncing  
BIT  
7
6
5
4
3
2
1
autoseq_row3[2:0]  
0x0  
0
Field  
textd_dly2[1:0]  
textd_dly1[1:0]  
Reset  
0x0  
0x0  
Access  
Type  
Write, Read  
Write, Read  
Write, Read  
BITFIELD  
BITS  
DESCRIPTION  
DECODE  
0x0: No delay after power OK of preceeding  
regulators  
0x1: Additional 10% delay after power OK of  
preceeding regulators  
0x2: Additional 20% delay after power OK of  
preceeding regulators  
0x3: Additional 30% delay after power OK of  
preceeding regulators  
Delay extension as a percentage of the time  
that elapses between the power-on command  
for regulators in slot 2 and the assertion of  
the feedback signal that notifies they  
completed ramp up. If we name Tok such  
time the delay between slot 2 and slot 3 will  
be Tok x (1 + textd_dly2).  
textd_dly2  
6:5  
0x0: No delay after power OK of preceeding  
regulators  
0x1: Additional 10% delay after power OK of  
preceeding regulators  
0x2: Additional 20% delay after power OK of  
preceeding regulators  
0x3: Additional 30% delay after power OK of  
preceeding regulators  
Delay extension as a percentage of the time  
that elapses between the power-on command  
for regulators in slot 1 and the assertion of  
the feedback signal that notifies they  
completed ramp up. If we name Tok such  
time the delay between slot 1 and slot 2 will  
be Tok x (1 + textd_dly1).  
textd_dly1  
4:3  
2:0  
Autosequencing matrix row 3, corresponding  
to VGOFF. A 1 in this bit corresponds to start  
the regulator in slot 1, 2, or 3 depending on  
the position of the 1. If more than a 1 is  
present in the field, only the first one is  
considered valid.  
autoseq_row  
3
VCOM voltage (0x06)  
This byte controls the setting of the DAC controlling the VCOM output voltage  
www.maximintegrated.com  
Maxim Integrated | 30  
MAX20067/MAX20067B  
Automotive 3-Channel Display Bias IC with VCOM  
2
Buffer, Level Shifter, and I C Interface  
BIT  
Field  
7
6
5
4
3
2
1
0
vcom_dac[7:0]  
Reset  
0x7F  
Access  
Type  
Write, Read  
BITFIELD  
vcom_dac  
BITS  
DESCRIPTION  
This byte controls the DAC that sets the VCOM output voltage. The output  
step is 20mV/LSB. The mid-point is 0x7F = AVDD/2.  
7:0  
Fault mask 1 (0x08)  
Fault mask register. Each bit in this register is able to mask the fault of the related bit. A 1 in a position enables the  
contribution of the fault flag to the FLTB assertion.  
BIT  
7
6
5
4
3
2
1
0
vgoff_uv_m vgoff_ov_m vgon_uv_m vgon_ov_m avdd_ovld_ hvinp_uv_m hvinp_ov_m  
Field  
ask  
ask  
ask  
ask  
mask  
ask  
ask  
Reset  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
Access  
Type  
Write, Read Write, Read Write, Read Write, Read Write, Read Write, Read Write, Read  
BITFIELD  
BITS  
DESCRIPTION  
Mask for VGOFF undervoltage fault. If this bit is set to 1, an undervoltage fault  
on VGOFF does not cause FLTB to go low.  
vgoff_uv_mask  
vgoff_ov_mask  
vgon_uv_mask  
vgon_ov_mask  
avdd_ovld_mask  
hvinp_uv_mask  
hvinp_ov_mask  
6
Mask for VGOFF overvoltage fault. If this bit is set to 1, an overvoltage fault  
on VGOFF does not cause FLTB to go low.  
5
4
3
2
1
0
Mask for VGON undervoltage fault. If this bit is set to 1, an undervoltage fault  
on VGON does not cause FLTB to go low.  
Mask for VGON overvoltage fault. If this bit is set to 1, an overvoltage fault on  
VGON does not cause FLTB to go low.  
Mask for AVDD overcurrent fault. If this bit is set to 1, an overcurrent fault on  
AVDD does not cause FLTB to go low.  
Mask for HVINP underervoltage fault. If this bit is set to 1, an undervoltage  
fault on HVINP does not cause FLTB to go low.  
Mask for HVINP overvoltage fault. If this bit is set to 1, an overvoltage fault on  
HVINP does not cause FLTB to go low.  
Fault mask 2 (0x09)  
Fault mask register. Each bit in this register is able to mask the fault of the related bit. A 1 in a position enables the  
contribution of the fault flag to the FLTB assertion.  
BIT  
7
6
5
4
3
2
1
0
vcom_uv_m vcom_ov_m  
Field  
ask  
ask  
Reset  
0x0  
0x0  
Access  
Type  
Write, Read Write, Read  
www.maximintegrated.com  
Maxim Integrated | 31  
MAX20067/MAX20067B  
Automotive 3-Channel Display Bias IC with VCOM  
2
Buffer, Level Shifter, and I C Interface  
BITFIELD  
BITS  
DESCRIPTION  
Mask for VCOM undervoltage fault. If this bit is set to 1, an undervoltage fault  
on VCOM does not cause FLTB to go low.  
vcom_uv_mask  
4
3
Mask for VCOM overvoltage fault. If this bit is set to 1, an overvoltage fault on  
VCOM does not cause FLTB to go low.  
vcom_ov_mask  
Fault register 1 (0x0A)  
Fault register 1. Each bit of this register can be a status bit (reflecting current status of the fault) or a flag bit (latched  
version of a status bit).  
BIT  
7
6
5
4
3
2
1
0
Field  
vgoff_uv  
0x0  
vgoff_ov  
0x0  
vgon_uv  
0x0  
vgon_ov  
0x0  
avdd_ovld  
0x0  
hvinp_uv  
0x0  
hvinp_ov  
0x0  
Reset  
Access  
Type  
Write 0 to  
Write 0 to  
Write 0 to  
Write 0 to  
Write 0 to  
Write 0 to  
Write 0 to  
Clear, Read Clear, Read Clear, Read Clear, Read Clear, Read Clear, Read Clear, Read  
BITFIELD  
BITS  
DESCRIPTION  
DECODE  
0x0: No fault is present or has happened  
0x1: If "fault_latch_dis" = 0 then a fault has  
happened or is still present. In this case the bit is  
CoR but reasserts if fault is still present.  
If "fault_latch_dis" = 1 then a fault is currently  
present else this bit is 0.  
VGOFF undervoltage fault. Depending on  
programing of "fault_latch_dis," this is a  
status bit or a clear-on-read flag bit.  
vgoff_uv  
6
5
4
3
2
1
0x0: No fault is present or has happened  
0x1: If "fault_latch_dis" = 0 then a fault has  
happened or is still present. In this case the bit is  
CoR, but reasserts if fault is still present.  
If "fault_latch_dis" = 1 then a fault is currently  
present, else this bit is 0.  
VGOFF overvoltage fault. Depending on  
programing of "fault_latch_dis," this is a  
status bit or a clear-on-read flag bit.  
vgoff_ov  
vgon_uv  
vgon_ov  
avdd_ovld  
hvinp_uv  
0x0: No fault is present or has happened  
0x1: If "fault_latch_dis" = 0 then a fault has  
happened or is still present. In this case the bit is  
CoR, but reasserts if fault is still present.  
If "fault_latch_dis" = 1 then a fault is currently  
present, else this bit is 0.  
VGON undervoltage fault. Depending on  
programing of "fault_latch_dis," this is a  
status bit or a clear-on-read flag bit.  
0x0: No fault is present or has happened  
0x1: If "fault_latch_dis" = 0 then a fault has  
happened or is still present. In this case the bit is  
CoR, but reasserts if fault is still present.  
If "fault_latch_dis" = 1 then a fault is currently  
present, else this bit is 0.  
VGON overvoltage fault. Depending on  
programing of "fault_latch_dis," this is a  
status bit or a clear-on-read flag bit.  
0x0: No fault is present or has happened  
0x1: If "fault_latch_dis" = 0 then a fault has  
happened or is still present. In this case the bit is  
CoR, but reasserts if fault is still present.  
If "fault_latch_dis" = 1 then a fault is currently  
present, else this bit is 0.  
AVDD overcurrent fault. Depending on  
programing of "fault_latch_dis," this is a  
status bit or a clear-on-read flag bit.  
0x0: No fault is present or has happened  
0x1: If "fault_latch_dis" = 0 then a fault has  
happened or is still present. In this case the bit is  
CoR, but reasserts if fault is still present.  
If "fault_latch_dis" = 1 then a fault is currently  
present, else this bit is 0.  
HVINP undervoltage fault. Depending on  
programing of "fault_latch_dis," this is a  
status bit or a clear-on-read flag bit.  
www.maximintegrated.com  
Maxim Integrated | 32  
MAX20067/MAX20067B  
Automotive 3-Channel Display Bias IC with VCOM  
2
Buffer, Level Shifter, and I C Interface  
BITFIELD  
BITS  
DESCRIPTION  
DECODE  
0x0: No fault is present or has happened  
0x1: If "fault_latch_dis" = 0 then a fault has  
happened or is still present. In this case the bit is  
CoR, but reasserts if fault is still present.  
If "fault_latch_dis" = 1 then a fault is currently  
present, else this bit is 0.  
HVINP overvoltage fault. Depending on  
programing of "fault_latch_dis," this is a  
status bit or a clear-on-read flag bit.  
hvinp_ov  
0
Fault register 2 (0x0B)  
Fault register 2. Each bit of this register is a flag bit (latched fault).  
BIT  
7
6
5
4
3
2
1
0
Field  
vcom_uv  
0x0  
vcom_ov  
0x0  
th_shdn  
0x0  
hw_rst  
0x1  
Reset  
Access  
Type  
Write 0 to  
Clear, Read Clear, Read  
Write 0 to  
Write 0 to  
Clear, Read  
Read Only  
BITFIELD  
BITS  
DESCRIPTION  
DECODE  
0x0: No fault is present or has happened  
0x1: If "fault_latch_dis" = 0 then a fault has  
happened or is still present. In this case the bit is  
CoR, but reasserts if fault is still present.  
If "fault_latch_dis" = 1 then a fault is currently  
present, else this bit is 0.  
VCOM buffer undervoltage fault. Depending  
on programing of "fault_latch_dis," this is a  
status bit or a clear-on-read flag bit.  
vcom_uv  
4
3
0x0: No fault is present or has happened  
0x1: If "fault_latch_dis" = 0 then a fault has  
happened or is still present. In this case the bit is  
CoR, but reasserts if fault is still present.  
If "fault_latch_dis" = 1 then a fault is currently  
present, else this bit is 0.  
VCOM buffer overvoltage fault. Depending on  
programing of "fault_latch_dis," this is a  
status bit or a clear-on-read flag bit.  
vcom_ov  
Thermal-shutdown event was detected. If the 0x0: no thermal shutdown since last read  
event is still on, the flag reasserts upon CoR. 0x1: Device is in thermal shutdown  
th_shdn  
hw_rst  
1
0
0x0: no POR since last read  
Hardware reset event was detected  
0x1: this is the first read from the device after a  
POR  
www.maximintegrated.com  
Maxim Integrated | 33  
MAX20067/MAX20067B  
Automotive 3-Channel Display Bias IC with VCOM  
2
Buffer, Level Shifter, and I C Interface  
Applications Information  
Boost Converter  
Inductor Selection  
The value of the boost inductor is determined as follows:  
V
× D  
(
)
INA  
L =  
LIR × I  
× f  
(
)
INA SW  
where V  
is the boost input voltage, D is the duty cycle, LIR is the current ripple factor in the inductor (choose a value  
INA  
between 0.5 and 1), I  
is the boost converter input current, and f  
is either 2.2MHz or 440kHz.  
SW  
INA  
Calculate the duty-cycle using:  
1 − η × V  
(
)
INA  
D =  
V
OUT  
where η is the converter efficiency (assume 0.85) and V  
is the boost output voltage.  
OUT  
I
, the average input current, can be estimated as follows:  
INA  
V
× I  
(
)
OUT OUT  
I
=
INA  
η × V  
(
)
INA  
where I  
is the boost output current.  
OUT  
Capacitor Selection  
The input and output filter capacitors should be a low-ESR type (e.g., tantalum, ceramic, or low-ESR electrolytic) and  
should have RMS current ratings greater than:  
LIR × I  
(
)
INA  
I
=
RMS  
12  
for the input capacitor, and:  
2
LIR  
12  
D +  
(
)
I
= I  
×
RMS  
OUT  
1 − D  
(
)
for the output capacitor. The output voltage contains a ripple component whose peak-to-peak value depends on the value  
of the ESR and capacitance of the output capacitor and is approximately the sum of two contributions:  
ΔV  
= ΔV  
+ ΔV  
RIPPLE  
ESR  
CAP  
where:  
LIR  
2
ΔV  
= I  
× 1 +  
(
× R  
ESR  
ESR  
INA  
)
and  
I
× D  
(
C
)
)
OUT  
ΔV  
=
CAP  
× f  
(
OUT SW  
where R  
is the ESR of the chosen output capacitor.  
ESR  
www.maximintegrated.com  
Maxim Integrated | 34  
MAX20067/MAX20067B  
Automotive 3-Channel Display Bias IC with VCOM  
2
Buffer, Level Shifter, and I C Interface  
Output-Voltage Selection  
The output voltage of the boost converter can be adjusted using a resistive voltage-divider formed by R  
and  
TOP  
R
. Connect R  
between HVINP and FBP, and connect R  
between FBP and GND. Select R  
BOTTOM BOTTOM  
BOTTOM  
TOP  
in the 10kΩ to 50kΩ range. Calculate R  
with the following equation:  
TOP  
V
OUT  
R
= R  
×
− 1  
TOP  
BOTTOM  
1.25  
(
(
)
)
Place the resistors close to the device and connect R  
to the analog ground plane.  
BOTTOM  
Boost Converter Operation at low INA and high Output Power  
At high boost output power and low input voltages, the input current becomes high and and the boost converter's  
efficiency is lower. Under these conditions, it may be preferable to use the 440kHz low-frequency setting. A further boost  
in efficiency at low input voltages can be obtained by adding a Schottky diode from LXP to HVINP. See all the relevant  
curve in the Typical Operating Characteristics section  
Charge-Pump Regulators  
Selecting the Number of Charge-Pump Stages  
For highest efficiency, always choose the lowest number of charge-pump stages that meet the output voltage  
requirement. The number of positive charge-pump stages is given by:  
VGON + V  
V  
DROPOUT  
AVDD  
nPOS =  
V
− 2 × V  
SUP  
D
where nPOS is the number of positive charge-pump stages, VGON is the output of the positive charge-pump regulator,  
is the supply voltage of the charge-pump regulators (HVINP), V is the forward voltage drop of the charge-pump  
V
SUP  
D
diodes, and V  
is the dropout margin for the regulator. Use V  
= 600mV.  
DROPOUT  
DROPOUT  
The number of negative charge-pump stages is given by:  
− VGOFF + V  
DROPOUT  
nNEG =  
V
− 2 × V  
SUP  
D
where nNEG is the number of negative charge-pump stages and VGOFF is the output of the negative charge-pump  
regulator.  
Flying Capacitors  
Increasing the flying capacitor (connected to DRVN and DRVP) value lowers the effective source impedance and  
increases the output current capability. Increasing the capacitance indefinitely, however, has a negligible effect on output-  
current capability because the internal switch resistance and the diode impedance place a lower limit on the source  
impedance. A 0.1μF ceramic capacitor works well in most applications. The flying capacitor’s voltage rating must exceed  
the following:  
VCX > n × V  
HVINP  
where n is the stage number in which the flying capacitor appears.  
Charge-Pump Output Capacitor  
Increasing the output capacitance or decreasing the ESR reduces the output ripple voltage and the peak-to-peak  
transient voltage. With ceramic capacitors, the output-voltage ripple is dominated by the capacitance value. Use the  
following equation to approximate the required capacitor value:  
I
LOAD_CP  
C
>
2xf  
OUT_CP  
× V  
SW  
RIPPLE_CP  
where C  
is the output capacitor of the charge pump, I  
is the desired peak-to-peak value of the output ripple, and f  
is the load current of the charge pump,  
is the switching frequency, which is 440kHz.  
OUT_CP  
LOAD_CP  
V
RIPPLE_CP  
SW  
www.maximintegrated.com  
Maxim Integrated | 35  
MAX20067/MAX20067B  
Automotive 3-Channel Display Bias IC with VCOM  
2
Buffer, Level Shifter, and I C Interface  
Power Dissipation  
The total internal power dissipation comprises five terms:  
1. Boost converter power dissipation  
2. Positive charge-pump dissipation  
3. Negative charge-pump dissipation  
4. Gate-shading power dissipation  
5. VCOM buffer power dissipation  
Items 2–4 are negligible, while the other terms can be estimated using:  
2
INA  
2
P
= I  
× R × D + I  
× R × 1 D + 0.5 × I  
INA  
× V  
× t × f  
(
)
BOOST  
L
H
INA  
HVINP RF SW  
where R is the low-side LXP switch resistance, R is the high-side LX switch resistance, and t  
is the LXP rise/fall  
L
H
RF  
time that can be approximated by 5ns:  
P
= V  
(
V  
* I  
)
VCOM  
AVDD  
VCOM VCOM  
where I  
is the RMS VCOM buffer output current.  
VCOM  
PCB Layout Example  
Figure 2 shows an example for the layout of the power components around the MAX20067/MAX20067B. This layout  
minimizes the area of the LXP node and the area of the switching current loop. Follow these guidelines for the rest of the  
layout:  
1. Separate power and analog grounds on the board and connect them together at a single point.  
2. Connect all feedback resistor-dividers to the analog or "quiet" ground, along with the REF and INA capacitors.  
Feedback resistors should be placed close to their associated pins to avoid noise pickup.  
3. Place decoupling capacitors as close as possible to their respective pins.  
4. Keep high-current paths as short and wide as possible.  
5. Route high-speed switching nodes (i.e., LXP, DRVN, and DRVP) away from sensitive analog nodes (i.e., FBP, FBGH,  
FBGL, and REF).  
www.maximintegrated.com  
Maxim Integrated | 36  
MAX20067/MAX20067B  
Automotive 3-Channel Display Bias IC with VCOM  
2
Buffer, Level Shifter, and I C Interface  
Layout Example  
24  
23  
22  
21  
20  
19  
18  
17  
DRN  
25  
26  
27  
16  
15  
14  
GATES  
SRC  
Vias to  
PGND plane  
BOOST  
INDUCTOR  
28  
29  
30  
31  
13  
12  
PGND  
LXP  
MAX20067  
INPUT VOLTAGE  
HVINP 11  
10  
9
AVDD  
BST  
32  
CBST  
COUT  
1
3
4
5
6
7
8
2
PGND  
Vias to  
COUT  
PGND plane  
Figure 1. Layout Example  
www.maximintegrated.com  
Maxim Integrated | 37  
MAX20067/MAX20067B  
Automotive 3-Channel Display Bias IC with VCOM  
2
Buffer, Level Shifter, and I C Interface  
Ordering Information  
PART  
TEMP RANGE  
-40°C to +105°C  
-40°C to +105°C  
PIN-PACKAGE  
32 TQFN  
PKG CODE  
T3255+4C  
T3255+4C  
MAX20067GTJ/V+  
MAX20067BGTJ/V+  
32 TQFN  
/V denotes an automotive qualified part.  
+Denotes a lead(Pb)-free/RoHS-compliant package.  
www.maximintegrated.com  
Maxim Integrated | 38  
MAX20067/MAX20067B  
Automotive 3-Channel Display Bias IC with VCOM  
2
Buffer, Level Shifter, and I C Interface  
Revision History  
REVISION REVISION  
PAGES  
DESCRIPTION  
CHANGED  
NUMBER  
DATE  
0
7/17  
Initial release  
Added MAX20067B variant, adjusted VGON, SRC and DRN absolute maximum  
ratings and operating voltage ranges.  
1
2
9/20  
1/21  
1, 3, 4, 5, 6, 16  
1, 3, 4, 5, 6, 16  
Changed maximum value of VGOFF Output Voltage Range to -4V, adjusted VGON,  
SRC and DRN absolute maximum ratings and operating voltage ranges.  
For pricing, delivery, and ordering information, please visit Maxim Integrated’s online storefront at https://www.maximintegrated.com/en/storefront/storefront.html.  
Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent  
licenses are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max  
limits) shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.  
Maxim Integrated and the Maxim Integrated logo are trademarks of Maxim Integrated Products, Inc.  
© 2021 Maxim Integrated Products, Inc.  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY