MAX20310DEWE [MAXIM]

Ultra-Low Quiescent Current PMIC with SIMO Buck-Boost for Wearable Applications;
MAX20310DEWE
型号: MAX20310DEWE
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Ultra-Low Quiescent Current PMIC with SIMO Buck-Boost for Wearable Applications

集成电源管理电路
文件: 总30页 (文件大小:849K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
EVALUATION KIT AVAILABLE  
Click here for production status of specific part numbers.  
MAX20310  
Ultra-Low Quiescent Current PMIC with  
SIMO Buck-Boost for Wearable Applications  
General Description  
Benefits and Features  
The MAX20310 is a compact power management  
integrated circuit (PMIC) for space-constrained, battery-  
powered applications where size and efficiency are critical.  
The device combines two single inductor, multiple output  
(SIMO) buck-boosted outputs with two LDOs and other sys-  
tem power management features like a push-button monitor  
and sequencing controller.  
Extend System Battery Use Time  
• Single Inductor, Multiple Output (SIMO) Ultra-Low  
I
Buck-Boost Regulator  
Q
• Battery Input Voltage from 0.7V to 2.0V  
• Output Voltage Programmable From 0.9V  
to 4.05V  
• 250mW Maximum Total Input Power  
• Incremental CAP Quiescent Current 1μA per  
channel  
The device includes a SIMO buck-boost switching regula-  
tor that provides two programmable voltage rails using  
a single inductor, minimizing solution footprint. The  
MAX20310 operates with battery voltages down to 0.7V  
for use with Zinc Air, Silver Oxide, or Alkaline batteries.  
The architecture allows for output voltages above or  
below the battery voltage.  
84% Efficiency for 1.8V, 10mA Output  
• Input Current Limited  
• Dual Ultra-Low I 50mA LDO  
Q
• Inputs Supplied by Dual Buck-Boost Outputs  
• Output Programmable from 0.5V to 3.65V  
• Quiescent Current 1.1µA per LDO / 600nA per  
Load Switch  
Additionally, the MAX20310 has two programmable low-  
dropout (LDO) linear regulators. The linear regulators can  
also operate as power switches that can disconnect the  
quiescent load of system peripherals.  
Configurable as Load Switch  
Extend Product Shelf-Life  
• Battery Seal Mode  
The MAX20310 includes  
a programmable power  
• 10nA Battery Current (typ)  
controller that allows the device to be configured for  
use in applications that require a true off state or for  
always-on applications. This controller provides a delayed  
reset signal, voltage sequencing, and customized button  
timing for on/off control and recovery hard reset.  
Minimize Board Area  
• 1.63mm x 1.63mm WLP  
Easy-to-Implement System Control  
• Voltage Monitor Multiplexer  
• 1% Accurate Battery Inverter (±10mV at 1.0V)  
• Power Button Monitor  
The device also features a multiplexer for monitoring the  
power inputs and outputs of each function. The MAX20310  
is available in a 16-bump 0.4mm pitch 1.63mm x 1.63mm  
wafer-level package (WLP) and operates over the -40°C  
to +85°C extended temperature range.  
Buffered Output  
• Power Sequencing  
• Reset Output  
2
• I C Control Interface  
Typical Operating Circuit  
Applications  
Wearable Medical Devices  
Wearable Fitness Devices  
Portable Medical Devices  
+1.8V +1.5V +1.2V +1.2V  
VIO VAN VDD VSW  
MAX20310  
CAP  
LX  
BB1OUT  
L1OUT  
LDO  
SIMO  
BUCK-  
BOOST  
GND  
BB2OUT  
L2OUT  
LDO  
BATN  
Ordering Information appears at end of data sheet.  
KIN  
KOUT  
MPO  
MON  
RST  
MPC  
SCL  
SDA  
CONTROL  
19-8611; Rev 2; 3/18  
MAX20310  
Ultra-Low Quiescent Current PMIC with  
SIMO Buck-Boost for Wearable Applications  
Absolute Maximum Ratings  
(Voltages reference to GND unless otherwise noted)  
Continuous Current into any other terminal ...................±100mA  
CAP, BB1OUT, BB2OUT, L1OUT, L2OUT  
Continuous Power Dissipation (T = +70°C):  
A
MPC, SDA, SCL, RST, KOUT to GND, BATN....-0.3V to +6V  
KIN............................................ (BATN – 0.3V) to (GND + 0.3V)  
LX to BATN..............................................................-0.3V to +6V  
MPO, MON to BATIN ..............................................-0.3V to +6V  
GND to BATN.......................................................-0.3V to +2.2V  
Continuous Current into LX, BATN ....................................+0.5A  
16-bump WLP 1.65mm x 1.65mm 0.4mm Pitch  
(derate 17.4mW/°C above +70°C) ..............................957mW  
Operating Temperature Range........................... -40°C to +85°C  
Junction Temperature......................................................+150°C  
Storage Temperature Range............................ -65°C to +150°C  
Soldering Temperature (reflow).......................................+260°C  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only; functional operation of the device at these or any  
other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device  
reliability.  
Package Information  
PACKAGE TYPE: 16 WLP  
Package Code  
W161F1+1  
Outline Number  
21-0491  
Land Pattern Number  
Refer to Application Note 1891  
THERMAL RESISTANCE, FOUR-LAYER BOARD  
Junction to Ambient (θ  
)
58°C/W  
JA  
For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a “+”,  
“#”, or “-” in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing  
pertains to the package regardless of RoHS status.  
Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer board.  
For detailed information on package thermal considerations, refer to www.maximintegrated.com/thermal-tutorial.  
Maxim Integrated  
2  
www.maximintegrated.com  
MAX20310  
Ultra-Low Quiescent Current PMIC with  
SIMO Buck-Boost for Wearable Applications  
Electrical Characteristics  
(V  
= +1.2V, V  
= +1.8V, V  
= +1.2V, V  
= +1.5V, V  
= +1.0V, I  
= I  
= I  
= I  
= 0A,  
BAT  
BB1OUT  
BB2OUT  
L1OUT  
L2OUT  
BB1OUT  
BB2OUT  
L1OUT  
L2OUT  
T
= -40°C to +85°C, all registers in their default state, unless otherwise noted. Typical values are at T = +25°C) (Note 1) (Note 2)  
A
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
SUPPLY CURRENT  
Seal mode, all functions disabled,  
Seal Input Current  
I
0.01  
465  
0.2  
µA  
SEAL  
T
= +25°C  
A
KIN Pullup Resistor to  
GND  
KIN  
kΩ  
PULLUP  
Buck-boost 1 enabled  
4
5
µA  
µA  
µA  
µA  
Buck-boost 1 and 2 enabled  
CAP Quiescent Current  
I
Q_CAP  
Buck-boost 1 and 2 and LDO 1 enabled  
Buck-boost 1 and 2 and LDO 1 and 2 enabled  
5.25  
5.5  
POWER SEQUENCE  
Reset Time Accuracy  
t
-10  
+10  
%
V
RST  
BUCK-BOOST REGULATOR  
Operating  
0.7  
0.8  
0.9  
2
2
Input Voltage  
V
BAT  
Startup  
Output Voltage Range  
V
50mV steps, (Note 3)  
4.05  
V
OUT  
Quiescent Supply  
Current From CAP  
Burst mode, no switching, V  
= +1.8V  
1
µA  
IQ_BB  
BB_OUT  
T
T
T
= +25°C  
-1  
-1.8  
-3  
1
A
A
A
Output Accuracy  
V
= 0°C to +85°C  
= -40°C to +85°C  
+1.8  
+3  
%
OUT_ACC_BB_OUT  
PSRR  
Power Supply Rejection  
Ratio  
C
= 10µF  
40  
dB  
BB_OUT  
Maximum Input Power  
P
(Note 5)  
250  
mW  
IN  
V
V
= +1.8V  
= +3.3V  
200  
244  
BB_OUT  
BB_OUT  
Maximum Input Current  
I
mA  
IN  
Short-Circuit Current  
Limit  
I
Maximum programmable current setting  
0.6  
10  
A
LIM  
Passive Discharge  
Resistance  
R
kΩ  
PAS_BB_OUT  
LDO  
LDO UVLO enabled  
1.1  
0.4  
2
Quiescent Supply  
Current  
I
µA  
µA  
Q_LDO  
Switch mode, V  
= +1.8V  
– 0.1V  
BB_OUT  
Quiescent supply  
Current in Dropout  
I
V
= V  
1.7  
3.5  
Q_LDO_D  
BB_OUT  
LDO_SET  
Maximum Output  
Current  
I
(Note 4)  
50mV steps  
50  
mA  
V
MAX_LDO  
Output Voltage  
V
0.5  
3.65  
OUT_LDO  
Maxim Integrated  
3  
www.maximintegrated.com  
MAX20310  
Ultra-Low Quiescent Current PMIC with  
SIMO Buck-Boost for Wearable Applications  
Electrical Characteristics (continued)  
(V  
= +1.2V, V  
= +1.8V, V  
= +1.2V, V  
= +1.5V, V  
= +1.0V, I  
= I  
= I  
= I  
= 0A,  
BAT  
BB1OUT  
BB2OUT  
L1OUT  
L2OUT  
BB1OUT  
BB2OUT  
L1OUT  
L2OUT  
T
= -40°C to +85°C, all registers in their default state, unless otherwise noted. Typical values are at T = +25°C) (Note 1) (Note 2)  
A
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
(V  
=
BB_OUT  
T
T
= 0°C to +85°C  
-3  
3
A
A
+
LDO_SET  
Output Accuracy  
Dropout Voltage  
V
%
OUT_ACC_LDO  
0.5V) or higher,  
= -40°C to +85°C  
-3.5  
-1  
+3.5  
100  
1
I
= 1mA  
LOAD  
V
= V  
= 50mA  
= +1.8V,  
BB_OUT  
LDO_SET  
V
mV  
DROP_LDO  
I
LOAD  
V
= (V  
+ 0.5V) to  
BB_OUT  
LDO_SET  
Line Regulation  
Load Regulation  
LINEREG  
%/V  
%/mA  
kΩ  
LDO  
+4.05V  
LOADREG  
I
= 50µA to 50mA  
0.003  
10  
LDO  
PAS_LDO  
LOAD  
Passive Discharge  
Resistance  
R
Power Switch Mode  
Resistance  
R
V
= +1.2V  
= 0mA  
1
ON_LS  
BB_OUT  
I
I
0.7  
2.8  
LDO_OUT  
LDO_OUT  
Turn-On Time  
t
V/µs  
ON_SLOPE  
= 0mA. Switch mode.  
Thermal Shutdown  
Threshold  
T
T rising  
150  
21  
°C  
°C  
SD  
J
Thermal Shutdown  
Hysteresis  
T
HYS  
MONITOR MULTIPLEXER  
MON Impedance  
R
Sense pin voltage > +0.5V  
500  
10  
MON  
Battery Voltage Buffer  
Precision  
V
-10  
1.4  
mV  
BAT_OFF  
DIGITAL SIGNALS  
SDA, SCL, MPC Input  
Logic-High  
V
V
V
V
IH  
SDA, SCL, MPC Input  
Logic-Low  
V
0.5  
0.4  
IL  
SDA, RST, KOUT  
Output Logic-Low  
V
I
= 4mA  
OL  
OL  
I
I
= 4mA to GND  
= 4mA to BATN  
0.4  
0.4  
OL  
OL  
MPO Output Logic-Low  
SCL Clock Frequency  
V
V
OL_MPO  
f
(Note 5)  
0
400  
kHz  
SCL  
Bus Free Time Between  
a STOP and START  
Condition  
t
1.3  
µs  
BUF  
Maxim Integrated  
4  
www.maximintegrated.com  
MAX20310  
Ultra-Low Quiescent Current PMIC with  
SIMO Buck-Boost for Wearable Applications  
Electrical Characteristics (continued)  
(V  
= +1.2V, V  
= +1.8V, V  
= +1.2V, V  
= +1.5V, V  
= +1.0V, I  
= I  
= I  
= I  
= 0A,  
BAT  
BB1OUT  
BB2OUT  
L1OUT  
L2OUT  
BB1OUT  
BB2OUT  
L1OUT  
L2OUT  
T
= -40°C to +85°C, all registers in their default state, unless otherwise noted. Typical values are at T = +25°C) (Note 1) (Note 2)  
A
A
PARAMETER  
SYMBOL  
t
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
START Condition  
(Repeated) Hold Time  
(Note 6)  
0.6  
µs  
HD:STA  
Low Period of SCL  
Clock  
t
1.3  
0.6  
µs  
µs  
LOW  
High Period of SCL  
Clock  
t
HIGH  
Setup Time for a  
Repeated START  
Condition  
µs  
µs  
t
0.6  
SU:STA  
Data Hold Time  
Data Setup Time  
t
(Notes 7, 8)  
(Note 7)  
0
µs  
ns  
HD:DAT  
t
100  
SU:DAT  
Setup Time for STOP  
Condition  
t
0.6  
µs  
SU:STO  
Note 1: All devices are 100% production tested at T = +25°C. Limits over the operating temperature range are guaranteed by design.  
A
Note 2: V  
refers to the voltage across the battery terminals; V  
= V  
– V  
.
BAT  
BAT  
GND  
BATN  
Note 3: Output voltage must not exceed V  
- V  
= 5.0V.  
BB_OUT  
BATN  
Note 4: Actual value may be limited by the lower of the capability of the source (battery) or the maximum input power of the MAX20310.  
Note 5: Timing must be fast enough to prevent the device from entering sleep mode due to bus low for period > t  
.
SLEEP  
Note 6: f  
must meet the minimum clock low time plus the rise/fall times.  
SCL  
Note 7: The maximum t  
has to be met only if the device does not stretch the low period (t  
) of the SCL signal.  
HD:DAT  
LOW  
Note 8: The device internally provides a hold time of at least 100ns for the SDA signal (referred to the V  
of the SCL signal) to  
IH_MIN  
bridge the undefined region of the falling edge of SCL.  
Maxim Integrated  
5  
www.maximintegrated.com  
MAX20310  
Ultra-Low Quiescent Current PMIC with  
SIMO Buck-Boost for Wearable Applications  
Typical Operating Characteristics  
(V  
= 1.2V, V  
= 1.8V, V  
= 1.2V, V  
= 1.5V, V  
= 1.0V, L = 1.5µH, C  
= 10µF (effective), C  
= 1µF  
BAT  
BB1OUT  
BB2OUT  
L1OUT  
L2OUT  
BB_OUT  
CAP  
(effective), C  
= 2.2µF (effective) no load on any rail, T = +25°C, unless otherwise noted.)  
A
LDO  
SEAL MODE INPUT CURRENT vs. VBAT  
QUIESCENT CURRENT vs. VBAT  
ALL OUTPUTS  
QUIESCENT CURRENT vs. TEMPERATURE  
toc01  
toc02  
toc03  
18  
16  
14  
12  
10  
8
40  
35  
30  
25  
20  
15  
10  
5
30  
25  
20  
15  
10  
5
BB1OUT,  
ALL  
BB2OUT,  
REGULATORS  
L1OUT ON  
ON  
BB1OUT,  
BB2OUT,  
L1OUT ON  
ON  
BB1OUT,  
BB2OUT ON  
+25°C  
-40°C  
6
4
BB1OUT,  
ALL  
ALL OUTPUTS  
OFF  
BB2OUT ON  
BB1OUT ON  
2
REGULATORS  
BB1OUT ON  
1.74  
OFF  
0
0
0
0.7  
0.96  
1.22  
1.48  
1.74  
2
0.7  
0.96  
1.22  
1.48  
2
-40  
-15  
10  
35  
60  
85  
VBAT (V)  
TEMPERATURE (°C)  
VBAT (V)  
BB1OUT EFFICIENCY vs. LOAD CURRENT  
BB1OUT LOAD REGULATION ERROR  
toc04  
toc05  
90  
2
1.8  
1.6  
1.4  
1.2  
1
ISET = 00  
80  
70  
60  
50  
40  
30  
20  
10  
0
ISET = 11  
ISET = 10  
ISET = 11  
ISET = 01  
0.8  
0.6  
0.4  
0.2  
0
ISET = 00  
ISET = 10  
120  
ISET = 01  
L = 2.2µH  
BBst2En = 0  
L = 2.2µH  
30  
0.001  
0.01  
0.1  
1
10  
100  
0
60  
90  
150  
IBB1OUT (mA)  
IBB1OUT (mA)  
BB2OUT EFFICIENCY vs. LOAD CURRENT  
BB2OUT LOAD REGULATION ERROR  
toc07  
toc06  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
1.4  
1.2  
1
ISET = 00  
ISET = 11  
ISET = 10  
ISET = 01  
ISET = 11  
0.8  
0.6  
0.4  
0.2  
0
ISET = 00  
ISET = 01  
ISET = 10  
L = 2.2µH  
BBst1En = 0  
L = 2.2µH  
30  
0.001  
0.01  
0.1  
1
10  
100  
0
60  
90  
120  
150  
IBB2OUT (mA)  
IBB2OUT (mA)  
Maxim Integrated  
6  
www.maximintegrated.com  
MAX20310  
Ultra-Low Quiescent Current PMIC with  
SIMO Buck-Boost for Wearable Applications  
Typical Operating Characteristics (continued)  
(V  
= 1.2V, V  
= 1.8V, V  
= 1.2V, V  
= 1.5V, V  
= 1.0V, L = 1.5µH, C  
= 10µF (effective), C = 1µF  
CAP  
BAT  
BB1OUT  
BB2OUT  
L1OUT  
L2OUT  
BB_OUT  
(effective), C  
= 2.2µF (effective) no load on any rail, T = +25°C, unless otherwise noted.)  
A
LDO  
BB2OUT LINE REGULATION  
NO LOAD  
BB1OUT LINE REGULATION  
LDO LOAD REGULATION ERROR  
L1OUT  
toc09  
toc10  
toc08  
1.813  
1.8125  
1.812  
1.2112  
1.211  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
NO LOAD  
1.2108  
1.2106  
1.2104  
1.2102  
1.21  
IBB2OUT = 10mA  
1.8115  
1.811  
IBB1OUT = 10mA  
L2OUT  
1.2098  
1.2096  
1.2094  
1.8105  
1.81  
0.7  
0
0.96  
1.22  
1.48  
1.74  
2
0.7  
0.96  
1.22  
1.48  
1.74  
2
0.001  
0.01  
0.1  
1
10  
100  
VBAT (V)  
VBAT (V)  
LOAD CURRENT (mA)  
LDO2 LINE REGULATION  
LDO1 LINE REGULATION  
toc12  
toc11  
1.509  
1.002  
1.001  
1
1.508  
1.507  
1.506  
1.505  
1.504  
1.503  
1.502  
1.501  
1.5  
NO LOAD  
0.999  
0.998  
0.997  
0.996  
0.995  
NO LOAD  
IL1OUT = 10mA  
IL2OUT = 10mA  
3.44 4  
1.7  
2.16  
2.62  
3.08  
3.54  
4
1.2  
1.76  
2.32  
2.88  
VBB1OUT (V)  
VBB2OUT (V)  
L1OUT LOAD TRANSIENT RESPONSE  
L1OUT LOAD TRANSIENT RESPONSE  
10μA TO 10mA  
50μA TO 50mA  
toc13  
toc14  
50mV/div  
(AC-  
COUPLED)  
50mV/div  
(AC-  
COUPLED)  
VL1OUT  
VL1OUT  
IL1OUT  
IL1OUT  
10mA/div  
50mA/div  
10ms/div  
10ms/div  
Maxim Integrated  
7  
www.maximintegrated.com  
MAX20310  
Ultra-Low Quiescent Current PMIC with  
SIMO Buck-Boost for Wearable Applications  
Typical Operating Characteristics (continued)  
(V  
= 1.2V, V  
= 1.8V, V  
= 1.2V, V  
= 1.5V, V  
= 1.0V, L = 1.5µH, C  
= 10µF (effective), C = 1µF  
CAP  
BAT  
BB1OUT  
BB2OUT  
L1OUT  
L2OUT  
BB_OUT  
(effective), C  
= 2.2µF (effective) no load on any rail, T = +25°C, unless otherwise noted.)  
A
LDO  
L2OUT LOAD TRANSIENT RESPONSE  
L2OUT LOAD TRANSIENT RESPONSE  
BB1OUT LOAD TRANSIENT RESPONSE  
50μA TO 50mA  
10μA TO 10mA  
50μA TO 50mA  
toc15  
toc16  
toc17  
ILimSet = 600mA  
50mV/div  
(AC-  
COUPLED)  
50mV/div  
VBB1OUT  
(AC-  
COUPLE
50mV/div  
(AC-  
COUPLED)  
VL2OUT  
VL2OUT  
IL2OUT  
IL2OUT  
IBB1OUT  
10mA/div  
50mA/div  
50mA/div  
10ms/div  
10ms/div  
10ms/div  
BB_OUT RIPPLE AND INDUCTOR CURRENT  
BB1OUT LINE TRANSIENT RESPONSE  
toc19  
toc18  
L = 2.2µH  
VBATN = -1.8 to -1.2V  
IBB1OUT = 10mA  
10mV/div  
(AC-  
COUPLED)  
VBB1OUT  
10mV/div  
VBB1OUT  
(AC-  
COUPLED)  
10mV/div  
(AC-  
COUPLED)  
VBB2OUT  
VBATN  
IL  
500mA/div  
500mV/div  
20μs/div  
10ms/div  
BB_OUT RIPPLE AND INDUCTOR CURRENT  
BB_OUT RIPPLE AND INDUCTOR CURRENT  
toc20  
toc21  
L = 2.2µH  
L = 2.2µH  
10mV/div  
(AC-  
COUPLED)  
10mV/div  
(AC-  
COUPLED)  
VBB1OUT  
VBB1OUT  
10mV/div  
(AC-  
COUPLED)  
10mV/div  
(AC-  
COUPLED)  
VBB2OUT  
VBB2OUT  
IL  
IL  
500mA/div  
500mA/div  
10μs/div  
4μs/div  
Maxim Integrated  
8  
www.maximintegrated.com  
MAX20310  
Ultra-Low Quiescent Current PMIC with  
SIMO Buck-Boost for Wearable Applications  
Bump Configuration  
TOP VIEW  
(BUMP SIDE DOWN )  
MAX20310  
1
2
3
4
+
GND  
MPC  
L2OUT  
L1OUT  
A
B
C
D
CAP  
BB1  
OUT  
SDA  
MON  
BB2  
OUT  
KIN  
SCL  
MPO  
KOUT  
RST  
BATN  
LX  
16 WLP 0.4mm pitch  
1.63mm x 1.63mm  
Bump Description  
BUMP  
A1  
NAME  
GND  
FUNCTION  
Ground/Battery Positive Terminal  
LDO/Switch 2 Output  
A2  
L2OUT  
L1OUT  
CAP  
A3  
LDO/Switch 1 Output  
A4  
Internal Supply Decoupling. Connect a minimum 1µF of capacitance to GND.  
Multipurpose Control Input  
B1  
MPC  
2
B2  
SDA  
I C Serial Data  
B3  
MON  
Monitor Multiplexer Output  
B4  
BB1OUT  
KIN  
Buck-Boost 1 Output  
C1  
C2  
Key Input, Internally Pulled to GND. To signal active, short KIN to BATN.  
2
SCL  
I C Serial Clock  
Multipurpose Output. Level shifted digital output for controlling devices referenced to the  
negative battery terminal.  
C3  
MPO  
C4  
D1  
D2  
D3  
D4  
BB2OUT  
KOUT  
RST  
Buck-Boost 2 Output  
Key Output. Active-low, level-shifted button status output.  
Reset Output. Active-low, open-drain output indicates completion of sequencer.  
Battery Negative Terminal  
BATN  
LX  
Inductor Switch Connection  
Maxim Integrated  
9  
www.maximintegrated.com  
MAX20310  
Ultra-Low Quiescent Current PMIC with  
SIMO Buck-Boost for Wearable Applications  
Functional Block Diagram  
MAX20310  
CAP  
LX  
BB1OUT  
L1OUT  
LDO  
LDO  
SIMO  
BUCK-  
BOOST  
GND  
BATN  
BB2OUT  
L2OUT  
KIN  
KOUT  
MPO  
MON  
RST  
MPC  
SCL  
SDA  
CONTROL  
supplied by the buck-boost outputs. As such, an LDO  
cannot be enabled unless its corresponding switching  
regulator output is active. The LDOs can be used as  
switches to disconnect the quiescent loads of peripheral  
systems, increasing battery life. The LDO outputs are  
configurable from 0.5 to 3.65V in 50mV increments.  
Detailed Description  
Power Regulation  
The MAX20310 features an ultra-low I SIMO buck-boost  
switching regulator that provides two programmable volt-  
Q
agle rails and two low-I LDOs. The regulators minimize  
Q
quiescent current and operate on low input voltages. This  
makes the MAX20310 ideal for applications powered by  
singe-cell Alkaline, Zinc Air, or Silver Oxide batteries. All  
regulator outputs are capable of being discharged through  
a resistive load (passive discharge) when turned off. The  
discharge mode is set by the PDsc bits in each regulator’s  
configuration register.  
Voltage Monitor Multiplexer  
In addition to the four regulator outputs, the MAX20310  
2
includes a voltage monitor multiplexer. The I C controlled  
multiplexer connects the MON pin to any one of the  
regulator outputs or to BATN. This provides access to the  
different voltage rails in the device for ADC measurements.  
An inverting amplifier buffers the BATN channel in order  
to allow a positive, single-ended ADC to measure the  
voltage.  
Switching Regulator  
In order to maximize efficiency, the switching regulator  
is implemented with an inverting buck-boost topology.  
Referencing the battery’s positive terminal to ground  
configures the battery as a negative supply and the  
switching regulator output is positive. The switching  
regulator operates at supplies from -2.0V down to -0.7V,  
but requires -0.8V to start up. The outputs are independently  
configurable in 50mV increments.  
Multipurpose Control Input  
The MAX20310 includes a multipurpose control (MPC)  
pin that can control various functions inside the part  
based on the buck-boost and LDO configuration and  
sequence register settings. For devices with at least one  
BBst_Seq[2:0] or LDO_Seq[2:0] field set by the factory  
to 101 (enabled by MPC, active-low) or 110 (enabled  
by MPC, active-high) according to Table 19, the MPC  
pin can be configured to control the multipurpose output  
(MPO) pin for level-shifting to the battery voltage. See the  
Multipurpose Output section below for details. If the MPC  
pin is unused, it must be tied to GND.  
LDO  
For applications that require lower noise supplies, or  
simply need additional regulated voltages, the MAX20310  
includes two LDO regulators. In normal operation, each  
LDO can source up to 50mA. The LDO inputs are  
Maxim Integrated  
10  
www.maximintegrated.com  
MAX20310  
Ultra-Low Quiescent Current PMIC with  
SIMO Buck-Boost for Wearable Applications  
the MPC pin, regardless of polarity. Table 1 below shows  
the truth table associated with such devices. Devices with  
none of the one BBst_Seq[2:0] or LDO_Seq[2:0] fields  
set by the factory to 101 (enabled by MPC, active-low)  
or 110 (enabled by MPC, active-high) allow the MPO  
Multipurpose Output  
In addition to the MPC pin, the MAX20310 also features  
a multipurpose output (MPO). The MPO pin can be  
configured to pull down to BATN, to pull up to GND, to  
pullup/down (push/pull), or be disabled (no pull). On  
devices with at least one BBst_Seq[2:0] or LDO_Seq[2:0]  
field set by the factory to 101 (enabled by MPC, active-  
low) or 110 (enabled by MPC, active-high), as detailed  
in table 19, the MPOCfg register allows the state of the  
2
output to be controlled by I C command only. Table 2  
below shows the truth table associated with such devices.  
An example implementation is included in Figure 1 to  
show how to use this pin to control an external regulator  
powered directly from the battery.  
2
MPO pin to be controlled either by I C command or by  
Table 1. MPO Truth Table for Devices with One or More BBst_Seq[2:0]/LDO_Seq[2:0]  
Field Set to 101 or 110 by the Factory  
MPOPull[1:0]  
MPOEn[1:0]  
MPC  
X
X
X
0
OUTPUT STATE  
High-Impedance  
High-Impedance  
Pulled to BATN  
Pulled to BATN  
High-Impedance  
High-Impedance  
Pulled to BATN  
Pulled to GND  
High-Impedance  
High-Impedance  
Pulled to GND  
Pulled to GND  
High-Impedance  
Pulled to GND  
Pulled to BATN  
Pulled to BATN  
Pulled to GND  
Pulled to GND  
Pulled to BATN  
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
0
1
1
1
1
1
1
0
0
0
0
0
0
1
1
1
1
1
1
X
0
0
1
1
1
1
0
0
1
1
1
1
0
0
1
1
1
1
X
0
1
0
0
1
1
0
1
0
0
1
1
0
1
0
0
1
1
1
0
1
X
X
0
1
0
1
X
X
0
1
0
1
Table 2. MPO Truth Table for Devices with None of the BBst_Seq[2:0]/LDO_Seq[2:0]  
Fields Set to 101 or 110 by the Factory  
MPOPull[1:0]  
MPOEn[1:0]  
MPC  
OUTPUT STATE  
High-Impedance  
High-Impedance  
Pulled to BATN  
Pulled to GND  
High-Impedance  
Pulled to GND  
Pulled to BATN  
0
0
0
1
1
1
1
0
1
1
0
0
1
1
X
0
0
0
0
0
0
X
0
1
0
1
0
1
X
X
X
X
X
X
X
Maxim Integrated  
11  
www.maximintegrated.com  
MAX20310  
Ultra-Low Quiescent Current PMIC with  
SIMO Buck-Boost for Wearable Applications  
The list of settings and corresponding actions is shown  
in Table 18. A button press always wakes up the device,  
and the factory configuration determines other behavior.  
Power On/Off and Reset Control  
The MAX20310 is intended for use in small battery-  
powered applications. It includes an off mode to minimize  
drain on the battery. In the off mode, all outputs are  
disabled and the part waits until the KIN input goes active  
to wake the device. The KIN input is internally pulled  
to GND and needs to be shorted to BATN to wake the  
device. An open-drain buffered copy of the state of KIN  
is available at KOUT allowing the system to monitor the  
status of the button. When the device is powered on, each  
function can be automatically enabled by a sequencing  
Reverse Battery Protection  
Some applications use batteries like AAA’s that do not  
have mechanical reverse installation protection. In such  
applications, an optional external nMOSFET and resistor  
connected as shown in Figure 2 provide reverse battery  
protection for the system. In normal operation, the 100Ω  
resistor slows the charging of C at startup until V  
-
IN  
CAP  
V
exceeds the threshold of the external MOSFET.  
BATN  
2
controller or remain off until an I C command enables  
Thereafter, the circuit functions nominally. In the case of  
battery reversal, the 100Ω resistor limits the current from  
the battery and protects the downstream system.  
it. This behavior is determined by the factory settings. A  
button monitor is present on the MAX20310 and can  
produce different actions for long or short button presses.  
+1.8V +1.5V +1.2V +1.2V  
VAN  
VDD VSW  
V
IO  
MAX20310  
CAP  
LX  
BB1OUT  
L1OUT  
1µF  
LDO  
LDO  
SIMO  
BUCK-  
BOOST  
GND  
BB2OUT  
L2OUT  
+1.2V  
BATN  
10µF 2.2µF 10µF 2.2µF  
10µH  
KIN  
KOUT  
MPO  
MON  
RST  
MPC  
SCL  
SDA  
MAX1724  
BATT  
SHDN  
LX  
CONTROL  
VOUT  
GND  
+5V  
+3.8V  
Figure 1. Controlling an External Regulator with MPO  
L
MAX20310  
LX  
BB1OUT  
L1OUT  
GND  
BB2OUT  
100Ω  
L2OUT  
CAP  
BATN  
Figure 2. Reverse Battery Protection Using an External MOSFET  
Maxim Integrated  
12  
www.maximintegrated.com  
MAX20310  
Ultra-Low Quiescent Current PMIC with  
SIMO Buck-Boost for Wearable Applications  
Power Sequencing  
Additional Voltage Regulators  
The sequencing of the voltage regulators during power-on  
is configurable. Regulators can be configured to turn on  
at one of four points during the power on process. The  
four points are: 100ms after the power-on event, after  
the RST signal is released, or at two points in between.  
The two points are fixed proportionally to the duration  
of the Power-On Reset (POR) process, but the overall  
time of the reset delay is configurable (refer to PwrCfg  
register). The timing relationship is presented graphically  
in Figure 3. Additionally, the regulators are controllable by  
In applications with additional voltage regulators operat-  
ing directly from the battery, careful consideration must  
be given to battery and system power domains. Due to  
the negative battery implementation of the MAX20310,  
the common node for the system power domain (GND) is  
connected to the positive terminal of the battery.  
Regulators using the battery as a positive supply should  
connect BATN as the local ground and GND as the input  
supply. However, the output must always be referenced  
to the positive terminal of the battery (GND). This causes  
the output voltage of the regulator, referenced to GND, to  
2
the sequencer, an input pin, or I C command after reset  
is released. Note that the LDOs will not turn on until the  
associated switching output is also enabled.  
equal V  
– V . As the battery discharges, this volt-  
BAT  
OUT  
age might change over time.  
2
I C Interface  
For example, in Figure 1, the external MAX1724 step-  
up converter produces 5V with respect to the regulator  
ground (BATN). Because the battery voltage is 1.2V, the  
output voltage in the system power domain is 3.8V. Due  
to the relative flatness of the discharge curves for Silver-  
Oxide, Zinc-Air, and other common coin cell batteries, the  
challenges associated with a changing reference node  
are reduced. However, designs should account for some  
variation of the BATN node.  
2
The MAX20310 uses the two-wire I C interface to  
communicate with a host microcontroller. The configuration  
settings and status information provided through this  
interface are detailed in the register descriptions. The  
slave address is 0x50 for writes and 0x51 for reads.  
Applications Information  
Always-On Devices  
2
I C Interface  
The MAX20310 contains an I C-compatible interface  
Due to its low power consumption, the MAX20310 is  
ideal for always-on applications. Products targeting these  
always-on, buttonless applications should select a ver-  
sion of the MAX20310 with PwrCfgMd[1:0] = 00 and con-  
nect the KIN input to BATN as shown in Figure 4. This  
PwrCfgMd setting configures a KIN press to only turn on  
the device. When a fresh battery is inserted, or when a  
battery tab used during product shelf life is removed, KIN  
is pulled to BATN and the device turns on.  
2
for data communication with a host controller (SCL and  
SDA). The interface supports a clock frequency of up to  
400kHz. SCL and SDA require pullup resistors that are  
connected to a positive supply.  
Start, Stop, and Repeated Start Conditions  
2
When writing to the MAX20310 using I C, the master  
sends a START condition (S) followed by the MAX20310  
MAX20310  
GND  
BATN  
KIN  
Figure 4. KIN Connected to BATN for Always-On Applications  
Figure 3. Reset Sequence Programming  
Maxim Integrated  
13  
www.maximintegrated.com  
MAX20310  
Ultra-Low Quiescent Current PMIC with  
SIMO Buck-Boost for Wearable Applications  
2
I C address. After the address, the master sends the  
STOP condition (P) to relinquish control of the bus, or  
a REPEATED START condition (Sr) to communicate to  
another I C slave. See Figure 5.  
register address of the register that is to be programmed.  
The master then ends communication by issuing a  
2
Slave Address  
Set the Read/Write bit high to configure the MAX20310  
to read mode. Set the Read/Write bit low to configure the  
MAX20310 to write mode. The address is the first byte  
of information sent to the MAX20310 after the START  
condition.  
S
Sr  
P
SCL  
SDA  
Bit Transfer  
One data bit is transferred on the rising edge of each  
SCL clock cycle. The data on SDA must remain stable  
during the high period of the SCL clock pulse. Changes in  
SDA while SCL is high and stable are considered control  
signals (see the START, STOP and REPEATED START  
Conditions section). Both SDA and SCL remain high when  
the bus is not active.  
2
Figure 5. I C START, STOP and REPEATED START  
Conditions  
WRITE SINGLE BYTE  
DEVICE SLAVE ADDRESS-W  
S
A
A
REGISTER ADDRESS  
A
P
8 data bits  
FROM MASTER TO SLAVE  
FROM SLAVE TO MASTER  
Figure 6. Write Byte Sequence  
BURST WRITE  
DEVICE SLAVE ADDRESS-W  
S
A
A
A
A
A
REGISTER ADDRESS  
8 DATA BITS - 2  
8 DATA BITS - 1  
………………  
P
8 DATA BITS - N  
FROM MASTER TO SLAVE  
FROM SLAVE TO MASTER  
Figure 7. Burst Write Sequence  
Maxim Integrated  
14  
www.maximintegrated.com  
MAX20310  
Ultra-Low Quiescent Current PMIC with  
SIMO Buck-Boost for Wearable Applications  
The slave asserts an ACK on the data line only if the  
address is valid (NAK if not)  
Single-Byte Write  
In this operation, the master sends an address and two  
data bytes to the slave device (Figure 6). The following  
procedure describes the single byte write operation:  
The master sends 8 data bits  
The slave asserts an ACK on the data line  
Repeat 6 and 7 N-1 times  
The master sends a START condition  
The master sends the 7-bit slave address plus a write bit  
(low)  
The master generates a STOP condition  
Single-Byte Read  
The addressed slave asserts an ACK on the data line  
The master sends the 8-bit register address  
In this operation, the master sends an address plus two  
data bytes and receives one data byte from the slave  
device (Figure 8). The following procedure describes the  
single byte read operation:  
The slave asserts an ACK on the data line only if the  
address is valid (NAK if not)  
The master sends 8 data bits  
The master sends a START condition  
The slave asserts an ACK on the data line  
The master generates a STOP condition  
The master sends the 7-bit slave address plus a write bit  
(low)  
The addressed slave asserts an ACK on the data line  
The master sends the 8-bit register address  
Burst Write  
In this operation, the master sends an address and mul-  
tiple data bytes to the slave device (Figure 7). The slave  
device automatically increments the register address after  
each data byte is sent, unless the register being accessed  
is 0x00, in which case the register address remains the  
same. The following procedure describes the burst write  
operation:  
The slave asserts an ACK on the data line only if the  
address is valid (NAK if not)  
The master sends a REPEATED START condition  
The master sends the 7-bit slave address plus a read bit  
(high)  
The addressed slave asserts an ACK on the data line  
The slave sends 8 data bits  
The master sends a START condition  
The master sends the 7-bit slave address plus a write bit  
(low)  
The master asserts a NACK on the data line  
The master generates a STOP condition  
The addressed slave asserts an ACK on the data line  
The master sends the 8-bit register address  
READ SINGLE BYTE  
S
REGISTER ADDRESS  
8 DATA BITS  
A
DEVICE SLAVE ADDRESS-W  
A
A
DEVICE SLAVE ADDRESS-R  
P
Sr  
NA  
FROM MASTER TO SLAVE  
FROM SLAVE TO MASTER  
Figure 8. Read Byte Sequence  
Maxim Integrated  
15  
www.maximintegrated.com  
MAX20310  
Ultra-Low Quiescent Current PMIC with  
SIMO Buck-Boost for Wearable Applications  
BURST READ  
A
S
DEVICE SLAVE ADDRESS-W  
REGISTER ADDRESS  
8 DATA BITS - 1  
A
A
Sr  
DEVICE SLAVE ADDRESS-R  
8 DATA BITS - 2  
A
A
A
8 DATA BITS - 3  
8 DATA BITS - N  
………………  
P
NA  
FROM MASTER TO SLAVE  
FROM SLAVE TO MASTER  
Figure 9. Burst Read Sequence  
Burst Read  
S
In this operation, the master sends an address plus two  
data bytes and receives multiple data bytes from the slave  
device (Figure 9). The following procedure describes the  
burst byte read operation:  
SCL  
SDA  
1
2
8
9
NOT ACKNOWLEDGE  
The master sends a START condition  
The master sends the 7-bit slave address plus a write bit  
(low)  
The addressed slave asserts an ACK on the data line  
The master sends the 8-bit register address  
ACKNOWLEDGE  
Figure 10. Acknowledge  
The slave asserts an ACK on the data line only if the  
address is valid (NAK if not)  
Acknowledge Bits  
The master sends a REPEATED START condition  
Data transfers are acknowledged with an acknowledge bit  
(ACK) or a not-acknowledge bit (NACK). Both the master  
and the MAX20310 generate ACK bits. To generate an  
ACK, pull SDA low before the rising edge of the ninth  
clock pulse and hold it low during the high period of the  
ninth clock pulse (see Figure 10). To generate a NACK,  
leave SDA high before the rising edge of the ninth clock  
pulse and leave it high for the duration of the ninth clock  
pulse. Monitoring for NACK bits allows for detection of  
unsuccessful data transfers.  
The master sends the 7-bit slave address plus a read bit  
(high)  
The slave asserts an ACK on the data line  
The slave sends 8 data bits  
The master asserts an ACK on the data line  
Repeat 9 and 10 N-2 times  
The slave sends the last 8 data bits  
The master asserts a NACK on the data line  
The master generates a STOP condition  
Maxim Integrated  
16  
www.maximintegrated.com  
MAX20310  
Ultra-Low Quiescent Current PMIC with  
SIMO Buck-Boost for Wearable Applications  
Maxim Integrated  
17  
www.maximintegrated.com  
MAX20310  
Ultra-Low Quiescent Current PMIC with  
SIMO Buck-Boost for Wearable Applications  
2
I C Register Descriptions  
Table 3. ChipId Register (0x00)  
ADDRESS  
0x00 (Read-Only)  
BIT  
7
6
5
4
3
2
2
2
1
1
1
0
0
0
NAME  
ChipId[7:0]  
ChipId[7:0] bits show information about the version of the MAX20310  
ChipId[7:0]  
Table 4. ChipRev Register (0x01)  
ADDRESS  
0x01 (Read-Only)  
BIT  
7
6
5
4
3
NAME  
ChipRev[7:0]  
ChipRev shows information about the revision of the MAX20310 silicon  
ChipRev[7:0]  
Table 5. BBstCfg Register (0x02)  
ADDRESS  
0x02 (Read, Write)  
BIT  
7
6
-
5
-
4
-
3
NAME  
BBstDmpEn  
ILimSet[1:0]  
FetScale[1:0]  
Buck-Boost Dump Enable  
This enables a dump switch to reduce LX oscillations  
0: Switch disabled  
BBstDmpEn  
1: Switch enabled  
Buck-Boost Peak Current Limit Setting  
Sets the peak current supplied by the buck-boost regulator  
00: 300mA  
01: 400mA  
10: 500mA  
11: 600mA  
ILimSet[1:0]  
FetScale  
Scales the switching FETs to optimize efficiency at a given load  
00: 28%  
01: 60%  
10: 80%  
11: 100%  
FetScale[1:0]  
Maxim Integrated  
18  
www.maximintegrated.com  
MAX20310  
Ultra-Low Quiescent Current PMIC with  
SIMO Buck-Boost for Wearable Applications  
Table 6. BBst1VSet Register (0x04)  
ADDRESS  
0x04 (Read, Write)  
BIT  
7
-
6
-
5
4
3
2
1
0
NAME  
BBst1VSet[5:0]  
Buck-Boost 1 Output Voltage Setting  
0.90V to 4.05V, linear scale, 50mV increments  
000000 = 0.90V  
000001 = 0.95V  
BBst1VSet[5:0]  
111110 = 4.00V  
111111 = 4.05V  
Table 7. BBst1Cfg Register (0x05)  
ADDRESS  
0x05 (Read, Write)  
BIT  
7
6
5
4
3
BBst1RmpDis  
2
1
0
NAME  
BBst1En[1:0]  
BBst1PDsc  
Buck-Boost 1 Enable  
00: Disabled  
BBst1En[1:0]  
01: Enabled  
10: Controlled by MPC (active low)  
11: Controlled by MPC (active high)  
Buck-Boost 1 Passive Discharge  
0: Disabled  
BBst1PDsc  
1: Enabled when output is off  
Disable the ramped output of Buck-Boost output 1. If disabled, the BBst1VSet value is immediately  
applied to the output.  
1: Immediate transition to set value  
0: Ramp to set value mode  
BBst1RmpDis  
Table 8. BBst2VSet Register (0x06)  
ADDRESS  
0x06 (Read, Write)  
BIT  
7
-
6
-
5
4
3
2
1
0
NAME  
BBst2VSet[5:0]  
Buck-Boost 2 Output Voltage Setting  
0.90V to 4.05V, linear scale, 50mV increments  
000000 = 0.90V  
000001 = 0.95V  
BBst2VSet[5:0]  
111110 = 4.00V  
111111 = 4.05V  
Maxim Integrated  
19  
www.maximintegrated.com  
MAX20310  
Ultra-Low Quiescent Current PMIC with  
SIMO Buck-Boost for Wearable Applications  
Table 9. BBst2Cfg Register (0x07)  
ADDRESS  
0x07 (Read, Write)  
BIT  
7
6
5
4
-
3
2
-
1
-
0
-
NAME  
BBst2En[1:0]  
BBst2PDsc  
BBst2RmpDis  
Buck-Boost 2 Output Enable  
00: Disabled  
BBst2En[1:0]  
01: Enabled  
10: Controlled by MPC (active-low)  
11: Controlled by MPC (active-high)  
Buck-Boost 2 Passive Discharge  
0: Disabled  
BBst2PDsc  
1: Enabled when output is off  
Disable the ramped output of Buck-Boost output 2. If disabled, the BBst2VSet value is immediately applied to  
the output.  
1: Immediate transition to set value  
0: Ramp to set value mode  
BBst2RmpDis  
Table 10. LDO1VSet Register (0x08)  
ADDRESS  
0x08 (Read, Write)  
BIT  
7
6
5
4
3
2
1
0
NAME  
LDO1VSet[5:0]  
LDO 1 Output Voltage Setting  
0.50V to 3.65V, 50mV increments  
000000 = 0.50V  
000001 = 0.55V  
LDO1VSet[5:0]  
111110 = 3.60V  
111111 = 3.65V  
Maxim Integrated  
20  
www.maximintegrated.com  
MAX20310  
Ultra-Low Quiescent Current PMIC with  
SIMO Buck-Boost for Wearable Applications  
Table 11. LDO1Cfg Register (0x09)  
ADDRESS  
0x09 (Read, Write)  
BIT  
7
6
5
4
3
2
1
0
NAME  
LDO1En[1:0]  
LDO1PDsc  
LDO1ADsc  
LDO1Mode  
LDO 1 Output Enable  
00: Disabled  
LDO1En[1:0]  
01: Enabled  
10: Controlled by MPC (active-low)  
11: Controlled by MPC (active-high)  
LDO 1 Passive Discharge  
0: Disabled  
1: Enabled when output is off  
LDO1PDsc  
LDO1Mode  
LDO 1 Mode  
Configure LDO1 as an LDO or a load switch  
0: LDO  
1: Load Switch  
Table 12. LDO2VSet Register (0x0A)  
ADDRESS  
0x0A (Read, Write)  
BIT  
7
6
5
4
3
2
1
0
NAME  
LDO2VSet[5:0]  
LDO 2 Output Voltage Setting  
0.50V to 3.65V, 50mV increments  
000000 = 0.50V  
000001 = 0.55V  
LDO2VSet[5:0]  
111110 = 3.60V  
111111 = 3.65V  
Maxim Integrated  
21  
www.maximintegrated.com  
MAX20310  
Ultra-Low Quiescent Current PMIC with  
SIMO Buck-Boost for Wearable Applications  
Table 13. LDO2Cfg Register (0x0B)  
ADDRESS  
0x0B (Read, Write)  
BIT  
7
6
5
4
3
2
1
0
NAME  
LDO2En[1:0]  
LDO2PDsc  
LDO2Mode  
LDO 2 Output Enable  
00: Disabled  
LDO2En[1:0]  
01: Enabled  
10: Controlled by MPC (active-low)  
11: Controlled by MPC (active-high)  
LDO 2 Passive Discharge  
0: Disabled  
1: Enabled when output is off  
LDO2PDsc  
LDO2Mode  
LDO 2 Mode  
Configure LDO2 as an LDO or a load switch  
0: LDO  
1: Load Switch  
Table 14. MonCfg Register (0x0C)  
ADDRESS  
0x0C (Read, Write)  
BIT  
7
6
5
4
3
2
1
0
NAME  
MonHiZ  
MonSel[2:0]  
Monitor Off Mode Condition  
MonHiZ  
0: 100kΩ pulldown when disabled  
1: High impedance when disabled  
Monitor Pin Source Selection  
000: Disabled  
001: BB1OUT selected  
010: BB2OUT selected  
011: L1OUT selected  
100: L2OUT selected  
101: BATIN selected  
110: CAP selected  
MonSel[2:0]  
111: Reserved  
Maxim Integrated  
22  
www.maximintegrated.com  
MAX20310  
Ultra-Low Quiescent Current PMIC with  
SIMO Buck-Boost for Wearable Applications  
Table 15. MPOCfg Register (0x0D)  
ADDRESS  
0x0D (Read, Write)  
BIT  
7
6
5
4
3
2
1
0
NAME  
MPOEn[1:0]  
MPOPull[1:0]  
Multipurpose Output Enable  
00: Pull up (to GND)  
MPOEn[1:0]  
MPOPull[1:0]  
01: Pull down (to BATN)  
10: Pull up when MPC high, pull down when MPC low  
11: Pull up when MPC low, pull down when MPC high  
Multipurpose Output Pull Mode  
00: Disabled  
01: Pull down (to BATN)  
10: Pull up (to GND)  
11: Pull up/down (Push/Pull)  
Table 16. PwrCmd Register (0x0E)  
ADDRESS  
0x0E (Read, Write)  
BIT  
7
6
5
4
3
2
1
0
NAME  
PwrCmd[7:0]  
Power Command Register  
10110010: Power Off - Turn off and stay off  
11000011: Hard Reset - Turn off and return back on  
PwrCmd[7:0]  
11010100: Soft Reset - Pulse RST low  
Maxim Integrated  
23  
www.maximintegrated.com  
MAX20310  
Ultra-Low Quiescent Current PMIC with  
SIMO Buck-Boost for Wearable Applications  
Table 17. Status Register (0x0F)  
ADDRESS  
0x0F (Read-Only)  
BIT  
7
6
5
4
3
2
1
0
NAME  
LDO2UVLO  
LDO1UVLO  
LDO2Thm  
LDO1Thm  
LDO2CrMd  
LDO1CrMd  
KINSts MPCSts  
LDO 2 Undervoltage Lockout Status  
0: Normal  
LDO2UVLO  
1: Undervoltage  
LDO 1 Undervoltage Lockout Status  
0: Normal  
1: Undervoltage  
LDO1UVLO  
LDO2Thm  
LDO1Thm  
LDO2CrMd  
LDO1CrMd  
KINSts  
LDO 2 Thermal Limit Status  
0: Normal  
1: Thermal shutdown  
LDO 1 Thermal Limit Status  
0: Normal  
1: Thermal shutdown  
LDO 2 Current Mode  
0: LDO  
1: Switch  
LDO 1 Current Mode  
0: LDO  
1: Switch  
KIN Status  
0: Low  
1: High  
Multi-Purpose Control Status  
MPCSts  
0: Low  
1: High  
Maxim Integrated  
24  
www.maximintegrated.com  
MAX20310  
Ultra-Low Quiescent Current PMIC with  
SIMO Buck-Boost for Wearable Applications  
Table 18. PwrCfg Register (0x10)  
ADDRESS  
0x10 (Read-Only)  
BIT  
7
6
5
4
3
2
1
0
NAME  
PwrCfgMd[1:0]  
GPasDsc  
BootDly[1:0]  
Power Configuration Mode  
A short button press will always wake the device from the off state.  
2
00: Button only wakes device (can be turned off by I C command)  
PwrCfgMd[1:0]  
01: Long button press generates reset pulse  
10: Long button press power cycles and reboots device  
11: Long button press turns device off  
Global Passive Discharge  
GPasDsc  
0: Passive discharge disabled in off state  
1: Passive discharged enabled in off state  
Boot Sequence Delay (t  
00: 80ms  
)
RST  
BootDly[1:0]  
01: 120ms  
10: 160ms  
11: 200ms  
Table 19. BBstSeq Register (0x11)  
ADDRESS  
0x11 (Read-Only)  
BIT  
7
6
5
4
3
2
1
BBst1Seq[2:0]  
0
NAME  
BBst2Seq[2:0]  
Buck-Boost 2 Sequencing Configuration  
000: Disabled  
001: Reserved  
010: Enabled at 0% of power on delay  
011: Enabled at 25% of power on delay  
100: Enabled at 50% of power on delay  
101: Enabled by MPC (active low)  
110: Enabled by MPC (active high)  
BBst2Seq[2:0]  
111: Controlled by BBst2En[1:0] after 100% of power on delay  
Buck-Boost 2 Sequencing Configuration  
000: Disabled  
001: Reserved  
010: Enabled at 0% of power on delay  
011: Enabled at 25% of power on delay  
100: Enabled at 50% of power on delay  
101: Enabled by MPC (active low)  
110: Enabled by MPC (active high)  
111: Controlled by BBst1En[1:0] after 100% of power on delay  
BBst1Seq[2:0]  
Maxim Integrated  
25  
www.maximintegrated.com  
MAX20310  
Ultra-Low Quiescent Current PMIC with  
SIMO Buck-Boost for Wearable Applications  
Table 20. LDOSeq Register (0x12)  
ADDRESS  
0x12 (Read-Only)  
BIT  
7
6
5
4
3
2
1
0
NAME  
LDO2Seq[2:0]  
LDO1Seq[2:0]  
LDO 2 Sequencing Configuration  
000: Disabled  
001: Reserved  
010: Enabled at 0% of power on delay  
011: Enabled at 25% of power on delay  
100: Enabled at 50% of power on delay  
101: Enabled by MPC (active low)  
110: Enabled by MPC (active high)  
LDO2Seq[2:0]  
111: Controlled by LDO2En[1:0] after 100% of power on delay  
LDO 1 Sequencing Configuration  
000: Disabled  
001: Reserved  
010: Enabled at 0% of power on delay  
011: Enabled at 25% of power on delay  
100: Enabled at 50% of power on delay  
101: Enabled by MPC (active low)  
110: Enabled by MPC (active high)  
111: Controlled by LDO1En[1:0] after 100% of power on delay  
LDO1Seq[2:0]  
Maxim Integrated  
26  
www.maximintegrated.com  
MAX20310  
Ultra-Low Quiescent Current PMIC with  
SIMO Buck-Boost for Wearable Applications  
Table 21. Register Bit Default Values  
REGISTER BITS  
MAX20310A  
MAX20310B  
MAX20310C  
MAX20310D  
MAX20310E  
ILimSet[1:0]  
FetScale[1:0]  
LDO1En[1:0]  
LDO1VSet[5:0]  
LDO2En[1:0]  
LDO2VSet[5:0]  
BBst1En[1:0]  
BBst1VSet[5:0]  
BBst2En[1:0]  
BBst2VSet[5:0]  
BBstDmpEn  
LDO2Mode  
400mA  
100%  
600mA  
100%  
300mA  
80%  
300mA  
80%  
300mA  
80%  
Disabled  
1.5V  
Disabled  
0.5V  
Disabled  
1.5V  
Disabled  
3.0V  
Disabled  
1.2V  
Disabled  
1.0V  
Disabled  
1.8V  
Disabled  
1.0V  
Disabled  
1.2V  
Disabled  
1.0V  
Disabled  
1.8V  
Disabled  
3.0V  
Enabled  
2.5V  
Enabled  
3.3V  
Enabled  
1.8V  
Disabled  
1.2V  
Disabled  
2.1V  
Disabled  
1.2V  
Disabled  
1.5V  
Disabled  
1.2V  
Disabled  
Switch  
LDO  
Disabled  
LDO  
Disabled  
LDO  
Disabled  
LDO  
Disabled  
LDO  
LDO1Mode  
Switch  
GND  
LDO  
LDO  
LDO  
MPOEn[1:0]  
PullMode[1:0]  
PwrCfgMd[1:0]  
GPasDsc  
GND  
GND  
GND  
GND  
Disabled  
ON/off  
Disabled  
120ms  
Disabled  
ON  
Disabled  
Hard Reset  
Enabled  
200ms  
Disabled  
Soft Reset  
Enabled  
160ms  
Disabled  
On/Off  
Enabled  
80ms  
Disabled  
80ms  
BootDly[1:0]  
2
2
2
I C after 100%  
boot  
I C after 100%  
boot  
I C after 100%  
boot  
BBst2Seq[2:0]  
BBst1Seq[2:0]  
LDO2Seq[2:0]  
LDO1Seq[2:0]  
0% boot  
0% boot  
25% boot  
0% boot  
2
2
2
I C after 100%  
I C after 100%  
I C after 100%  
boot  
boot  
boot  
2
2
2
2
I C after 100%  
boot  
I C after 100%  
I C after 100%  
I C after 100%  
50% boot  
boot  
boot  
boot  
2
2
2
2
2
I C after 100%  
I C after 100%  
boot  
I C after 100%  
I C after 100%  
I C after 100%  
boot  
boot  
boot  
boot  
Maxim Integrated  
27  
www.maximintegrated.com  
MAX20310  
Ultra-Low Quiescent Current PMIC with  
SIMO Buck-Boost for Wearable Applications  
Table 22. Register Default Values  
DEFAULT VALUES  
REGISTER  
ADDRESS  
REGISTER  
NAME  
MAX20310A  
0x00  
MAX20310B  
0x00  
MAX20310C  
0x00  
MAX20310D  
0x00  
MAX20310E  
0x00  
0x00  
0x01  
0x02  
0x04  
0x05  
0x06  
0x07  
0x08  
0x09  
0x0A  
0x0B  
0x0D  
0x10  
0x11  
0x12  
ChipId  
ChipRev  
BBstCfg  
0x00  
0x00  
0x00  
0x00  
0x00  
0x07  
0x0F  
0x2A  
0x10  
0x02  
0x02  
0x02  
BBst1VSet  
BBst1VCfg  
BBst2VSet  
BBst2VCfg  
LDO1Vset  
LDO1Cfg  
LDO2Vset  
LDO2Cfg  
MPOCfg  
PwrCfg  
0x12  
0x20  
0x30  
0x12  
0x10  
0x60  
0x60  
0x60  
0x06  
0x18  
0x06  
0x0C  
0x20  
0x06  
0x10  
0x10  
0x20  
0x20  
0x14  
0x00  
0x14  
0x32  
0x0E  
0x20  
0x10  
0x11  
0x20  
0x20  
0x0A  
0x11  
0x1A  
0x10  
0x0A  
0x20  
0x0E  
0x20  
0x0A  
0x20  
0x00  
0x00  
0x00  
0x00  
0x00  
0xD1  
0x22  
0x10  
0xA3  
0x77  
0x62  
0xE0  
0x77  
BBstSeq  
LDOSeq  
0x32  
0x77  
0x77  
0x47  
0x77  
0x77  
0x77  
Maxim Integrated  
28  
www.maximintegrated.com  
MAX20310  
Ultra-Low Quiescent Current PMIC with  
SIMO Buck-Boost for Wearable Applications  
Typical Application Circuit  
+1.8V  
+3.3V  
+1.2V  
ANALOG  
I/O  
MAX20310  
LX  
L1OUT  
B1OUT  
B2OUT  
L2OUT  
V
V
V
DD18  
DDA  
RTC  
LDO/SW  
BUCK-BOOST  
LDO/SW  
2.2µF  
LED  
10µF  
GND  
CORE  
10µF  
V
DD12  
+0.7V  
TO  
+2.0V  
LOAD  
SWITCH  
BLE  
BATN  
2.2µF  
MAX32620  
KIN  
MON  
SCL  
SDA  
CAP  
ADC  
SCL  
SDA  
MPO  
MPC  
RST  
CONTROL  
1µF  
RST  
GPO  
GPI  
Note: The capacitor values shown reflect an effective capacitance. Derate capacitors appropriately according to specific  
application requirements.  
Ordering Information  
Chip Information  
PROCESS: BiCMOS  
PIN-  
TOP  
PART  
TEMP RANGE  
PACKAGE MARK  
MAX20310AEWE+  
-40°C to +85°C  
16 WLP  
16 WLP  
16 WLP  
16 WLP  
16 WLP  
16 WLP  
16 WLP  
16 WLP  
16 WLP  
16 WLP  
AAK  
AAK  
AAK  
AAK  
AAK  
AAK  
AAK  
AAK  
AAK  
AAK  
MAX20310AEWE+T -40°C to +85°C  
MAX20310BEWE+ -40°C to +85°C  
MAX20310BEWE+T -40°C to +85°C  
MAX20310CEWE+ -40°C to +85°C  
MAX20310CEWE+T -40°C to +85°C  
MAX20310DEWE+ -40°C to +85°C  
MAX20310DEWE+T -40°C to +85°C  
MAX20310EEWE+  
-40°C to +85°C  
MAX20310EEWE+T -40°C to +85°C  
+ Denotes a lead(Pb)-free/RoHS-compliant package.  
T = Tape and reel.  
Maxim Integrated  
29  
www.maximintegrated.com  
MAX20310  
Ultra-Low Quiescent Current PMIC with  
SIMO Buck-Boost for Wearable Applications  
Revision History  
REVISION REVISION  
PAGES  
DESCRIPTION  
CHANGED  
NUMBER  
DATE  
0
9/16  
Initial release  
Added future products. Updated Typical Operating Characteristics, General  
Description, Benefits and Features, Power Regulation, Power Sequencing  
sections, and Typical Application Circuit. Added Always-On Devices and  
Additional Voltage Regulators sections. Replaced Figure 1, added new Figure 4  
and renumbered Figures 5-10. Updated Table 5 and replaced Tables 21-22.  
1, 6–8  
10, 12–16  
18, 26–28  
1
2
5/17  
3/18  
2
Updated the Detailed Description section, I C Register Map, and Register  
10, 17,  
27, 29  
Bit Default Values table. Replaced Typical Application Circuit figure. Updated  
Ordering Information to show that the MAX20310A-E are released products.  
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim Integrated’s website at www.maximintegrated.com.  
Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses  
are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits)  
shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.  
©
Maxim Integrated and the Maxim Integrated logo are trademarks of Maxim Integrated Products, Inc.  
2018 Maxim Integrated Products, Inc.  
30  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY