MAX20429EVKIT [MAXIM]

Single Supply Operation with 3.0V to 5.5V Input Supply Range;
MAX20429EVKIT
型号: MAX20429EVKIT
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Single Supply Operation with 3.0V to 5.5V Input Supply Range

文件: 总18页 (文件大小:715K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Click here to ask about the production status of specific part numbers.  
MAX20429  
Dual 6A High-Efficiency Low Voltage Buck  
Converter  
General Description  
Benefits and Features  
The MAX20429 is a high-efficiency dual switching regula-  
tor that delivers up to 6A (peak) load current per output  
from 0.5V to 1.5875V in 12.5mV steps and 1.6V to 3.8V  
in 50mV steps. The IC operates from 3V to 5.5V, making  
it ideal for on-board point-of-load and post-regulation ap-  
plications. Total output error is less than ±1.0% over load,  
line, and temperature.  
● High-Feature Set in an Ultra-Small Footprint  
• High-Efficiency DC-DC Converter  
• Two Independent Outputs, up to 6A per Output  
• 3.0V to 5.5V Operating Supply Voltage  
• Resistor-Adjustable Output Voltage  
• Optional Factory-Preset Output Voltage  
• 2.1MHz/3.2MHz Options  
• Enable Input  
• Individual RESET Outputs  
• Spread-Spectrum Option  
• Peak Current-Mode Architecture  
• 3mm x 3.5mm FCQFN  
The MAX20429 features fixed-frequency PWM mode op-  
eration with a switching frequency of 2.1MHz or 3.2MHz.  
High-frequency operation allows for an all-ceramic capac-  
itor design with small external components.  
The low-resistance on-chip switches ensure high efficien-  
cy at heavy loads while minimizing critical inductances,  
making the layout a much simpler task with respect to dis-  
crete solutions. Following a simple layout and footprint en-  
sures first-pass success in new designs.  
● High-Precision  
• 108/92% OV/UV Monitor  
• ±3% OV/UV Accuracy  
• ±1% Output Voltage Accuracy  
• Excellent Load-Transient Performance  
The device features the MAXQ™ technology, which pro-  
vides precision transient performance and phase margin.  
This allows obtaining the maximum power, performance,  
and precision from the converter over a very wide range of  
configurations.  
• PWM and SKIP Mode Operation  
TM  
• MAXQ  
Power Architecture  
● High Efficiency  
• Up to 96% Efficiency 5V to 3.3V  
• Up to 90% Efficiency 5V to 1V  
The MAX20429 has separate enable inputs and status  
outputs for each buck converter. The output voltage is  
preset at the factory to allow customers to achieve ±1%  
output-voltage accuracy without using expensive 0.1% re-  
sistors. The devices offer factory programmable soft-start  
and RESET times.  
● -40°C to +125°C Operating Temperature Range  
● AEC-Q100 Qualified  
Ordering Information appears at end of data sheet.  
The devices include over-temperature shutdown and over-  
current limiting. All devices are designed to operate from  
–40 °C to +125 °C ambient temperature range.  
Applications  
● Secondary Regulator for SoC / MCU Supply  
19-100842; Rev 1; 12/20  
 
 
MAX20429  
Dual 6A High-Efficiency Low Voltage Buck  
Converter  
Simplified Block Diagram  
VIN  
PV1,PV2  
OUT1  
CIN  
L
LX1  
V
OUT1  
SYNC  
VDD  
COUT  
VIN  
PGND1  
MAX20429  
GND  
OUT2  
L
LX2  
V
COUT  
OUT2  
ENABLE 1  
ENABLE 2  
EN1  
EN2  
PGND2  
VIO  
PGND  
RESET1  
RESET2  
www.maximintegrated.com  
Maxim Integrated | 2  
 
MAX20429  
Dual 6A High-Efficiency Low Voltage Buck  
Converter  
TABLE OF CONTENTS  
General Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Benefits and Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Simplified Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
Absolute Maximum Ratings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Package Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
FC2QFN. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Typical Operating Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Pin Configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
MAX20429 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Pin Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Functional Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Internal Block Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Detailed Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
MAXQ Power Architecture (No Wasted Performance). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Enable Input (EN1, EN2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
RESET Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Internal Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Synchronization (SYNC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Soft-Start and Soft-Shutdown. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Current Limit / Short-Circuit Protection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
PWM/SKIP Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Overtemperature Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Spread Spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Resistor-Adjustable Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Applications Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Input Capacitor Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Inductor Selection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Output Capacitors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Typical Application Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Typical Application Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
www.maximintegrated.com  
Maxim Integrated | 3  
MAX20429  
Dual 6A High-Efficiency Low Voltage Buck  
Converter  
LIST OF TABLES  
Table 1. Slope Compensation Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Table 2. Output Capacitor Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
www.maximintegrated.com  
Maxim Integrated | 4  
MAX20429  
Dual 6A High-Efficiency Low Voltage Buck  
Converter  
Absolute Maximum Ratings  
PV1, PV2 to GND....................................................... -0.3V to 6V  
LX Continuous RMS Current (15000hr lifespan) ......................6A  
Output Short-Circuit Duration......................................Continuous  
Continuous Power Dissipation (4-Layer Board) (T A = +70°C,  
derate 51.8 mW/°C above +70°C. ) .......................... to 4145mW  
Ambient Operating Temperature ........................-40°C to +125°C  
Operating Junction Temperature ........................-40°C to +150°C  
Storage Temperature Range ..............................-65°C to +150°C  
Lead Temperature Range.................................................+300°C  
V
DD  
to GND................................................................ -0.3V to 6V  
OUT1, OUT2 to GND ..................................... -0.3V to V +0.3V  
DD  
LX1, LX2 to GND............................................... -0.3 to PV_ + 0.3  
EN1, EN2, RESET1, RESET2 to GND ...................... -0.3V to 6V  
SYNC to GND................................................. -0.3V to V +0.3V  
DD  
PGND_ to GND ..................................................... -0.3V to +0.3V  
LX Continuous RMS Current (95000hr lifespan)...................... 4A  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the  
device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for  
extended periods may affect device reliability.  
Package Information  
FC2QFN  
Package Code  
F183A3FY+1  
21-100428  
90-100155  
Outline Number  
Land Pattern Number  
Thermal Resistance, Four-Layer Board:  
Junction to Ambient (θ  
)
19.3°C/W  
5.0°C/W  
JA  
Junction to Case (θ  
)
JC  
For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a “+”, “#”, or “-” in the package code indicates  
RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.  
Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer board. For detailed information on package thermal  
considerations, refer to www.maximintegrated.com/thermal-tutorial.  
Electrical Characteristics  
°
°
°
(PV1 = PV2 = 5V, T = -40 C to +150 C, unless otherwise noted. Typical values are at T = 25 C under normal conditions unless  
J
A
otherwise noted.)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
5.5  
5
UNITS  
PV Supply Voltage  
Range  
V
PV  
3.0  
V
V
V
= V  
= low, T = +25°C  
3
EN1  
EN2  
A
Supply Current  
I
µA  
VDD  
= high, V  
= low, no load  
440  
2.6  
2.7  
2.1  
3.2  
EN1  
EN2  
V
DD  
UVLO  
V
V
Falling  
Rising  
2.4  
V
V
UVLO  
VDD UVLO  
2.9  
2.3  
3.6  
UVLO  
f
f
= 2.1MHz  
= 3.2MHz  
1.9  
2.9  
SW  
Oscillator Frequency  
f
MHz  
%
SW  
SW  
Spread Spectrum  
Range  
+3  
www.maximintegrated.com  
Maxim Integrated | 5  
MAX20429  
Dual 6A High-Efficiency Low Voltage Buck  
Converter  
Electrical Characteristics (continued)  
°
°
°
(PV1 = PV2 = 5V, T = -40 C to +150 C, unless otherwise noted. Typical values are at T = 25 C under normal conditions unless  
J
A
otherwise noted.)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
OUT  
Programmable voltage range, 3.0 V ≤  
0.5  
3.8  
V
V
PV  
≤ 5.5V (Note 4)  
Output Voltage  
V
Step size, 0.5 V ≤ V  
4)  
≤ 1.5875 V (Note  
≤ 3.8 V (Note 4)  
OUT  
OUT  
OUT  
12.5  
mV  
Step size, 1.6 V ≤ V  
Option 1  
50  
0.825  
1.1  
0.7  
0.9  
1
1.3  
1.65  
2
Option 2  
Skip Mode Peak Current  
I
A
SKIP  
Option 3  
1.15  
1.3  
1.4  
Option 4  
1.69  
PWM mode, 0A ≤ I  
≤ I  
,
MAX  
LOAD  
MAX(3.0V,V  
+ 0.5V) ≤ V ≤ 5.5V,  
≥ 3.8V  
-1  
-7  
1
%
OUT  
IN  
0.6V ≥ V  
OUT  
PWM mode, 0A ≤ I  
≤ I  
, 0.5V ≤  
LOAD  
MAX  
+7  
mV  
Voltage Accuracy  
V
OUT  
≤ 0.5875V  
PWM mode, 0A ≤ I  
MAX(3.0V,V  
≤ I  
,
LOAD  
MAX  
+ 0.5V) ≤ V ≤ 5.5V,  
OUT  
IN  
-1  
+1  
%
V
OUT  
= 0.6V. ADJ variant  
MAX20429CAFNA/VY+  
DC Load Regulation  
DC Line Regulation  
0A ≤ I ≤ I (PWM mode)  
0.1  
0.05  
18  
%
LOAD  
MAX  
PV_ from 3V to 5.5V  
Including metal and package  
Intrinsic  
%/V  
R
50  
50  
High-Side On-  
Resistance  
ON-H  
mΩ  
16  
R
Including metal and package  
Intrinsic  
12  
Low-Side On-  
Resistance  
ON-L  
mΩ  
%
10  
V
IN  
= 5V, V  
= 1.8V, L = 220nH, DCR  
OUT  
Efficiency  
92.4  
= 13mΩ  
Option 1 (2.0A DC)  
Option 2 (3.0A DC)  
Option 3 (4.0A DC)  
Option 4 (6.0A DC)  
2.6  
3.9  
5.2  
7.8  
3.5  
4.7  
6.0  
10  
Current-Limit Threshold  
I
A
LIM  
nMOS Zero-Crossing  
Threshold  
I
100  
mA  
ZX  
LX_ Rise/Fall Time  
Dead Time  
PV = 3.3V, I  
PV = 3.3V, I  
= 2A (Note 4)  
= 2A (Note 4)  
1
3
ns  
ns  
µA  
%
OUT  
OUT  
t
DEAD  
LX_ Leakage Current  
Max Duty Cycle  
Minimum On-Time  
0.01  
D
Effective  
100  
MAX  
t
35  
50  
60  
ns  
ON  
LX_ Discharge  
Resistance  
R
Ω
DIS  
www.maximintegrated.com  
Maxim Integrated | 6  
MAX20429  
Dual 6A High-Efficiency Low Voltage Buck  
Converter  
Electrical Characteristics (continued)  
°
°
°
(PV1 = PV2 = 5V, T = -40 C to +150 C, unless otherwise noted. Typical values are at T = 25 C under normal conditions unless  
J
A
otherwise noted.)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
LX_ Switching Phase  
LX1 rising to LX2 rising (Note 4)  
180  
°
Option 1 (step = 12.5mV for V  
1.6V, otherwise 50mV)  
<
<
<
<
OUT  
OUT  
OUT  
OUT  
32  
16  
8
Option 2 (step = 12.5mV for V  
1.6V, otherwise 50mV)  
Soft-Start Rate  
clks/step  
Option 3 (step = 12.5mV for V  
1.6V, otherwise 50mV)  
Option 4 (step = 12.5mV for V  
1.6V, otherwise 50mV)  
4
Option 1  
Hi-Z  
32  
Soft-Shutdown Rate  
Voltage Accuracy  
t
SHDN  
Option 2 (step = 12.5mV for V  
1.6V, otherwise 50mV)  
<
OUT  
clks/step  
mV  
PWM mode, 0A ≤ I  
≤ I  
, 0.5V ≤  
MAX  
LOAD  
-7  
+7  
V
OUT  
≤ 0.5875V  
RESET  
OV Threshold Range  
UV Threshold Range  
V
V
Rising  
Falling  
104  
89  
108  
92  
112  
95  
%
%
OUT  
OUT  
Option 1 (15.6ms@2.1MHz,  
10.2ms@3.2MHz)  
32768  
16384  
8192  
Option 2 (7.8ms@2.1MHz,  
5.1ms@3.2MHz)  
Active Timeout Period  
Output Low Level  
t
clks  
HOLD  
Option 3 (3.9ms@2.1MHz,  
2.5ms@3.2MHz)  
Option 4 (488μs@2.1MHz,  
320μs@3.2MHz)  
1024  
0.1  
ISINK = 3mA  
(Note 4)  
0.2  
V
Thermal Shutdown  
Temperature  
T
165  
ºC  
SHDN  
Thermal Shutdown  
Hysteresis  
T
(Note 4)  
15  
ºC  
HYS  
Leakage Current  
OV/UV Filter  
0.1  
10  
µA  
μs  
ENABLE INPUT (EN)  
Input High  
Rising  
Falling  
1.5  
1.8  
V
V
Input Low  
0.5  
0.4  
Hysteresis  
0.05  
0.1  
V
Leakage Current  
SYNCHRONIZATION (SYNC)  
Input High  
µA  
V
V
Input Low  
www.maximintegrated.com  
Maxim Integrated | 7  
MAX20429  
Dual 6A High-Efficiency Low Voltage Buck  
Converter  
Electrical Characteristics (continued)  
°
°
°
(PV1 = PV2 = 5V, T = -40 C to +150 C, unless otherwise noted. Typical values are at T = 25 C under normal conditions unless  
J
A
otherwise noted.)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
1.8  
TYP  
MAX  
2.5  
UNITS  
MHz  
kΩ  
f
f
= 2.1MHz  
= 3.2MHz  
SYNC Input Frequency  
Range  
SW  
f
SYNC  
2.8  
3.6  
SW  
Pulldown Resistance  
100  
Note 1: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a 4-layer  
board. For detailed information on package thermal considerations see http://www.maxim-ic.com/thermal-tutorial.  
Note 2: All units are 100% production tested at +25˚C. All temperature limits are guaranteed by design.  
Note 3: The device is designed for continuous operation up to T = +125°C for 95,000 hours and T = +150°C for 5,000 hours.  
J
J
Note 4: Guaranteed by design. Not production tested.  
www.maximintegrated.com  
Maxim Integrated | 8  
MAX20429  
Dual 6A High-Efficiency Low Voltage Buck  
Converter  
Typical Operating Characteristics  
(V  
= V  
= 5V; T = +25°C unless otherwise noted)  
PV2 A  
PV1  
www.maximintegrated.com  
Maxim Integrated | 9  
MAX20429  
Dual 6A High-Efficiency Low Voltage Buck  
Converter  
Typical Operating Characteristics (continued)  
(V  
= V  
= 5V; T = +25°C unless otherwise noted)  
PV2 A  
PV1  
Pin Configuration  
MAX20429  
TOP VIEW  
17  
16  
15  
18  
14  
13  
EN2  
RESET2  
PV2  
EN1  
1
2
3
12  
11  
RESET1  
PV1  
LX2  
4
10  
LX1  
9
6
7
8
5
www.maximintegrated.com  
Maxim Integrated | 10  
MAX20429  
Dual 6A High-Efficiency Low Voltage Buck  
Converter  
Pin Description  
PIN  
NAME  
FUNCTION  
OUT2 Active-High Enable Input. Drive EN2 HIGH for normal operation. The device enters soft-start  
on the rising edge enters soft-shutdown on the falling edge.  
1
EN2  
2
3
RESET2  
PV2  
OUT2 Active-Low Open Drain RESET Output. External pullup resistor required if used.  
OUT2 Power Input Supply. Connect a 10μF or larger ceramic capacitor from PV2 to PGND2.  
OUT2 Inductor Connection. Connect LX2 to the switched side of the inductor.  
OUT2 Power Ground  
4
LX2  
5,6  
7
PGND2  
PGND  
PGND1  
LX1  
Power Ground  
8,9  
10  
11  
12  
OUT1 Power Ground  
OUT1 Inductor Connection. Connect LX1 to the switched side of the inductor.  
OUT1 Power Input Supply. Connect a 10μF or larger ceramic capacitor from PV1 to PGND1.  
OUT1 Active-Low Open Drain RESET Output. External pullup resistor required if used.  
PV1  
RESET1  
OUT1 Active-High Enable Input. Drive EN1 HIGH for normal operation. The device enters soft-start  
on the rising edge enters soft-shutdown on the falling edge.  
13  
14  
15  
EN1  
OUT1  
SYNC  
OUT1 Feedback Input. Connect to the output capacitor of Output 1.  
SYNC Input. Connect SYNC to GND or leave unconnected to enable skip-mode operation under  
light loads. Connect SYNC to PV or an external clock to enable fixed-frequency FPWM operation.  
16  
17  
18  
V
Internal Analog Supply. Connect a 2.2µF capacitor between this pin and GND.  
Analog Ground  
DD  
GND  
OUT2  
OUT2 Feedback Input. Connect to the output capacitor of Output 2.  
www.maximintegrated.com  
Maxim Integrated | 11  
 
MAX20429  
Dual 6A High-Efficiency Low Voltage Buck  
Converter  
Functional Diagrams  
Internal Block Diagram  
x2  
I-SENSE  
AMP  
PV1,  
PV2  
SKIP CURRENT  
COMP  
CLK  
PV_  
PV_  
PEAK CURRENT  
COMP  
RAMP  
GENERATOR  
LX1,  
LX2  
CONTROL  
LOGIC  
PWM  
COMP  
COMP  
PGND1  
I-SENSE  
AMP  
VID[7:0]  
V
REF  
EAMP  
FPWM CLK  
V
REF  
8-BIT DAC  
ZX  
COMP  
OV  
UV  
OV[x]  
UV[x]  
PGND1,  
PGND2  
OUT1,  
OUT2  
VREF  
MAXQTM  
TEST LOGIC  
OTP  
CLK  
CLK180  
FPWM  
OSC  
SYNC  
PGND  
UVLO  
VDD  
GND  
AGND  
UV/OV  
BANDGAP  
RESET1  
RESET2  
V
REF  
RESET1  
RESET2  
RESET1  
RESET2  
VID[7:0]  
EN1  
EN2  
CONTROL  
LOGIC  
www.maximintegrated.com  
Maxim Integrated | 12  
MAX20429  
Dual 6A High-Efficiency Low Voltage Buck  
Converter  
Detailed Description  
MAXQ Power Architecture (No Wasted Performance)  
The MAXQ power architecture allows the MAX20429 to achieve the maximum dynamic performance under all worst-case  
conditions. Without the MAXQ power architecture, typical AC performance must be lowered below the device capabilities  
to guarantee that the device will be stable under all worst-case application conditions. The MAXQ power architecture  
keeps the device operating at peak performance.  
Enable Input (EN1, EN2)  
The enable control input EN1/EN2 activates the device channel from its low-power shutdown state. EN1/EN2 have an  
input-high threshold of 1.5V (typ), an input-low threshold of 0.5V, and a hysteresis of 50mV (typ). When an enable input  
goes high, the output voltage ramps up with the soft-start time. When an enable input goes low, the output voltage ramps  
down with the soft-start time or enters a Hi-Z state depending on the factory programmed setting of the device. See Soft-  
Start and Soft-Shutdown section for more detail.  
RESET Output  
The device features open-drain reset outputs that assert low when the corresponding output voltage is outside of the OV/  
UV window. The OV/UV comparators run from a separate reference to provide drift detection on the outputs. RESET_  
remains asserted for a fixed timeout period after the corresponding output returns to its regulated voltage. The fixed  
timeout period for 2.1 MHz is selectable between 0.5ms, 3.9ms, 7.8ms, or 15.6ms. The fixed timeout period for 3.2 MHz  
is selectable between 0.3ms, 2.5ms, 5.1ms, or 10.2ms. To obtain a logic signal, place a pullup resistor between the  
RESET_ pins to the system I/O voltage.  
Internal Oscillator  
The device has a spread-spectrum oscillator that varies the internal operating frequency by ±3% relative to the internally  
generated operating frequency of 2.1MHz/3.2MHz (typ). This function does not apply to externally applied oscillation  
frequency on the SYNC pin.  
Synchronization (SYNC)  
A logic-high on SYNC enables fixed-frequency, forced-PWM mode. Apply an external clock on the SYNC input to  
synchronize the internal oscillator to an external clock. The SYNC input accepts signal frequencies in the range of  
1.9MHz < f  
< 2.3MHz when f  
= 2.1MHz, and 2.9MHz < f  
< 3.6MHz when f  
= 3.2MHz. When the pin is  
SYNC  
SW  
SYNC  
SW  
open-circuited or logic-low, the SYNC input enables the device to enter a low-power skip mode under light-load conditions  
if the IC is configured to allow that behavior.  
Soft-Start and Soft-Shutdown  
The device includes a factory-programmable fixed soft-start time. Soft-start time limits startup inrush current by forcing  
the output voltage to ramp up towards its regulation point. The soft-start ramp rate can be factory programmed with four  
different options: 32, 16, 8, or 4 clocks per step, where step size = 12.5mV for V  
> 1.6V).  
≤ 1.6V (50mV step size when V  
OUT  
OUT  
When an EN pin goes low, the associated output enters shutdown. There are factory programmable options available that  
will either simply disable switching and activate a 50Ω (typ) discharge resistor, or perform a soft-shutdown by ramping  
down the reference at a fixed rate until a minimum on-time of 20ns is reached, at which point the switching stops and the  
discharge resistor is activated. The soft-shutdown ramp rate is fixed at 32 clocks per step, where step size = 12.5mV for  
V
OUT  
≤ 1.6V (50mV step size when V  
> 1.6V) when not configured as a simple discharge resistor.  
OUT  
Current Limit / Short-Circuit Protection  
The device features a current limit that protects the device against short-circuit and overload conditions at the output. In  
the event of a short-circuit or overload condition, the high-side MOSFET remains on until the inductor current reaches  
www.maximintegrated.com  
Maxim Integrated | 13  
MAX20429  
Dual 6A High-Efficiency Low Voltage Buck  
Converter  
the high-side MOSFET’s current-limit threshold. The converter then turns on the low-side MOSFET to allow the inductor  
current to ramp down. Once the inductor current crosses below the low-side MOSFET current-limit threshold, the  
converter turns on the high-side MOSFET again. This cycle repeats until the short or overload condition is removed.  
If the device crosses the current limit with the output voltage below 50% of the target, hiccup mode will be enabled and  
the output will turn off for 10ms, then the channel will attempt to power up through soft-start.  
PWM/SKIP Modes  
The device features an input (SYNC) that puts the converter either in SKIP mode or forced-PWM mode of operation.  
See Pin Descriptions for mode detail. In FPWM mode of operation, the converter switches at a constant frequency with  
variable on-time. In SKIP mode, the converter’s switching frequency is load-dependent until the output load reaches a  
set threshold. At higher load current, the switching frequency does not change, and the operating mode is similar to the  
FPWM mode. SKIP mode helps improve efficiency in light-load applications by allowing the converter to turn on the high-  
side switch only when the output voltage falls below a set threshold. As such, the converter does not switch MOSFETs  
on and off, as is often the case in the PWM mode. Consequently, the gate charge and switching losses are much lower  
in SKIP mode.  
Overtemperature Protection  
Thermal overload protection limits the total power dissipation in the MAX20429. When the junction temperature exceeds  
165°C (typ), an internal thermal sensor shuts down both outputs, allowing the IC to cool. The thermal sensor turns on the  
outputs again after the junction temperature cools by 15°C.  
Spread Spectrum  
The spread-spectrum option is enabled/disabled based on the part number. See the ordering table. If the spread  
spectrum is enabled and an external clock is applied to the SYNC pin, then the spread-spectrum circuit is bypassed,  
effectively disabling the option.  
Resistor-Adjustable Output  
MAX20429 output voltage can be set by external resistors in addition to the factory programmed V  
options. See the  
OUT  
Typical Application Diagram for placement of R1 and R2 external resistors. Desired output voltage can be calculated  
using the following method:  
R1 + R2  
R2  
V
=
* V  
REF  
OUT  
where V  
= 0.6V when using the device specified for adjustable output voltage.  
REF  
Fixed output voltage devices can use external resistors to achieve output voltages higher than the factory setting. When  
using a fixed output voltage device, use the factory preset output voltage as V  
to calculate the resistor values.  
REF  
www.maximintegrated.com  
Maxim Integrated | 14  
MAX20429  
Dual 6A High-Efficiency Low Voltage Buck  
Converter  
Applications Information  
Input Capacitor Selection  
An input filter capacitor reduces peak currents drawn from the upstream power source and reduces noise and voltage  
ripple on the input (caused by the circuit's switching behavior). One 10µF X7R ceramic capacitor each is recommended  
for the PV1 and PV2 pins. The V  
pin is the input to the analog circuitry and should be connected to the same supply  
DD  
as PV1/2 through a series 2Ω resistor IC to a 2.2µF X7R bypass capacitor.  
Inductor Selection  
Three key inductor parameters must be specified for operation with the MAX20429: inductance value (L), peak inductor  
current (I  
), and inductor saturation current (I  
). The minimum required inductance is a function of operating  
PEAK  
SAT  
frequency, input-to-output voltage differential, and the maximum output current capability of the output. A lower inductor  
value minimizes size and cost, improves large-signal and transient response, but reduces efficiency due to higher  
peak currents and higher peak-to-peak output-voltage ripple for the same output capacitor. On the other hand, higher  
inductance increases efficiency by reducing the ripple current. Resistive losses due to extra wire turns can exceed the  
benefit gained from lower ripple current levels especially when the inductance is increased without also allowing for larger  
inductor dimensions.  
Soft-saturating inductors are recommended for use with the MAX20429. The gradual decrease in inductance means that  
the IC will respond to overcurrent conditions before the LX current reaches dangerously high levels that might otherwise  
result in damage to the IC. If a hard-saturating inductor is used, its saturation current must be above the maximum LX  
current limit. For a soft-saturation inductor, only the current limit for temperature must be above the maximum LX current  
limit.  
The MAX20429 is designed for nominal ΔI  
equal to approximately 33% of the full load current. Use the following  
PK-PK  
equation to calculate the typical inductance with respect to ripple current:  
V
V  
OUT  
× V  
(
)
IN  
OUT  
× Δ  
L =  
V
× f  
× I  
IN SW MAX  
PKPK  
The V and V  
terms are typical values to optimize inductor selection for expected operating conditions. The  
IN  
OUT  
switching frequency f  
is 2.1MHz, 3.2MHz, or a different value if the synchronization function is utilized. The maximum  
SW  
current I  
is the channel's rated output current (2A, 3A, 4A, or 6A), not the expected application maximum load current.  
MAX  
Calculate the minimum inductance L  
with Δ  
= 40%, and the typical inductance L  
with Δ  
= 30%.  
MIN1  
PK-PK  
TYP1  
PK-PK  
The second bound on minimum inductance is with respect to slope compensation. This applies only to peak current  
control, not to adaptive COT control. The absolute minimum inductance allowable must ensure that the inductor current  
downslope is less than twice the downslope of the compensation ramp:  
m2  
m ≥  
2
Table 1. Slope Compensation Terms  
TERM  
VALUE  
V
OUT  
L
m2  
-m  
Inductor current downslope:  
× R  
CS  
Compensating ramp: OTP_SLP * 0.680 V / µsec  
1/2, 2/3, 4/3 (factory programmed)  
0.330Ω for 2A channel  
OTP_SLP  
0.240Ω for 3A channel  
R
CS  
0.185Ω for 4A channel  
0.133Ω for 6A channel  
www.maximintegrated.com  
Maxim Integrated | 15  
MAX20429  
Dual 6A High-Efficiency Low Voltage Buck  
Converter  
For margin of error, the worst-case inductance (largest derating for current and temperature, plus lowest value for percent  
tolerance) should result in the inductor downslope being 25% greater than half the slope compensation ramp:  
R
CS  
L
= V  
×
× 1.25  
MIN2  
OUT  
2 × m  
Nominally, the inductor current down-slope should be approximately equal to the compensating ramp. Equal down-slopes  
will result in current waveform perturbations being eliminated in a single switching cycle:  
R
CS  
L
= V  
×
OUT  
m
TYP2  
Two equations must therefore be fulfilled: one equation for minimum worst-case inductance (required) and one for typical  
inductance (recommended): L > max ( L , L ) and L > max ( L , L ). The maximum inductance  
MIN  
MIN1  
MIN2  
TYP  
TYP1  
TYP2  
should be less than 2 x L  
to avoid degrading the control performance.  
TYP2  
Output Capacitors  
The MAX20429 is designed to be stable with low-ESR ceramic capacitors. Other capacitor types are not recommended  
as the ESR zero can affect stability of the device. The output capacitor calculations below are guidelines based on  
nominal conditions. The phase margin must be measured on the final circuit to verify proper stability is achieved.  
Conditions:  
● Feed-forward zero enabled, GMZ = 116μS, FFR = 300kΩ  
● Nominal inductor value based on the Inductor Selection section  
For V  
For V  
< 1.6V  
OUT  
R
COMP  
COUT  
= 11.5μsec × I  
×
×
MIN  
TYP  
MAX  
140kΩ  
R
COMP  
140kΩ  
COUT  
= 24.5μsec × I  
MAX  
≥ 1.6V  
OUT  
R
COMP  
COUT  
= 8.0μsec × I  
×
MIN  
TYP  
MAX  
140kΩ  
R
COMP  
COUT  
= 21.0μsec × I  
×
MAX  
140kΩ  
Table 2. Output Capacitor Terms  
TERM  
DESCRIPTION  
COUT  
COUT  
Minimum fully-derated capacitance necessary for phase margin of approximately 45 degrees  
Nominal output capacitance for a UGBW of 200kHz  
MIN  
TYP  
I
The IC channel's maximum DC current capability: 2A, 3A, 4A, or 6A  
Nominal output voltage  
MAX  
V
OUT  
R
COMP  
Compensation Resistor setting. Default = 140kΩ. Can be factory set from 35kΩ to 297.5kΩ in 17.5kΩ increments.  
www.maximintegrated.com  
Maxim Integrated | 16  
MAX20429  
Dual 6A High-Efficiency Low Voltage Buck  
Converter  
Typical Application Circuits  
Typical Application Diagram  
VIN  
PV1,PV2  
2x10µF  
OUT1  
RESISTOR ADJUSTABLE OUTPUT OPTION  
220nH  
R2  
LX1  
V
OUT1  
SYNC  
2x47μF  
VIN  
2Ω  
V
R1  
OUT1  
PGND1  
OUT1  
VDD  
2.2µF  
MAX20429  
220nH  
GND  
LX1  
OUT2  
2x47μF  
220nH  
PGND1  
LX2  
V
OUT2  
2x47μF  
EN1  
EN2  
PGND2  
VIO  
PGND  
RESET1  
RESET2  
Ordering Information  
V
I
V
I
SPREAD  
SPECTRUM (MHz)  
f
t
OUT1  
(V)  
OUT1  
(A)  
(2)  
OUT2 OUT2  
SW  
HOLD  
(ms)  
(5)  
Soft-  
Shutdown  
RCOMP  
(kΩ)  
PART  
(V)  
(A)  
Soft-Start  
(1)  
(2)  
(3)  
(4)  
(1)  
MAX20429AAFNA/VY+  
MAX20429CAFNA/VY+  
0.85  
3
0.72  
6
6
ON  
2.1  
15.6  
3.9  
1.64 mv/us  
0.82 mv/us  
122.5  
140  
ADJ  
(6)  
ADJ  
(6)  
730 us  
(fixed)  
6
ON  
2.1  
730 us (fixed)  
For variants with different options, contact the factory  
/V Denotes an AEC-Q100 automotive-qualified part.  
+ Denotes lead(Pb)-free/RoHS-compliant package.  
T Denotes tape-and-reel.  
Y Denotes side-wettable package.  
(1)  
Fixed factory setting, 0.5V to 1.5875V in 12.5mV steps or 1.6V to 3.8V in 50mV steps.  
(2)  
(3)  
(4)  
(5)  
(6)  
2, 3, 4, or 6  
ON or OFF  
2.1 or 3.2  
0.5, 3.9, 7.8, 15.6 for f  
= 2.1MHz or 0.3, 2.5, 5.1, 10.2 for f  
= 3.2MHz.  
SW  
SW  
ADJ (adjustable externally)  
www.maximintegrated.com  
Maxim Integrated | 17  
MAX20429  
Dual 6A High-Efficiency Low Voltage Buck  
Converter  
Revision History  
REVISION REVISION  
PAGES  
DESCRIPTION  
CHANGED  
NUMBER  
DATE  
0
6/20  
Initial release  
Updated General Description, Benefits and Features, Absolute Maximum Ratings,  
Electrical Characteristics, Detailed Description, and Ordering Information  
1
12/20  
1, 4, 5, 12, 13, 16  
For pricing, delivery, and ordering information, please visit Maxim Integrated’s online storefront at https://www.maximintegrated.com/en/storefront/storefront.html.  
Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent  
licenses are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max  
limits) shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.  
Maxim Integrated and the Maxim Integrated logo are trademarks of Maxim Integrated Products, Inc.  
© 2020 Maxim Integrated Products, Inc.  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY