MAX20446BATGA [MAXIM]

Automotive 6-Channel Backlight Driver with Boost/SEPIC Controller, Hybrid Dimming and I2C Interface;
MAX20446BATGA
型号: MAX20446BATGA
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Automotive 6-Channel Backlight Driver with Boost/SEPIC Controller, Hybrid Dimming and I2C Interface

文件: 总47页 (文件大小:1244K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Click here to ask about the production status of specific part numbers.  
MAX20446B  
Automotive 6-Channel Backlight Driver with  
Boost/SEPIC Controller, Hybrid Dimming and  
2
I C Interface  
General Description  
Benefits and Features  
The MAX20446B is a 6-channel backlight driver with boost  
controller for automotive displays. The integrated current  
outputs can sink up to 130mA LED current each. The de-  
vice accepts a wide 4.5V to 36V input voltage range and  
withstands automotive load-dump events.  
● Wide-Voltage-Range Operation  
• Operates Down to 4V Supply After Startup  
• Survives Load Dump Up to 52V  
● High Integration  
• Complete 6-Channel Solution Including Boost  
Controller  
The internal current-mode-switching DC-DC controller  
supports boost or SEPIC topologies, and operates in the  
400kHz to 2.2MHz frequency range. Integrated spread  
spectrum helps reduce EMI. An adaptive output-voltage-  
control scheme minimizes power dissipation in the LED  
current-sink paths.  
2
• I C Control for Minimum Parts Count  
● Robust and Low EMI  
• Spread-Spectrum Oscillator  
• Phase Shifting  
• 400kHz to 2.2MHz Switching-Frequency Range  
• Fail-Safe Operation Mode Using the FSEN Pin  
2
The device features I C-controlled pulse-width-modula-  
tion (PWM) dimming and hybrid dimming. In either case,  
the minimum pulse width is 500ns. Optional phase-shifted  
dimming of the strings is incorporated for lower EMI.  
● Versatile Dimming Scheme Allows Hybrid or PWM-  
2
Only Dimming Using DIM Input or I C  
• Dimming Ratio > 10000:1 Using Hybrid Dimming  
• Dimming Ratio of 10000:1 at 200Hz Using PWM  
Dimming  
Comprehensive diagnostic information is also available  
2
through the I C interface.  
The device is available in a 24-pin TQFN package and op-  
erates over the -40 to +125°C temperature range.  
● Complete Diagnostics  
• LED Open/Short Detection and Protection  
• Boost Output Undervoltage and Overvoltage  
• Boost Voltage  
Applications  
● Infotainment Displays  
● Central Information Displays  
● Instrument Clusters  
• Individual String LED Current  
• Thermal Shutdown  
● Compact (4mm x 4mm) 24-Pin TQFN Package  
Ordering Information appears at end of datasheet.  
19-100905; Rev 1; 1/21  
 
 
MAX20446B  
Automotive 6-Channel Backlight Driver with Boost/  
2
SEPIC Controller, Hybrid Dimming and I C  
Interface  
Simplified Block Diagram  
FLTB  
BSTMON  
OV  
COMP  
UV  
SHORTGND  
VBG  
LEDUNUSED  
LEDSHORT  
LEDOPEN  
SHORTGND  
UV  
FAULT  
DETECTOR  
FAULT FLAG LOGIC  
LEDSHORT  
LEDOPEN  
TSHDN  
LEDUNUSED  
UV  
COMP  
COMP  
0.4V  
VCC  
SSDONE  
6
g
M
SSDONE  
RANGE  
PWM  
COMP  
NDRV  
NDRV  
EAREF  
$ ARRAY=6  
LOGIC  
V
THH  
6
ORPHASE  
RTDET  
COMPH  
8
CONTROL  
LOGIC  
6
UP/DOWN  
COUNTER  
DAC  
OUT_  
BOOSTON  
LODIM  
6
V
THL  
COMPL  
RT  
OSCILLATOR  
6
IREF_  
MAX20446B  
POK  
CS  
COMP  
SLOPE  
COMPENSATION  
CURRENT  
IMON_  
0.425V  
DIMPHASE  
6
CS  
CS BLANKING  
20 MHz  
CLOCK  
FSEN  
RTDET  
SHORTGND  
LEDSHORT  
LEDOPEN  
LEDUNUSED  
OVPUV  
TSHDN  
ORPHASE  
LODIM  
THERMAL  
SHUTDOWN  
DIM LOGIC &  
PHASE SHIFTING  
LEDGND  
PGATE  
PRE-  
REGULATOR  
BOOSTON  
PGATE  
CONTROL  
BANDGAP  
VBG  
IN  
200 mA  
UVLO VIN  
8
VINUVLO  
ADC  
REGISTER  
MAP &  
SCL  
SDA  
INTERFACE  
IMON  
MUX  
7:1  
5V  
VCC  
STMON  
REGULATOR  
ISET[3:0]  
TONH[17:0]  
UVLO  
VVCC  
VINUVLO  
IN  
POK  
REFERENCE  
CURRENT  
GENERATION  
IREF_  
0
EN  
COMP  
DUTY-CYCLE  
MEASUREMENT  
1
DIM  
TSHDN  
EN  
20MHz  
DIM_EXT  
SHDN  
POK  
GND  
PGND  
IREF  
www.maximintegrated.com  
Maxim Integrated | 2  
 
MAX20446B  
Automotive 6-Channel Backlight Driver with Boost/  
2
SEPIC Controller, Hybrid Dimming and I C  
Interface  
TABLE OF CONTENTS  
General Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Benefits and Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Simplified Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
Absolute Maximum Ratings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Package Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
TQFN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
TQFN-SW. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Typical Operating Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Pin Configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
MAX20446B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Pin Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Functional Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
MAX20446B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Detailed Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Undervoltage Lockout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Current-Mode DC-DC Controller. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
8-Bit Digital-to-Analog Converter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
FSEN Pin Function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Dimming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Hybrid Dimming. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Hybrid Dimming Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Hybrid Dimming Operation Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Low-Dimming Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Phase-Shift Dimming. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Disabling Individual Strings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Startup Sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Stage 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Stage 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Stage 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Figure 3: Boost Startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Oscillator Frequency/External Synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Spread-Spectrum Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
5V LDO Regulator (V ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
CC  
LED Current Control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Fault Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
www.maximintegrated.com  
Maxim Integrated | 3  
MAX20446B  
Automotive 6-Channel Backlight Driver with Boost/  
2
SEPIC Controller, Hybrid Dimming and I C  
Interface  
TABLE OF CONTENTS (CONTINUED)  
Open-LED Management and Overvoltage Protection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Short-LED Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Thermal Warning/Shutdown. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Analog-to-Digital Converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
2
I C Interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Register Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
MAX20446B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Register Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Applications Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
DC-DC Converter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Power-Circuit Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Boost and Coupled-Inductor Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
SEPIC Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Slope Compensation and Current-Sense Resistor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Output Capacitor Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Rectifier Diode Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Feedback Compensation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
External Disconnect-MOSFET Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
V
OUT  
to OUT_ Bleed Resistors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Thermal Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
PCB Layout Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Typical Application Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
MAX20446B Applications Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
www.maximintegrated.com  
Maxim Integrated | 4  
MAX20446B  
Automotive 6-Channel Backlight Driver with Boost/  
2
SEPIC Controller, Hybrid Dimming and I C  
Interface  
LIST OF FIGURES  
Figure 1. Hybrid Dimming Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Figure 2. Hybrid Dimming Operation Modes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Figure 3. Boost Startup with DIS_FASTSS = 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
www.maximintegrated.com  
Maxim Integrated | 5  
MAX20446B  
Automotive 6-Channel Backlight Driver with Boost/  
2
SEPIC Controller, Hybrid Dimming and I C  
Interface  
LIST OF TABLES  
Table 1. FSEN Pin Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
2
Table 2. I C Address Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Table 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Table 4. LED Current Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Table 5. Output Current Measurement (IOUT1):. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Table 6. Output Current Measurement (IOUT4):. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Table 7. Output Current Measurement (IOUT5):. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Table 8. Output Current Measurement (IOUT6):. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
www.maximintegrated.com  
Maxim Integrated | 6  
MAX20446B  
Automotive 6-Channel Backlight Driver with Boost/  
2
SEPIC Controller, Hybrid Dimming and I C  
Interface  
Absolute Maximum Ratings  
IN, EN, OUT_, BSTMON, PGATE to GND............. -0.3V to +52V  
PGND, LEDGND to GND ...................................... -0.3V to +0.3V  
Continuous Power Dissipation Multilayer Board (derate  
27.8mW/°C above +70°C) ................................................2.857W  
ESDHB .................................................................... -2kV to +2kV  
ESDMM................................................................-200V to +200V  
Operating Temperature Range...........................-40°C to +125°C  
Junction Temperature Range .............................-40°C to +150°C  
Storage Temperature Range ..............................-65°C to +150°C  
Lead Temperature (soldering, 10s)...................................+300°C  
V
CC  
to GND.......................-0.3V to maximum of (+6, V + 0.3)V  
IN  
FLTB, SCL, SDA, DIM to GND................................. -0.3V to +6V  
CS, RT, COMP, NDRV, IREF, FSEN to GND.......-0.3V to V  
+
CC  
0.3V  
NDRV Peak Current (< 100ns).................................... -5A to +5A  
NDRV Continuous Current ............................ -100mA to +100mA  
OUT1-6 Continuous Current ......................... -100mA to +150mA  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the  
device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for  
extended periods may affect device reliability.  
Package Information  
TQFN  
Package Code  
T2444+4C  
21-0139  
90-0022  
Outline Number  
Land Pattern Number  
Thermal Resistance, Single-Layer Board:  
Junction to Ambient (θ  
)
48°C/W  
3°C/W  
JA  
Junction to Case (θ  
)
JC  
Thermal Resistance, Four-Layer Board:  
Junction to Ambient (θ  
)
36°C/W  
3°C/W  
JA  
Junction to Case (θ  
)
JC  
TQFN-SW  
Package Code  
Outline Number  
T2444Y+4C  
21-100290  
90-0022  
Land Pattern Number  
Thermal Resistance, Four-Layer Board:  
Junction to Ambient (θ  
)
41.3°C/W  
3.44°C/W  
JA  
Junction to Case (θ  
)
JC  
For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a “+”, “#”, or “-” in the package code indicates  
RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.  
Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer board. For detailed information on package thermal  
considerations, refer to www.maximintegrated.com/thermal-tutorial.  
Electrical Characteristics  
(V = 12V, R = 76.8kΩ, C  
= 1μF, T = T = -40°C to +125°C, unless otherwise noted., (V = 12V, R = 76.8kΩ, C  
= 1μF,  
VCC  
IN  
RT  
VCC  
A
J
IN  
RT  
T
A
= T = -40ºC to +125ºC, unless otherwise noted. Limits are 100% tested at T = +25ºC. Limits over the operating temperature range  
J
A
and relevant supply voltage range are guaranteed by design and characterization.))  
PARAMETER SYMBOL CONDITIONS  
POWER INPUT  
MIN  
TYP  
MAX  
UNITS  
Input Operating Range  
4.5  
36  
V
www.maximintegrated.com  
Maxim Integrated | 7  
 
 
MAX20446B  
Automotive 6-Channel Backlight Driver with Boost/  
2
SEPIC Controller, Hybrid Dimming and I C  
Interface  
Electrical Characteristics (continued)  
(V = 12V, R = 76.8kΩ, C  
= 1μF, T = T = -40°C to +125°C, unless otherwise noted., (V = 12V, R = 76.8kΩ, C  
= 1μF,  
VCC  
IN  
RT  
VCC  
A
J
IN  
RT  
T
A
= T = -40ºC to +125ºC, unless otherwise noted. Limits are 100% tested at T = +25ºC. Limits over the operating temperature range  
J
A
and relevant supply voltage range are guaranteed by design and characterization.))  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
4.2  
TYP  
MAX  
36  
UNITS  
V
Input Voltage Range  
After Startup  
Input Operating Range  
IN pin connected to V  
4.5  
5.5  
15  
V
CC  
Quiescent Supply  
Current  
V
DIM  
= 5V, V  
= 1.3V,  
BSTMON  
10  
0.1  
mA  
µA  
V
OUT1–OUT6 unconnected  
Standby Supply Current  
V
IN  
= 12V, V = 0V  
1
EN  
Undervoltage Lockout,  
Rising  
3.8  
3.1  
4.15  
4.45  
Undervoltage Lockout,  
Falling  
3.7  
1.2  
4
V
2
Startup Delay  
From EN high to I C ready  
1.8  
ms  
V
CC  
REGULATOR  
V
Output Voltage  
5.75V < V < 36V; I = 1mA to 10mA  
VCC  
4.75  
5
5.25  
0.2  
V
V
CC  
IN  
Dropout Voltage  
V
IN  
= 4.5V, I  
= 5mA  
VCC  
Short-Circuit Current  
Limit  
V
CC  
shorted to GND  
60  
mA  
V
V
CC  
Undervoltage-  
Lockout Threshold,  
Rising  
4.05  
3.75  
4.2  
4.35  
4.04  
V
CC  
Undervoltage-  
Lockout Threshold,  
Falling  
3.9  
V
RT OSCILLATOR  
Switching-Frequency  
Range  
f
Frequency dithering disabled  
360  
2420  
kHz  
%
SW  
f
f
f
= 400kHz  
90  
86  
94.5  
90.5  
98.5  
95  
SW  
SW  
SW  
Maximum Duty Cycle  
= 2200kHz  
Oscillator Frequency  
Accuracy  
= 400kHz to 2200kHz, frequency  
-10  
+10  
%
dither disabled  
Frequency Dither  
SS  
SSL bit = 1  
±3  
%
V
RT Output Voltage  
Sync Rising Threshold  
V
RT  
R
RT  
= 76.8kΩ or R = 13.3kΩ  
1.2  
3
1.25  
1.3  
RT  
V
Sync Frequency Duty-  
Cycle Range  
50  
%
1.16 x  
1.5 x  
Sync Frequency Range  
kHz  
f
f
SW  
SW  
MOSFET DRIVER  
NDRV On-Resistance,  
High Side  
NDRV sinking 30mA  
NDRV sourcing 30mA  
1.5  
0.8  
3
Ω
Ω
NDRV On-Resistance,  
Low Side  
1.6  
www.maximintegrated.com  
Maxim Integrated | 8  
MAX20446B  
Automotive 6-Channel Backlight Driver with Boost/  
2
SEPIC Controller, Hybrid Dimming and I C  
Interface  
Electrical Characteristics (continued)  
(V = 12V, R = 76.8kΩ, C  
= 1μF, T = T = -40°C to +125°C, unless otherwise noted., (V = 12V, R = 76.8kΩ, C  
= 1μF,  
VCC  
IN  
RT  
VCC  
A
J
IN  
RT  
T
A
= T = -40ºC to +125ºC, unless otherwise noted. Limits are 100% tested at T = +25ºC. Limits over the operating temperature range  
J
A
and relevant supply voltage range are guaranteed by design and characterization.))  
PARAMETER  
NDRV Rise Time  
SYMBOL  
CONDITIONS  
MIN  
TYP  
8
MAX  
UNITS  
ns  
C
C
= 1nF  
= 1nF  
LOAD  
NDRV Fall Time  
8
ns  
LOAD  
SLOPE COMPENSATION  
Peak Slope-  
Compensation Current-  
Ramp Magnitude  
Current ramp added to CS  
42  
50  
58  
µA  
CURRENT-SENSE COMPARATOR  
Includes internal slope-ramp magnitude,  
Current-Limit Threshold  
V
390  
420  
450  
mV  
CL_MAX  
V
CL  
= V  
+ slope-compensation voltage  
CS  
ERROR AMPLIFIER  
OUT_ Regulation High  
Threshold  
V
V
falling  
rising  
0.95  
0.7  
1.03  
0.78  
1.1  
V
V
OUT_  
OUT_ Regulation Low  
Threshold  
0.85  
OUT_  
Transconductance  
COMP Sink Current  
COMP Source Current  
LED CURRENT SINKS  
IREF Voltage  
500  
200  
200  
700  
480  
480  
880  
800  
800  
µS  
µA  
µA  
V
V
= 2V  
= 1V  
COMP  
COMP  
V
R
= 49.9kΩ  
1.225  
116  
96  
1.25  
120  
100  
50.6  
1.275  
124.5  
104  
V
IREF  
IREF  
120mA setting  
100mA setting  
50mA setting  
OUT_ Output Current  
mA  
49  
52.2  
+2  
I
I
= 120mA  
= 50mA  
= 48V, V  
-2  
Channel-to-Channel  
Matching  
OUT_  
%
-2.5  
+2.5  
OUT_  
Total OUT_ Leakage  
Current to IN  
V
OUT_  
= 0V, all OUT_ pins  
DIM  
I
8
12  
µA  
OUTLEAK  
shorted together  
OUT_ Current Rise  
Time  
10% to 90% I  
90% to 10% I  
150  
50  
ns  
ns  
OUT_  
OUT_  
OUT_ Current Fall Time  
DIM Sampling  
Frequency  
20  
MHz  
LOGIC INPUT AND OUTPUTS  
EN Input Logic-High  
EN Input Logic-Low  
2.1  
2.1  
V
V
0.8  
5
EN Input Current  
V
EN  
= 5V  
3
µA  
DIM, SDA, SCL Input  
Logic-High  
V
V
DIM, SDA, SCL Input  
Logic-Low  
0.8  
www.maximintegrated.com  
Maxim Integrated | 9  
MAX20446B  
Automotive 6-Channel Backlight Driver with Boost/  
2
SEPIC Controller, Hybrid Dimming and I C  
Interface  
Electrical Characteristics (continued)  
(V = 12V, R = 76.8kΩ, C  
= 1μF, T = T = -40°C to +125°C, unless otherwise noted., (V = 12V, R = 76.8kΩ, C  
= 1μF,  
VCC  
IN  
RT  
VCC  
A
J
IN  
RT  
T
A
= T = -40ºC to +125ºC, unless otherwise noted. Limits are 100% tested at T = +25ºC. Limits over the operating temperature range  
J
A
and relevant supply voltage range are guaranteed by design and characterization.))  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
DIM Input Pullup  
Current  
5
µA  
FSEN Input Voltage  
Threshold High  
FSEN rising  
FSEN falling  
2.2  
V
FSEN Input Voltage  
Threshold Logic-Low  
V
1.8  
V
uA  
V
FSENIL  
FSEN Input Current  
I
V
FSEN  
= 1V  
15  
FSEN  
SDA, FLTB Output Low  
Voltage  
Sinking 3mA  
= 5.5V  
0.4  
+1  
FLTB Output Leakage  
Current  
V
FLTB  
-1  
µA  
OVERVOLTAGE AND UNDERVOLTAGE PROTECTION  
BSTMON Overvoltage  
Trip Threshold  
BSTMON rising  
1.18  
1.23  
70  
1.28  
V
BSTMON Hysteresis  
mV  
nA  
BSTMON Input Bias  
Current  
0V < V  
< 1.3V  
-500  
0.4  
47.5  
4
500  
0.46  
56.2  
18  
BSTMON  
BSTMON Undervoltage  
Detection Threshold  
BSTMON falling, PGATE latched off  
After ENA is written to '1', FAST_SS = 0  
BSTMON falling  
0.43  
52  
V
Boost Undervoltage  
Blanking Time  
ms  
µs  
BSTMON Undervoltage  
Detection Delay  
10  
PGATE Pulldown  
Current  
180  
210  
2
245  
2.2  
1
µA  
ms  
µA  
Delay between PGATE going low and  
boost converter starting  
PGATE Start Delay  
PGATE Leakage  
Current  
V
= 12V, V  
= 0V  
EN  
0.1  
PGATE  
LED FAULT DETECTION  
SLDET[1:0] = 0x01  
SLDET[1:0] = 0x10  
SLDET[1:0] = 0x11  
2.8  
5.6  
7.5  
3
6
8
3.25  
6.4  
LED Short-Detection  
Threshold  
V
8.5  
Short-Detection  
Comparator Delay  
9
µs  
µA  
mV  
V
OUT_ Check LED  
Source Current  
50  
60  
70  
OUT_ Short-to-GND  
Detection Threshold  
Before boost converter startup  
250  
1.15  
300  
1.25  
365  
1.35  
OUT_ Unused Detection  
Threshold  
www.maximintegrated.com  
Maxim Integrated | 10  
MAX20446B  
Automotive 6-Channel Backlight Driver with Boost/  
2
SEPIC Controller, Hybrid Dimming and I C  
Interface  
Electrical Characteristics (continued)  
(V = 12V, R = 76.8kΩ, C  
= 1μF, T = T = -40°C to +125°C, unless otherwise noted., (V = 12V, R = 76.8kΩ, C  
= 1μF,  
VCC  
IN  
RT  
VCC  
A
J
IN  
RT  
T
A
= T = -40ºC to +125ºC, unless otherwise noted. Limits are 100% tested at T = +25ºC. Limits over the operating temperature range  
J
A
and relevant supply voltage range are guaranteed by design and characterization.))  
PARAMETER  
SYMBOL  
CONDITIONS  
During operation  
MIN  
TYP  
MAX  
UNITS  
OUT_ Open-LED  
Detection Threshold  
250  
300  
365  
mV  
ANALOG-TO-DIGITAL CONVERTER  
ADC Measurement  
Resolution  
8
Bits  
mA  
mV  
Total Measurement  
Error, Current  
I
= 120mA  
-7  
+7.5  
+70  
OUT_  
Total Measurement  
Error, Voltage  
V
= 1V  
-50  
BSTMON  
ADC Gain Error  
ADC Offset Error  
I
I
= 120mA  
= 120mA  
-4  
-3  
+6  
+5  
%
OUT_  
LSB  
OUT_  
Measurement  
Resolution, Current  
0.5  
5.1  
mA  
mV  
Measurement  
Resolution, Voltage  
THERMAL SHUTDOWN  
Thermal Warning  
125  
165  
°C  
°C  
Thermal-Shutdown  
Threshold  
Thermal-Shutdown  
Hysteresis  
15  
°C  
2
I C INTERFACE  
Serial-Clock Frequency  
f
400  
kHz  
μs  
SCL  
Bus-Free Time Between  
STOP and START  
Condition  
t
1.3  
BUF  
START Condition Setup  
Time  
t
0.6  
0.6  
0.6  
μs  
μs  
μs  
SU:STA  
HD:STA  
SU:STO  
START Condition Hold  
Time  
t
STOP Condition Setup  
Time  
t
Clock Low Period  
Clock High Period  
Data Setup Time  
t
1.3  
0.6  
μs  
μs  
ns  
LOW  
t
HIGH  
t
100  
SU:DAT  
HD:DAT  
Measured from 50% point on SCL falling  
edge to SDA edge  
Data Hold Time  
t
0
μs  
ns  
Pulse Width of Spike  
Suppressed  
t
50  
SP  
Note 1: Limits are 100% tested at T = +25°C. Limits over the operating temperature range and relevant supply voltage range are  
A
guaranteed by design and characterization.  
www.maximintegrated.com  
Maxim Integrated | 11  
MAX20446B  
Automotive 6-Channel Backlight Driver with Boost/  
2
SEPIC Controller, Hybrid Dimming and I C  
Interface  
Typical Operating Characteristics  
((V = V  
= +12V, 6x6 LED load at 100mA, T = +25°C, unless otherwise noted.))  
IN  
EN  
A
www.maximintegrated.com  
Maxim Integrated | 12  
MAX20446B  
Automotive 6-Channel Backlight Driver with Boost/  
2
SEPIC Controller, Hybrid Dimming and I C  
Interface  
Typical Operating Characteristics (continued)  
((V = V  
= +12V, 6x6 LED load at 100mA, T = +25°C, unless otherwise noted.))  
IN  
EN  
A
Pin Configuration  
MAX20446B  
TOP VIEW  
18  
17  
16  
15  
14  
13  
19  
20  
21  
22  
23  
24  
12  
11  
10  
9
CS  
IREF  
GND  
RT  
BSTMON  
PGND  
NDRV  
VCC  
MAX20446B  
LEDGND  
SDA  
8
+
7
SCL  
EN  
1
2
3
4
5
6
TQFN  
4mm x 4mm  
Pin Description  
PIN  
NAME  
FUNCTION  
Bias Supply Input. Connect a 4.5V to 36V supply to IN. Bypass IN to GND with a 2.2µF ceramic  
capacitor.  
1
IN  
2
PGATE  
OUT1  
Gate Connection for External Series pMOSFET  
LED String Cathode Connection 1. OUT1 is the open-drain output of the linear current sink that  
controls the current through the LED string connected to OUT1. OUT1 sinks up to 120mA.  
3
LED String Cathode Connection 3. OUT3 is the open-drain output of the linear current sink that  
controls the current through the LED string connected to OUT3. OUT3 sinks up to 120mA.  
4
OUT3  
www.maximintegrated.com  
Maxim Integrated | 13  
MAX20446B  
Automotive 6-Channel Backlight Driver with Boost/  
2
SEPIC Controller, Hybrid Dimming and I C  
Interface  
Pin Description (continued)  
PIN  
NAME  
FUNCTION  
LED String Cathode Connection 5. OUT5 is the open-drain output of the linear current sink that  
controls the current through the LED string connected to OUT5. OUT5 sinks up to 120mA.  
5
OUT5  
Open-Drain Fault Output. FLTB asserts low when any diagnostic bit (that is not masked) is  
6
FLTB  
asserted. See the Fault Protection section for more details. Connect a pullup resistor from FLTB to  
V
CC  
.
2
7
8
SCL  
SDA  
I C Clock Input. Connect a pullup resistor from SCL to the logic supply.  
2
I C Data I/O Pin. Connect a pullup resistor from SDA to the logic supply.  
LED Ground. LEDGND is the return path connection for the linear current sinks. Connect GND,  
LEDGND, and PGND at a single point.  
9
LEDGND  
Oscillator Timing Resistor Connection. Connect a timing resistor (R ) from RT to GND to  
RT  
program the switching frequency. In addition, connect a 100pF capacitor from RT to GND. To  
synchronize the switching frequency with an external clock, apply an AC-coupled external clock at  
RT. When the oscillator is synchronized with the external clock, spread spectrum is disabled.  
10  
RT  
Signal Ground. GND is the current return path connection for the low-noise analog signals.  
Connect GND, LEDGND, and PGND at a single point.  
11  
12  
GND  
IREF  
LED Current Reference Input. Connect a resistor (R  
= 49.9kΩ) from IREF to GND to set the  
IREF  
current reference according to the formula IREF = 1.250/R  
.
IREF  
2
PWM Dimming Input. Apply a PWM signal to DIM for LED dimming control unless I C dimming is  
used. Connect DIM to V if dimming control is not used (100% brightness). Connect DIM to GND  
if dimming is to be controlled through I C.  
13  
DIM  
CC  
2
LED String Cathode Connection 6. OUT6 is the open-drain output of the linear current sink that  
controls the current through the LED string connected to OUT6. OUT6 sinks up to 120mA.  
14  
15  
16  
OUT6  
OUT4  
OUT2  
LED String Cathode Connection 4. OUT4 is the open-drain output of the linear current sink that  
controls the current through the LED string connected to OUT4. OUT4 sinks up to 120mA.  
LED String Cathode Connection 2. OUT2 is the open-drain output of the linear current sink that  
controls the current through the LED string connected to OUT2. OUT2 sinks up to 120mA.  
Fail-Safe Enable Pin. When FSEN is taken high, the boost converter is enabled and the outputs  
(OUT1–OUT6) are enabled at 100% duty cycle, independent of all register settings. Connect a  
resistor from FSEN to GND to set the LED current; FSEN sets both the LED current (when FSEN  
17  
FSEN  
2
is active) and the I C address (see the MAX20446 FSEN Pin Function section). If the FSEN  
function is not needed, connect the pin directly to GND.  
Switching-Converter Compensation Input. Connect the compensation network from COMP to GND  
for current-mode control (see the Feedback Compensation section for details).  
18  
19  
COMP  
CS  
Current-Sense Input. CS is the current-sense input for the switching regulator. A sense resistor  
connected from the source of the external power MOSFET to PGND sets the switching current  
limit. A resistor connected between the source of the power MOSFET and CS sets the slope-  
compensation ramp rate (see the Slope Compensation and Current-Sense Resistor section).  
Overvoltage Threshold-Adjust Input. Connect a resistor-divider from the switching converter output  
to BSTMON and GND. The OVP comparator reference is internally set to 1.23V.  
20  
21  
BSTMON  
PGND  
Power Ground. PGND is the switching-current return-path connection. Connect GND, LEDGND,  
and PGND at a single point.  
Switching nMOSFET Gate-Driver Output. Connect NDRV to the gate of the external switching-  
power MOSFET. Typically, a small resistor (1Ω to 22Ω) is inserted between the NDRV output and  
nMOSFET gate to decrease the slew rate of the gate driver and reduce the switching noise.  
22  
23  
NDRV  
VCC  
5V Regulator Output. Bypass V  
to GND with a minimum of 1μF ceramic capacitor with 22nF in  
CC  
parallel placed as close as possible to the pin.  
www.maximintegrated.com  
Maxim Integrated | 14  
MAX20446B  
Automotive 6-Channel Backlight Driver with Boost/  
2
SEPIC Controller, Hybrid Dimming and I C  
Interface  
Pin Description (continued)  
PIN  
NAME  
FUNCTION  
Enable Input. Connect EN to ground to shut down the device. Connect EN to logic-high or IN for  
normal operation. EN has an internal clamp at 3.9V. When EN is above this voltage, an input  
24  
EN  
current of (V  
- 3.9V)/1.2MΩ will flow.  
EN  
Exposed Pad. Connect EP to a large-area contiguous copper-ground plane for effective power  
dissipation. Do not use as the main IC ground connection. EP must be connected to GND.  
-
EP  
www.maximintegrated.com  
Maxim Integrated | 15  
MAX20446B  
Automotive 6-Channel Backlight Driver with Boost/  
2
SEPIC Controller, Hybrid Dimming and I C  
Interface  
Functional Diagrams  
MAX20446B  
FLTB  
BSTMON  
OV  
COMP  
UV  
SHORTGND  
VBG  
LEDUNUSED  
LEDSHORT  
LEDOPEN  
SHORTGND  
UV  
FAULT  
DETECTOR  
FAULT FLAG LOGIC  
LEDSHORT  
LEDOPEN  
TSHDN  
LEDUNUSED  
UV  
COMP  
COMP  
NDRV  
0.4V  
VCC  
SSDONE  
6
g
M
SSDONE  
RANGE  
PWM  
COMP  
NDRV  
LOGIC  
EAREF  
$ ARRAY=6  
V
THH  
6
ORPHASE  
BOOSTON  
COMPH  
RTDET  
8
CONTROL  
LOGIC  
6
UP/DOWN  
COUNTER  
DAC  
OUT_  
6
LODIM  
V
THL  
COMPL  
RT  
OSCILLATOR  
SLOPE  
6
IREF_  
MAX20446B  
POK  
CS  
COMP  
COMPENSATION  
CURRENT  
IMON_  
0.425V  
DIMPHASE  
6
CS  
CS BLANKING  
20 MHz  
CLOCK  
FSEN  
RTDET  
SHORTGND  
LEDSHORT  
LEDOPEN  
LEDUNUSED  
OVPUV  
TSHDN  
ORPHASE  
LODIM  
THERMAL  
SHUTDOWN  
DIM LOGIC &  
PHASE SHIFTING  
LEDGND  
PGATE  
PRE-  
REGULATOR  
BOOSTON  
PGATE  
CONTROL  
BANDGAP  
VBG  
IN  
200 mA  
UVLO VIN  
8
VINUVLO  
ADC  
REGISTER  
MAP &  
SCL  
SDA  
INTERFACE  
IMON  
MUX  
7:1  
5V  
REGULATOR  
VCC  
STMON  
ISET[3:0]  
TONH[17:0]  
UVLO  
VVCC  
VINUVLO  
IN  
POK  
REFERENCE  
CURRENT  
GENERATION  
IREF_  
0
EN  
COMP  
DUTY-CYCLE  
MEASUREMENT  
1
DIM  
TSHDN  
EN  
20MHz  
DIM_EXT  
SHDN  
POK  
GND  
PGND  
IREF  
www.maximintegrated.com  
Maxim Integrated | 16  
 
MAX20446B  
Automotive 6-Channel Backlight Driver with Boost/  
2
SEPIC Controller, Hybrid Dimming and I C  
Interface  
Detailed Description  
The MAX20446B high-efficiency HB LED driver integrates all the necessary features to implement a high-performance  
backlight driver to power LEDs in medium-to-large-sized displays for automotive, as well as general, applications. The  
device provides load-dump voltage protection up to 52V in automotive applications and incorporates a DC-DC controller  
with peak current-mode control to implement a boost or a SEPIC-type switched-mode power supply and a 6-channel  
LED driver with 45mA to 130mA constant-current sink capability per channel.  
Enable  
2
The internal regulator and I C interface are enabled when the EN pin is high if the IN pin voltage is above its undervoltage  
lockout. To shut down the device, drive EN low so the current consumption is reduced to 1μA (max).  
Undervoltage Lockout  
The device features two undervoltage lockouts (UVLOs) that monitor the input voltage at IN and the output of the internal  
LDO regulator at V . The device turns on when EN is taken high if both IN and V  
are higher than their respective  
CC  
CC  
UVLO thresholds.  
Current-Mode DC-DC Controller  
The device has a constant-frequency, current-mode controller designed to drive the LEDs in a boost, SEPIC, or coupled-  
inductor buck-boost configuration. The device features multiloop control to regulate the peak current in the inductor, as  
well as the voltage across the LED current sinks to minimize power dissipation.  
The switching frequency can be programmed over the 400kHz to 2.2MHz range using a resistor connected from RT to  
GND.  
Internal slope compensation is provided to compensate for subharmonic oscillations that occur at above 50% duty cycles  
in continuous-conduction mode.  
The internal MOSFET is turned on at the beginning of every switching cycle. The inductor current ramps up linearly until  
it is turned off at the peak current level set by the feedback loop. The peak inductor current is sensed from the voltage  
across the current-sense resistor (R ), connected from the source of the external MOSFET to ground.  
CS  
The device features leading-edge blanking to suppress the internal MOSFET switching noise. A PWM comparator  
compares the current-sense voltage plus the slope-compensation signal with the output of the transconductance error  
amplifier. The controller turns off the MOSFET when the voltage at CS exceeds the error amplifier’s output voltage, which  
is also the voltage on the COMP pin. This process repeats every switching cycle to achieve peak current-mode control.  
In addition to the peak current-mode-control loop, the device has two other feedback loops for control. The converter  
output voltage is sensed through the BSTMON input, which goes to the inverting input of the error amplifier. The other  
feedback comes from the OUT_ current sinks. This loop controls the headroom of the current sinks to minimize total  
power dissipation while still ensuring accurate LED current matching. Each current sink has a window comparator with a  
low threshold of 0.78V and a high threshold of 1.03V. The outputs of these comparators control an up/down counter. The  
up/down counter is updated on every falling edge of the DIM input and drives an 8-bit DAC that sets the reference to the  
error amplifier. When dimming is set to 100%, the counter is updated at intervals of 10ms.  
8-Bit Digital-to-Analog Converter  
The error amplifier’s reference input is controlled with an 8-bit digital-to-analog converter (DAC). The DAC output ramps  
up slowly during startup to implement a soft-start function (see the Startup Sequence section). During normal operation,  
the DAC output range is limited to 0.6V to 1.25V. Because the DAC output is limited to no less than 0.6V during normal  
operation, the overvoltage threshold for the output should be set to a value less than twice the minimum LED forward  
voltage. The DAC LSB determines the minimum step-in output voltage according to Equation 1.  
Equation 1:  
V
= V  
× A  
DAC_LSB OVP  
STEP_MIN  
where:  
www.maximintegrated.com  
Maxim Integrated | 17  
MAX20446B  
Automotive 6-Channel Backlight Driver with Boost/  
2
SEPIC Controller, Hybrid Dimming and I C  
Interface  
V
V
A
= Minimum output-voltage step  
STEP_MIN  
= DAC least significant bit size (2.5mV)  
DAC_LSB  
= BSTMON resistor-divider gain  
OVP  
FSEN Pin Function  
2
The FSEN (fail-safe enable) pin can be used to enable the device in situations where I C control is temporarily impossible  
or the interface has stopped functioning. When FSEN is taken high, the boost converter is turned on and the current sinks  
enabled. When FSEN returns low, the values programmed in the I C registers are applied at the beginning of the next  
2
dimming cycle.  
The OUT_ current when FSEN is high is set by a resistor from FSEN to GND according to Table 1.  
Table 1. FSEN Pin Function  
FSEN RESISTOR  
OUT_ CURRENT  
MAX20446BATGA  
I C ADDRESS  
MAX20446BATG  
I C ADDRESS  
2
2
VALUE (kΩ)  
(mA)  
0
Fail-safe disabled  
0x61  
0x61  
0x67  
0x61  
0x67  
0x61  
0x67  
0x61  
0x67  
0x63  
0x63  
0x6B  
0x63  
0x6B  
0x63  
0x6B  
0x63  
0x6B  
3.48  
7.15  
12  
25  
25  
50  
18.7  
27.4  
39  
50  
75  
75  
59  
100  
100  
84.5  
2
The resistor value is read at power-up; therefore, the set OUT_ current value and I C address cannot be changed after  
power-up.  
2
If FSEN is not used, connect the pin to GND, unless an I C address other than the default is desired.  
Dimming  
Dimming can be performed either using an external PWM signal applied to the DIM pin or by programming the desired  
2
dimming level through I C.  
When using the DIM pin as an input, set the DIM_EXT bit in the IMODE register (0x03) to 1 (this is also the default value).  
The signal on the DIM pin is sampled with a 20MHz internal clock.  
When using internal dimming, write up to 18 bits to the TON_[17:0] bits. The value to be written is calculated using the  
following formula: TON = t /50ns, where t  
is the desired on-time. If a value is written that corresponds to an on-time  
ON  
ON  
less than 500ns (≤ 0x09), the corresponding OUT_ stays on for 500ns. To set zero current in any channel, write all the  
corresponding TON bits to 0.  
Hybrid Dimming  
In hybrid dimming mode, the external LEDs are dimmed by first reducing their current as the dimming duty-cycle  
decreases from 100% (see Figure 1). At the crossover level set by the HDIM[1:0] bits, dimming transitions to PWM in  
which the LED current is chopped. To select hybrid dimming, set the HDIM bit in the IMODE register and select the  
desired crossover level between analog and PWM dimming using the HDIM_THR[1:0] bits in the same register (see  
Figure 1). Depending on the DIM_EXT bit, one of the following occurs:  
● If DIM_EXT = 1, the device measures the duty-cycle on the DIM pin and translates it into a combined LED current  
value and PWM setting.  
● If DIM_EXT = 0, the device takes the concatenated 18-bit value from the TONH_:TONL_:TON_LSB registers and  
www.maximintegrated.com  
Maxim Integrated | 18  
MAX20446B  
Automotive 6-Channel Backlight Driver with Boost/  
2
SEPIC Controller, Hybrid Dimming and I C  
Interface  
translates it into a combined LED current value and PWM setting.  
Note: When hybrid dimming is used with an internal dimming setting (e.g., DIM_EXT = 0) only the value in the  
TONH_:TONL_ registers is used. It is not possible to have individual dimming settings for each of the channels in this  
mode, but the TONH:TONL settings for all the channels must be non-zero.  
In summary, there are four possible dimming modes:  
● External PWM dimming  
2
● Internal PWM dimming with the pulse width set through I C and the PWM frequency generated internally.  
● External hybrid dimming with a PWM signal applied to the DIM pin. In this mode the pulsed current on the OUT_ pins  
follows the DIM frequency.  
2
● Internal hybrid dimming with the dimming ratio set through I C and the PWM frequency generated internally.  
Figure 2 illustrates the difference between standard and hybrid dimming with phase shifting enabled.  
Hybrid Dimming Operation  
ILLUSTRATION OF HYBRID DIMMING OPERATION WITH HDIM[1:0]=10 (25%)  
ISET_  
CURRENT  
ISET_  
CURRENT/4  
100%  
75%  
50%  
25%  
0%  
DIM DUTY-CYCLE OR TONH1:TONL1 SETTING  
Figure 1. Hybrid Dimming Operation  
www.maximintegrated.com  
Maxim Integrated | 19  
 
MAX20446B  
Automotive 6-Channel Backlight Driver with Boost/  
2
SEPIC Controller, Hybrid Dimming and I C  
Interface  
Hybrid Dimming Operation Modes  
EXTERNAL PWM DIMMING AT 75%  
HYBRID EXTERNAL DIMMING AT 75%  
DIM  
DIM  
75% OF ISET_  
CURRENT  
OUT1  
CURRENT  
OUT1  
CURRENT  
OUT2  
CURRENT  
OUT2  
CURRENT  
NOTE: ONLY TWO OF SIX OUTPUT CHANNELS SHOWN  
EXTERNAL PWM DIMMING AT 25%  
HYBRID EXTERNAL DIMMING AT 25% (HDIM_THR[1:0]=11)  
DIM  
DIM  
OUT1  
CURRENT  
OUT1  
CURRENT  
50% OF ISET_  
CURRENT  
OUT2  
CURRENT  
OUT2  
CURRENT  
Figure 2. Hybrid Dimming Operation Modes  
Low-Dimming Mode  
The device operation changes at very narrow dimming pulses to ensure a consistent dimming response of the LEDs. If  
the dimming on-time (either of the DIM input or of the value in the PWM_ bits, depending on which is selected) is lower  
than 50μs (typ), the device enters low-dimming mode. In this state, the converter switches continuously and the LED  
short detection is disabled. When the DIM input is greater than 51μs (typ), the device goes back into normal operation,  
enabling the short-LED detection and switching the power MOSFET only when the effective dimming signal is high. OUT_  
current monitoring does not operate in low-dim mode, although the BSTMON voltage can still be measured.  
2
When the device is used in I C mode with internal dimming, some channels may be in low-dim mode while others may  
not. If any channel is in low-dim mode, the boost converter runs continuously.  
Phase-Shift Dimming  
When the PSEN bit in the ISET register (0x02) is set, phase shifting of the LED strings is enabled. The device  
automatically sets the phase shift between strings to 60, 72, 90, 120, or 180 degrees, depending on the number of strings  
enabled.  
Disabling Individual Strings  
To disable an unused LED string, connect the unused OUT_ to ground through a 12kΩ resistor, or set the corresponding  
DIS_ bit to 1 in the DISABLE (0x13) register. During startup, the device sources 60μA (typ) current through the OUT_  
pins and measures the corresponding voltage. For the string to be properly disabled, the OUT_ voltage should measure  
between 350mV and 1.15V during this check. 350mV is the maximum threshold for the OUT_ short-to-ground check and  
1.15V is the minimum unused string-detection threshold.  
Note: When disabling unused strings, start by disabling the highest numbered current sinks first (e.g., if two strings need  
to be disabled, disable OUT6 and OUT5. Do not disable any two strings at random). During normal operation, strings can  
be selectively turned off by changing the corresponding PWM setting to 0. This is only possible when internal dimming is  
used (not when using the DIM input pin).  
www.maximintegrated.com  
Maxim Integrated | 20  
MAX20446B  
Automotive 6-Channel Backlight Driver with Boost/  
2
SEPIC Controller, Hybrid Dimming and I C  
Interface  
Startup Sequence  
When the EN pin is taken high (assuming the IN voltage is above its undervoltage-lockout value), the internal regulator  
and the interface are turned on and the device checks the OUT_ channels. If any of the OUT_ pins are detected as  
shorted to GND, the boost converter will not start (to avoid possible damage) and the corresponding OUTSG bit(s) are  
set. The device also detects and disconnects any unused current-sink channels that are connected to GND through a  
2
12kΩ resistor. Alternatively, when using the I C interface, individual channels can be disabled using the DIS4:1 bits. The  
2
total duration of this phase of the startup is 2ms (max). After this phase, the I C interface can be used and the device  
registers written. Finally, the ENA bit is set to 1 to enable the boost and subsequently the OUT_ current sinks. When the  
ENA bit is set high, the startup sequence occurs in three stages (see the Stage 1, Stage 2, and Stage 3 sections).  
Stage 1  
Once the ENA bit is high, the controller begins the soft-start of the boost. First, the driver of the external pMOSFET is  
turned on. A constant current of 200μA (typ) then flows into the PGATE pin of the device. This current flows into the  
external gate-source resistor and pulls down the gate of the external pMOSFET and turns it on. An external gate-source  
capacitor can be used to control the turn-on time of the external pMOSFET.  
After the external pMOSFET is turned on and a 2ms timeout expires, Stage 2 of the startup begins (see the Stage 2  
section).  
Stage 2  
After the checks in Stage 1 have been performed, the converter starts switching and the output begins to ramp. The DAC  
reference to the error amplifier is stepped up 1 bit at a time until it reaches 600mV (or 1.1V if fast soft start is enabled).  
This stage duration is fixed at approximately 50ms (typ) (or 25ms when DIS_FASTSS is set to 0). The BSTMON pin  
is then monitored, and if the voltage at the BSTMON pin is less than 500mV (typ), FLTB is asserted low, the power  
converter is turned off, the external pMOSFET is turned off, and they all remain off until the ENA bit is toggled (see the  
Stage 3 section).  
Stage 3  
The third stage begins once Stage 2 is complete and the DIM input goes high (with DIM_EXT = 1), or internal dimming  
is enabled by setting a PWM value greater than 0 on any of the channels. During Stage 3, the output of the converter  
is adjusted until the minimum OUT_ voltage falls within 0.68V (typ) and 0.93V (typ) comparator limits. The output  
adjustment is again controlled by the DAC, which provides the reference for the error amplifier. The DAC output is  
updated on each rising edge of the DIM input pin (or internal dimming signal). If the DIM input (or the internal dimming  
signal when DIM_EXT = 1) is at 100% duty cycle (DIM = high), the DAC output is updated once every 10ms.  
The total soft-start time can be calculated using Equation 2.  
Equation 2:  
(V  
+ 0.91) − (0.6 × A  
× 0.01 × A  
)
LED  
OVP  
t
= 52ms +  
SS  
f
DIM  
OVP  
where:  
SS = Total soft-start time  
52ms = Fixed Stage 1 + Stage 2 duration (27ms when DIS_FASTSS = 0)  
= Total forward voltage of the LED strings  
V
LED  
0.91V = Midpoint of the window comparator  
0.6 = Voltage on BSTMON after Stage 2 (use 1.1 when DIS_FASTSS = 0)  
f
= Dimming frequency (use 100Hz for f  
when input duty cycle is 100%)  
DIM  
DIM  
0.01V = 4 times the 2.5mV LSB of the DAC  
= Gain of the BSTMON resistor-divider or 1 + R6/R7  
A
OVP  
After the soft-start period, a fault is detected whenever the BSTMON pin falls below 430mV (typ). When this occurs, the  
www.maximintegrated.com  
Maxim Integrated | 21  
MAX20446B  
Automotive 6-Channel Backlight Driver with Boost/  
2
SEPIC Controller, Hybrid Dimming and I C  
Interface  
power converter is latched off and PGATE goes high. Cycling the ENA bit or the supply is required to start up again once  
the fault condition has been removed.  
Figure 3: Boost Startup  
EN  
V
CC  
2ms  
OUT_ CHECK  
ENA BIT  
PGATE  
2ms  
FINAL BOOST  
OUTPUT  
50ms  
VOLTAGE  
BOOST  
OUTPUT  
~V  
IN  
BSTMON > 500mV  
TEST  
NDRV  
DIM  
Figure 3. Boost Startup with DIS_FASTSS = 1  
Oscillator Frequency/External Synchronization  
The internal oscillator frequency is programmable between 400kHz and 2.2MHz using a timing resistor (R ) connected  
RT  
from the RT pin to GND. Use Equation 3 to calculate the value of R for the desired switching frequency (f ).  
RT  
SW  
Equation 3:  
29260 + (2200 − f  
) × 0.81  
SW  
R
=
RT  
f
SW  
where f  
is in kHz and R is in kΩ.  
RT  
SW  
Synchronize the oscillator with an external clock by AC-coupling the external clock to the RT input. The value of the  
capacitor used for AC-coupling is C  
= 10pF and the duty cycle of the external clock should be 50%.  
SYNC  
Spread-Spectrum Mode  
The device includes a spread-spectrum mode that reduces peak electromagnetic interference (EMI) at the switching  
frequency and its harmonics.  
The spread spectrum uses a pseudorandom dithering technique where the switching frequency is varied in the range of  
97% (or 94% when the SSL bit is 1) of the programmed switching frequency, to 103% (or 106% when the SSL bit is 1) of  
the programmed switching frequency set through the external resistor from RT to GND. When spread spectrum is used,  
the total energy at the fundamental and each harmonic is spread over a wider bandwidth, reducing the energy peak.  
www.maximintegrated.com  
Maxim Integrated | 22  
MAX20446B  
Automotive 6-Channel Backlight Driver with Boost/  
2
SEPIC Controller, Hybrid Dimming and I C  
Interface  
Spread spectrum is disabled if external synchronization is used. Optionally, spread spectrum can be disabled by setting  
the SS_OFF bit in the SETTING register to 1. The amount of spread spectrum can also be varied between ±3% and ±6%  
using the SSL bit in the same register.  
5V LDO Regulator (V  
)
CC  
The internal LDO regulator converts the input voltage at IN to a 5V output voltage at V . The LDO regulator supplies up  
CC  
to 50mA current to provide power to internal control circuitry and the gate driver. Bypass V  
of 1μF (+22nF in parallel) ceramic capacitor, as close as possible to the device.  
to GND, with a minimum  
CC  
LED Current Control  
The full-scale sink current for the outputs OUT1–OUT6 is set using the four bits ISET3:0 in register 0x01. See the ISET  
(0x02) section to find the correct bit value for the desired current. When PWM dimming is used, the current in the OUT_  
channels switches between zero and the full-scale sink current at the set duty cycle.  
When hybrid dimming is used, the sink current in OUT1–OUT6 is reduced linearly from the full-scale value until the level  
set by HDIM_THR[1:0] is reached; dimming at lower levels is then accomplished using PWM (see Figure 1).  
If 130mA current is desired, the resistor on IREF should be changed to 45.3kΩ.  
Fault Protection  
Fault protection in the device includes cycle-by-cycle current limiting using the PWM controller, DC-DC converter output  
undervoltage protection, output overvoltage protection, open-LED detection, short-LED detection and protection, and  
overtemperature shutdown. An open-drain fault flag output (FLTB) goes low when an open-LED string is detected, a  
short-LED string is detected, during an output undervoltage, or during thermal shutdown. FLTB is cleared when the fault  
condition is removed during thermal shutdown and shorted LED detection. FLTB is latched low for an open LED and can  
be reset by cycling device power. The thermal-shutdown threshold is +165°C and has +15°C hysteresis.  
Open-LED Management and Overvoltage Protection  
On power-up, the device performs a soft-start of the boost converter. After soft-start, the device detects open-LED and  
disconnects any strings with an open LED from the internal minimum OUT_ voltage detector. This keeps the DC-DC  
converter output voltage within safe limits and maintains high efficiency. The current in strings that have been detected  
open is not measured and reads as zero.  
During normal operation, the DC-DC converter output-regulation loop uses the minimum OUT_ voltage as the feedback  
input. If any LED string is open, the voltage at the opened OUT_ goes to V  
. The DC-DC converter output  
LEDGND  
voltage then increases to the overvoltage-protection threshold set by the voltage-divider network connected between the  
converter output, the BSTMON input, and GND. The overvoltage-protection threshold at the DC-DC converter output is  
determined using Equation 4.  
Equation 4:  
R6  
R7  
V
= 1.23 × 1 +  
(
OUT_BSTMON  
)
where 1.23 (typ) is the overvoltage threshold on BSTMON (see Functional Diagrams). Select V  
according  
OUT_BSTMON  
to Equation 5.  
Equation 5:  
1.1 × V  
+ 1.1 < V  
< 2 × V  
+ 0.7  
(
)
(
)
LED_MAX  
OUT_BSTMON  
LED_MIN  
where:  
V
V
= Maximum expected LED string voltage, and  
= Minimum expected LED string voltage.  
LED_MAX  
LED_MIN  
Select R6 and R7 such that the voltage at OUT_ does not exceed the Absolute Maximum Ratings. As soon as the DC-  
DC converter output reaches the overvoltage-protection threshold, the internal MOSFET is switched off.  
www.maximintegrated.com  
Maxim Integrated | 23  
MAX20446B  
Automotive 6-Channel Backlight Driver with Boost/  
2
SEPIC Controller, Hybrid Dimming and I C  
Interface  
The overvoltage threshold should be set less than twice the minimum LED voltage to ensure proper operation; the  
BSTMON minimum regulation point is 600mV (typ). Connect a 12kΩ resistor between OUT_ and LEDGND for each  
unused channel to avoid overvoltage triggering at startup. When an open-LED overvoltage condition occurs, FLTB is  
latched low. Any current-sink output with V  
< 300mV (typ) is disconnected from the minimum voltage detector.  
OUT_  
Short-LED Detection  
The device checks for shorted LEDs before the current in any channel is turned on. A shorted LED is detected at OUT_  
if the condition in Equation 6 is met.  
Equation 6:  
V
> RSDT  
OUT_  
where:  
RSDT = Programmable short-LED detection threshold set by the SLDET[2:0] bits in the SETTING (0x12) register.  
If a short is detected on any of the strings, the affected LED strings are disconnected and the FLTB output flag asserts  
until the device detects that the shorts are removed. Disable short-LED detection by setting SLDET[2:0] to 0. Short-LED  
detection is disabled in low-dimming mode. In external dimming mode with the DIM input connected continuously high,  
the OUT_ pins are periodically scanned to detect shorted LEDs. The scan frequency is 100Hz.  
Similarly when DIM_EXT = 0 and internal dimming is being used, shorted LEDs are still detected by periodically scanning  
the OUT_ states.  
Thermal Warning/Shutdown  
The device includes thermal protection that operates at a temperature of 165°C. When the thermal-shutdown  
temperature is reached, the device is immediately disabled and begins to cool. When the junction temperature falls by  
15°C, the device is re-enabled with the same settings as before (the boost converter performs a soft-start). When a  
2
thermal shutdown occurs, the FLTB pin goes low and the OT bit, if read through I C, is set to 1.  
A thermal-warning bit (OTW) implemented in register 0x1F, indicates when the junction temperature has exceeded  
125°C. The OTWMASK bit in register 0x1E is used to control whether or not an active OTW bit causes the FLTB pin to  
go low.  
Analog-to-Digital Converter  
The analog-to-digital converter (ADC) is used to measure the current in each of the strings and the voltage on the  
BSTMON pin. A conversion cycle is started by setting the CONVERT bit to 1. At the end of the cycle, the CONVERT  
bit is reset to 0 to indicate a complete cycle and the IOUT1–OUT6 and BSTMON registers contain the updated values.  
The full-scale value of the current measurement is 127.5mA. Values higher than 127.5mA read as full-scale or 0xFF.  
Current measurements are not performed on channels that are in low-dim mode; before performing a conversion, this  
can be checked by reading the LoDIM_ bits. If a conversion is attempted on a channel that is in low-dim mode, the current  
value returned will be 0x00. The duration of a complete conversion depends on whether or not phase shifting is enabled.  
With phase shifting enabled, a complete conversion can take up to two dimming cycles (worst case). With phase shifting  
disabled, one dimming cycle is the worst-case latency (the conversion is initiated at the beginning of a DIM cycle and is  
concluded < 50μs later).  
2
I C Interface  
2
The IC features an I C, 2-wire serial interface consisting of a serial-data line (SDA) and a serial-clock line (SCL). SDA  
and SCL facilitate communication between the device and the master at clock rates up to 400kHz. The master, typically  
a microcontroller, generates SCL and initiates data transfer on the bus.  
2
The slave address is chosen by connecting the FSEN pin to GND via a resistor, the value of which determines the I C  
2
address (see also FSEN Pin Function). Table 2 shows the possible I C addresses.  
www.maximintegrated.com  
Maxim Integrated | 24  
MAX20446B  
Automotive 6-Channel Backlight Driver with Boost/  
2
SEPIC Controller, Hybrid Dimming and I C  
Interface  
2
Table 2. I C Address Options  
DEVICE ADDRESS  
WRITE  
ADDRESS ADDRESS  
READ  
DEVICE  
FSEN  
7-BIT ADDRESS  
A6 A5 A4 A3 A2 A1 A0  
MAX20446BATG  
MAX20446BATG  
0, 3.48k, 12k, 27.4k, 59k  
7.15k, 18.7k, 39k, 84.5k  
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
1
0
1
0
0
0
1
1
1
1
1
1
1
0xC6  
0xD6  
0xC2  
0xCE  
0xC7  
0xD7  
0xC3  
0xCF  
0x63  
0x6B  
0x61  
0x67  
MAX20446BATGA 0, 3.48k, 12k, 27.4k, 59k  
MAX20446BATGA 7.15k, 18.7k, 39k, 84.5k  
www.maximintegrated.com  
Maxim Integrated | 25  
MAX20446B  
Automotive 6-Channel Backlight Driver with Boost/  
2
SEPIC Controller, Hybrid Dimming and I C  
Interface  
Register Map  
MAX20446B  
ADDRESS  
I2C  
NAME  
MSB  
LSB  
0x00  
0x01  
Dev_ID[7:0]  
Rev_ID[7:0]  
Device_ID[7:0]  
LoDIM6  
ENA  
LoDIM5  
PSEN  
Revision_ID[3:0]  
ISET[3:0]  
CONVE  
RT  
0x02  
0x03  
ISET[7:0]  
DIM_EX  
T
IMODE[7:0]  
LoDIM4  
LoDIM3  
LoDIM2  
LoDIM1  
HDIM  
HDIM_THR[1:0]  
0x04  
0x05  
0x06  
0x07  
0x08  
0x09  
0x0A  
0x0B  
0x0C  
0x0D  
0x0E  
0x0F  
0x10  
0x11  
0x12  
TONH1[7:0]  
TONL1[7:0]  
TONH2[7:0]  
TONL2[7:0]  
TONH3[7:0]  
TONL3[7:0]  
TONH4[7:0]  
TONL4[7:0]  
TON1-4LSB[7:0]  
TONH5[7:0]  
TONL5[7:0]  
TONH6[7:0]  
TONL6[7:0]  
TON5-6LSB[7:0]  
SETTING[7:0]  
PWM1[17:10]  
PWM1[9:2]  
PWM2[17:10]  
PWM2[9:2]  
PWM3[17:10]  
PWM3[9:2]  
PWM4[17:10]  
PWM4[9:2]  
PWM4[1:0]  
PWM3[1:0]  
PWM2[1:0]  
PWM1[1:0]  
PWM5[17:10]  
PWM5[9:2]  
PWM6[17:10]  
PWM6[9:2]  
PWM6[1:0]  
PWM5[1:0]  
SLDET[1:0]  
FPWM[2:0]  
SS_OFF  
DIS4  
SSL  
DIS_FAS  
TSS  
0x13  
DISABLE[7:0]  
DIS6  
DIS5  
DIS3  
DIS2  
DIS1  
0x14  
0x15  
0x16  
0x17  
0x18  
0x19  
0x1A  
0x1B  
0x1C  
0x1D  
BSTMON[7:0]  
IOUT1[7:0]  
VMON[7:0]  
IOUT1[7:0]  
IOUT2[7:0]  
IOUT3[7:0]  
IOUT4[7:0]  
IOUT5[7:0]  
IOUT6[7:0]  
IOUT2[7:0]  
IOUT3[7:0]  
IOUT4[7:0]  
IOUT5[7:0]  
IOUT6[7:0]  
OPEN[7:0]  
OUT6O  
OUT5O  
OUT4O  
OUT3O  
OUT2O  
OUT1O  
SHORTGND[7:0]  
SHORTED LED[7:0]  
OUT6SG OUT5SG OUT4SG OUT3SG OUT2SG OUT1SG  
OUT6SL OUT5SL OUT4SL OUT3SL OUT2SL OUT1SL  
BSTUVM  
ASK  
SGMAS OTWMA  
0x1E  
0x1F  
MASK[7:0]  
DIAG[7:0]  
OMASK  
BSTOV  
SLMASK  
OT  
K
SK  
IREFOO  
R
HW_RS  
T
BSTUV  
OTW  
www.maximintegrated.com  
Maxim Integrated | 26  
 
MAX20446B  
Automotive 6-Channel Backlight Driver with Boost/  
2
SEPIC Controller, Hybrid Dimming and I C  
Interface  
Register Details  
Dev_ID (0x00)  
BIT  
Field  
7
6
5
4
3
2
1
0
Device_ID[7:0]  
Reset  
0x6B  
Access  
Type  
Read Only  
BITFIELD  
BITS  
DESCRIPTION  
DECODE  
Device ID, reads 0x6B  
Device_ID  
7:0  
Rev_ID (0x01)  
BIT  
Field  
7
6
5
4
3
2
1
0
LoDIM6  
LoDIM5  
Revision_ID[3:0]  
0x1  
Reset  
Access  
Type  
Read Only  
Read Only  
Read Only  
BITFIELD  
LoDIM6  
BITS  
5
DESCRIPTION  
When 1, indicates that channel 6 is in low-dim mode.  
When 1, indicates that channel 5 is in low-dim mode.  
Device revision ID  
LoDIM5  
4
Revision_ID  
3:0  
ISET (0x02)  
Boost slew rate and output-current setting.  
BIT  
7
6
5
4
3
2
1
0
Field  
CONVERT  
0b0  
ENA  
0b0  
PSEN  
0b1  
ISET[3:0]  
0b1011  
Reset  
Access  
Type  
Write, Read Write, Read Write, Read  
Write, Read  
BITFIELD  
BITS  
DESCRIPTION  
Write a 1 to this bit to start a conversion cycle of the ADC. When the cycle is  
finished this bit is automatically reset to indicate that data is ready.  
CONVERT  
6
Table 3.  
ENA  
ENABLE BIT  
ENA  
5
4
0
1
Boost converter and LED outputs off  
Boost converter and LED outputs on  
PSEN  
When 0 phase-shifting is disabled. Default value 1.  
www.maximintegrated.com  
Maxim Integrated | 27  
MAX20446B  
Automotive 6-Channel Backlight Driver with Boost/  
2
SEPIC Controller, Hybrid Dimming and I C  
Interface  
BITFIELD  
BITS  
DESCRIPTION  
Table 4. LED Current Setting  
ISET3  
ISET2  
ISET1  
ISET0  
Current Setting  
45mA  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
50mA  
55mA  
60mA  
65mA  
70mA  
75mA  
ISET  
3:0  
80mA  
85mA  
90mA  
95mA  
100mA*  
105mA  
110mA  
115mA  
120mA  
*default value  
IMODE (0x03)  
Phase-shift enable, individual string disable, analog dimming enable, and setting of crossover between analog/digital  
dimming (50%, 25%, 12.5%, 6.25%).  
BIT  
7
6
5
4
3
2
1
0
Field  
LoDIM4  
0x0  
LoDIM3  
0x0  
LoDIM2  
0x0  
LoDIM1  
0x0  
DIM_EXT  
0b1  
HDIM  
0b0  
HDIM_THR[1:0]  
0b00  
Reset  
Access  
Type  
Read Only  
Read Only  
Read Only  
Read Only  
Write, Read Write, Read  
Write, Read  
BITFIELD  
BITS  
DESCRIPTION  
DECODE  
When 1, indicates that channel 4 is in low-dim  
mode.  
LoDIM4  
7
When 1, indicates that channel 3 is in low-dim  
mode.  
LoDIM3  
LoDIM2  
LoDIM1  
6
5
4
When 1, indicates that channel 2 is in low-dim  
mode.  
When 1, indicates that channel 1 is in low-dim  
mode.  
When 1, dimming through the DIM pin is  
enabled. When 0, dimming is controlled using  
the PWM_ registers. Default value is 1.  
DIM_EXT  
HDIM  
3
2
When 1, hybrid dimming is enabled. Default  
value 0.  
When 1, hybrid dimming is enabled. Default value  
0.  
www.maximintegrated.com  
Maxim Integrated | 28  
MAX20446B  
Automotive 6-Channel Backlight Driver with Boost/  
2
SEPIC Controller, Hybrid Dimming and I C  
Interface  
BITFIELD  
BITS  
DESCRIPTION  
DECODE  
Set hybrid dimming threshold. Default value  
is 6.25% (00).  
HDIM_THR  
1:0  
TONH1 (0x04)  
On-time setting for channel 1 with 50ns resolution, high byte.  
BIT  
7
6
5
4
3
2
1
0
0
0
0
Field  
PWM1[17:10]  
Reset  
0b11111111  
Write, Read  
Access  
Type  
BITFIELD  
BITS  
DESCRIPTION  
PWM1  
7:0  
High byte of 16-bit PWM setting for channel 1.  
TONL1 (0x05)  
On-time setting for channel 1 with 50ns resolution, low byte.  
BIT  
7
6
5
4
3
2
1
1
1
Field  
PWM1[9:2]  
Reset  
0b11111111  
Access  
Type  
Write, Read  
BITFIELD  
BITS  
DESCRIPTION  
PWM1  
7:0  
Middle byte of 18-bit PWM setting for channel 1.  
TONH2 (0x06)  
On-time setting for channel 2 with 50ns resolution2, high byte  
BIT  
7
6
5
4
3
2
Field  
PWM2[17:10]  
Reset  
0b11111111  
Write, Read  
Access  
Type  
BITFIELD  
BITS  
DESCRIPTION  
PWM2  
7:0  
High byte of 16-bit PWM setting for channel 2.  
TONL2 (0x07)  
On-time setting for channel 2 with 50ns resolution, low byte.  
BIT  
7
6
5
4
3
2
Field  
PWM2[9:2]  
Reset  
0b11111111  
Access  
Type  
Write, Read  
www.maximintegrated.com  
Maxim Integrated | 29  
MAX20446B  
Automotive 6-Channel Backlight Driver with Boost/  
2
SEPIC Controller, Hybrid Dimming and I C  
Interface  
BITFIELD  
BITS  
DESCRIPTION  
PWM2  
7:0  
Middle byte of 18-bit PWM setting for channel 2.  
TONH3 (0x08)  
On-time setting for channel 3 with 50ns resolution, high byte.  
BIT  
7
6
5
4
3
2
1
1
1
1
0
0
0
0
Field  
PWM3[17:10]  
Reset  
0b11111111  
Write, Read  
Access  
Type  
BITFIELD  
BITS  
DESCRIPTION  
PWM3  
7:0  
High byte of 16-bit PWM setting for channel 3.  
TONL3 (0x09)  
On-time setting for channel 3 with 50ns resolution, low byte.  
BIT  
7
6
5
4
3
2
Field  
PWM3[9:2]  
Reset  
0b11111111  
Access  
Type  
Write, Read  
BITFIELD  
BITS  
DESCRIPTION  
PWM3  
7:0  
Middle byte of 18-bit PWM setting for channel 3.  
TONH4 (0x0A)  
On-time setting for channel 4 with 50ns resolution, high byte.  
BIT  
7
6
5
4
3
2
Field  
PWM4[17:10]  
Reset  
0b11111111  
Write, Read  
Access  
Type  
BITFIELD  
BITS  
DESCRIPTION  
PWM4  
7:0  
High byte of 16-bit PWM setting for channel 4.  
TONL4 (0x0B)  
On-time setting for channel 4 with 50ns resolution, low byte.  
BIT  
7
6
5
4
3
2
Field  
PWM4[9:2]  
Reset  
0b11111111  
Access  
Type  
Write, Read  
www.maximintegrated.com  
Maxim Integrated | 30  
MAX20446B  
Automotive 6-Channel Backlight Driver with Boost/  
2
SEPIC Controller, Hybrid Dimming and I C  
Interface  
BITFIELD  
BITS  
DESCRIPTION  
PWM4  
7:0  
Middle byte of 18-bit PWM setting for channel 4.  
TON1-4LSB (0x0C)  
BIT  
7
6
5
4
3
2
1
0
Field  
PWM4[1:0]  
0b11  
PWM3[1:0]  
0b11  
PWM2[1:0]  
0b11  
PWM1[1:0]  
0b11  
Reset  
Access  
Type  
Write, Read  
Write, Read  
Write, Read  
Write, Read  
BITFIELD  
BITS  
7:6  
DESCRIPTION  
PWM4  
PWM3  
PWM2  
PWM1  
2 least significant bits of 18-bit PWM setting for channel 4.  
2 least significant bits of 18-bit PWM setting for channel 3.  
2 least significant bits of 18-bit PWM setting for channel 2.  
2 least significant bits of 18-bit PWM setting for channel 1.  
5:4  
3:2  
1:0  
TONH5 (0x0D)  
On-time setting for channel 5 with 50ns resolution, high byte.  
BIT  
7
6
5
4
3
2
1
0
Field  
PWM5[17:10]  
Reset  
0xFF  
Access  
Type  
Write, Read  
BITFIELD  
BITS  
DESCRIPTION  
PWM5  
7:0  
High byte of 16-bit PWM setting for channel 5.  
TONL5 (0x0E)  
On-time setting for channel 5 with 50ns resolution, low byte.  
BIT  
7
6
5
4
3
2
1
0
Field  
PWM5[9:2]  
Reset  
0b11111111  
Access  
Type  
Write, Read  
BITFIELD  
BITS  
DESCRIPTION  
PWM5  
7:0  
Middle byte of 18-bit PWM setting for channel 5.  
TONH6 (0x0F)  
On-time setting for channel 6 with 50ns resolution, high byte.  
www.maximintegrated.com  
Maxim Integrated | 31  
MAX20446B  
Automotive 6-Channel Backlight Driver with Boost/  
2
SEPIC Controller, Hybrid Dimming and I C  
Interface  
BIT  
Field  
7
6
5
4
3
2
1
1
1
0
0
0
PWM6[17:10]  
Reset  
0b11111111  
Write, Read  
Access  
Type  
BITFIELD  
BITS  
DESCRIPTION  
PWM6  
7:0  
High byte of 16-bit PWM setting for channel 6.  
TONL6 (0x10)  
On-time setting for channel 6 with 50ns resolution, low byte.  
BIT  
7
6
5
4
3
2
Field  
PWM6[9:2]  
Reset  
0b11111111  
Access  
Type  
Write, Read  
BITFIELD  
BITS  
DESCRIPTION  
PWM6  
7:0  
Middle byte of 18-bit PWM setting for channel 6.  
TON5-6LSB (0x11)  
BIT  
7
6
5
4
3
2
Field  
PWM6[1:0]  
0b11  
PWM5[1:0]  
0b11  
Reset  
Access  
Type  
Write, Read  
Write, Read  
BITFIELD  
BITS  
3:2  
DESCRIPTION  
PWM6  
PWM5  
2 least significant bits of 18-bit PWM setting for channel 6.  
2 least significant bits of 18-bit PWM setting for channel 5.  
1:0  
SETTING (0x12)  
External/internal dimming, DIM-frequency level for shorted-LED detection.  
BIT  
7
6
5
4
3
2
1
0
Field  
FPWM[2:0]  
0b001  
SS_OFF  
0b0  
SSL  
0b0  
SLDET[1:0]  
000  
Reset  
Access  
Type  
Write, Read  
Write, Read Write, Read  
Write, Read  
BITFIELD  
BITS  
6:4  
3
DESCRIPTION  
These bits set the PWM frequency in internal PWM mode. When an external  
DIM signal is used, these bits set the fault-sampling frequency at 100% duty  
cycle.  
FPWM  
SS_OFF  
When 1 spread-spectrum switching is disabled. Default value 0.  
www.maximintegrated.com  
Maxim Integrated | 32  
MAX20446B  
Automotive 6-Channel Backlight Driver with Boost/  
2
SEPIC Controller, Hybrid Dimming and I C  
Interface  
BITFIELD  
BITS  
DESCRIPTION  
When spread-spectrum is enabled the SSL bit chooses the amount of spread:  
when 0 the spread is nominally ±6%, when 1 ±3%.  
SSL  
2
SLDET1  
SLDET0  
SETTING  
Disabled  
3V  
0
0
1
1
0
1
0
1
SLDET  
1:0  
6V  
8V  
Shorted-LED Threshold Setting:  
DISABLE (0x13)  
BIT  
Field  
7
6
5
4
3
2
1
0
DIS_FASTS  
S
DIS6  
0b0  
DIS5  
0b0  
DIS4  
0b0  
DIS3  
0b0  
DIS2  
0b0  
DIS1  
0b0  
Reset  
0x0  
Access  
Type  
Write, Read Write, Read Write, Read Write, Read Write, Read Write, Read Write, Read  
BITFIELD  
BITS  
DESCRIPTION  
DIS_FASTSS  
6
Selects fast or slow boost soft-start. Set to 1 for slow soft-start.  
Set this bit to 1 to disable OUT6. This must be done before ENA is written to  
1.  
DIS6  
DIS5  
DIS4  
DIS3  
DIS2  
DIS1  
5
4
3
2
1
0
Set this bit to 1 to disable OUT5. This must be done before ENA is written to  
1.  
Set this bit to 1 to disable OUT4. This must be done before ENA is written to  
1.  
Set this bit to 1 to disable OUT3. This must be done before ENA is written to  
1.  
Set this bit to 1 to disable OUT2. This must be done before ENA is written to  
1.  
Set this bit to 1 to disable OUT1. This must be done before ENA is written to  
1.  
BSTMON (0x14)  
BSTMON pin voltage readback.  
BIT  
7
6
5
4
3
2
1
0
Field  
VMON[7:0]  
Reset  
0b00000000  
Access  
Type  
Read Only  
BITFIELD  
BITS  
DESCRIPTION  
VMON  
7:0  
Voltage on BSTMON. Full-scale = 2.5V.  
www.maximintegrated.com  
Maxim Integrated | 33  
MAX20446B  
Automotive 6-Channel Backlight Driver with Boost/  
2
SEPIC Controller, Hybrid Dimming and I C  
Interface  
IOUT1 (0x15)  
OUT1 current readback.  
BIT  
7
6
5
4
3
2
1
0
Field  
IOUT1[7:0]  
Reset  
0b00000000  
Access  
Type  
Read Only  
BITFIELD  
BITS  
DESCRIPTION  
Table 5. Output Current Measurement (IOUT1):  
READOUT  
0x00  
CURRENT (mA)  
0
0.5  
0x01  
IOUT1  
7:0  
0xFE  
0xFF  
127  
127.5  
IOUT2 (0x16)  
OUT2 current readback.  
BIT  
7
6
5
4
3
2
1
0
Field  
IOUT2[7:0]  
Reset  
Access  
Type  
Read Only  
BITFIELD  
BITS  
DESCRIPTION  
Output Current Measurement (IOUT2):  
READOUT  
CURRENT (mA)  
0x00  
0x01  
...  
0
0.5  
...  
IOUT2  
7:0  
0xFE  
0xFF  
127  
127.5  
IOUT3 (0x17)  
OUT3 current readback  
BIT  
7
6
5
4
3
2
1
0
Field  
IOUT3[7:0]  
Read Only  
Reset  
Access  
Type  
www.maximintegrated.com  
Maxim Integrated | 34  
MAX20446B  
Automotive 6-Channel Backlight Driver with Boost/  
2
SEPIC Controller, Hybrid Dimming and I C  
Interface  
BITFIELD  
BITS  
DESCRIPTION  
Output Current Measurement (IOUT3):  
READOUT  
CURRENT (mA)  
0x00  
0x01  
...  
0
0.5  
...  
IOUT3  
7:0  
0xFE  
0xFF  
127  
127.5  
IOUT4 (0x18)  
OUT4 current readback.  
BIT  
7
6
5
4
3
2
1
0
Field  
IOUT4[7:0]  
Reset  
0b00000000  
Read Only  
Access  
Type  
BITFIELD  
BITS  
DESCRIPTION  
Table 6. Output Current Measurement (IOUT4):  
READOUT  
0x00  
CURRENT (mA)  
0
0.5  
0x01  
IOUT4  
7:0  
0xFE  
0xFF  
127  
127.5  
IOUT5 (0x19)  
OUT5 current readback.  
BIT  
7
6
5
4
3
2
1
0
Field  
IOUT5[7:0]  
Reset  
0b00000000  
Read Only  
Access  
Type  
BITFIELD  
BITS  
DESCRIPTION  
Table 7. Output Current Measurement (IOUT5):  
READOUT  
0x00  
CURRENT (mA)  
0
0.5  
0x01  
IOUT5  
7:0  
0xFE  
0xFF  
127  
127.5  
www.maximintegrated.com  
Maxim Integrated | 35  
MAX20446B  
Automotive 6-Channel Backlight Driver with Boost/  
2
SEPIC Controller, Hybrid Dimming and I C  
Interface  
IOUT6 (0x1A)  
OUT6 current readback.  
BIT  
7
6
5
4
3
2
1
0
Field  
IOUT6[7:0]  
Reset  
0b00000000  
Access  
Type  
Read Only  
BITFIELD  
BITS  
DESCRIPTION  
Table 8. Output Current Measurement (IOUT6):  
READOUT  
0x00  
CURRENT (mA)  
0
0.5  
0x01  
IOUT6  
7:0  
0xFE  
0xFF  
127  
127.5  
OPEN (0x1B)  
Short-to-GND and open diagnostics.  
BIT  
7
6
5
4
3
2
1
0
Field  
OUT6O  
0x0  
OUT5O  
0b0  
OUT4O  
0b0  
OUT3O  
0b0  
OUT2O  
0b0  
OUT1O  
0b0  
Reset  
Access  
Type  
Read Only  
Read Only  
Read Only  
Read Only  
Read Only  
Read Only  
BITFIELD  
BITS  
DESCRIPTION  
OUT6O  
OUT5O  
OUT4O  
OUT3O  
OUT2O  
OUT1O  
5
4
3
2
1
0
If 1, an open has been detected on channel 6.  
If 1, an open has been detected on channel 5.  
If 1, an open has been detected on channel 4.  
If 1, an open has been detected on channel 3.  
If 1, an open has been detected on channel 2.  
If 1, an open has been detected on channel 1.  
SHORTGND (0x1C)  
BIT  
Field  
7
6
5
4
3
2
1
0
OUT6SG  
OUT5SG  
OUT4SG  
OUT3SG  
OUT2SG  
OUT1SG  
Reset  
Access  
Type  
Read Only  
Read Only  
Read Only  
Read Only  
Read Only  
Read Only  
BITFIELD  
BITS  
DESCRIPTION  
OUT6SG  
OUT5SG  
OUT4SG  
5
4
3
If 1, a short-to-ground has been detected on channel 6 at startup.  
If 1, a short-to-ground has been detected on channel 5 at startup.  
If 1, a short-to-ground has been detected on channel 4 at startup.  
www.maximintegrated.com  
Maxim Integrated | 36  
MAX20446B  
Automotive 6-Channel Backlight Driver with Boost/  
2
SEPIC Controller, Hybrid Dimming and I C  
Interface  
BITFIELD  
OUT3SG  
BITS  
DESCRIPTION  
2
1
0
If 1, a short-to-ground has been detected on channel 3 at startup.  
If 1, a short-to-ground has been detected on channel 2 at startup.  
If 1, a short-to-ground has been detected on channel 1 at startup.  
OUT2SG  
OUT1SG  
SHORTED LED (0x1D)  
Shorted-LED diagnostics.  
BIT  
7
6
5
4
3
2
1
0
Field  
OUT6SL  
0b0  
OUT5SL  
0b0  
OUT4SL  
0b0  
OUT3SL  
0b0  
OUT2SL  
0b0  
OUT1SL  
0b0  
Reset  
Access  
Type  
Read Only  
Read Only  
Read Only  
Read Only  
Read Only  
Read Only  
BITFIELD  
BITS  
DESCRIPTION  
OUT6SL  
OUT5SL  
OUT4SL  
OUT3SL  
OUT2SL  
OUT1SL  
5
4
3
2
1
0
If 1, a shorted-LED condition has been detected on channel 6.  
If 1, a shorted-LED condition has been detected on channel 5.  
If 1. a shorted-LED condition has been detected on channel 4.  
If 1, a shorted-LED condition has been detected on channel 3.  
If 1, a shorted-LED condition has been detected on channel 2.  
If 1, a shorted-LED condition has been detected on channel 1.  
MASK (0x1E)  
Mask register for FLTB pin.  
BIT  
7
6
5
4
3
2
1
0
BSTUVMAS  
K
Field  
OMASK  
0b0  
SGMASK  
0b0  
OTWMASK  
0b0  
SLMASK  
0b0  
Reset  
0b0  
Access  
Type  
Write, Read Write, Read Write, Read Write, Read Write, Read  
BITFIELD  
BITS  
DESCRIPTION  
When 1 a boost fault (undervoltage or overvoltage) does not cause the FLT  
pin to assert low.  
BSTUVMASK  
4
OMASK  
3
2
When 1 an open-LED fault does not cause the FLT pin to assert low.  
SGMASK  
When 1 a short-to-ground LED fault does not cause the FLT pin to assert low.  
When 1 an over-temperature warning does not cause the FLT pin to assert  
low.  
OTWMASK  
SLMASK  
1
0
When 1 a shorted-LED fault does not cause the FLT pin to assert low.  
DIAG (0x1F)  
Boost state, over-temperature warning/shutdown.  
www.maximintegrated.com  
Maxim Integrated | 37  
MAX20446B  
Automotive 6-Channel Backlight Driver with Boost/  
2
SEPIC Controller, Hybrid Dimming and I C  
Interface  
BIT  
Field  
7
6
5
4
3
2
1
0
IREFOOR  
0b0  
BSTUV  
0b0  
BSTOV  
0b0  
HW_RST  
0b1  
OTW  
OT  
0b0  
Reset  
Access  
Type  
Read Only  
Read Only  
Read Only  
Read Only  
Read Only  
Read Only  
BITFIELD  
BITS  
DESCRIPTION  
When 1, this bit indicates that the IREF current is out of range. This is  
probably due to an incorrect resistor value on IREF. In this condition, the IC  
stops operation.  
IREFOOR  
5
If 1, an undervoltage has been detected on the boost output and the boost  
was disabled.  
BSTUV  
BSTOV  
HW_RST  
OTW  
4
3
2
1
0
If 1, the boost converter is at its overvoltage limit.  
If 1, the device has just emerged from a hardware reset (power-up). This bit is  
reset after the first read from this register.  
If 1, the junction temperature of the device is over 125°C.  
If 1, the junction temperature of the device exceeded 165°C and the device  
was shut down.  
OT  
www.maximintegrated.com  
Maxim Integrated | 38  
MAX20446B  
Automotive 6-Channel Backlight Driver with Boost/  
2
SEPIC Controller, Hybrid Dimming and I C  
Interface  
Applications Information  
DC-DC Converter  
Three different converter topologies are possible with the DC-DC converter in the MAX20446B, which have the ground-  
referenced outputs necessary to use the constant-current sink drivers. If the LED string forward voltage is always greater  
than the input supply voltage range, use the boost converter topology. If the LED string forward voltage falls within the  
supply voltage range, use a buck-boost converter topology. The possible buck-boost topologies are SEPIC or a coupled-  
inductor buck-boost topology. The latter is basically a flyback converter with 1:1 turns ratio. 1:1-coupled inductors are  
available with tight coupling suitable for this application.  
The boost-converter topology provides the highest efficiency among the above-mentioned topologies. The coupled-  
inductor topology has the advantage of not using a coupling capacitor, but does require tightly coupled windings to avoid  
additional snubber components. The SEPIC configuration requires two inductors (or a coupled inductor) and a coupling  
capacitor. Furthermore, the feedback-loop compensation for SEPIC becomes complex if the coupling capacitor is not  
large enough.  
Power-Circuit Design  
First, select a converter topology based on the factors listed in the DC-DC Converter section. Determine the required  
input supply voltage range, the maximum voltage needed to drive the LED strings, including the minimum 0.85V across  
the constant LED current sink (V  
Equation 7.  
), and the total output current needed to drive the LED strings (I  
), as shown in  
LED  
LED  
Equation 7:  
I
= I  
× N  
STRING STRING  
LED  
where I  
is the current per string and N  
is the number of strings used.  
) using Equations 8 and 9.  
STRING  
STRING  
Next, calculate the maximum duty cycle (D  
MAX  
For boost configuration (Equation 8):  
V
+ V V  
D1  
(
(
)
)
LED  
IN_MIN  
D
=
MAX  
V
+ V V  
− 0.3  
LED  
D1  
DS  
For SEPIC and coupled-inductor buck-boost configurations (Equation 9):  
V
+ V  
LED  
D1  
D
=
MAX  
V
V  
DS  
− 0.3 + V + V  
LED D1  
(
)
IN_MIN  
where:  
● V = Forward drop of the rectifier diode in volts (approximately 0.6V),  
D1  
● V  
● V  
= Minimum input supply voltage, and  
= Drain-to-source voltage of the external MOSFET when it is on.  
IN_MIN  
DS  
Select the switching frequency (f ) depending on the space, noise, and efficiency constraints.  
SW  
Boost and Coupled-Inductor Configurations  
In all three converter configurations, the average inductor current varies with the line voltage; the maximum average  
current occurs at the lowest line voltage. For the boost converter, the average inductor current is equal to the input  
current. Select the maximum peak-to-peak ripple on the inductor current (ΔI ). The recommended maximum peak-to-  
L
peak ripple is 60% of the average inductor current, but lower and higher values for ripple are also acceptable.  
Use the following equations (Equations 10, 11, and 12) to calculate the maximum average inductor current (I  
) and  
LAVG  
peak inductor current (I ) in amperes.  
LP  
Equation 10:  
www.maximintegrated.com  
Maxim Integrated | 39  
MAX20446B  
Automotive 6-Channel Backlight Driver with Boost/  
2
SEPIC Controller, Hybrid Dimming and I C  
Interface  
I
LED  
I
=
LAVG  
1 − D  
(
)
MAX  
Allowing the peak-to-peak inductor ripple ΔI to be ±30% of the average inductor current:  
L
Equation 11:  
ΔI = I  
× 0.3 × 2  
LAVG  
L
and:  
ΔI  
L
I
= I  
+
LAVG  
2
LP  
Calculate the minimum inductance value (L  
), in henries (H), with the inductor current ripple set to the maximum value:  
MIN  
Equation 12:  
V
V  
− 0.3 × D  
(
)
IN_MIN  
DS  
MAX  
L
=
MIN  
f
× ΔI  
SW  
L
Choose an inductor that has a minimum inductance greater than the calculated L  
and current rating greater than I  
.
LP  
MIN  
The recommended saturation current limit of the selected inductor is 10% higher than the inductor peak current for boost  
configuration. For the coupled-inductor, the saturation limit of the inductor with only one winding conducting should be  
10% higher than I  
.
LP  
SEPIC Configuration  
Power-circuit design for the SEPIC configuration is very similar to a conventional design with the output voltage  
referenced to the input supply voltage. For SEPIC, the output is referenced to ground and the inductor is split into two  
parts. One of the inductors (L2) takes LED current as the average current and the other (L1) takes input current as the  
average current.  
Use the following equations (Equations 13–16) to calculate the average inductor currents (I  
, I  
) and peak  
L1AVG L2AVG  
inductor currents (I  
, I  
) in amperes.  
L1P L2P  
Equation 13:  
I
× D  
MAX  
× 1.1  
LED  
I
=
L1AVG  
1 − D  
MAX  
The factor 1.1 provides a 10% margin to account for the converter losses.  
Equation 14:  
I
= I  
LED  
L2AVG  
Assuming the peak-to-peak inductor ripple ΔI is ±30% of the average inductor current  
L
Equation 15:  
ΔI = I  
× 0.3 × 2  
L1  
L1AVG  
and:  
ΔI  
L1  
I
= I  
+
L1P  
L1AVG  
2
and:  
ΔI = I  
× 0.3 × 0.2  
L2AVG  
L2  
and:  
ΔI  
L2  
I
= I  
+
L2AVG  
L2P  
2
Calculate the minimum inductance values (L1  
and L2  
) in henries with the inductor current ripple set to the  
MIN  
MIN  
www.maximintegrated.com  
Maxim Integrated | 40  
MAX20446B  
Automotive 6-Channel Backlight Driver with Boost/  
2
SEPIC Controller, Hybrid Dimming and I C  
Interface  
maximum value shown in Equation 16.  
Equation 16:  
V
V
V  
− 0.3 × D  
(
(
)
IN_MIN  
IN_MIN  
DS  
MAX  
L1  
L2  
=
=
MIN  
MIN  
f
× ΔI  
SW  
L1  
V  
− 0.3 × D  
)
DS  
MAX  
f
× ΔI  
SW  
L2  
Choose inductors that have a minimum inductance greater than the calculated L1  
and L2  
, and current rating  
MIN  
MIN  
greater than I  
and I  
, respectively. The recommended saturation current limit of the selected inductor is 10% higher  
L1P  
L2P  
than the inductor peak current.  
To simplify further calculations, consider L1 and L2 as a single inductor with L1 and L2 connected in parallel. The  
combined inductance value and current is calculated as shown in Equation 17.  
Equation 17:  
L1 × L2  
L =  
L1 + L2  
and:  
I
= I  
+ I  
L1AVG L2AVG  
LAVG  
where I  
represents the total average current through both the inductors in the SEPIC configuration. Use these  
LAVG  
values in the calculations in the following sections.  
Select coupling-capacitor C so that the peak-to-peak ripple on it is less than 2% of the minimum input supply voltage.  
S
This ensures that the second-order effects created by the series-resonant circuit comprising L1, C , and L2 do not affect  
S
the normal operation of the converter. Use Equation18 to calculate the minimum value of C :  
S
Equation 18:  
I
× D  
LED  
IN_MIN  
MAX  
× 0.02 × f  
C =  
S
V
SW  
where:  
● C = Minimum value of the coupling capacitor in farads, and  
S
● 0.02 = 2% ripple factor.  
Slope Compensation and Current-Sense Resistor  
The device generates a current ramp for slope compensation. This ramp current is in sync with the switching frequency  
and starts from zero at the beginning of every clock cycle, rising linearly to reach 50μA at the end of the clock cycle.  
The slope-compensating resistor (R ) is connected between the CS input and the source of the external switching  
SC  
MOSFET. This adds a programmable ramp voltage to the CS input voltage to provide slope compensation.  
Use one of the the following equations (Equation 19 or 20) to calculate the value of R  
.
SC  
For boost configuration (Equation 19):  
(V  
− 2 × V  
IN_MIN  
) × R  
× 3  
LED  
L
CS  
× 4  
R
=
SC  
× 50μA × f  
MIN  
SW  
For SEPIC and coupled-inductor configurations (Equation 20):  
(V  
V  
) × R  
× 3  
LED  
L
IN_MIN  
CS  
× 4  
R
=
SC  
× 50μA × f  
SW  
MIN  
where:  
● V  
● R  
and V  
are in volts,  
IN_MIN  
LED  
and R  
are in ohms,  
SC  
CS  
www.maximintegrated.com  
Maxim Integrated | 41  
MAX20446B  
Automotive 6-Channel Backlight Driver with Boost/  
2
SEPIC Controller, Hybrid Dimming and I C  
Interface  
● L  
is in henries, and  
MIN  
● f  
is in hertz.  
SW  
The value of the switch current-sense resistor (R ) can be calculated using the boost configuration shown in Equation  
CS  
21.  
Equation 21:  
4 × L  
× f  
× 0.39 × 0.9  
MIN SW  
R
=
CS  
I
× 4 × L  
× f  
+ D  
× V  
− 2 × V  
× 3  
(
)
LP  
MIN SW  
MAX  
LED IN_MIN  
For SEPIC and coupled-inductor configurations, use Equation 22.  
Equation 22:  
4 × L  
× f  
× f  
× 0.39 × 0.9  
MIN SW  
R
=
CS  
I
× 4 × L  
+ D  
× V  
V  
× 3  
(
)
LP  
MIN SW  
MAX  
LED IN_MIN  
where 0.39 is the minimum value of the peak current-sense threshold. The current-sense threshold also includes the  
slope-compensation component. The minimum current-sense threshold of 0.39 is multiplied by 0.9 to take tolerances into  
account.  
Output Capacitor Selection  
For all three converter topologies, the output capacitor supplies the load current when the main switch is on. The function  
of the output capacitor is to reduce the converter output ripple to acceptable levels. The entire output-voltage ripple  
appears across constant-current sink outputs because the LED-string voltages are stable due to the constant current.  
For the MAX20446B, limit peak-to-peak output-voltage ripple to 200mV to get stable output current.  
Use the following equation to calculate the minimum capacitor value:  
I
× DMAX  
LED  
C
=
OUT(MIN)  
0.2 × f  
SW  
The ESR, ESL, and bulk capacitance of the output capacitor contribute to the output ripple. In most applications, using  
low-ESR ceramic capacitors can dramatically reduce the output ESR and ESL effects. To reduce the ESL and ESR  
effects, connect multiple ceramic capacitors in parallel to achieve the required bulk capacitance. To minimize audible  
noise during PWM dimming, the amount of ceramic capacitors on the output are usually minimized. In this case, an  
additional electrolytic or aluminum organic polymer capacitor provides most of the bulk capacitance.  
Rectifier Diode Selection  
Using a Schottky rectifier diode produces less forward drop and puts the least burden on the MOSFET during reverse  
recovery. A diode with considerable reverse-recovery time increases the MOSFET switching loss. Select a Schottky  
diode with a voltage rating 20% higher than the maximum boost-converter output voltage and current rating greater than  
I
.
LED  
Feedback Compensation  
During normal operation, the feedback control loop regulates the minimum OUT_ voltage to fall within the window  
comparator limits of 0.6V and 0.85V when LED string currents are enabled during PWM dimming. When LED currents  
are off during PWM dimming, the control loop turns off the converter and stores the steady-state condition in the form of  
capacitor voltages, mainly the output-filter-capacitor voltage and the compensation-capacitor voltage.  
The switching converter small-signal-transfer function has a right-half plane (RHP) zero in the boost configuration if the  
inductor current is in continuous-conduction mode. The RHP zero adds a 20dB/decade gain together with a 90-degree  
phase lag, which is difficult to compensate.  
The worst-case RHP zero frequency (f  
) is calculated for boost configuration as shown in Equation 23.  
ZRHP  
Equation 23:  
www.maximintegrated.com  
Maxim Integrated | 42  
MAX20446B  
Automotive 6-Channel Backlight Driver with Boost/  
2
SEPIC Controller, Hybrid Dimming and I C  
Interface  
2
V
× 1 D  
(
)
LED  
MAX  
LED  
f
=
ZRHP  
2 × π × L × I  
For the SEPIC and coupled-inductor configurations, see Equation 24.  
Equation 24:  
2
V
× 1 D  
(
)
LED  
MAX  
f
=
ZRHP  
2 × π × L × I  
× D  
LED  
MAX  
The standard way to avoid this zero is to roll off the loop gain to 0dB at a frequency less than 1/5 of the RHP zero  
frequency with a -20dB/decade slope.  
The switching converter small-signal transfer function also has an output pole. The effective output impedance, together  
with the output filter capacitance, determines the output pole frequency (f ) that is calculated for the boost configuration,  
P1  
as shown in Equation 25.  
Equation 25:  
I
LED  
f
=
=
P1  
π × V  
× C  
LED  
OUT  
OUT  
For SEPIC and coupled-inductor use Equation 26.  
Equation 26:  
I
× D  
LED  
MAX  
f
P1  
π × V  
× C  
LED  
Compensation components, R  
and C  
, perform two functions. C  
introduces a low-frequency pole that  
COMP  
COMP  
COMP  
presents a -20dB/decade slope to the loop gain. R  
flattens the gain of the error amplifier for frequencies above the  
COMP  
zero formed by R  
and C  
. For compensation, this zero is placed at f to provide a -20dB/decade slope for  
COMP P1  
COMP  
frequencies above f to the combined modulator and compensator response.  
P1  
The value of R  
, needed to fix the total loop gain at f so that the total loop gain crosses 0dB with -20dB/decade  
P1  
COMP  
slope at 1/5 the RHP zero frequency, is calculated as shown in Equation 27.  
Equation 27 (for boost configuration):  
f
× R  
× I  
× A  
ZRHP  
5 × f × GM  
CS LED  
OVP  
R
=
COMP  
× V  
× 1 D  
(
)
)
P1  
COMP  
LED  
MAX  
Equation 28 (for SEPIC and coupled-inductor buck-boost configurations):  
f
× R  
× I  
× A  
× D  
OVP MAX  
ZRHP  
CS LED  
R
=
COMP  
5 × f × GM  
× V  
× 1 D  
(
P1 LED  
COMP  
MAX  
where:  
● R  
● A  
● R  
= Compensation resistor in ohms,  
= BSTMON resistor-divider gain (a value << 1),  
= Current-sense resistor in ohms, and  
COMP  
OVP  
CS  
● GM  
= Transconductance of the error amplifier (700μS).  
COMP  
The value of C  
is calculated as shown in Equation 29.  
COMP  
Equation 29:  
1
C
=
COMP  
2 × π × f × R  
Z1 COMP  
where f is the compensation zero placed at 1/5 the crossover frequency, which is, in turn, set at 1/5 the f  
. If  
ZRHP  
Z1  
the output capacitors do not have low ESR, the ESR zero frequency could fall below the 0dB crossover frequency. An  
additional pole may be required to cancel out this pole placed at the same frequency. This can be added by connecting  
www.maximintegrated.com  
Maxim Integrated | 43  
MAX20446B  
Automotive 6-Channel Backlight Driver with Boost/  
2
SEPIC Controller, Hybrid Dimming and I C  
Interface  
a capacitor from the COMP pin directly to GND with a value shown in Equation 30.  
Equation 30:  
GM  
× R  
× C  
ESR OUT  
COMP  
where R  
is the capacitor ESR value and C  
is the output-capacitor value.  
OUT  
ESR  
External Disconnect-MOSFET Selection  
An external pMOSFET can be used to disconnect the boost output from the battery in the event of an output overload  
or short condition. In the case of the SEPIC or buck-boost, this protection is not necessary so there is no need for  
the pMOSFET. Connect the PGATE pin to ground in the case of the SEPIC and buck-boost. If it is necessary to have  
an output short protection for the boost even at power-up, then the current through the pMOSFET (see the Typical  
Application Circuits) has to be sensed. Once the current-sense voltage exceeds a certain threshold, it should limit the  
input current to the programmed threshold. This threshold should be set at a sufficiently high level so it never trips at  
startup or under normal operating conditions. Check the safe operating area (SOA) of the pMOSFET so the current-limit  
trip threshold and voltage on the MOSFET do not exceed the limits of the SOA curve of the pMOSFET at the highest  
operating temperature.  
V
to OUT_ Bleed Resistors  
OUT  
The OUT_ pins have a leakage specification of 12μA (max) in cases where all OUT_ pins are shorted to 48V (see  
in Electrical Characteristics). This leakage current is dependent on the OUT_ voltage and is higher at higher  
I
OUTLEAK  
voltages. Therefore, in cases where large numbers of LEDs are connected in series, a 100kΩ (or larger) bleed resistor  
can be placed in parallel with the LED string to prevent the OUT_ leakage current from very dimly illuminating the LEDs,  
even when the DIM signal is low (see resistors R8–R11 in Typical Application Circuits).  
Thermal Considerations  
The on-chip power dissipation of the MAX20446B comprises two main factors:  
● Current-sink power loss: 1.1V × I  
LED  
● Device operating current power loss: V × 15mA.  
IN  
Calculate the total power dissipation by adding the two values calculated above. The junction temperature at the  
maximum ambient temperature can then be calculated using Equation 31.  
Equation 31:  
T = T + P  
× θ  
JA  
J
A
TOT  
where T is the ambient temperature and θ is the junction-to-ambient thermal resistance of the package (36°C/W on a  
A
JA  
four-layer board). Ensure that the junction temperature does not exceed 150°C.  
The general formula for total power dissipation is shown in Equation 32.  
Equation 32:  
P
= V  
× I  
+ V × I  
LED IN Q  
TOT  
OUT(MAX)  
As an example, consider an application with an operating voltage of 14V and a total output current of 600mA. The total  
power dissipation is shown in Equation 33.  
Equation 33:  
P
= 1.1 × 0.6 + 14 × 0.015 = 0.87W  
TOT  
The maximum junction temperature at an ambient temperature of 85°C is shown in Equation 34.  
Equation 34:  
T = 85 + 0.87 × 36 = 116 ° C  
J
www.maximintegrated.com  
Maxim Integrated | 44  
MAX20446B  
Automotive 6-Channel Backlight Driver with Boost/  
2
SEPIC Controller, Hybrid Dimming and I C  
Interface  
PCB Layout Considerations  
LED driver circuits based on the MAX20446B use a high-frequency switching converter to generate the voltage for LED  
strings. Take proper care while laying out the circuit to ensure correct operation. The switching-converter portion of the  
circuit has nodes with very fast voltage changes that could lead to undesirable effects on the sensitive parts of the circuit.  
Follow the guidelines below to reduce noise as much as possible:  
● Connect the bypass capacitor on V  
as close as possible to the device and connect the capacitor ground to the  
CC  
analog ground plane using vias close to the capacitor terminal. Connect the GND of the device to the analog ground  
plane using a via close to GND. Lay the analog ground plane on the inner layer, preferably next to the top layer. Use  
the analog ground plane to cover the entire area under critical signal components for the power converter.  
● Have a power-ground plane for the switching-converter power circuit under the power components (i.e., input filter  
capacitor, output filter capacitor, inductor, MOSFET, rectifier diode, and current-sense resistor). Connect PGND to the  
power-ground plane closest to PGND. Connect all other ground connections to the power ground plane using vias  
close to the terminals.  
● There are two loops in the power circuit that carry high-frequency switching currents. One loop is when the MOSFET  
is on (from the input filter capacitor positive terminal, through the inductor, the internal MOSFET and the current-  
sense resistor, to the input capacitor negative terminal). The other loop is when the MOSFET is off (from the input  
capacitor positive terminal, through the inductor, the rectifier diode, output filter capacitor, to the input capacitor  
negative terminal). Analyze these two loops and make the loop areas as small as possible. Wherever possible, have  
a return path on the power ground plane for the switching currents on the top layer copper traces, or through power  
components. This reduces the loop area considerably and provides a low-inductance path for the switching currents.  
Reducing the loop area also reduces radiation during switching.  
● Connect the power-ground plane for the constant-current LED driver portion of the circuit to LEDGND as close as  
possible to the device. Connect GND to PGND at the same point.  
● Add a small bypass capacitor (22pF to 47pF) to the BSTMON input. Place the capacitor as close as possible to the  
pin to suppress high-frequency noise.  
● Boost output voltage for the LED strings should be taken directly from the output capacitors and not from the boost  
diode anode.  
● Input and output capacitors need good grounding with wide traces and multiple vias to the ground plane.  
● Refer to the MAX20446B evaluation kit (EV kit) data sheet for an example layout.  
www.maximintegrated.com  
Maxim Integrated | 45  
MAX20446B  
Automotive 6-Channel Backlight Driver with Boost/  
2
SEPIC Controller, Hybrid Dimming and I C  
Interface  
Typical Application Circuits  
MAX20446B Applications Circuit  
L1  
INPUT  
VOLTAGE  
CIN  
10  
COUT  
NDRV  
PGATE  
R6  
IN  
VUC  
EN  
CS  
R5  
RSC  
FLTB  
SDA  
SCL  
DIM  
RCS  
R7  
FORCE ENABLE  
FSEN  
MAX20446B  
BSTMON  
VCC  
C1  
OUT1  
OUT2  
OUT3  
OUT4  
OUT5  
OUT6  
COMP  
RT  
RCOMP  
IREF  
100pF  
RT  
GND  
PGND  
LEDGND  
49.9kW  
CCOMP  
Ordering Information  
PART  
TEMP RANGE  
-40 to +125°C  
-40 to +125°C  
-40 to +125°C  
-40 to +125°C  
PIN-PACKAGE  
24 TQFN  
FEATURES  
2
MAX20446BATG/V+  
MAX20446BATGA/V+*  
MAX20446BATG/VY+  
MAX20446BATGA/VY+*  
Base I C addresses  
2
24 TQFN  
Alternative I C addresses  
2
24 SWTQFN  
24 SWTQFN  
Base I C addresses  
2
Alternative I C addresses  
/V denotes an automotive-qualified part.  
+Denotes a lead(Pb)-free/RoHS-compliant package.  
SW = Side-wettable package  
T Denotes Tape and reel.  
*Future product - contact factory for availability.  
www.maximintegrated.com  
Maxim Integrated | 46  
MAX20446B  
Automotive 6-Channel Backlight Driver with Boost/  
2
SEPIC Controller, Hybrid Dimming and I C  
Interface  
Revision History  
REVISION REVISION  
PAGES  
DESCRIPTION  
CHANGED  
NUMBER  
DATE  
12/20  
1/21  
0
1
Initial release  
Added side-wettable package options and package information.  
3, 42  
For pricing, delivery, and ordering information, please visit Maxim Integrated’s online storefront at https://www.maximintegrated.com/en/storefront/storefront.html.  
Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent  
licenses are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max  
limits) shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.  
Maxim Integrated and the Maxim Integrated logo are trademarks of Maxim Integrated Products, Inc.  
© 2021 Maxim Integrated Products, Inc.  

相关型号:

MAX20446BEVKIT

Demonstrates Cycle-by-Cycle Current Limit and Thermal-Shutdown Features
MAXIM

MAX2044ETP+

SiGe, High-Linearity, 2300MHz to 4000MHz Upconversion/Downconversion Mixer with LO Buffer
MAXIM

MAX2044ETP+T

SiGe, High-Linearity, 2300MHz to 4000MHz Upconversion/Downconversion Mixer with LO Buffer
MAXIM

MAX2045

High-Gain Vector Multipliers
MAXIM

MAX20457

High-Efficiency, 36V, Dual Synchronous Buck Converters (3.5A/2A) for Automotive Applications
MAXIM

MAX20457ATIA

High-Efficiency, 36V, Dual Synchronous Buck Converters (3.5A/2A) for Automotive Applications
MAXIM

MAX20457ATIB

High-Efficiency, 36V, Dual Synchronous Buck Converters (3.5A/2A) for Automotive Applications
MAXIM

MAX20457ATIC

High-Efficiency, 36V, Dual Synchronous Buck Converters (3.5A/2A) for Automotive Applications
MAXIM

MAX20457ATID

High-Efficiency, 36V, Dual Synchronous Buck Converters (3.5A/2A) for Automotive Applications
MAXIM

MAX20457ATIE

High-Efficiency, 36V, Dual Synchronous Buck Converters (3.5A/2A) for Automotive Applications
MAXIM

MAX20457ATIF

High-Efficiency, 36V, Dual Synchronous Buck Converters (3.5A/2A) for Automotive Applications
MAXIM

MAX20457ATIG

High-Efficiency, 36V, Dual Synchronous Buck Converters (3.5A/2A) for Automotive Applications
MAXIM