MAX20069BGTLAV [MAXIM]

Automotive I2C-Controlled 4-Channel 150mA Backlight Driver and 4-Output TFT-LCD Bias;
MAX20069BGTLAV
型号: MAX20069BGTLAV
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Automotive I2C-Controlled 4-Channel 150mA Backlight Driver and 4-Output TFT-LCD Bias

CD
文件: 总57页 (文件大小:945K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Click here to ask about the production status of specific part numbers.  
2
MAX20069B  
Automotive I C-Controlled 4-Channel 150mA  
Backlight Driver and 4-Output TFT-LCD Bias  
General Description  
Benefits and Features  
The MAX20069B is a highly integrated TFT power supply  
and LED backlight driver IC for automotive TFT-LCD ap-  
plications. The IC integrates one buck-boost converter,  
one boost converter, two gate-driver supplies, and a  
boost/SEPIC converter that can power one to four strings  
of LEDs in the display backlight.  
● 4-Output TFT-LCD Bias Power  
• 2.8V to 5.5V Input for the TFT-LCD Section  
• Integrated 440kHz or 2.2MHz Boost and Buck-  
Boost Converters  
• Positive and Negative 3mA Gate Voltage  
Regulators with Adjustable Output Voltage  
• Flexible Resistor-Programmable Sequencing  
through the SEQ Pin  
The source-driver power supplies consist of a synchro-  
nous boost converter and an inverting buck-boost convert-  
er that can generate voltages up to +15V and down to  
-7V. The positive source driver can deliver up to 120mA,  
while the negative source driver is capable of 100mA. The  
• Undervoltage Detection on All Outputs  
• Low-Quiescent-Current Standby Mode  
● 4-Channel LED Backlight Driver  
• Up to 150mA Current per Channel  
• 4.5V to 42V Input Voltage Range  
• Integrated Boost/SEPIC Controller (440kHz or  
2.2MHz)  
positive source-driver supply regulation voltage (V  
) is  
POS  
set by connecting an external resistor-divider on FBP or  
2
through I C. The negative source-driver supply voltage  
(V  
) is always tightly regulated to -V  
(down to a  
NEG  
POS  
minimum of -7V). The source-driver supplies operate from  
an input voltage between 2.8V and 5.5V.  
• Dimming Ratio 10,000:1 at 200Hz  
• Adaptive Voltage Optimization to Reduce Power  
Dissipation in the LED Current Sinks  
• Open-String, Shorted-LED, and Short-to-GND  
Diagnostics  
The gate-driver power supplies consist of regulated  
charge pumps that generate up to +28V and -21.5V and  
can deliver up to 3mA each.  
● Low EMI  
The IC features a quad-string LED driver that operates  
• Phase-Shift Dimming of LED Strings  
• Spread Spectrum on LED Driver and TFT  
• Selectable Switching Frequency with Fine-Tuning  
from a separate input voltage (V  
) and can power up  
BATT  
to four strings of LEDs with 150mA (max) of current per  
string. The IC features logic-controlled pulse-width-modu-  
lation (PWM) dimming, with minimum pulse widths as low  
as 500ns with the option of phase shifting the LED strings  
with respect to each other. When phase shifting is en-  
abled, each string is turned on at a different time, reducing  
the input and output ripple as well as audible noise. With  
phase shifting disabled, the current sinks turn on simulta-  
neously and parallel connection of current sinks is possi-  
ble.  
2
via I C  
2
● I C Interface for Control and Diagnostics  
2
• Fault Indication through the FLTB pin and I C  
● Overload and Thermal Protection  
● -40°C to +105°C Ambient Temperature Operation  
● 40-Pin (6mm x 6mm) TQFN Package with Exposed  
Pad  
The startup and shutdown sequences for all power do-  
mains are controlled using one of the seven preset modes,  
which are selectable through a resistor on the SEQ pin or  
Ordering Information appears at end of datasheet.  
2
through the I C interface.  
The MAX20069B is available in a 40-pin (6mm x 6mm)  
TQFN package with an exposed pad, and operates over  
the -40°C to +105°C ambient temperature range.  
Applications  
● Automotive Dashboards  
● Automotive Central Information Displays  
● Automotive Head Up Displays  
● Automotive Navigation Systems  
19-100899; Rev 0; 9/20  
 
 
2
MAX20069B  
Automotive I C-Controlled 4-Channel 150mA  
Backlight Driver and 4-Output TFT-LCD Bias  
Simplified Block Diagram  
COMP  
OVP  
ISET  
VCC  
1 of 4  
V
UP/DOWN  
COUNTER  
+
THH  
PWM  
COMP  
gM  
DRIVE  
LOGIC  
NDRV  
OUT_  
DAC  
V
THL  
CURRENT  
REF.  
FAULT  
DETECTION  
SLOPE  
COMP  
420mV  
CS  
5V  
BATT  
REGULATOR  
+
UVLO + BG  
TEMP  
WARNING,  
SHUTDOWN  
PHASE-  
SHIFT  
LOGIC  
VCC  
LGND1,2  
DIM  
IN  
MAX20069B  
PGVDD  
DP  
BST  
400kHz  
POSITIVE  
CHARGE PUMP  
TFT BOOST  
CONTROL  
440kHz/2.2MHz  
LXP  
TEMP  
WARNING,  
SHUTDOWN  
PGND  
FBP  
FBPG  
1.25V  
DGVDD  
HVINP  
DGVEE  
POSITIVE  
SOFT-START  
AND  
POS  
NEG  
400kHz  
NEGATIVE  
CHARGE PUMP  
DN  
DISCHARGE  
ENABLE, CONTROL  
AND FAULT LOGIC  
NEGATIVE  
SOFT-START  
AND  
FBNG  
SEQ  
DISCHARGE  
DGND  
EN  
INVERTING  
REGULATOR  
440kHz/2.2MHz  
FLTB  
INN  
I2C  
REFERENCE  
1.25V  
LXN  
REF  
GND  
EP  
ADD  
SCL SDA  
www.maximintegrated.com  
Maxim Integrated | 2  
 
2
MAX20069B  
Automotive I C-Controlled 4-Channel 150mA  
Backlight Driver and 4-Output TFT-LCD Bias  
TABLE OF CONTENTS  
General Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Benefits and Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Simplified Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
Absolute Maximum Ratings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Package Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
40-Pin TQFN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Typical Operating Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Pin Configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
MAX20069B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Pin Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Functional Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Detailed Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Detailed Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
TFT Power Section. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Source-Driver Power Supplies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Gate-Driver Power Supplies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Fault Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Output Sequencing Control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Figure 1: TFT Sequence with RSEQ=10k . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Description of the LED Driver Section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Current-Mode DC-DC Controller. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
8-Bit DAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
PWM Dimming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Low-Dim Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Phase Shifting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Figure 2 Phase-Shifted Outputs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Undervoltage Lockout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Startup Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Stage 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Stage 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Open LED Management and Overvoltage Protection (OVP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Shorted-LED Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
LED Current Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
FLTB Output. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Serial Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Register Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
www.maximintegrated.com  
Maxim Integrated | 3  
2
MAX20069B  
Automotive I C-Controlled 4-Channel 150mA  
Backlight Driver and 4-Output TFT-LCD Bias  
TABLE OF CONTENTS (CONTINUED)  
Reg Map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Register Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Applications Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
TFT Power Section. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Boost Converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Boost Converter Inductor Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Boost Output Filter Capacitor Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Setting the POS Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
NEG Inverting Regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
NEG Regulator Inductor Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
NEG External Diode Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
NEG Output Capacitor Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Setting the DGVDD and DGVEE Output Voltages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
LED Driver Section. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
DC-DC Converter for LED Driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Power-Circuit Design. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Boost Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
SEPIC Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Current-Sense Resistor and Slope Compensation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Output Capacitor Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
External Switching-MOSFET Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Rectifier Diode Selection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Feedback Compensation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Typical Application Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
2
Typical Application Circuit for I C Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
Typical Application Circuit for Stand-Alone Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
2
Typical Application Circuit for I C Mode, SEPIC Topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
www.maximintegrated.com  
Maxim Integrated | 4  
2
MAX20069B  
Automotive I C-Controlled 4-Channel 150mA  
Backlight Driver and 4-Output TFT-LCD Bias  
LIST OF FIGURES  
Figure 1. TFT Sequence with R  
= 10kΩ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
SEQ  
Figure 2. Phase-Shifted Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
www.maximintegrated.com  
Maxim Integrated | 5  
2
MAX20069B  
Automotive I C-Controlled 4-Channel 150mA  
Backlight Driver and 4-Output TFT-LCD Bias  
LIST OF TABLES  
Table 1. Sequencing Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
2
Table 2. I C Addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
www.maximintegrated.com  
Maxim Integrated | 6  
2
MAX20069B  
Automotive I C-Controlled 4-Channel 150mA  
Backlight Driver and 4-Output TFT-LCD Bias  
Absolute Maximum Ratings  
BATT, OUT_, OVP to GND .................................... -0.3V to +52V  
NEG, DGVEE to GND.............................................-24V to +0.3V  
GND to PGND........................................................-0.3V to +0.3V  
GND to LGND1, LGND2........................................-0.3V to +0.3V  
GND to DGND .......................................................-0.3V to +0.3V  
IN, INN, V , FLTB, DIM, CS, EN, SDA, SCL, ADD to GND-0.3V  
CC  
to +6V  
COMP, NDRV, ISET to GND........................ -0.3V to V  
+ 0.3V  
CC  
REF, FBP, FBNG, FBPG, SEQ to GND.........-0.3V to V + 0.3V  
Continuous Power Dissipation ((T = +70°C))  
IN  
A
LXP, HVINP, BST to GND...................................... -0.3V to +26V  
LXP, PGND rms Current Rating............................................ 2.4A  
BST to LXP............................................................... -0.3V to +6V  
40-Pin TQFN-EP (derate 37mW/°C above +70°C), (Multilayer  
Board)..........................................................................2963mW  
Operating Temperature Range...........................-40°C to +105°C  
Junction Temperature.......................................................+150°C  
Storage Temperature Range ..............................-65°C to +150°C  
Lead Temperature (soldering, 10s)...................................+300°C  
Soldering Temperature (reflow) ........................................+260°C  
PGVDD, POS, DP, DN to GND............... -0.3V to V  
+ 0.3V  
HVINP  
LXN to INN ............................................................. -24V to +0.3V  
LXN, INN RMS Current Rating.............................................. 1.6A  
DGVDD to GND...................................................... -0.3V to +40V  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the  
device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for  
extended periods may affect device reliability.  
Package Information  
40-Pin TQFN  
Package Code  
T4066-5C  
21-0141  
90-0055  
Outline Number  
Land Pattern Number  
Thermal Resistance, Single-Layer Board:  
Junction to Ambient (θ  
)
38  
1
JA  
Junction to Case (θ  
)
JC  
Thermal Resistance, Four-Layer Board:  
Junction to Ambient (θ  
)
27  
1
JA  
Junction to Case (θ  
)
JC  
For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a “+”, “#”, or “-” in the package code indicates  
RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.  
Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer board. For detailed information on package thermal  
considerations, refer to www.maximintegrated.com/thermal-tutorial.  
Electrical Characteristics  
(V = 3.3V, V  
IN  
= 12V, Typical operating circuit (Figure 5), T = T = -40°C to +105°C, unless otherwise noted. Typical values are  
BATT  
A J  
at T = +25°C.)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
INPUT SUPPLY  
IN Voltage Range  
IN UVLO Threshold  
2.8  
5.5  
V
V
IN_UVLO_R  
Rising  
2.45  
2.55  
100  
2.65  
IN_UVLO_HY  
S
IN UVLO Hysteresis  
mV  
IN Shutdown Current  
IN Quiescent Current  
I
EN = GND, V = 3.6V  
4
10  
µA  
IN_SHDN  
IN  
I
V
EN  
= V = 3.6V, no switching  
2.2  
mA  
IN_Q  
IN  
www.maximintegrated.com  
Maxim Integrated | 7  
2
MAX20069B  
Automotive I C-Controlled 4-Channel 150mA  
Backlight Driver and 4-Output TFT-LCD Bias  
Electrical Characteristics (continued)  
(V = 3.3V, V  
IN  
= 12V, Typical operating circuit (Figure 5), T = T = -40°C to +105°C, unless otherwise noted. Typical values are  
BATT  
A J  
at T = +25°C.)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
REFERENCE  
Reference Output  
Voltage  
V
No load  
1.232  
1.25  
1
1.268  
1.2  
V
REF_NL  
Reference UVLO  
Threshold  
REF_UVLO_R REF rising  
V
Reference UVLO  
Hysteresis  
REF_UVLO_H  
YS  
100  
10  
2
mV  
mV  
mV  
Reference Load  
Regulation  
REF_LDREG 0 < I  
< 100µA  
20  
5
REF  
Reference Line  
Regulation  
REF_LNREG 2.7V < V < 5.5V  
IN  
BOOST REGULATOR  
Output Voltage Range  
POS Voltage Range,  
V
V
> 4V  
< 4V  
V
IN  
+ 1  
15  
15  
IN  
V
V
V
HVINP  
5
IN  
SEQ connected to IN  
5
15  
2
I C Mode  
POS Adjustment Step  
Size, I C Mode  
SEQ connected to IN  
vpos[7:0] = 0x1A  
0.1  
6.5  
V
V
2
POS Output Regulation  
Operating Frequency  
Frequency Dither  
V
6.37  
6.63  
POS  
swfreq_tft bit = 0 or MAX20069BGTL in  
stand-alone mode, dither disabled  
f
f
1900  
2200  
2500  
BOOSTH  
kHz  
swfreq_tft bit = 1 or MAX20069BGTLA in  
stand-alone mode, dither disabled  
f
360  
430  
±4  
500  
BOOSTL  
%
%
BOOSTD  
Oscillator Maximum  
Duty Cycle  
BOOST_MAX  
DC  
90  
94  
98  
FBP Regulation Voltage  
FBP Load Regulation  
FBP Line Regulation  
FBP Input Bias Current  
V
1.23  
1.25  
-1  
1.27  
V
%
FBP  
FBP_LDREG 1mA < I  
< 100mA  
POS  
FBP_LNREG  
V
= 2.8V to 5.5V  
-0.4  
20  
0
+0.4  
200  
%
IN  
I
V
FBP  
= 1.25V, T = +25°C  
100  
nA  
FBP_BIAS  
A
Low-Side Switch On-  
Resistance  
LXP_RON_LS  
I
= 0.1A  
0.2  
0.4  
0.5  
Ω
Ω
LXP  
Synchronous Rectifier  
On-Resistance  
0.25  
Synchronous Rectifier  
Zero-Crossing  
Threshold  
ZX_TH  
20  
mA  
LXP Leakage Current  
LXP_L_LEAK EN = GND, V  
= 15V  
20  
µA  
A
LXP  
LXP Current Limit, High  
Setting  
I
Duty cycle = 80%, lxp_lim_low = 0  
Duty cycle = 80%, lxp_lim_low = 1  
1.7  
2.0  
1
2.3  
LIMPH  
LXP Current Limit, Low  
Setting  
I
0.74  
1.3  
A
LIMPL  
www.maximintegrated.com  
Maxim Integrated | 8  
2
MAX20069B  
Automotive I C-Controlled 4-Channel 150mA  
Backlight Driver and 4-Output TFT-LCD Bias  
Electrical Characteristics (continued)  
(V = 3.3V, V  
IN  
= 12V, Typical operating circuit (Figure 5), T = T = -40°C to +105°C, unless otherwise noted. Typical values are  
BATT  
A J  
at T = +25°C.)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
Current-limit ramp  
MIN  
TYP  
MAX  
UNITS  
BOOST_SSTI  
ME  
Soft-Start Period  
10  
ms  
INVERTING REGULATOR  
INN Voltage Range  
2.7  
5.5  
1
V
EN = GND, V  
= 3.6V  
µA  
mA  
INN  
INN Quiescent Current  
I
EN = V  
= 3.6V  
INN  
1
INN  
swfreq_tft bit = 0, or MAX20069BGTL in  
stand-alone mode, dither disabled  
f
1900  
360  
2200  
2500  
520  
INVL  
Operating Frequency  
Frequency Dither  
kHz  
swfreq_tft bit = 1, or MAX20069BGTLA in  
stand-alone mode, dither disabled  
f
430  
±4  
INVH  
f
%
%
INV_DITH  
Oscillator Maximum  
Duty Cycle  
INV_MAXDC  
94  
V
+ V  
V
V
< I  
= 2.8V to 5.5V, V  
= 7.1V, 1mA  
POS  
= no load  
POS  
NEG  
NEG_POS_R  
EG  
INN  
-50  
7.5  
0
70  
mV  
Regulation Voltage  
< 100mA, I  
NEG  
POS  
Inverting-Regulator  
Disable Threshold  
Above this value on POS, the inverting  
regulator is turned off  
V
POSth  
7.9  
0.6  
8.2  
1.2  
20  
V
Ω
LXN On-Resistance  
LXN Leakage Current  
LXN_RON  
LXN_LEAK  
INN to LXN, I  
= 0.1A  
LXN  
LXN  
V
IN  
= 3.6V, V  
= V  
= -7V, T =  
NEG A  
µA  
+25°C  
LXN Current Limit, High  
Setting  
I
Duty cycle = 80%, neg_lim_low = 0  
Duty cycle = 80%, neg_lim_low = 1  
1.2  
1.5  
1.8  
1.1  
A
LIMNH  
LXN Current Limit, Low  
Setting  
I
0.55  
0.75  
5
A
LIMNL  
Soft-Start Period  
INV_SSTIME Current-limit ramp  
ms  
POSITIVE CHARGE-PUMP REGULATOR  
PGVDD Operating  
Voltage Range  
V
5
V
V
PGVDD  
HVINP  
HVINP-DP Current Limit  
Oscillator Frequency  
DGVDD Voltage Range,  
15  
mA  
300  
400  
500  
28  
kHz  
8
V
2
I C Mode  
DGVDD Adjustment  
Step Size, I C Mode  
0.5  
16  
V
V
2
2
DGVDD Output Voltage  
I C mode, DGVDD set to 16V (0x10)  
15.68  
1.23  
16.32  
1.27  
0.2  
FBPG Regulation  
Voltage  
V
1.25  
0
V
FBPG_REG  
FBPG Line Regulation  
V
V
= 11V to 15V  
%/V  
nA  
HVINP  
FBPG Input Bias  
Current  
= 1.25V, T = +25ºC  
-100  
100  
60  
FBPG  
A
DP On-Resistance, High  
I
= +10mA  
30  
DP  
www.maximintegrated.com  
Maxim Integrated | 9  
2
MAX20069B  
Automotive I C-Controlled 4-Channel 150mA  
Backlight Driver and 4-Output TFT-LCD Bias  
Electrical Characteristics (continued)  
(V = 3.3V, V  
IN  
= 12V, Typical operating circuit (Figure 5), T = T = -40°C to +105°C, unless otherwise noted. Typical values are  
BATT  
A J  
at T = +25°C.)  
A
PARAMETER  
DP On-Resistance, Low  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
I
= -10mA  
15  
30  
DP  
NEGATIVE CHARGE-PUMP REGULATOR  
HVINP to DN Current  
Limit  
15  
300  
-22  
mA  
kHz  
V
Oscillator Frequency  
400  
0.5  
500  
-8  
DGVEE Voltage Range,  
2
I C Mode  
DGVEE Adjustment  
V
2
Step Size, I C Mode  
DGVEE Output-Voltage  
Accuracy  
-2  
+2  
%
FBNG Regulation  
Voltage  
-12  
0
0
+12  
0.2  
mV  
%/V  
nA  
FBNG Line Regulation  
V
= -11V to -15V  
NEG  
FBNG Input Bias  
Current  
V
FBNG  
= 0V, T = +25°C  
-100  
+100  
A
DN On-Resistance, High  
DN On-Resistance, Low  
SEQUENCE SWITCHES  
I
= 10mA  
30  
15  
60  
30  
DN  
I
= -10mA  
DN  
POS Output-Voltage  
Range  
V
Tracks HVINP  
RON  
5
18  
V
POS  
(HVINP-POS),  
= 80mA  
POS ON Resistance  
1.5  
2.6  
POS  
I
POS  
Expires after soft-start period  
Expires after soft start period  
120  
120  
POS Charge Current  
Limit  
mA  
ILIM  
380  
6
POS  
POS Discharge  
Resistance  
2
3.4  
5
kΩ  
ms  
V
POS Soft-Start Charge  
Time  
Current mode (0A to full current limit)  
Tracks HVINN  
NEG Output-Voltage  
Range  
V
-7  
2
NEG  
NEG Discharge  
Resistance  
3.4  
30  
50  
6
kΩ  
Ω
PGVDD On resistance  
PGVDD Current Limit  
(HVINP-PGVDD), I  
= 3mA  
60  
PGVDD  
Expires when PGVDD charging is  
completed  
15  
6
mA  
DGVDD Input Voltage  
Range  
22  
17  
-6  
V
kΩ  
V
DGVDD Discharge  
Resistance  
7
12  
DGVEE Input Voltage  
Range  
-22  
www.maximintegrated.com  
Maxim Integrated | 10  
2
MAX20069B  
Automotive I C-Controlled 4-Channel 150mA  
Backlight Driver and 4-Output TFT-LCD Bias  
Electrical Characteristics (continued)  
(V = 3.3V, V  
IN  
= 12V, Typical operating circuit (Figure 5), T = T = -40°C to +105°C, unless otherwise noted. Typical values are  
BATT  
A J  
at T = +25°C.)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
7
TYP  
12  
MAX  
17  
UNITS  
kΩ  
DGVEE Discharge  
Resistance  
SEQ Bias Current  
I
V
SEQ  
= 1V  
9.4  
10  
10.5  
µA  
SEQ  
TFT FAULT PROTECTION  
HVINP Undervoltage  
Fault  
Before the end of POS soft-startup,  
75  
75  
80  
80  
80  
1
85  
85  
%
%
%
V
2
V
falling, I C mode  
HVINP  
2
POS Undervoltage-Fault  
Threshold  
After POS soft startup, V  
mode  
falling, I C  
POS  
NEG Undervoltage-Fault  
Threshold  
V
V
V
V
rising (% of POS setting)  
falling, stand-alone mode  
75  
85  
NEG  
FBP Undervoltage-Fault  
Threshold  
0.95  
0.95  
160  
75  
1.05  
1.05  
260  
85  
FBP  
FBPG Undervoltage-  
Fault Threshold  
falling, stand-alone mode  
rising, standalone mode.  
1
V
FBPG  
FBNG  
FBNG Undervoltage  
Fault  
210  
80  
80  
50  
40  
40  
73  
40  
mV  
%
%
ms  
%
%
%
%
DGVDD Undervoltage  
Fault  
2
I C mode, DGVDD falling  
DGVEE Undervoltage  
Fault  
2
I C mode, DGVEE rising  
75  
85  
Undervoltage-Fault  
Timer  
HVINP Short-Circuit  
Fault  
Before end of POS soft-start, HVINP  
30  
30  
70  
30  
50  
50  
76  
50  
2
falling, I C mode  
FBP Short-Circuit Fault  
Threshold  
V
FBP  
falling, stand-alone mode  
POS Overload Fault  
Threshold  
POS_OL  
POS falling (% of V  
)
HVINP  
NEG Short-Circuit Fault  
Threshold  
V
NEG  
rising (% of POS setting)  
LED BACKLIGHT DRIVER  
4.5  
4.5  
42  
Input Voltage Range  
V
V
BATT  
V
V
= V  
5.5  
BATT  
CC  
Quiescent Supply  
Current  
= 5V, V  
= 1.3V, OUT1–OUT4  
OVP  
DIM  
BATT_IQ  
5
8
mA  
open  
Standby Supply Current  
Undervoltage Lockout  
BATT_ISHDN Backlight block disabled  
1
µA  
V
UVLO  
V
BATT  
rising, V = 5V  
DIM  
3.7  
4.8  
4.15  
500  
4.45  
BATT  
Undervoltage-Lockout  
Hysteresis  
UVLO  
BATTHY  
S
mV  
V
CC  
REGULATOR  
5.75V < V  
< 36V, I  
= 2.2μF  
= 1mA to  
VCC  
BATT  
Output Voltage  
V
CC  
5
5.2  
V
10mA, C  
VCC  
www.maximintegrated.com  
Maxim Integrated | 11  
2
MAX20069B  
Automotive I C-Controlled 4-Channel 150mA  
Backlight Driver and 4-Output TFT-LCD Bias  
Electrical Characteristics (continued)  
(V = 3.3V, V  
IN  
= 12V, Typical operating circuit (Figure 5), T = T = -40°C to +105°C, unless otherwise noted. Typical values are  
BATT  
A J  
at T = +25°C.)  
A
PARAMETER  
Dropout Voltage  
Undervoltage  
SYMBOL  
VCC  
CONDITIONS  
= 4.5V, I = 5mA  
MIN  
TYP  
MAX  
UNITS  
V
0.05  
0.12  
V
DROP  
BATT  
VCC  
V
CC  
UVLOVCCR  
UVLOVCCF  
4.05  
3.75  
4.2  
3.9  
50  
4.35  
4.04  
V
V
Lockout, Rising  
V
CC  
Undervoltage  
Lockout, Falling  
Short-Circuit Current  
Limit  
I
V
shorted to GND  
CC  
mA  
VCC_SC  
BOOST/SEPIC CONTROLLER  
Switching Frequency  
f
Dither disabled  
1980  
2200  
40  
2420  
kHz  
ns  
SW  
Minimum Off-Time  
t
Switching frequency 2.2MHz  
Current ramp added to CS  
OFF_MIN  
Frequency Dither  
f
±6  
%
DITH  
SLOPE COMPENSATION  
Peak Slope-  
Compensation Current  
Ramp Per Cycle  
I
42  
50  
60  
µA  
SLOPE  
CS LIMIT COMPARATOR  
CS Threshold Voltage  
CS Input Current  
V
380  
-1  
410  
440  
+1  
mV  
µA  
CS_MAX  
I
CS  
ERROR AMPLIFIER  
OUT_ Regulation High  
Threshold  
V
V
V
falling  
rising  
0.9  
0.97  
0.72  
1.05  
0.81  
V
V
OUT_UP  
OUT_  
OUT_ Regulation Low  
Threshold  
V
0.65  
OUT_DOWN  
OUT_  
Transconductance  
COMP Sink Current  
COMP Ssource Current  
MOSFET DRIVER  
G
400  
200  
200  
700  
480  
480  
880  
800  
800  
µS  
µA  
µA  
M
I
V
V
= 2V  
= 1V  
COMP_SINK  
COMP  
I
COMP_SRC  
COMP  
R
I
I
= -20mA  
= +20mA  
1.2  
1.5  
2
3
NDRV_LS  
NDRV  
NDRV On-Resistance  
R
NDRV_HS  
NDRV  
LED CURRENT SINK  
ISET Resistance Range  
R
10  
143.5  
96  
75  
kΩ  
ISET  
I
R
R
= 10kΩ  
= 15kΩ  
150  
100  
156.5  
104  
Full-Scale OUT_ Output  
Current  
OUT_  
ISET  
mA  
I
OUT100  
ISET  
Full scale OUT_output  
Current  
I
I
R
= 30kΩ  
= 75kΩ  
47.5  
50  
52.5  
mA  
OUT50  
OUT20  
ISET  
ISET  
Full-Scale OUT_ Output  
Current  
R
17.5  
1.22  
20  
22.5  
1.28  
mA  
V
ISET Output Voltage  
V
1.25  
ISET  
www.maximintegrated.com  
Maxim Integrated | 12  
2
MAX20069B  
Automotive I C-Controlled 4-Channel 150mA  
Backlight Driver and 4-Output TFT-LCD Bias  
Electrical Characteristics (continued)  
(V = 3.3V, V  
IN  
= 12V, Typical operating circuit (Figure 5), T = T = -40°C to +105°C, unless otherwise noted. Typical values are  
BATT  
A J  
at T = +25°C.)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
= 150mA  
MIN  
TYP  
MAX  
UNITS  
I
I
OUT_MATCH1  
50  
I
I
-2.2  
+2.2  
OUT_  
Current Regulation  
Between Strings  
%
OUT_MATCH5  
0
= 50mA  
-2.5  
+2.5  
12  
OUT_  
Current-Setting  
Resolution  
I
0.5  
8
%
OUT_LSB  
V
= 48V, DIM = 0, all OUT_ pins  
OUT_  
OUT_ Leakage Current  
I
µA  
OUT_LEAK  
shorted together  
I
I
Rise Time  
Fall Time  
I
10% to 90% I  
90% to 10% I  
150  
50  
ns  
ns  
OUT_  
OUT_  
OUT_TR  
OUT_  
OUT_  
I
OUT_TF  
LED FAULT DETECTION  
2
I C mode, bit configuration = 11 (00:  
short detection disabled), default value in  
stand-alone mode  
LED-Short-Detection  
Threshold  
V
7.3  
7.8  
8.3  
V
THSHRT  
LED Short-Detection  
Threshold  
2
V
V
I C mode, led_short_th[1:0] = 10  
5.6  
2.8  
6
3
6.4  
3.2  
V
V
THSHRT  
THSHRT  
LED-Short-Detection  
Threshold  
2
I C mode, led_short_th[1:0] = 01  
LED-Short-Detection  
Disable Threshold  
V
All active OUT_s rising  
2.8  
60  
V
THSHRT_DIS  
OUT_CKLED  
OUT_ Check-LED-  
Source Current  
I
45  
70  
µA  
mV  
V
OUT_ Short-to-GND  
Detection Threshold  
V
250  
1.15  
250  
300  
1.25  
300  
7
350  
1.35  
350  
OUT_GND  
OUT_ Unused-Detection  
Threshold  
V
OUT_UN  
OUT_ Open-LED-  
Detection Threshold  
V
mV  
μs  
OUT_OPEN  
Shorted-LED-Detection  
Flag Delay  
t
SHRT  
OVERVOLTAGE AND UNDERVOLTAGE PROTECTION  
Overvoltage-Trip  
Threshold  
V
V
rising  
1.18  
1.23  
70  
1.28  
V
OVPTH  
OVP  
Overvoltage Hysteresis  
OVP Input Bias Current  
V
mV  
nA  
OVPHYS  
I
0 < V  
< 1.3V  
OVP  
-500  
+500  
0.45  
OVP  
Undervoltage-Trip  
Threshold  
V
V
OVP  
falling  
0.405  
0.425  
10  
V
OVPUVLO  
Boost Undervoltage-  
Detection Delay  
OVPUVLO_B  
LK  
µs  
ms  
Boost Undervoltage-  
Blanking Time  
After soft-startup  
60  
www.maximintegrated.com  
Maxim Integrated | 13  
2
MAX20069B  
Automotive I C-Controlled 4-Channel 150mA  
Backlight Driver and 4-Output TFT-LCD Bias  
Electrical Characteristics (continued)  
(V = 3.3V, V  
IN  
= 12V, Typical operating circuit (Figure 5), T = T = -40°C to +105°C, unless otherwise noted. Typical values are  
BATT  
A J  
at T = +25°C.)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
LOGIC INPUTS and OUTPUTS (EN, SCL, ADD, SDA, DIM)  
EN Blanking Time  
EN_BLK  
10  
µs  
V
DIM Input, Logic-High  
DIM Input, Logic-Low  
DIM Input Hysteresis  
DIM Pullup Current  
V
2.1  
DIM_IH  
V
0.8  
V
DIM_IL  
V
300  
5
mV  
µA  
DIM_HYS  
I
DIM_PUP  
EN, ADD Input, Logic-  
High  
2.1  
V
V
V
EN, ADD Input, Logic-  
Low  
0.8  
SCL, SDA Input, Logic-  
High  
0.38 x  
V
IN  
SCL, SDA Input, Logic-  
Low  
0.11 x  
V
µA  
V
V
IN  
Input Current  
-1  
+1  
2
SEQ Level to Set I C  
0.92 x  
V
IN  
Mode  
FLTB, SDA Output Low  
Voltage  
V
Sinking 5mA  
5.5V  
0.4  
+1  
V
µA  
kHz  
%
OL  
FLTB, SDA Output  
Leakage Current  
I
-1  
LEAK  
FLTB Frequency for  
Fault Detection  
f
0.84  
0.97  
25  
1.08  
FLTB  
FLTB Pin Duty Cycle on  
LED String Fault  
FLTB_DLED Stand-alone mode  
Stand-alone mode; fault on at least one  
FLTB Pin Duty Cycle on  
TFT-Rail Fault  
FLTB_DTFT  
of the POS, NEG, DGVDD, or DGVEE  
pins  
75  
50  
0
%
%
%
FLTB Pin Duty Cycle on  
LED String and TFT-Rail  
Fault  
Stand-alone mode, fault on at least one  
of the POS, NEG, DGVDD, or DGVEE  
pins, and LED driver  
FLTB_D  
FLTB Duty Cycle on  
Thermal-Shutdown  
Event  
FLTB continuously low  
THERMAL WARNING/SHUTDOWN  
Thermal-Warning  
Threshold  
T
Backlight only, T  
Backlight only  
125  
10  
°C  
°C  
°C  
°C  
WARN  
RISING  
Thermal-Warning  
Hysteresis  
T
WARN_HYS  
Thermal-Shutdown  
Threshold  
T
T
160  
15  
SHDN  
RISING  
Thermal-Shutdown  
Hysteresis  
T
SHDN_HYS  
www.maximintegrated.com  
Maxim Integrated | 14  
2
MAX20069B  
Automotive I C-Controlled 4-Channel 150mA  
Backlight Driver and 4-Output TFT-LCD Bias  
Electrical Characteristics (continued)  
(V = 3.3V, V  
IN  
= 12V, Typical operating circuit (Figure 5), T = T = -40°C to +105°C, unless otherwise noted. Typical values are  
BATT  
A J  
at T = +25°C.)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
2
I C INTERFACE  
Clock Frequency  
f
1
MHz  
ns  
SCL  
Setup Time (Repeated)  
START  
t
(Note 1)  
(Note 1)  
260  
260  
SU:STA  
Hold Time (Repeated)  
START  
t
ns  
HD:STA  
SCL Low Time  
SCL High Time  
Data Setup Time  
Data Hold Time  
t
(Note 1)  
(Note 1)  
(Note 1)  
(Note 1)  
500  
260  
50  
ns  
ns  
ns  
ns  
LOW  
t
HIGH  
t
SU:DAT  
HD:DAT  
t
t
0
Setup Time for STOP  
Condition  
(Note 1)  
(Note 1)  
260  
ns  
ns  
SU:STO  
Spike Suppression  
50  
Note 1: Note 1: Limits are 100% tested at T = +25°C. Limits over the operating temperature range and relevant supply voltage range  
A
are guaranteed by design and characterization.  
www.maximintegrated.com  
Maxim Integrated | 15  
2
MAX20069B  
Automotive I C-Controlled 4-Channel 150mA  
Backlight Driver and 4-Output TFT-LCD Bias  
Typical Operating Characteristics  
(T = 25°C, V = V  
= 3.3V, V  
= 14V unless otherwise noted.)  
A
IN  
INN  
BATT  
www.maximintegrated.com  
Maxim Integrated | 16  
 
2
MAX20069B  
Automotive I C-Controlled 4-Channel 150mA  
Backlight Driver and 4-Output TFT-LCD Bias  
Typical Operating Characteristics (continued)  
(T = 25°C, V = V  
= 3.3V, V  
= 14V unless otherwise noted.)  
A
IN  
INN  
BATT  
www.maximintegrated.com  
Maxim Integrated | 17  
2
MAX20069B  
Automotive I C-Controlled 4-Channel 150mA  
Backlight Driver and 4-Output TFT-LCD Bias  
Typical Operating Characteristics (continued)  
(T = 25°C, V = V  
= 3.3V, V  
= 14V unless otherwise noted.)  
A
IN  
INN  
BATT  
www.maximintegrated.com  
Maxim Integrated | 18  
2
MAX20069B  
Automotive I C-Controlled 4-Channel 150mA  
Backlight Driver and 4-Output TFT-LCD Bias  
Typical Operating Characteristics (continued)  
(T = 25°C, V = V  
= 3.3V, V = 14V unless otherwise noted.)  
A
IN  
INN  
BATT  
Pin Configuration  
MAX20069B  
TOP VIEW  
29 28 27 26 25 24 23 22 21  
30  
20  
19  
18  
17  
LGND1  
ISET  
SCL  
V
31  
32  
33  
CC  
BATT  
PGND  
LXP  
34  
35  
36  
SDA  
MAX20069B  
16 DIM  
HVINP  
POS  
15  
14  
13  
12  
11  
ADD  
FLTB  
REF  
37  
38  
BST  
DGVDD  
PGVDD  
DP  
39  
40  
FBNG  
SEQ  
+
1
2
3
4
5
6
7
8
9
10  
TQFN  
6mm x 6mm  
www.maximintegrated.com  
Maxim Integrated | 19  
2
MAX20069B  
Automotive I C-Controlled 4-Channel 150mA  
Backlight Driver and 4-Output TFT-LCD Bias  
Pin Description  
PIN  
NAME  
FUNCTION  
Feedback Input for DGVDD. In stand-alone mode, connect a resistor-divider between DGVDD and  
2
1
FBPG  
FBP  
GND with its midpoint connected to the FBPG pin to set the DGVDD voltage. In I C mode, connect  
FBPG to GND.  
Feedback Input for HVINP. In stand-alone mode, connect a resistor-divider from the boost output  
2
2
to GND with its midpoint connected to the FBP pin to set the HVINP voltage. In I C mode, connect  
FBP to GND.  
3
4
5
IN  
Supply Input. Connect a 1μF ceramic capacitor from IN to GND for proper operation.  
Ground Connection  
GND  
LXN  
DC-DC Inverting Converter Inductor/Diode Connection  
Buck-Boost Converter Input. Connect a 1μF ceramic capacitor from INN to GND for proper  
operation.  
6
7
INN  
NEG  
Negative Source-Driver Output Voltage  
Connects directly to the negative charge-pump output to facilitate DGVEE discharge through an  
2
8
DGVEE  
internal switch connected between DGVEE and GND. In I C mode, DGVEE is the regulator  
feedback pin.  
Regulated Charge-Pump Driver for the Negative Charge Pump. Connect to the external flying  
capacitor.  
9
DN  
10  
DGND  
Digital Ground  
Sequencing Programming Pin. In stand-alone mode, connect an appropriate resistor from SEQ to  
2
GND to program the desired sequence. When using I C control, connect SEQ to IN (see the  
11  
12  
SEQ  
2
description). In standalone mode it is still possible to adjust the OUT_ output current through I C  
and read the fault registers.  
Feedback Input for the Negative Charge Pump. In stand-alone mode, connect a resistor-divider  
from REF to DGVEE, with its midpoint connected to FBNG to set the DGVEE voltage. In I C  
2
FBNG  
mode, connect FBNG to GND.  
13  
14  
REF  
1.25V Reference Output. Connect a 220nF ceramic capacitor from REF to GND.  
Active-Low Open-Drain Fault Indication Output. Connect an external pullup resistor from FLTB to  
an external supply lower than 5V.  
FLTB  
2
I C Address Select (see Table 2). In stand-alone mode, this pin is used to select the speed of  
15  
ADD  
startup of the backlight boost converter. Connect to GND for the standard startup. Connect to IN to  
select accelerated startup with a final voltage of 1.1V on OVP.  
16  
17  
18  
DIM  
SDA  
SCL  
PWM Dimming Input. DIM has an internal pullup to V  
.
CC  
2
I C Data I/O.  
2
I C Clock Input. Connect SCL to ground in stand-alone mode.  
Full-Scale LED Current-Adjustment Pin. The resistance from ISET to GND controls the current in  
each LED string.  
19  
ISET  
20  
21  
22  
23  
24  
25  
LGND1  
OUT1  
OUT2  
LGND2  
OUT3  
OUT4  
Power-Ground Connection for OUT1 and OUT2  
LED String 1 Cathode Connection  
LED String 2 Cathode Connection. Connect OUT2 to ground using a 12kΩ resistor if not used.  
Power-Ground Connection for OUT3 and OUT4  
LED String 3 Cathode Connection. Connect OUT3 to ground using a 12kΩ resistor if not used.  
LED String 4 Cathode Connection. Connect OUT4 to ground using a 12kΩ resistor if not used.  
LED Driver Output-Voltage-Sensing Input. This voltage is used for overvoltage and undervoltage  
protection.  
26  
OVP  
www.maximintegrated.com  
Maxim Integrated | 20  
2
MAX20069B  
Automotive I C-Controlled 4-Channel 150mA  
Backlight Driver and 4-Output TFT-LCD Bias  
Pin Description (continued)  
PIN  
NAME  
FUNCTION  
LED Driver Switching-Converter Compensation Input. Connect an RC network from COMP to GND  
to compensate the backlight boost converter (see the Feedback Compensation section).  
27  
COMP  
LED Driver Current-Sense Connection. Connect a sense resistor from the MOSFET source to  
PGND and a further resistor from the MOSFET source to the CS pin to set the slope compensation  
(see the Current-Sense Resistor and Slope Compensation section).  
28  
29  
30  
CS  
EN  
Enable Input. When EN is high, the device is enabled. If EN is low for more than 25μs the device is  
reset.  
Switching nMOSFET Gate-Driver Output. Connect NDRV to the gate of the external switching  
power MOSFET. Typically, a small resistor (1Ω to 22Ω) is inserted between the NDRV output and  
nMOSFET gate to decrease the slew rate of the gate driver and reduce the switching noise.  
NDRV  
31  
32  
V
5V Regulator Output. Place a 2.2μF ceramic capacitor as close as possible to V  
and GND.  
CC  
CC  
LED Driver Supply Input. Connect BATT to a 4.75V to 40V supply. Bypass BATT to ground with a  
ceramic capacitor.  
BATT  
33  
34  
35  
36  
37  
PGND  
LXP  
Power-Ground Connection  
Boost HVINP Converter Switching-Node Connection. Connect LXP to the external inductor.  
Input Power for the POS Voltage Rail  
HVINP  
POS  
Positive Source-Driver Output Voltage  
BST  
Boost Converter High-Side Driver Power Supply. Connect a 0.1μF capacitor from BST to LXP.  
DGVDD connects directly to the positive charge-pump output to facilitate DGVDD discharge  
2
38  
DGVDD  
through an internal switch connected between DGVDD and GND. In I C mode, DGVDD is the  
regulator feedback pin. In stand-alone mode, DGVDD is used for the discharge function.  
Switched Version of HVINP Voltage for the Positive Charge Pump. Provides soft-start control of  
the DGVDD output.  
39  
40  
PGVDD  
DP  
Regulated Charge-Pump Driver for Positive Charge Pump. Connect to an external flying capacitor.  
Exposed Pad. Connect to a large contiguous copper-ground plane for optimal heat dissipation. Do  
not use EP as the only electrical ground connection.  
EP  
www.maximintegrated.com  
Maxim Integrated | 21  
2
MAX20069B  
Automotive I C-Controlled 4-Channel 150mA  
Backlight Driver and 4-Output TFT-LCD Bias  
Functional Diagrams  
Detailed Block Diagram  
COMP  
OVP  
ISET  
VCC  
1 of 4  
V
UP/DOWN  
COUNTER  
+
THH  
PWM  
COMP  
gM  
DRIVE  
LOGIC  
NDRV  
OUT_  
DAC  
V
THL  
CURRENT  
REF.  
FAULT  
DETECTION  
SLOPE  
COMP  
420mV  
CS  
5V  
REGULATOR  
+
BATT  
TEMP  
WARNING,  
SHUTDOWN  
PHASE-  
SHIFT  
LOGIC  
VCC  
UVLO + BG  
LGND1,2  
DIM  
IN  
MAX20069B  
PGVDD  
DP  
BST  
400kHz  
POSITIVE  
CHARGE PUMP  
TFT BOOST  
CONTROL  
440kHz/2.2MHz  
LXP  
TEMP  
WARNING,  
SHUTDOWN  
PGND  
FBP  
FBPG  
1.25V  
DGVDD  
HVINP  
DGVEE  
POSITIVE  
SOFT-START  
AND  
POS  
NEG  
400kHz  
NEGATIVE  
CHARGE PUMP  
DN  
DISCHARGE  
ENABLE, CONTROL  
AND FAULT LOGIC  
NEGATIVE  
SOFT-START  
AND  
FBNG  
SEQ  
DISCHARGE  
DGND  
EN  
INVERTING  
REGULATOR  
440kHz/2.2MHz  
FLTB  
INN  
I2C  
REFERENCE  
1.25V  
LXN  
REF  
GND  
EP  
ADD  
SCL SDA  
www.maximintegrated.com  
Maxim Integrated | 22  
2
MAX20069B  
Automotive I C-Controlled 4-Channel 150mA  
Backlight Driver and 4-Output TFT-LCD Bias  
Detailed Description  
The MAX20069B is highly integrated TFT power supply and LED backlight driver IC for automotive TFT-LCD  
applications. The IC integrates one buck-boost converter, one boost converter, two gate-driver supplies, and a boost/  
SEPIC converter that can power one to four strings of LEDs in the display backlight.  
The source-driver power supplies consist of a synchronous boost converter and an inverting buck-boost converter  
that can generate voltages up to +15V and down to -7V. The positive source-driver can deliver up to 120mA, while  
the negative source driver is capable of 100mA. The positive source-driver-supply regulation voltage (V  
connecting an external resistor-divider on FBP or through I C. The negative source-driver-supply voltage (V  
) is set by  
POS  
2
) is  
NEG  
always tightly regulated to -V  
between 2.8V and 5.5V.  
(down to a minimum of -7V). The source-driver supplies operate from an input voltage  
POS  
The gate-driver-power supplies consist of regulated charge pumps that generate up to +28V and -21.5V and can deliver  
up to 3mA each.  
The IC features a quad-string LED driver that operates from a separate input voltage (BATT) and can power up to four  
strings of LEDs with 150mA (max) of current per string. The IC features logic-controlled pulse-width modulation (PWM)  
dimming, with minimum pulse widths as low as 500ns with the option of phase shifting the LED strings with respect to  
each other. When phase shifting is enabled, each string is turned on at a different time, reducing the input and output  
ripple as well as audible noise. With phase shifting disabled, each current sink turns on at the same time and allows  
parallel connection of current sinks.  
The startup and shutdown sequences for all power domains are controlled using one of the seven preset modes that  
2
are selectable through a resistor on SEQ. If the SEQ pin is connected to IN (I C control), any sequence can be  
controlled using the individual regulator-enable bits. When a regulator other than HVINP is enabled, the HVINP boost is  
automatically enabled if not previously active. In this case, the second regulator is enabled when the soft-start of HVINP  
has completed.  
TFT Power Section  
Source-Driver Power Supplies  
The source-driver power supplies consist of a boost converter with output switch and an inverting buck-boost converter  
that generates up to +15V (max) and down to -7V (min), respectively, and can deliver up to 120mA on the positive  
regulator and -100mA on the negative regulator. The positive source-driver power supply’s regulation voltage (V  
be set by the resistor-divider on FBP or through the I C interface.  
) can  
POS  
2
The negative source-driver supply voltage (V  
) is automatically tightly regulated to -V  
. V  
cannot be adjusted  
NEG  
POS NEG  
2
independently of V  
. In I C mode, V  
(and V  
) is set by writing to the appropriate register. When HVINP is set  
POS  
POS  
NEG  
2
to a voltage greater than 7V in I C mode, the NEG converter should be disabled to avoid damage to the device. If the  
NEG output is not needed, the external components can be omitted and INN should be connected to IN; LXN should be  
left open and NEG should be connected to GND.  
Gate-Driver Power Supplies  
The positive gate-driver power supply (DGVDD) generates +28V (max) and the negative gate-driver power supply  
(DGVEE) generates -21.5V (min). Both can supply up to 3mA output current. The DGVDD and DGVEE regulation  
2
voltages are set independently using external resistor networks or through the I C interface.  
Fault Protection  
The IC has robust fault and overload protection. In stand-alone mode, if any of the DGVEE, NEG, POS, or DGVDD  
outputs fall to less than 80% (typ) of their intended regulation voltage for more than 50ms (typ), or if a short-circuit  
condition occurs on any output for any duration, then all outputs latch off (at the same time without any power-down  
2
sequence) and a fault condition is set. In I C mode, only the output at fault is automatically disabled.  
2
In stand-alone mode, the fault condition is cleared when the EN pin or IN supply are cycled. In I C mode, the fault  
www.maximintegrated.com  
Maxim Integrated | 23  
2
MAX20069B  
Automotive I C-Controlled 4-Channel 150mA  
Backlight Driver and 4-Output TFT-LCD Bias  
condition is cleared when the EN bit of the affected rail is set to 0 or when the EN pin or the IN power supply is cycled.  
Both sections (TFT and WLED) have thermal-fault detection; only the section causing the thermal overload is turned off.  
Thermal faults are cleared when the die temperature drops by 15°C.  
2
When a fault is detected, FLTB goes low in I C mode, while in stand-alone mode the FLTB output pulses at a duty cycle  
that indicates the source of the fault.  
Output Sequencing Control  
The IC’s source-driver and gate-driver outputs (DGVEE, NEG, POS, and DGVDD) can be controlled by the resistor value  
2
2
2
on the SEQ pin (stand-alone mode), or by the I C interface if SEQ is connected to IN (I C mode). In I C mode, the IC is  
2
turned on once one of the rails is activated by means of the appropriate I C command, and the sequence is controlled  
2
by the I C commands.  
All outputs are brought up with soft-start control to limit the inrush current.  
In stand-alone mode, toggling the EN pin from low to high initiates an adjustable preset power-up sequence (see Table  
1). Toggling the EN pin from high to low initiates an adjustable preset power-down sequence. The EN pin has an internal  
deglitching filter of 7μs (typ).  
Note: A glitch in the EN signal with a period less than 7μs is ignored by the internal enable circuitry. After all the TFT  
outputs have exceeded their power-good levels, the backlight block is turned on.  
Table 1. Sequencing Options  
POWER-OFF SEQUENCING  
SEQ PIN  
RESISTOR  
POWER-ON SUPPLY SEQUENCING  
(REVERSE ORDER OF POWER-UP)  
(t –t IS TIME FROM THE EXPIRATION  
1
4
(t –t IS TIME FROM THE INSTANT  
5
8
(kΩ ±1%)  
OF SOFT-START PERIOD)  
WHEN EN IS DRIVEN LOW)  
3rd  
AFTER  
2nd  
AFTER  
4th AFTER  
1st AFTER  
4th AFTER  
1st AFTER t  
(ms)  
2nd AFTER t  
(ms)  
3rd AFTER t  
(ms)  
1
2
7
t (ms)  
4
t (ms)  
5
t (ms)  
8
t (ms)  
3
t (ms)  
6
10  
30  
51  
POS  
POS  
NEG  
NEG  
NEG  
POS  
DGVEE  
DGVDD  
DGVEE  
DGVDD  
DGVEE  
DGVDD  
DGVDD  
DGVEE  
DGVDD  
DGVEE  
DGVDD  
DGVEE  
NEG  
NEG  
POS  
POS  
POS  
NEG  
No NEG  
output  
No NEG  
output  
68  
91  
POS  
POS  
DGVEE  
DGVDD  
DGVDD  
DGVEE  
DGVDD  
DGVEE  
DGVEE  
DGVDD  
POS  
POS  
No NEG  
output  
No NEG  
output  
DGVDD  
DGVEE  
DGVDD  
DGVEE  
110  
150  
POS NEG  
DGVEE  
POS NEG  
DGVEE  
DGVDD  
NEG  
POS  
POS  
NEG  
DGVDD  
In the above table:  
● t = t = 15ms  
1
5
● t = t = 30ms  
2
6
● t = t = 45ms  
3
7
● t = t = 60ms  
4
8
www.maximintegrated.com  
Maxim Integrated | 24  
2
MAX20069B  
Automotive I C-Controlled 4-Channel 150mA  
Backlight Driver and 4-Output TFT-LCD Bias  
Figure 1: TFT Sequence with RSEQ=10k  
DGVDD  
HVINP  
POS  
FLTB  
EN  
NEG  
t1  
t2  
DGVEE  
t5  
t3  
t6  
t4  
t7  
t8  
500ms  
Figure 1. TFT Sequence with R  
= 10kΩ  
SEQ  
Description of the LED Driver Section  
The IC also includes a high-efficiency high-brightness LED driver that integrates all the necessary features to implement  
a high-performance backlight driver to power LEDs in medium-to-large-sized displays for automotive as well as general  
applications. The IC provides load-dump voltage protection up to 52V in automotive applications and incorporates two  
major blocks: a DC-DC controller with peak current-mode control to implement a boost or a SEPIC-type switched-mode  
power supply and a 4-channel LED driver with 20mA to 150mA constant-current-sink capability per channel.  
The IC features constant-frequency, peak current-mode control with programmable slope compensation to control the  
duty cycle of the PWM controller. The DC-DC converter implemented using the controller generates the required supply  
voltage for the LED strings from a wide input supply range. Connect LED strings from the DC-DC converter output to the  
4-channel constant-current-sink drivers (OUT1–OUT4) to control the current through the LED strings. A single resistor  
connected from the ISET input to ground adjusts the forward current through all four LED strings. Fine adjustment can  
2
be made to the LED current using the I C interface, even in stand-alone mode.  
The IC features adaptive voltage control that adjusts the converter output voltage depending on the forward voltage of  
the LED strings. This feature minimizes the voltage drop across the constant-current-sink drivers and reduces power  
dissipation in the device. The backlight boost and current sinks are enabled when the complete sequence of the TFT bias  
section is completed.  
The IC provides a very wide (10,000:1) PWM dimming range at 200Hz dimming frequency (with a dimming pulse as  
narrow as 500ns possible). The internal dimming signal is derived from the DIM signal or from the phase-shift dimming  
2
logic. Phase shifting of the LED strings can be disabled in I C mode by writing to the psen bit in the enable (0x02)  
register.  
Other advanced features include detection and string disconnect for open-LED strings, partially or fully shorted strings,  
and unused strings. Overvoltage protection clamps the converter output voltage to the programmed OVP threshold in the  
event of an open-LED condition.  
www.maximintegrated.com  
Maxim Integrated | 25  
2
MAX20069B  
Automotive I C-Controlled 4-Channel 150mA  
Backlight Driver and 4-Output TFT-LCD Bias  
The shorted-LED string threshold is programmable using the led_short_th[1:0] bits in the cnfg_gen (0x01 register (in  
stand-alone mode, the threshold is fixed at 7.8V).  
2
In I C mode, the FLTB signal asserts low to indicate open-LED, shorted-LED, and overtemperature conditions if they  
are not masked. In stand-alone mode, a fault in the backlight section causes FLTB to pulse at 25% duty cycle. Disable  
individual current-sink channels by connecting the corresponding OUT_ to LGND_ through a 12kΩ resistor (starting  
with OUT4). In this case, FLTB will not indicate an open-LED condition for the disabled channel. The IC also features  
overtemperature warning and protection that shuts down the controller if the die temperature exceeds +160°C.  
Current-Mode DC-DC Controller  
The IC backlight boost is a constant-frequency, current-mode controller designed to drive the LEDs in a boost or SEPIC  
configuration. The IC features multiloop control to regulate the peak current in the inductor, as well as the voltage across  
the LED current sinks to minimize power dissipation.  
The default switching frequency is 2.2MHz, but this can be reduced to 440kHz by setting the bl_swfreq bit in the cnfg_gen  
(0x01) register. Programmable slope compensation is used to avoid subharmonic oscillation that can occur at > 50% duty  
cycles in continuous-conduction mode.  
The external nMOSFET is turned on at the beginning of every switching cycle. The inductor current ramps up linearly  
until turned off at the peak current level set by the feedback loop. The peak inductor current is sensed from the voltage  
across the current-sense resistor (R ) connected from the source of the external nMOSFET to PGND.  
CS  
The IC features leading-edge blanking to suppress the external nMOSFET switching noise. A PWM comparator  
compares the current-sense voltage plus the slope-compensation signal with the output of the transconductance error  
amplifier. The controller turns off the external nMOSFET when the voltage at CS exceeds the error amplifier’s output  
voltage (at the COMP pin). This process repeats every switching cycle to achieve peak current-mode control.  
In addition to the peak current-mode-control loop, the IC has two other feedback loops for control. The converter output  
voltage is sensed through the OVP input, which goes to the inverting input of the error amplifier.  
The OVP gain (A  
) is defined as V  
/V  
, or (R17 + R16)/R16. The other feedback comes from the OUT_  
OVP  
OUT OVP  
current sinks. This loop controls the headroom of the current sinks to minimize total power dissipation, while still ensuring  
accurate LED current matching. Each current sink has a window comparator with a low threshold of 0.68V and a high  
threshold of 0.93V. These comparators drive logic that controls an up/down counter. The up/down counter is updated on  
every falling edge of the DIM input and drives an 8-bit digital-to-analog converter (DAC), which sets the reference to the  
error amplifier.  
8-Bit DAC  
The error amplifier’s reference input is controlled with an 8-bit DAC. The DAC output is ramped up during startup to  
implement a soft-start function (see the Startup Sequence section). During normal operation, the DAC output range is  
limited to between 0.6V and 1.25V. The DAC LSB determines the minimum output-voltage step according to the following  
equation.  
Equation 1:  
V
= V  
× A  
STEP_MIN  
DAC_LSB OVP  
where V  
gain.  
is the minimum output-voltage step, V  
is 2.5mV (typ), and A  
is the OVP resistor-divider  
OVP  
STEP_MIN  
DAC_LSB  
PWM Dimming  
The DIM input accepts a pulse-width modulation (PWM) signal to control the luminous intensity of the LEDs and modulate  
the pulse width of the LED current. This allows for changing the brightness of the LEDs without the color temperature  
shift that sometimes occurs with analog dimming. The DIM input detects the dimming frequency based on the first two  
pulses applied to the DIM input after EN goes high. The dimming frequency cannot be changed during normal operation.  
If a change of dimming frequency is desired, disable the backlight block, change the DIM frequency, and then re-enable  
the backlight block. The DIM signal can be applied before or after the device is enabled, but needs to power on smoothly  
(no high-frequency pulses). If the DIM signal turn-on is inconsistent, the DIM signal should be applied first; once the DIM  
www.maximintegrated.com  
Maxim Integrated | 26  
2
MAX20069B  
Automotive I C-Controlled 4-Channel 150mA  
Backlight Driver and 4-Output TFT-LCD Bias  
signal is stable, the backlight block can be enabled. In normal dimming mode, if at least one of the LED current sinks  
is turned on, the boost converter switches. If none of the current sinks are on (each current-sink DIM signal is low), the  
boost converter stops switching, and the COMP node is disconnected from the error amplifier until one of the LED current  
sinks is turned on again.  
Low-Dim Mode  
The IC's operation mode changes at very narrow dimming pulses to ensure a consistent dimming response of the LEDs.  
The IC checks the pulse width of the signal being applied to the DIM input, and if the dimming on-time is lower than 25μs  
(typ) for 2.2MHz switching frequency (f ), the IC enters low-dim mode. In this state, the converter switches continuously  
SW  
and the LED short detection is disabled. When the DIM input is greater than 26μs (typ) for 2.2MHz, the IC goes back  
into normal dim mode, enabling the short-LED detection and switching the power FET only when the DIM signal is high.  
When the switching frequency is set to 440kHz, the low-dim thresholds become 50μs and 51μs.  
Phase Shifting  
The IC offers phase shifting of the LED strings. To achieve this, the DIM signal is sampled internally by a 10MHz clock.  
When phase shifting is enabled, the sampled DIM input is used to generate separate dimming signals for each LED string  
that is shifted in phase. The resolution with which the DIM signal is captured degrades at higher DIM input frequencies;  
therefore, dimming frequencies between 100Hz and 3kHz are recommended, although higher dimming frequencies are  
technically possible. The phase shift between strings is determined by the following equation.  
Equation 2:  
360  
n
Θ =  
where n is the total number of strings being used and θ is the phase shift in degrees. The order of the sequence is fixed,  
with OUT1 as the first in the sequence and OUT4 as the last. See Figure 2 for a timing diagram example with phase  
shifting enabled.  
2
The phase-shifting feature is enabled or disabled with the psen bit. In stand-alone mode (no I C), the psen bit in register  
0x02 is set high by default (phase shifting enabled). When phase shifting is disabled, all strings turn on/off at the same  
time. If multiple current sinks are being connected in parallel to achieve greater than 150mA per string, phase shifting  
should be disabled.  
If a fault is detected, resulting in a string being disabled during normal operation, the phase shifting does not adjust. For  
example, if all four strings are used, each string is 90 degrees out of phase. If the fourth string is disabled due to a fault,  
there will still be 90-degree phase difference between each string.  
When disabling unused strings, disable the higher-numbered OUT_ current sinks first.  
www.maximintegrated.com  
Maxim Integrated | 27  
2
MAX20069B  
Automotive I C-Controlled 4-Channel 150mA  
Backlight Driver and 4-Output TFT-LCD Bias  
Figure 2 Phase-Shifted Outputs  
DIM  
ILED  
OUT1 Current  
OUT2 Current  
OUT3 Current  
OUT4 Current  
ILED  
Total Current  
Figure 2. Phase-Shifted Outputs  
Undervoltage Lockout  
The WLED section features two UVLOs that monitor the input voltage at BATT and the output of the internal LDO  
regulator at V . The backlight boost is active only when both BATT and V  
CC  
exceed their respective UVLO thresholds.  
CC  
Startup Sequence  
The WLED section startup sequence occurs in two stages, as described in the Stage 1 and Stage 2 sections. The overall  
startup time can be selected between slow or fast using the ADD pin in stand-alone mode or the wled_ss_time bit in the  
2
fault_masks1 (0x0B) register when using the I C interface. The final boost output voltage differs between the slow and  
fast startup modes: when the slow startup mode is selected, the final voltage on the OVP pin is 0.6V, while in the fast  
mode the final voltage on OVP is 1.1V.  
Stage 1  
Assuming the BATT input is above its UVLO and the TFT has completed the startup sequence, the V  
regulator begins  
CC  
to charge up its output capacitor. Once the V  
regulator output rises above the V  
UVLO threshold, the IC goes  
CC  
CC  
through its power-up checks, including unused string detection and OUT_ short-to-ground detection. To avoid possible  
damage, the converter does not start if any OUT_ is detected as shorted to ground.  
Any current sinks detected as unused are disabled to prevent a false fault-flag assertion during normal operation. After  
these checks have been performed, the converter begins to operate and the output voltage begins to ramp up. The DAC  
reference to the error amplifier is stepped upwards until the OVP pin reaches 0.6V (or 1.1V in fast startup mode).  
This stage duration is fixed at approximately 50ms (22ms in fast startup mode).  
www.maximintegrated.com  
Maxim Integrated | 28  
2
MAX20069B  
Automotive I C-Controlled 4-Channel 150mA  
Backlight Driver and 4-Output TFT-LCD Bias  
Stage 2  
The second stage begins once the first stage is complete and the DIM input goes high. During stage 2, the output of the  
converter is adjusted until the minimum OUT_ voltage falls within the window comparator limits of 0.68V (typ) and 0.93V  
(typ). The output ramp is again controlled by the DAC, which provides the reference for the error amplifier. The DAC  
output is updated on each rising edge of the DIM input. If the DIM input is a 100% duty cycle (DIM = high), then the DAC  
output is updated once every 10ms.  
The total soft-start time can be calculated using the following equation in slow startup mode.  
Equation 3:  
V
+ 0.81 − 0.6 × A  
(
)
LED  
OVP  
t
= 50ms +  
SS  
f
× 0.01 × A  
DIM  
OVP  
where t  
is the total soft-start time, 50ms is the fixed stage 1 duration, V  
is the total forward voltage of the LED  
LED  
SS  
strings, 0.81V is midpoint of the window comparator, A  
is the gain of the OVP resistor-divider, f  
is the dimming  
OVP  
DIM  
frequency (use 100Hz if the DIM input duty cycle is 100%), and 0.01V is the maximum voltage step per clock cycle of the  
DAC.  
In fast startup mode (with ADD connected to IN or the wled_ss_time bit in the fault_masks1 (0x0B) register set to 1), the  
following equation should be used.  
Equation 4:  
1.1 × A  
− (V  
+ 0.81)  
OVP  
LED  
OVP  
t
= 22ms +  
SS  
f
× 0.01 × A  
DIM  
Open LED Management and Overvoltage Protection (OVP)  
On power-up, the IC detects and disconnects any unused current-sink channels before entering the DC-DC converter  
soft-start. Disable the unused current-sink channels by connecting the corresponding OUT_ to LGND_ through a 12kΩ  
resistor. This avoids asserting the FLTB output for the unused channels. After soft-start, the IC detects open strings and  
disconnects them from the internal minimum OUT_ voltage detector. This keeps the DC-DC converter output voltage  
within safe limits and maintains high efficiency.  
If any LED string is open, the voltage at the open OUT_ goes to GND. The DC-DC converter output voltage then  
increases to the overvoltage-protection threshold (at which point the PWM controller is switched off, holding NDRV low)  
set by the voltage-divider network connected between the converter output, OVP input, and GND; at that point, any  
current-sink output with V  
< 300mV (typ) is disconnected from the minimum-voltage detector. Select V  
OUT_  
OUT_OVP  
(which will be the maximum voltage the boost converter can produce) according to the equation below.  
Equation 5:  
V
> 1.1 × (V  
+ 1)  
OUT_OVP  
LED_MAX  
where V  
is the maximum expected LED string voltage. V  
should also be chosen such that the voltage  
OUT_OVP  
LED_MAX  
at the OUT_ pins does not exceed the absolute maximum rating.  
The upper resistor in the OVP resistor-divider (R17) can be selected using the following formula.  
Equation 6:  
V
OUT_OVP  
R17 = R16 × (  
− 1)  
1.23  
where 1.23V is the typical OVP threshold. Ensure that the minimum voltage on the OVP pin is always greater than 0.6V  
to avoid the boost converter latching off due to undervoltage by checking the following.  
Equation 7:  
R16  
(V  
+ 0.6) ×  
> 0.6V  
R16 + R17  
LED_MIN  
where V  
is the worst-case minimum LED string voltage. If all strings are detected as open or unused the  
LED_MIN  
www.maximintegrated.com  
Maxim Integrated | 29  
2
MAX20069B  
Automotive I C-Controlled 4-Channel 150mA  
Backlight Driver and 4-Output TFT-LCD Bias  
boost converter is disabled. In this condition the boost undervoltage detection is also disabled to avoid signalling an  
undervoltage fault. When this occurs the device is latched off.  
2
When an open-LED condition occurs, FLTB is asserted low in I C mode or switches at 25% in stand-alone mode.  
For boost-circuit applications, the OVP resistor-divider always dissipates power from the battery, through the inductor  
and switching diode. If ultra-low shutdown current is needed in stand-alone mode, a general-purpose MOSFET can be  
added between the bottom OVP resistor and ground, with the EN of the device controlling the gate of the MOSFET. This  
additional MOSFET disconnects the OVP resistor-divider path when the device is disabled.  
Shorted-LED Detection  
The IC checks for shorted LEDs at each rising edge of DIM. An LED short is detected at OUT_ if the OUT_ voltage is  
greater than the value programmed using the led_short_th bits in register 0x01 (or 7.8V in stand-alone mode). Once a  
short is detected on any of the strings, the LED strings with the short are disconnected and the FLTB output flag asserts  
(unless the fault is masked) until the device detects that the shorts are removed on any of the following rising edges of  
DIM. Short-LED detection is disabled in low-dimming mode. If the DIM input is connected high, short-LED detection is  
performed continuously.  
Short-LED detection is also disabled in cases where all active OUT_ channels rise above 2.8V (typ). This can occur in  
a boost-converter application when the input voltage becomes higher than the total LED string voltage drop, such as  
during a battery load dump. During a load dump or other input voltage transient an erroneous shorted-LED fault may  
be indicated if one of the outputs exceeds the shorted-LED detection threshold before the others. This condition is most  
likely to occur when phase-shifting is enabled.  
LED Current Control  
The IC features four identical constant-current sources used to drive multiple high-brightness LED strings. The current  
through each one of the four channels is adjustable between 20mA and 150mA using an external resistor (R  
connected between ISET and GND.  
)
ISET  
Select R  
using the formula below.  
ISET  
Equation 8:  
1500  
R
=
ISET  
I
OUT_  
where I  
is the desired output current for each of the four channels. All four channels can be paralleled together for  
OUT_  
2
string currents exceeding 150mA. When I C control is used, the current in the strings can be reduced in steps by writing  
to the diout (0x06) register. The resolution of this setting is 0.5% of the value set by the resistor on ISET.  
FLTB Output  
The FLTB output pin is an active-low, open-drain output that can be used to signal various device faults (for operation in  
2
stand-alone mode (see the Stand-Alone Mode section). When the I C interface is used, the FLTB output can flag any or  
all of the following conditions:  
● Open fault on any of the OUT_ pins  
● Shorted-LED fault on any of the OUT_ pins  
● Any OUT_ shorted to GND  
● LED boost converter undervoltage or overvoltage  
● Undervoltage on HVINP, POS, NEG, DGVDD, or DGVEE  
● Thermal warning on LED drive section  
● Thermal shutdown on either LED drive or TFT bias section  
The above conditions can be masked from causing FLTB to go low by using the corresponding mask bit in the  
bl_fault_masks (0x0A), fault_masks1 (0x0B), and fault_masks2 (0x0C) registers, if available.  
In standalone mode the duty.cycle output on the FLTB pin indicates the type of fault according to the following scheme:  
● FLTB continuously low: Thermal-shutdown fault  
www.maximintegrated.com  
Maxim Integrated | 30  
2
MAX20069B  
Automotive I C-Controlled 4-Channel 150mA  
Backlight Driver and 4-Output TFT-LCD Bias  
● 25% duty cycle on FLTB: Fault in LED section  
● 50% duty cycle on FLTB: Faults in both LED and TFT sections  
● 75% duty cycle on FLTB: Fault in TFT section  
Serial Interface  
2
The MAX20069B IC features an I C, 2-wire serial interface consisting of a serial-data line (SDA) and a serial-clock line  
(SCL). SDA and SCL facilitate communication between the IC and the master at clock rates up to 1MHz. The master,  
typically a microcontroller, generates SCL and initiates data transfer on the bus.  
The Slave ID of the MAX20069B depends on the connection of the ADD pin and the selected device version (see Table  
2).  
2
Table 2. I C Addresses  
DEVICE ADDRESS  
ADD PIN  
CONNECTION  
GND  
DEVICE  
WRITE  
ADDRESS  
READ  
ADDRESS  
VERSION  
A6  
0
A5  
1
A4  
0
A3  
0
A2  
0
A1  
0
A0  
0
MAX20069BGTLA  
MAX20069BGTLA  
0x40  
0x48  
0x41  
0x49  
IN  
0
1
0
0
1
0
0
A master device communicates with the MAX20069B by transmitting the correct Slave ID followed by the register address  
and data word. Each transmit sequence is framed by a START (S) or Repeated START (Sr) condition, and a STOP (P)  
condition. Each word transmitted over the bus is 8 bits long and is always followed by an acknowledge clock pulse.  
The IC's SDA line operates as both an input and an open-drain output. A pullup resistor greater than 500Ω is required  
on the SDA bus. In general, the resistor has to be selected as a function of bus capacitance such that the rise time on  
the bus is not greater than 120ns. The IC's SCL line operates as an input only. A pullup resistor greater than 500Ω is  
required on SCL if there are multiple masters on the bus, or if the master in a single-master system has an open-drain  
SCL output. In general, for the SCL-line resistor selection, the same SDA recommendations apply. Series resistors in line  
with SDA and SCL are optional. The SCL and SDA inputs suppress noise spikes to assure proper device operation even  
on a noisy bus.  
2
The I C interface can be reset at any time by taking the EN pin low for at least 25μs. When a reset is performed the  
registers are reset to their initial values. Since all enable bits will be reset the device outputs will be turned off and a  
complete re-initialization will be needed.  
www.maximintegrated.com  
Maxim Integrated | 31  
2
MAX20069B  
Automotive I C-Controlled 4-Channel 150mA  
Backlight Driver and 4-Output TFT-LCD Bias  
Register Map  
Reg Map  
MAX20069B  
ADDRESS  
NAME  
MSB  
LSB  
bank 0  
0x00  
0x01  
nop[7:0]  
rev_id[3:0]  
lxp_lim_l neg_lim_  
dev_id[3:0]  
bl_swfre  
q
swfreq_tf  
cnfg_gen[7:0]  
led_short_th[1:0]  
ssoff_bl  
engvee  
ssoff_tft  
psen  
ow  
low  
t
0x02  
0x03  
0x04  
0x05  
0x06  
0x07  
enable[7:0]  
enbst  
enpos  
enneg  
engvdd  
enblight  
vpos_set[7:0]  
dgvdd_set[7:0]  
dgvee_set[7:0]  
diout[7:0]  
vpos[7:0]  
dgvdd[5:0]  
dgvee[4:0]  
neguv  
diout[6:0]  
pos_ol  
bl_fault[7:0]  
led_open[3:0]  
led_short[3:0]  
led_short  
gnd  
0x08  
fault[7:0]  
boostuv  
boostov  
hvinpuv  
dgvdduv dgveeuv  
wled_th_ wled_th_ tft_th_sh  
0x09  
0x0A  
dev_status[7:0]  
hw_rst  
shdn  
warn  
dn  
bl_fault_masks[7:0]  
led_open_mask[3:0]  
led_short  
fsw_bl+  
fsw_bl-  
fsw_tft+  
fsw_tft-  
boostuv_ boostov_  
hvinpuv_ wled_ss_ neguv_m dgvdduv dgveeuv  
0x0B  
0x0C  
fault_masks1[7:0]  
fault_masks2[7:0]  
gnd_mas  
k
mask  
mask  
mask  
time  
ask  
_mask  
_mask  
wled_th_  
warn_ma  
sk  
Register Details  
nop (0x00)  
Device identification register  
BIT  
7
6
5
4
3
2
1
0
Field  
rev_id[3:0]  
0x5  
dev_id[3:0]  
0x9  
Reset  
Access  
Type  
Read Only  
Read Only  
BITFIELD  
rev_id  
BITS  
7:4  
DESCRIPTION  
DECODE  
Revision ID.  
0000: Revision ID  
1001: Device ID for the device  
dev_id  
3:0  
Device identification.  
cnfg_gen (0x01)  
Configuration register  
www.maximintegrated.com  
Maxim Integrated | 32  
 
 
 
2
MAX20069B  
Automotive I C-Controlled 4-Channel 150mA  
Backlight Driver and 4-Output TFT-LCD Bias  
BIT  
7
6
5
4
3
2
1
0
neg_lim_lo  
w
Field  
lxp_lim_low  
0b0  
led_short_th[1:0]  
0x3  
bl_swfreq  
0b0  
ssoff_bl  
0b0  
swfreq_tft  
0x0  
ssoff_tft  
0x0  
Reset  
0b0  
Access  
Type  
Write, Read Write, Read  
Write, Read  
Write, Read Write, Read Write, Read Write, Read  
BITFIELD  
BITS  
DESCRIPTION  
DECODE  
When set to 1, the LXP switch current limit is  
reduced.  
lxp_lim_low  
7
6
When set to 1, the NEG switch current limit is  
reduced.  
neg_lim_low  
led_short_th  
00: Fault disabled  
01: Fault threshold is 3V  
10: Fault threshold is 6V  
11: Fault threshold is 7.8V  
5:4  
LED fault-detection threshold.  
Sets backlight boost switching frequency.  
Default value is 2.2MHz.  
0: 2.2MHz  
1: 440kHz  
bl_swfreq  
ssoff_bl  
3
2
When 1, spread-spectrum modulation is  
disabled on the backlight boost; when 0.  
spread spectrum is enabled.  
0: SS enabled  
1: SS disabled  
Sets TFT section switching frequency (note  
that the charge-pump operating frequency is  
always 400kHz). Default value is 2.2MHz.  
0: 2.2MHz  
1: 420kHz  
swfreq_tft  
ssoff_tft  
1
0
When 1, spread-spectrum modulation is  
disabled on the TFT section; when 0, spread  
spectrum is enabled.  
0: Enabled  
1: Disabled  
enable (0x02)  
Block enables register  
BIT  
7
6
5
4
3
2
1
0
Field  
enbst  
0x0  
enpos  
0x0  
enneg  
0x0  
engvdd  
0x0  
engvee  
0x0  
enblight  
0x0  
psen  
0x1  
Reset  
Access  
Type  
Write, Read Write, Read Write, Read Write, Read Write, Read Write, Read Write, Read  
BITFIELD  
BITS  
DESCRIPTION  
DECODE  
0: Disabled  
1: Enabled  
enbst  
6
Boost converter enable bit.  
POS output enable bit. When POS is  
enabled, the HVINP boost converter is  
automatically enabled if not already active.  
0: Disabled  
1: Enabled  
enpos  
5
4
3
2
NEG converter enabled bit. When NEG is  
enabled, the HVINP boost converter is  
automatically enabled if not already active.  
0: Disable  
1: Enable  
enneg  
engvdd  
engvee  
DGVDD regulator enable bit. When DGVDD  
is enabled, the HVINP boost converter is  
automatically enabled if not already active.  
0: Disabled  
1: Enabled  
DGVEE regulator enable bit. When DGVEE is  
enabled, the HVINP boost converter is  
automatically enabled if not already active.  
0: disabled  
1: enabled  
www.maximintegrated.com  
Maxim Integrated | 33  
2
MAX20069B  
Automotive I C-Controlled 4-Channel 150mA  
Backlight Driver and 4-Output TFT-LCD Bias  
BITFIELD  
BITS  
DESCRIPTION  
DECODE  
Backlight boost converter and current sinks  
enable bit. If 1, they are enabled when the  
TFT section has completed soft-start.  
0: Disabled  
1: Enabled  
enblight  
1
LED string phase-shift enable. When 0,  
phase shifting between the strings is  
disabled. Read only at backlight startup;  
thereafter, this bit has no effect.  
0: Direct dimming  
1: Phase shift  
psen  
0
vpos_set (0x03)  
BIT  
Field  
7
6
5
4
3
2
1
0
vpos[7:0]  
0x14  
Reset  
Access  
Type  
Write, Read  
www.maximintegrated.com  
Maxim Integrated | 34  
2
MAX20069B  
Automotive I C-Controlled 4-Channel 150mA  
Backlight Driver and 4-Output TFT-LCD Bias  
BITFIELD  
BITS  
DESCRIPTION  
DECODE  
VALUE: POS VOLTAGE  
0xA: 5  
0xB: 5.1  
0xC: 5.2  
0xD: 5.3  
0xE: 5.4  
0xF: 5.5  
0x10: 5.6  
0x11: 5.7  
0x12: 5.8  
0x13: 5.9  
0x14: 6  
0x15: 6.1  
0x16: 6.2  
0x17: 6.3  
0x18: 6.4  
0x19: 6.5  
0x1A: 6.6  
0x1B: 6.7  
0x1C: 6.8  
0x1D: 6.9  
0x1E: 7  
0x1F: 7.1  
0x20: 7.2  
0x21: 7.3  
0x22: 7.4  
0x23: 7.5  
0x24: 7.6  
0x25: 7.7  
0x26: 7.8  
0x27: 7.9  
0x28: 8  
vpos  
7:0  
Sets POS output voltage.  
0x29: 8.1  
0x2A: 8.2  
0x2B: 8.3  
0x2C: 8.4  
0x2D: 8.5  
0x2E: 8.6  
0x2F: 8.7  
0x30: 8.8  
0x31: 8.9  
0x32: 9  
0x33: 9.1  
0x34: 9.2  
0x35: 9.3  
0x36: 9.4  
0x37: 9.5  
0x38: 9.6  
0x39: 9.7  
0x3A: 9.8  
0x3B: 9.9  
0x3C: 10  
0x3D: 10.1  
0x3E: 10.2  
0x3F: 10.3  
0x40: 10.4  
0x41: 10.5  
www.maximintegrated.com  
Maxim Integrated | 35  
2
MAX20069B  
Automotive I C-Controlled 4-Channel 150mA  
Backlight Driver and 4-Output TFT-LCD Bias  
BITFIELD  
BITS  
DESCRIPTION  
DECODE  
0x42: 10.6  
0x43: 10.7  
0x44: 10.8  
0x45: 10.9  
0x46: 11  
0x47: 11.1  
0x48: 11.2  
0x49: 11.3  
0x4A: 11.4  
0x4B: 11.5  
0x4C: 11.6  
0x4D: 11.7  
0x4E: 11.8  
0x4F: 11.9  
0x50: 12  
0x51: 12.1  
0x52: 12.2  
0x53: 12.3  
0x54: 12.4  
0x55: 12.5  
0x56: 12.6  
0x57: 12.7  
0x58: 12.8  
0x59: 12.9  
0x5A: 13  
0x5B: 13.1  
0x5C: 13.2  
0x5D: 13.3  
0x5E: 13.4  
0x5F: 13.5  
0x60: 13.6  
0x61: 13.7  
0x62: 13.8  
0x63: 13.9  
0x64: 14  
0x65: 14.1  
0x66: 14.2  
0x67: 14.3  
0x68: 14.4  
0x69: 14.5  
0x6A: 14.6  
0x6B: 14.7  
0x6C: 14.8  
0x6D: 14.9  
0x6E: 15  
0x6F-0xFF: 15  
dgvdd_set (0x04)  
BIT  
Field  
7
6
5
4
3
2
1
0
dgvdd[5:0]  
0x0  
Reset  
Access  
Type  
Write, Read  
www.maximintegrated.com  
Maxim Integrated | 36  
2
MAX20069B  
Automotive I C-Controlled 4-Channel 150mA  
Backlight Driver and 4-Output TFT-LCD Bias  
BITFIELD  
BITS  
DESCRIPTION  
DECODE  
0x0: 8  
0x1: 8.5  
0x2: 9  
0x3: 9.5  
0x4: 10  
0x5: 10.5  
0x6: 11  
0x7: 11.5  
0x8: 12  
0x9: 12.5  
0xA: 13  
0xB: 13.5  
0xC: 14  
0xD: 14.5  
0xE: 15  
0xF: 15.5  
0x10: 16  
0x11: 16.5  
0x12: 17  
0x13: 17.5  
0x14: 18  
0x15: 18.5  
0x16: 19  
0x17: 19.5  
0x18: 20  
0x19: 20.5  
0x1A: 21  
0x1B: 21.5  
0x1C: 22  
0x1D: 22.5  
0x1E: 23  
0x1F: 23.5  
0x20: 24  
0x21: 24.5  
0x22: 25  
0x23: 25.5  
0x24: 26  
0x25: 26.5  
0x26: 27  
0x27: 27.5  
0x28: 28  
0x29- 0x3F: Unused  
dgvdd  
5:0  
Sets DGVDD output voltage.  
dgvee_set (0x05)  
BIT  
Field  
7
6
5
4
3
2
1
0
dgvee[4:0]  
0x0  
Reset  
Access  
Type  
Write, Read  
www.maximintegrated.com  
Maxim Integrated | 37  
2
MAX20069B  
Automotive I C-Controlled 4-Channel 150mA  
Backlight Driver and 4-Output TFT-LCD Bias  
BITFIELD  
BITS  
DESCRIPTION  
DECODE  
0x0: -6  
0x1: -6.5  
0x2: -7  
0x3: -7.5  
0x4: -8  
0x5: -8.5  
0x6: -9  
0x7: -9.5  
0x8: -10  
0x9: -10.5  
0xA: -11  
0xB: -11.5  
0xC: -12  
0xD: -12.5  
0xE: -13  
0xF: -13.5  
0x10: -14  
0x11: -14.5  
0x12: -15  
0x13: -15.5  
0x14: -16  
0x15: -16.5  
0x16: -17  
0x17: -17.5  
0x18: -18  
0x19: -18.5  
0x1A: -19  
0x1B: -19.5  
0x1C: -20  
0x1D: -20.5  
0x1E: -21  
0x1F: -21.5  
dgvee  
4:0  
Sets DGVEE output voltage.  
diout (0x06)  
BIT  
7
6
5
4
3
2
1
0
Field  
diout[6:0]  
Reset  
0x7F  
Access  
Type  
Write, Read  
www.maximintegrated.com  
Maxim Integrated | 38  
2
MAX20069B  
Automotive I C-Controlled 4-Channel 150mA  
Backlight Driver and 4-Output TFT-LCD Bias  
BITFIELD  
BITS  
DESCRIPTION  
DECODE  
0x0: 36.5  
0x1: 37  
0x2: 37.5  
0x3: 38  
0x4: 38.5  
0x5: 39  
0x6: 39.5  
0x7: 40  
0x8: 40.5  
0x9: 41  
0xA: 41.5  
0xB: 42  
0xC: 42.5  
0xD: 43  
0xE: 43.5  
0xF: 44  
0x10: 44.5  
0x11: 45  
0x12: 45.5  
0x13: 46  
0x14: 46.5  
0x15: 47  
0x16: 47.5  
0x17: 48  
0x18: 48.5  
0x19: 49  
0x1A: 49.5  
The value in this register sets the percentage 0x1B: 50  
diout  
6:0  
of LED current, with respect to the value  
dictated by the resistor on the ISET pin.  
0x1C: 50.5  
0x1D: 51  
0x1E: 51.5  
0x1F: 52  
0x20: 52.5  
0x21: 53  
0x22: 53.5  
0x23: 54  
0x24: 54.5  
0x25: 55  
0x26: 55.5  
0x27: 56  
0x28: 56.5  
0x29: 57  
0x2A: 57.5  
0x2B: 58  
0x2C: 58.5  
0x2D: 59  
0x2E: 59.5  
0x2F: 60  
0x30: 60.5  
0x31: 61  
0x32: 61.5  
0x33: 62  
0x34: 62.5  
0x35: 63  
0x36: 63.5  
0x37: 64  
0x38: 64.5  
www.maximintegrated.com  
Maxim Integrated | 39  
2
MAX20069B  
Automotive I C-Controlled 4-Channel 150mA  
Backlight Driver and 4-Output TFT-LCD Bias  
BITFIELD  
BITS  
DESCRIPTION  
DECODE  
0x39: 65  
0x3A: 65.5  
0x3B: 66  
0x3C: 66.5  
0x3D: 67  
0x3E: 67.5  
0x3F: 68  
0x40: 68.5  
0x41: 69  
0x42: 69.5  
0x43: 70  
0x44: 70.5  
0x45: 71  
0x46: 71.5  
0x47: 72  
0x48: 72.5  
0x49: 73  
0x4A: 73.5  
0x4B: 74  
0x4C: 74.5  
0x4D: 75  
0x4E: 75.5  
0x4F: 76  
0x50: 76.5  
0x51: 77  
0x52: 77.5  
0x53: 78  
0x54: 78.5  
0x55: 79  
0x56: 79.5  
0x57: 80  
0x58: 80.5  
0x59: 81  
0x5A: 81.5  
0x5B: 82  
0x5C: 82.5  
0x5D: 83  
0x5E: 83.5  
0x5F: 84  
0x60: 84.5  
0x61: 85  
0x62: 85.5  
0x63: 86  
0x64: 86.5  
0x65: 87  
0x66: 87.5  
0x67: 88  
0x68: 88.5  
0x69: 89  
0x6A: 89.5  
0x6B: 90  
0x6C: 90.5  
0x6D: 91  
0x6E: 91.5  
0x6F: 92  
0x70: 92.5  
0x71: 93  
www.maximintegrated.com  
Maxim Integrated | 40  
2
MAX20069B  
Automotive I C-Controlled 4-Channel 150mA  
Backlight Driver and 4-Output TFT-LCD Bias  
BITFIELD  
BITS  
DESCRIPTION  
DECODE  
0x72: 93.5  
0x73: 94  
0x74: 94.5  
0x75: 95  
0x76: 95.5  
0x77: 96  
0x78: 96.5  
0x79: 97  
0x7A: 97.5  
0x7B: 98  
0x7C: 98.5  
0x7D: 99  
0x7E: 99.5  
0x7F: 100  
bl_fault (0x07)  
Backlight LED string faults  
BIT  
7
6
5
4
3
2
1
0
Field  
led_open[3:0]  
led_short[3:0]  
0x0  
Reset  
0x0  
Access  
Type  
Read Only  
Read Only  
BITFIELD  
BITS  
DESCRIPTION  
DECODE  
Each bit of this field corresponds to a string. If  
a bit is set to 1, then an open fault has been  
detected on the corresponding string and the  
string was disabled.  
0: Corresponding string is not open  
1: Corresponding string is  
open or the string is unused or shorted to GND.  
led_open  
7:4  
Each bit of this field corresponds to a string. If  
a bit is set to 1, then one or more LEDs in  
that string are shorted. This bit is updated at  
the beginning of each DIM cycle.  
0: Corresponding string has no LED shorted  
1: Corresponding string has one or more LEDs  
shorted  
led_short  
3:0  
fault (0x08)  
TFT fault register  
BIT  
7
6
5
4
3
2
1
0
led_shortgn  
d
Field  
boostuv  
0x0  
boostov  
0x0  
hvinpuv  
0x0  
pos_ol  
0x0  
neguv  
0x0  
dgvdduv  
0x0  
dgveeuv  
0x0  
Reset  
0x0  
Access  
Type  
Read Only  
Read Only  
Read Only  
Read Only  
Read Only  
Read Only  
Read Only  
Read Only  
BITFIELD  
BITS  
DESCRIPTION  
DECODE  
Backlight boost undervoltage status/flag.  
When an undervoltage is detected, the boost  
is disabled.  
0: Not detected so far  
1: Event is/was detected  
boostuv  
boostov  
7
Backlight boost overvoltage status flag. When  
the overvoltage level is reached, switching  
stops but the converter is not disabled.  
0: Not detected so far  
1: Event is/was detected  
6
www.maximintegrated.com  
Maxim Integrated | 41  
2
MAX20069B  
Automotive I C-Controlled 4-Channel 150mA  
Backlight Driver and 4-Output TFT-LCD Bias  
BITFIELD  
BITS  
DESCRIPTION  
DECODE  
LED string shorted to GND status flag. When  
this bit is detected, the converter does not  
start and the condition is latched.  
0: No LED strings shorted to GND  
1: One or more LED strings shorted to GND  
led_shortgnd  
5
Undervoltage on FBP (external feedback) or  
POS (internal feedback). Set immediately if  
an undervoltage is detected. If the  
undervoltage persists for 50ms, the output is  
turned off.  
0: No undervoltage is/was detected so far  
1: Undervoltage is/was detected  
hvinpuv  
4
When 1, signals an overload or overcurrent  
fault on the POS output.  
0: No error is/was detected so far  
1: Error is/was detected  
pos_ol  
neguv  
3
2
NEG output undervoltage status flag. Set  
immediately when an undervoltage is  
detected. If the condition persists for 50ms,  
the output is turned off.  
0: No undervoltage is/was detected  
1: Undervoltage is/was detected  
DGVDD undervoltage status flag. This bit is  
set immediately when an undervoltage is  
detected. If the condition persists for 50ms,  
the output is turned off.  
0: No undervoltage is/was detected  
1: Undervoltage is/was detected  
dgvdduv  
dgveeuv  
1
0
DGVEE undervoltage status/flag. This bit is  
set immediately when an undervoltage is  
detected. If the condition persists for 50ms,  
the output is turned off.  
0: No undervoltage is/was detected  
1: Undervoltage is/was detected  
dev_status (0x09)  
Device status bits  
BIT  
7
6
5
4
3
2
1
0
wled_th_sh wled_th_wa  
Field  
hw_rst  
0x1  
tft_th_shdn  
0x0  
dn  
rn  
Reset  
0x0  
0x0  
Access  
Type  
Read  
Clears All  
Read Only  
Read Only  
Read Only  
BITFIELD  
hw_rst  
BITS  
DESCRIPTION  
DECODE  
This flag reports if a POR took place since  
the last time this bit was reset. It is reset  
when this register is read.  
0: No POR since last read  
1: This is the first read of this register after a POR.  
3
wled_th_shd  
n
0: No thermal shutdown  
1: Backlight driver is in thermal shutdown  
2
1
0
LED driver thermal-shutdown status flag.  
LED driver thermal-warning status flag.  
TFT section thermal-shutdown status flag.  
0: Device junction temperature is below 125 °C  
1: Device junction temperature is equal to or  
greater than 125 °C  
wled_th_war  
n
0: No thermal shutdown  
1: TFT section is in thermal shutdown  
tft_th_shdn  
bl_fault_masks (0x0A)  
Backlight LED string masks for fault bits  
www.maximintegrated.com  
Maxim Integrated | 42  
2
MAX20069B  
Automotive I C-Controlled 4-Channel 150mA  
Backlight Driver and 4-Output TFT-LCD Bias  
BIT  
Field  
7
6
5
4
3
2
1
0
led_open_mask[3:0]  
0x0  
fsw_bl+  
0x0  
fsw_bl-  
0x0  
fsw_tft+  
0x0  
fsw_tft-  
0x0  
Reset  
Access  
Type  
Write, Read  
BITS  
Write, Read Write, Read Write, Read Write, Read  
BITFIELD  
DESCRIPTION  
This field contains masks for the corresponding led_open flags. A bit set to 1  
in this field implies that the corresponding status flag will not cause the FLTB  
pin to assert.  
led_open_mask  
7:4  
When this bit is set the nominal switching frequency of the backlight boost  
converter is increased by 8.5%.  
fsw_bl+  
fsw_bl-  
fsw_tft+  
fsw_tft-  
3
2
1
0
When this bit is set the nominal switching frequency of the backlight boost  
converter is reduced by 8.5%.  
When this bit is set the nominal switching frequency of the TFT section is  
increased by 8.5%.  
When this bit is set the nominal switching frequency of the TFT section is  
reduced by 8.5%.  
fault_masks1 (0x0B)  
TFT masks for fault bits  
BIT  
7
6
5
4
3
2
1
0
boostuv_ma boostov_ma led_shortgn hvinpuv_ma wled_ss_tim neguv_mas dgvdduv_m dgveeuv_m  
Field  
sk  
sk  
d_mask  
sk  
e
k
ask  
ask  
Reset  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
Access  
Type  
Write, Read Write, Read Write, Read Write, Read Write, Read Write, Read Write, Read Write, Read  
BITFIELD  
BITS  
DESCRIPTION  
DECODE  
boostuv_mas  
k
Mask for backlight boost undervoltage status  
flag.  
0: Boost UV will cause FLTB pin assertion  
1: Boost UV will not cause FLTB pin assertion  
7
boostov_mas  
k
Mask for backlight boost overvoltage status  
flag.  
0: Boost OV will cause FLTB pin assertion  
1: Boost OV will not cause FLTB pin assertion  
6
5
0: A short-to-ground fault will cause FLTB pin  
assertion  
1: A short-to-ground fault will not cause FLTB pin  
assertion  
led_shortgnd  
_mask  
Mask for led_shortgnd status flag.  
0: A HVINP UV fault will cause FLTB pin assertion  
1: A HVINP UV fault will not cause FLTB pin  
assertion  
hvinpuv_mas  
k
4
3
2
1
Mask for HVINP undervoltage status flag.  
0: Standard 50ms soft-start with final value of 0.6V  
on OVP.  
1: Accelerated start-up (22ms) with final value of  
1.1V on OVP.  
Backlight boost soft-start and final voltage  
setting.  
wled_ss_time  
neguv_mask  
0: A NEG UV fault will cause FLTB pin assertion  
1: A NEG UV fault will not cause FLTB pin  
assertion  
Mask for NEG undervoltage status flag.  
Mask for DGVDD undervoltage status flag.  
0: A DGVDD UV fault will cause FLTB pin  
assertion  
1: A DGVDD UV fault will not causeFLTB pin  
assertion  
dgvdduv_ma  
sk  
www.maximintegrated.com  
Maxim Integrated | 43  
2
MAX20069B  
Automotive I C-Controlled 4-Channel 150mA  
Backlight Driver and 4-Output TFT-LCD Bias  
BITFIELD  
BITS  
DESCRIPTION  
Mask for DGVEE undervoltage status flag.  
DECODE  
0: A DGVEE UV fault will cause FLTB pin assertion  
1: A DGVEE UV fault will not cause FLTB pin  
assertion  
dgveeuv_ma  
sk  
0
fault_masks2 (0x0C)  
Masks for ofaults contained in register dev_status  
BIT  
7
6
5
4
3
2
1
0
wled_th_wa  
rn_mask  
Field  
Reset  
0x0  
Access  
Type  
Write, Read  
BITFIELD  
BITS  
DESCRIPTION  
DECODE  
0: Status flag will cause FLTB pin assertion  
1: Status flag will not cause FLTB pin assertion  
wled_th_war  
n_mask  
1
Mask for wled_th_warn status flag.  
www.maximintegrated.com  
Maxim Integrated | 44  
2
MAX20069B  
Automotive I C-Controlled 4-Channel 150mA  
Backlight Driver and 4-Output TFT-LCD Bias  
Applications Information  
TFT Power Section  
Boost Converter  
Boost Converter Inductor Selection  
Three key inductor parameters must be specified for operation with the device: Inductance value (L), inductor saturation  
current (I ), and DC resistance (R ). To determine the inductance value, first select the ratio of inductor peak-to-  
SAT  
DC  
peak ripple current to average output current (LIR). Higher LIR values mean higher RMS inductor current and therefore  
2
higher I R losses. To achieve a lower LIR value, a high-value inductor, which may be physically larger, must be used. A  
good compromise between size and loss is to select a 30% to 60% peak-to-peak ripple current to average-current ratio  
(LIR from 0.3 to 0.6). If extremely thin high-resistance inductors are used, as is common for LCD-panel applications, the  
best LIR may lie between 0.5 and 1.0. The value of the inductor is determined by the following equations.  
Equation 9:  
V
× D  
INA  
LIR × I × f  
L =  
IN SW  
using:  
Equation 10:  
V
× I  
OUT OUT  
I
=
IN  
η × V  
INA  
V
INA  
D = 1 −  
V
OUT  
where V  
is the input voltage, V  
is the output voltage, I  
is the output current, I is the calculated average  
OUT IN  
INA  
OUT  
boost input current, η is the efficiency of the boost converter, D is the duty cycle, and f  
is either 440kHz or 2.2MHz  
SW  
(the selected switching frequency of the boost converter). The efficiency of the boost converter can be estimated from  
the Typical Operating Characteristics and accounts for losses in the internal switch, inductor, and capacitors.  
The inductor’s saturation rating must exceed the maximum current-limit of 1.7A or 0.74A, depending on the setting of the  
lxp_lim_low bit in the cnfg_gen (0x01) register.  
Boost Output Filter Capacitor Selection  
The primary criterion for selecting the output filter capacitor is low effective series resistance (ESR). The product of the  
peak inductor current and the output filter capacitor’s ESR determine the amplitude of the high-frequency ripple seen on  
the output voltage. For stability, the boost output-filter capacitor should have a value of 10μF or greater.  
To avoid a large drop on HVINP when POS is enabled, the capacitance on the HVINP node should be at least 3 times  
larger than that on POS.  
Setting the POS Voltage  
In stand-alone mode, the POS output voltage is set by connecting FBP to a resistive voltage-divider between HVINP and  
GND. Select the lower feedback resistor value and calculate the upper resistor value using the formula below.  
Equation 11:  
(V  
HVINP  
− 1.25) × R  
LOWER  
R
=
UPPER  
2
1.25  
In I C mode, the POS output is set by writing an 8-bit value to the vpos_set (0x03) register.  
The NEG converter outputs a negative voltage whose absolute value is the same as POS. The most negative voltage  
the NEG can output is -7V.  
www.maximintegrated.com  
Maxim Integrated | 45  
2
MAX20069B  
Automotive I C-Controlled 4-Channel 150mA  
Backlight Driver and 4-Output TFT-LCD Bias  
NEG Inverting Regulator  
NEG Regulator Inductor Selection  
The inductor value for the NEG regulator can be selected using the formula below.  
Equation 12:  
2
V
× (1 − D)  
NEG  
LIR × I  
L =  
× f  
NEG SW  
where V  
is the output voltage, I  
the output current, LIR the desired inductor ripple ratio, and f  
the switching  
SW  
NEG  
NEG  
frequency.  
Calculate the duty-cycle D using:  
Equation 13:  
V
NEG  
D =  
V
+ V  
IN  
NEG  
The inductor's saturation current rating must exceed the maximum current-limit setting of 1.2A or 0.6A, depending on the  
setting of the neg_lim_low bit in the cnfg_gen (0x01) register.  
NEG External Diode Selection  
Select a diode with a peak current rating of at least the selected LXN current limit (1.8A or 1.1A) for use with the NEG  
output. The diode breakdown-voltage rating should exceed the sum of the maximum INN voltage and the absolute value  
of the NEG voltage. A Schottky diode improves the overall efficiency of the converter.  
NEG Output Capacitor Selection  
The primary criterion for selecting the output filter capacitor is low ESR and capacitance value, as the NEG capacitor  
provides the load current when the internal switch is on. The voltage ripple on the NEG output has two components:  
● Ripple to due ESR which is the product of the peak inductor current and the output filter capacitor’s ESR  
● Ripple due to bulk capacitance that can be determined as follows.  
Equation 14:  
D
I
×
NEG  
f
SW  
ΔV  
=
BULK  
C
NEG  
For stability, the NEG output capacitor should have a value of 10μF or greater.  
Setting the DGVDD and DGVEE Output Voltages  
For most applications, a single charge-pump stage is sufficient for both the positive and negative charge pumps. In the  
case of DGVDD, the maximum output voltage is then twice the HVINP voltage. For DGVEE, the most negative voltage  
is -V  
. If necessary, add further stages while maintaining the DGVDD and DGVEE voltages within their permitted  
HVINP  
operating ranges.  
The DGVDD output voltage is set in stand-alone mode with a resistor-divider from DGVDD to GND, with its center  
connected to the FBPG pin. After a value for R  
is selected, R  
can be calculated using the formula below.  
UPPER  
LOWER  
Equation 15:  
(DGVDD − 1.25) × R  
LOWER  
R
=
UPPER  
1.25  
The DGVEE output voltage is set by connecting a resistor-divider from REF to DGVEE, with its center connected to  
FBNG. The control loop forces FBNG to 0V. Select the resistor connected to REF (R ) so that less than 100μA is  
REF  
drawn from REF (i.e., the value of R  
help of Equation 16.  
shall be greater than 12.5kΩ). After selecting R  
, calculate R  
with the  
DGVEE  
REF  
REF  
www.maximintegrated.com  
Maxim Integrated | 46  
2
MAX20069B  
Automotive I C-Controlled 4-Channel 150mA  
Backlight Driver and 4-Output TFT-LCD Bias  
Equation 16:  
R
× DGVEE  
|
|
REF  
R
=
DGVEE  
2
1.25  
In I C mode, the DGVDD and DGVEE voltages are set by writing a 6-bit value to the dgvdd_set (0x04) register and a  
5-bit value to the dgvee_set (0x05) register, respectively.  
LED Driver Section  
DC-DC Converter for LED Driver  
Two different converter topologies are possible with the DC-DC controller in the device, which has the ground-referenced  
outputs necessary to use the constant-current sink drivers. If the LED string forward voltage is always higher than the  
input supply voltage range, use the boost converter topology. If the LED string forward voltage falls within the supply  
voltage range, use the SEPIC topology.  
Note: The boost converter topology provides the highest efficiency.  
Power-Circuit Design  
First select a converter topology based on the above factors. Determine the required input supply voltage range, the  
maximum voltage needed to drive the LED strings, including the worst-case 1V across the constant LED current sink  
(V  
), and the total output current needed to drive the LED strings (I  
) as shown below.  
LED  
LED  
Equation 17:  
I
= I  
× N  
STRING  
LED  
STRING  
where I  
is the LED current per string in amperes and N  
is the number of strings used. Calculate the  
STRING  
STRING  
maximum duty cycle (D  
) using the following equations:  
MAX  
Equation 18 (for the boost configuration):  
V
+ V V  
D1 IN_MIN  
(
)
LED  
D
=
MAX  
V
+ V V  
D1  
− 0.42  
(
)
LED  
DS  
Equation 18 (for the SEPIC configuration):  
V
+ V  
D1  
(
)
LED  
D
=
MAX  
V
V  
− 0.42 + V  
+ V  
(
)
IN_MIN  
DS  
LED  
D1  
where V is the forward drop of the rectifier diode in volts (approximately 0.6V), V  
is the minimum input supply  
IN_MIN  
D1  
voltage in volts, and V  
is the drain-to-source voltage of the external MOSFET in volts when it is on, and 0.42V is the  
DS  
peak current-sense voltage. Initially, use an approximate value of 0.2V for V  
to calculate D  
. Calculate a more  
DS  
MAX  
accurate value of D  
after the power MOSFET is selected based on the maximum inductor current.  
MAX  
Boost Configuration  
The average inductor current varies with the line voltage and the maximum average current occurs at the lowest line  
voltage. For the boost converter, the average inductor current is equal to the input current. Select the maximum peak-to-  
peak ripple on the inductor current (ΔIL). The recommended peak-to-peak ripple is 60% of the average inductor current.  
Use the following equations to calculate the maximum average inductor current (IL  
in amperes.  
) and peak inductor current (IL )  
P
AVG  
Equation 20:  
I
LED  
I
=
LAVG  
1 − D  
MAX  
Allowing the peak-to-peak inductor ripple ΔIL to be ±30% of the average inductor current:  
www.maximintegrated.com  
Maxim Integrated | 47  
2
MAX20069B  
Automotive I C-Controlled 4-Channel 150mA  
Backlight Driver and 4-Output TFT-LCD Bias  
Equations 21:  
ΔI = I  
× 0.3 × 2  
L
LAVG  
and  
ΔI  
L
I
= I  
+
LP  
LAVG  
2
Calculate the minimum inductance value (L  
), in henries with the inductor current ripple set to the maximum value.  
MIN  
Equation 22:  
V
V  
− 0.42 × D  
(
)
IN_MIN  
DS  
MAX  
L
=
MIN  
f
× ΔI  
SW  
L
where 0.42V is the peak current-sense voltage. Choose an inductor that has a minimum inductance greater than the  
calculated L and current rating greater than IL . The recommended saturation current limit of the selected inductor is  
MIN  
P
10% higher than the inductor peak current for boost configuration.  
SEPIC Configuration  
Power-circuit design for the SEPIC configuration is very similar to a conventional design, with the output voltage  
referenced to the input supply voltage. For SEPIC, the output is referenced to ground and the inductor is split into two  
parts (see Typical Application Circuits). One of the inductors (L2) has the LED current as the average current and the  
other (L1) has the input current as its average current. Use the following equations to calculate the average inductor  
currents (I  
, I  
) and peak inductor currents (I  
, I  
) in amperes:  
L1AVG L2AVG  
L1P L2P  
Equation 23:  
I
× D  
× 1.1  
MAX  
LED  
MAX  
I
=
L1AVG  
1 − D  
The factor 1.1 provides a 10% margin to account for the converter losses:  
Equation 24:  
I
= I  
LED  
L2AVG  
Assuming the peak-to-peak inductor ripple ΔIL is ±30% of the average inductor current:  
Equations 25:  
ΔI = I  
× 0.3 × 2  
L1  
L1AVG  
and  
ΔI  
L1  
I
= I  
+
L1P  
L1AVG  
2
ΔI = I  
× 0.3 × 2  
L2  
L2AVG  
and  
ΔI  
L2  
I
= I  
+
L2P  
L2AVG  
2
Calculate the minimum inductance values L1  
maximum value as follows:  
and L2  
in henries with the inductor current ripples set to the  
MIN  
MIN  
Equations 26:  
V
V  
− 0.42 × D  
(
(
)
IN_MIN  
IN_MIN  
DS  
MAX  
MAX  
L1  
L2  
=
=
MIN  
MIN  
f
× ΔI  
SW  
L1  
V
V  
− 0.42 × D  
)
DS  
f
× ΔI  
SW  
L2  
www.maximintegrated.com  
Maxim Integrated | 48  
2
MAX20069B  
Automotive I C-Controlled 4-Channel 150mA  
Backlight Driver and 4-Output TFT-LCD Bias  
where 0.42V is the peak current-sense voltage. Choose inductors that have a minimum inductance greater than the  
calculated L1 and L2 , and current ratings greater than I and I , respectively. The recommended saturation  
MIN  
MIN  
L1P  
L2P  
current limit of the selected inductor is 10% higher than the inductor peak current.  
For simplifying further calculations, consider L1 and L2 as a single inductor with L1/L2 connected in parallel. The  
combined inductance value and current is calculated as follows:  
Equations 27:  
L1  
L1  
× L2  
+ L2  
MIN  
MIN  
MIN  
MIN  
L
=
MIN  
and  
I
= I  
+ I  
L1AVG L2AVG  
LAVG  
where I  
represents the total average current through both the inductors, connected together for SEPIC  
LAVG  
configuration. Use these values in the calculations for the SEPIC configuration in the following sections.  
Select coupling capacitor CS so that the peak-to-peak ripple on it is less than 2% of the minimum input supply voltage.  
This ensures that the second-order effects created by the series resonant circuit comprising L1, CS, and L2 do not affect  
the normal operation of the converter. Use the following equation to calculate the minimum value of CS.  
Equation 28:  
I
× D  
LED  
IN_MIN  
MAX  
× 0.02 × f  
CS ≥  
V
SW  
where CS is the minimum value of the coupling capacitor in farads, I  
0.02 accounts for 2% ripple.  
is the LED current in amperes, and the factor  
LED  
Current-Sense Resistor and Slope Compensation  
The MAX20069B backlight boost generates a current ramp for slope compensation. This ramp current is in sync with  
the switching frequency, starting from zero at the beginning of every clock cycle and rising linearly to reach 50μA at the  
end of the clock cycle. The slope-compensating resistor (R ) is connected between the CS input and the source of the  
SC  
external MOSFET. This adds a programmable ramp voltage to the CS input voltage to provide slope compensation.  
Use the following equation to calculate the value of slope-compensation resistance (R ):  
SC  
Equation 29 (for boost configuration):  
(V  
− 2 × V  
) × R  
× 3  
LED  
IN_MIN  
CS  
R
=
SC  
L
× 50μA × f  
× 4  
MIN  
SW  
Equation 30 (for SEPIC and coupled-inductor configurations):  
(V  
V  
) × R  
× 3  
LED  
L
IN_MIN  
CS  
× 4  
R
=
SC  
× 50μA × f  
MIN  
SW  
where V  
and V  
are in volts, R  
and R  
are in ohms, L  
is in henries, and f  
is in hertz. The value of  
SW  
LED  
IN_MIN  
SC  
CS  
MIN  
the switch current-sense resistor (R ) can be calculated as follows:  
CS  
Equation 31 (for the boost configuration):  
4 × L  
× f  
× 0.39 × 0.9  
MIN SW  
R
=
CS  
I
× 4 × L  
× f  
+ D  
× V  
− 2 × V  
× 3  
(
)
LP  
MIN SW  
MAX  
LED  
IN_MIN  
Equation 32 (for SEPIC and coupled-inductor configurations):  
4 × L  
× f  
× 0.39 × 0.9  
MIN SW  
R
=
CS  
I
× 4 × L  
× f  
+ D  
× V  
V  
× 3  
(
)
LP  
MIN SW  
MAX  
LED  
IN_MIN  
where 0.39 is the minimum value of the peak current-sense threshold. The current-sense threshold also includes the  
slope-compensation component. The minimum current-sense threshold of 0.4 is multiplied by 0.9 to take tolerances into  
www.maximintegrated.com  
Maxim Integrated | 49  
2
MAX20069B  
Automotive I C-Controlled 4-Channel 150mA  
Backlight Driver and 4-Output TFT-LCD Bias  
account.  
Output Capacitor Selection  
For all converter topologies, the output capacitor supplies the load current when the main switch is on. The function of  
the output capacitor is to reduce the converter output ripple to acceptable levels. The entire output-voltage ripple appears  
across the constant-current sink outputs because the LED string voltages are stable due to the constant current. For the  
MAX20069B IC, limit the peak-to-peak output-voltage ripple to 200mV to get stable output current.  
The ESR, ESL, and the bulk capacitance of the output capacitor contribute to the output ripple. In most applications,  
using low-ESR ceramic capacitors can dramatically reduce the output ESR and ESL effects, connecting multiple ceramic  
capacitors in parallel to achieve the required bulk capacitance. To minimize audible noise during PWM dimming,  
however, it may be desirable to limit the use of ceramic capacitors on the boost output. In such cases, an additional  
electrolytic or tantalum capacitor can provide the majority of the bulk capacitance.  
External Switching-MOSFET Selection  
The external switching MOSFET should have a voltage rating sufficient to withstand the maximum boost output voltage,  
together with the rectifier diode drop and any possible overshoot due to ringing caused by parasitic inductance and  
capacitance. The recommended MOSFET V voltage rating is 30% higher than the sum of the maximum output voltage  
DS  
and the rectifier diode drop.  
The continuous-drain current rating of the MOSFET (ID), when the case temperature is at the maximum operating  
ambient temperature, should be greater than that calculated below.  
Equation 33:  
2
ID  
=
IL  
× D  
× 1.3  
MAX  
RMS  
AVG  
(
)
The MOSFET dissipates power due to both switching losses and conduction losses. Use the following equation to  
calculate the conduction losses in the MOSFET.  
Equation 34:  
2
AVG  
P
= IL  
× D  
× R  
MAX DS(ON)  
COND  
where R  
is the on-state drain-to-source resistance of the MOSFET. Use the following equation to calculate the  
DS(ON)  
switching losses in the MOSFET.  
Equation 35:  
2
IL  
× V  
LED  
× C  
× f  
GD SW  
AVG  
1
1
P
=
×
+
I
SW  
2
I
(
)
GON  
GOFF  
where I  
and I  
are the gate currents of the MOSFET in amperes when it is turned on and turned off, respectively.  
GON  
GOFF  
C
is the gate-to-drain MOSFET capacitance in farads.  
GD  
Rectifier Diode Selection  
Using a Schottky rectifier diode produces less forward drop and puts the least burden on the MOSFET during reverse  
recovery. A diode with considerable reverse-recovery time increases the MOSFET switching loss. Select a Schottky  
diode with a voltage rating 20% higher than the maximum boost-converter output voltage and current rating greater than  
that calculated in the following equation.  
Equation 36:  
I = I  
× 1 D  
(
× 1.2  
MAX  
)
D
LAVG  
Feedback Compensation  
During normal operation, the feedback control loop regulates the minimum OUT_ voltage to fall within the window  
comparator limits of 0.8V and 1.1V when LED string currents are enabled during PWM dimming. When LED currents  
www.maximintegrated.com  
Maxim Integrated | 50  
2
MAX20069B  
Automotive I C-Controlled 4-Channel 150mA  
Backlight Driver and 4-Output TFT-LCD Bias  
are off during PWM dimming, the control loop turns off the converter and stores the steady-state condition in the form  
of capacitor voltages, mainly the output filter-capacitor voltage and compensation-capacitor voltage. When the PWM  
dimming pulses are less than 24 switching clock cycles, the feedback loop regulates the converter output voltage to 95%  
of the OVP threshold.  
The worst-case condition for the feedback loop is when the LED driver is in normal mode regulating the minimum OUT_  
voltage. The switching converter small-signal transfer function has a right-half plane (RHP) zero for boost configuration  
if the inductor current is in continuous-conduction mode. The RHP zero adds a 20dB/decade gain together with a  
90-degree phase lag, which is difficult to compensate.  
The worst-case RHP zero frequency (f  
) is calculated as follows:  
ZRHP  
Equation 37 (for boost configuration):  
2
V
× 1 D  
(
)
LED  
MAX  
f
=
ZRHP  
π × L × I  
LED  
Equation 38 (for SEPIC configuration):  
2
V
× 1 D  
(
)
LED  
MAX  
f
=
ZRHP  
π × L × I  
× D  
LED  
MAX  
where f  
is in hertz, V  
is in volts, L is the inductance value of L1 in henries, and I  
is in amperes. A simple way  
LED  
ZRHP  
LED  
to avoid this zero is to roll off the loop gain to 0dB at a frequency less than 1/5 of the RHP zero frequency with a -20dB/  
decade slope.  
The switching converter small-signal transfer function also has an output pole. The effective output impedance, together  
with the output filter capacitance, determines the output pole frequency (f ), calculated as follows:  
P1  
Equation 39 (for boost configuration):  
I
LED  
f
=
2π × V  
P1  
× C  
LED  
OUT  
Equation 40 (for SEPIC configuration):  
I
× D  
LED  
=
2π × V  
MAX  
× C  
f
P1  
LED  
OUT  
where f is in hertz, V  
is in volts, I  
is in amperes, and C  
is in farads. Compensation components (R  
OUT COMP  
P1  
LED  
LED  
and C  
) perform two functions: C  
introduces a low-frequency pole that presents a -20dB/decade slope to  
COMP  
COMP  
the loop gain, and R  
flattens the gain of the error amplifier for frequencies above the zero formed by R  
and  
COMP  
COMP  
C
. For compensation, this zero is placed at the output pole frequency (f ), so it provides a -20dB/decade slope for  
COMP  
P1  
frequencies above f to the combined modulator and compensator response.  
P1  
The value of R  
needed to fix the total loop gain at f , so the total loop gain crosses 0dB with -20dB/decade slope  
P1  
COMP  
at 1/5 the RHP zero frequency, is calculated as follows.  
Equation 41 (for boost configuration):  
f
× R  
× I  
ZRHP  
5 × f × GM  
CS LED  
R
=
COMP  
× V  
× 1 D  
(
)
)
P1  
COMP  
LED  
MAX  
Equation 42 (for SEPIC configuration):  
f
× R  
× I  
× D  
MAX  
ZRHP  
5 × f × GM  
CS LED  
R
=
COMP  
× V  
× 1 D  
(
P1  
COMP  
LED  
MAX  
where R  
is the compensation resistor in ohms, f  
and f are in hertz, R is the switch current-sense resistor  
CS  
COMP  
ZRHP  
P2  
in ohms, and GM  
is the transconductance of the error amplifier (700μS).  
COMP  
The value of C  
is calculated below.  
COMP  
www.maximintegrated.com  
Maxim Integrated | 51  
2
MAX20069B  
Automotive I C-Controlled 4-Channel 150mA  
Backlight Driver and 4-Output TFT-LCD Bias  
Equation 43:  
1
C
=
COMP  
2π × R  
× f  
COMP Z1  
where f is the compensation zero placed at 1/5 of the crossover frequency that is, in turn, set at 1/5 of the f  
. If  
ZRHP  
Z1  
the output capacitors do not have low ESR, the ESR zero frequency may fall within the 0dB crossover frequency. An  
additional pole may be required to cancel out this pole placed at the same frequency. This is usually implemented by  
connecting a capacitor in parallel with C  
and R  
.
COMP  
COMP  
www.maximintegrated.com  
Maxim Integrated | 52  
2
MAX20069B  
Automotive I C-Controlled 4-Channel 150mA  
Backlight Driver and 4-Output TFT-LCD Bias  
Typical Application Circuits  
2
Typical Application Circuit for I C Mode  
D1  
L1  
BATTERY INPUT  
DIM INPUT  
C21  
C2  
DIM  
BATT  
VCC  
TFT POWER  
INPUT  
IN  
C1  
C 22  
2.2mF  
R 17  
SEQ  
PGVDD  
NDRV  
CS  
C8  
D3  
D4  
C7  
OVP  
D7  
C10  
COMP  
DP  
ISET  
R16  
R15  
R12  
C 22  
R11  
D9  
DGVDD  
FBPG  
LGND1,2  
C9  
OUT1  
OUT2  
OUT3  
OUT4  
VDGVDD  
VDGVEE  
DGVEE  
DN  
TFT POWER INPUT  
BST  
MAX20069B  
D5  
C10  
L3  
C 11  
D6  
C19  
D12  
D11  
LXP  
C20  
HVINP  
FBP  
C23  
FBNG  
REF  
PGND  
C14  
POS  
VPOS  
GND  
EN  
C4  
ENABLE  
INPUT  
INN  
TFT POWER INPUT  
VNEG  
SDA  
SCL  
I2C BUS  
NEG  
LXN  
FAULT  
OUTPUT  
D2  
FLTB  
C5  
EP  
DGND  
ADD  
L2  
C6  
www.maximintegrated.com  
Maxim Integrated | 53  
2
MAX20069B  
Automotive I C-Controlled 4-Channel 150mA  
Backlight Driver and 4-Output TFT-LCD Bias  
Typical Application Circuits (continued)  
Typical Application Circuit for Stand-Alone Mode  
D1  
L1  
BATTERY INPUT  
DIM INPUT  
C21  
C2  
DIM  
BATT  
TFT POWER  
INPUT  
IN  
VCC  
C1  
2.2mF  
C 22  
R 17  
PGVDD  
NDRV  
CS  
C8  
D3  
D4  
C7  
OVP  
D7  
C10  
COMP  
DP  
ISET  
R16  
R15  
R12  
C 22  
R11  
D9  
DGVDD  
FBPG  
LGND1,2  
C9  
OUT1  
OUT2  
OUT3  
OUT4  
VDGVDD  
VDGVEE  
DGVEE  
DN  
TFT POWER INPUT  
BST  
MAX20069B  
D5  
C10  
L3  
C 11  
D6  
C19  
D12  
D11  
LXP  
C20  
HVINP  
C23  
FBP  
FBNG  
PGND  
REF  
SEQ  
C14  
POS  
INN  
VPOS  
C4  
GND  
EN  
TFT POWER  
INPUT  
ENABLE  
INPUT  
SDA  
SCL  
NEG  
LXN  
VNEG  
FAULT  
OUTPUT  
D2  
FLTB  
C5  
EP  
DGND  
ADD  
L2  
C6  
www.maximintegrated.com  
Maxim Integrated | 54  
2
MAX20069B  
Automotive I C-Controlled 4-Channel 150mA  
Backlight Driver and 4-Output TFT-LCD Bias  
Typical Application Circuits (continued)  
2
Typical Application Circuit for I C Mode, SEPIC Topology  
D1  
BATTERY INPUT  
C2  
DIM INPUT  
CS  
C21  
DIM  
BATT  
TFT POWER  
INPUT  
IN  
VCC  
C1  
R17  
C 22  
2.2mF  
SEQ  
PGVDD  
NDRV  
CS  
C8  
D3  
D4  
C7  
OVP  
D7  
C10  
COMP  
DP  
SETI  
R16  
R15  
R11  
D9  
R12  
DGVDD  
FBPG  
C 22  
LGND1,2  
C9  
OUT1  
OUT2  
OUT3  
OUT4  
VDGVDD  
VDGVEE  
DGVEE  
DN  
TFT POWER INPUT  
BST  
MAX20069B  
D5  
C10  
L3  
C 11  
D6  
C19  
D12  
D11  
LXP  
C20  
HVINP  
FBP  
C23  
FBNG  
REF  
PGND  
C14  
POS  
VPOS  
GND  
EN  
C4  
ENABLE  
INPUT  
INN  
TFT POWER INPUT  
VNEG  
SDA  
SCL  
I2C BUS  
NEG  
LXN  
FAULT  
OUTPUT  
D2  
FLTB  
C5  
EP  
DGND  
ADD  
L2  
C6  
www.maximintegrated.com  
Maxim Integrated | 55  
2
MAX20069B  
Automotive I C-Controlled 4-Channel 150mA  
Backlight Driver and 4-Output TFT-LCD Bias  
Ordering Information  
Nominal POS/NEG  
2
PACKAGE  
CODE  
PART  
TEMP RANGE  
PIN-PACKAGE  
7b I C ADDRESS  
Switching Frequency  
(kHz)  
MAX20069BGTL/  
V+**  
-40°C to  
+105°C  
T4066-5C 40 TQFN-EP*  
T4066Y-6C 40 TQFN-EP*  
T4066-5C 40 TQFN-EP*  
T4066Y-6C 40 TQFN-EP*  
0x20/0x24  
0x20/0x24  
0x20/0x24  
0x20/0x24  
2200  
2200  
430  
MAX20069BGTL/  
VY+**  
-40°C to  
+105°C  
MAX20069BGTLA/  
V+  
-40°C to  
+105°C  
MAX20069BGTLA/  
VY+  
-40°C to  
+105°C  
430  
/V Denotes an automotive-qualified part.  
+Denotes a lead(Pb)-free/RoHS-compliant package.  
T = Tape and reel.  
*EP = Exposed pad.  
Y = Side-wettable (SW) package  
**Future product—contact factory for availability.  
www.maximintegrated.com  
Maxim Integrated | 56  
2
MAX20069B  
Automotive I C-Controlled 4-Channel 150mA  
Backlight Driver and 4-Output TFT-LCD Bias  
Revision History  
REVISION REVISION  
PAGES  
DESCRIPTION  
CHANGED  
NUMBER  
DATE  
0
9/20  
Initial release  
For pricing, delivery, and ordering information, please visit Maxim Integrated’s online storefront at https://www.maximintegrated.com/en/storefront/storefront.html.  
Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent  
licenses are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max  
limits) shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.  
Maxim Integrated and the Maxim Integrated logo are trademarks of Maxim Integrated Products, Inc.  
© 2020 Maxim Integrated Products, Inc.  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY