MAX2045ETJ [MAXIM]

Baseband Circuit, 5 X 5 MM, 0.80 MM HEIGHT, MO-220, QFN-32;
MAX2045ETJ
型号: MAX2045ETJ
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Baseband Circuit, 5 X 5 MM, 0.80 MM HEIGHT, MO-220, QFN-32

文件: 总22页 (文件大小:985K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-2728; Rev 0; 1/03  
High-Gain Vector Multipliers  
General Description  
Features  
The MAX2045/MAX2046/MAX2047 low-cost, fully inte-  
grated vector multipliers alter the magnitude and phase  
of an RF signal. Each device is optimized for the UMTS  
(MAX2045), DCS/PCS (MAX2046), or cellular/GSM  
(MAX2047) frequency bands. These devices feature  
differential RF inputs and outputs.  
Multiple RF Frequency Bands of Operation  
2040MHz to 2240MHz (MAX2045)  
1740MHz to 2060MHz (MAX2046)  
790MHz to 1005MHz (MAX2047)  
0ꢀ2dB ꢁain Flatness  
1ꢂ Phase Flatness  
The MAX2045/MAX2046/MAX2047 provide vector  
adjustment through the differential I/Q amplifiers. The  
I/Q amplifiers can interface with voltage and/or current  
digital-to-analog converters (DACs). The voltage inputs  
are designed to interface to a voltage-mode DAC, while  
the current inputs are designed to interface to a current-  
mode DAC. An internal 2.5V reference voltage is provid-  
ed for applications using single-ended voltage DACs.  
3dB Control Bandwidth: 260MHz  
15dBm Input IP3  
15dB ꢁain Control Range  
Continuous 360ꢂ Phase Control Range  
6ꢀ5dB Maximum ꢁain for Continuous Phase  
The MAX2045/MAX2046/MAX2047 operate from a 4.75V  
to 5.25V single supply. All devices are offered in a com-  
pact 5mm 5mm, 32-lead thin QFN exposed-paddle  
packages.  
On-Chip Reference for Single-Ended  
Voltage-Mode Operation  
800mW Power Consumption  
Space-Saving 5mm x 5mm Thin QFN Package  
Single 5V supply  
The MAX2045/MAX2046/MAX2047 evaluation kits are  
available, contact factory for availability.  
Applications  
Pin Configuration/Block Diagram  
UMTS/PCS/DCS/Cellular/GSM Base Station  
Feed-Forward and Predistortion Power Amplifiers  
RF Magnitude and Phase Adjustment  
RF Cancellation Loops  
VI1  
VI2  
VQ1  
VQ2  
II1  
1
2
3
4
5
6
7
8
24 GND  
23 GND  
22 RBIAS  
21 GND  
20 GND  
19 GND  
Beam-Forming Applications  
CONTROL  
90°  
AMPLIFIER I  
PHASE  
SHIFTER  
MAX2045  
MAX2046  
MAX2047  
Ordering Information  
VECTOR  
MULTIPLIER  
PART  
TEMP RANGE  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
PIN-PACKAGE  
32 Thin QFN-EP*  
32 Thin QFN-EP*  
32 Thin QFN-EP*  
CONTROL  
AMPLIFIER Q  
MAX2045ETJ-T  
MAX2046ETJ-T  
MAX2047ETJ-T  
*EP = Exposed paddle.  
II2  
OUTPUT  
STAGE  
2.5V  
REFERENCE  
18  
17  
V
V
IQ1  
IQ2  
CC  
CC  
QFN  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
High-Gain Vector Multipliers  
ABSOLUTE MAXIMUM RATINGS  
CC  
V
to GND .............................................................-0.3V to +6V  
Continuous RF Input Power (CW)...................................+15dBm  
VI1, V12, VQ1, VQ2, RFIN1, RFIN2,  
Continuous Power Dissipation (T = +70°C)  
A
RFOUT1, RFOUT2 ....................................-0.3V to V  
+ 0.3V  
32-Pin Thin QFN (derate 21.3mW/°C above +70°C) .......1.7W  
Operating Temperature Range ...........................-40°C to +85°C  
Junction Temperature......................................................+150°C  
Storage Temperature Range.............................-40°C to +150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
CC  
RFOUT1, RFOUT2 Sink Current..........................................35mA  
REFOUT Source Current.......................................................4mA  
II1, II2, IQ1, IQ2........................................................-0.3V to +1V  
II1, II2, IQ1, IQ2 Sink Current ...........................................+10mA  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
DC ELECTRICAL CHARACTERISTICS  
(Typical Operating Circuit as shown in Figure 1; V  
= 4.75V to 5.25V, T = -40°C to +85°C, R  
= 280, no RF inputs applied, RF  
CC  
A
BIAS  
input and output ports are terminated with 50. Typical values are at V  
= 5V and T = +25°C, unless otherwise noted.)  
CC  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
4.75  
120  
120  
120  
TYP  
5
MAX  
5.25  
200  
UNITS  
Supply Voltage Range  
V
V
CC  
MAX2045  
MAX2046  
MAX2047  
160  
160  
160  
Operating Supply Current  
I
200  
mA  
CC  
200  
Differential Input Resistance,  
VI1 to VI2, VQ1 to VQ2  
Input resistance between VI1 and VI2 or  
VQ1 and VQ2  
6.5  
9
11.5  
k  
Common-Mode Input Voltage,  
VI1, VI2, VQ1, VQ2  
V
2.5  
V
CM  
Input Resistance, II1, II2, IQ1,  
IQ2  
Single-ended resistance to ground  
REFOUT unloaded  
150  
2.3  
200  
250  
2.6  
Reference Voltage  
V
2.45  
V
REFOUT  
AC ELECTRICAL CHARACTERISTICS  
(Typical Operating Circuit as shown in Figure 1; V  
= 4.75V to 5.25V, T = -40°C to +85°C, R  
= 280, f = 2.14GHz  
BIAS IN  
CC  
A
(MAX2045), f = 1.9GHz (MAX2046), f = 915MHz (MAX2047), input current range = 0 to 4mA (if using a current-mode DAC), and  
IN  
IN  
differential input voltage range = 0 to 0.707V (if using a voltage-mode DAC). If using a current-mode DAC, voltage mode I/Q inputs  
are left open. If using a voltage-mode DAC, all current-mode I/Q inputs are left open. Typical values are at V  
= 5V and T =  
CC  
A
+25°C, unless otherwise noted.) (Notes 1, 2, 3)  
PARAMETER  
CONDITIONS  
MIN  
TYP  
50  
MAX  
UNITS  
RF Differential Input Impedance  
RF Differential Output Impedance  
RF Differential Load Impedance  
Continuous Phase Range  
300  
200  
0
360  
Degrees  
2
_______________________________________________________________________________________  
High-Gain Vector Multipliers  
MAX2045 ELECTRICAL CHARACTERISTICS  
(Typical Operating Circuit as shown in Figure 1; V  
= 4.75V to 5.25V, T = -40°C to +85°C, R  
= 280, f = 2.14GHz, input cur-  
BIAS IN  
CC  
A
rent range = 0 to 4mA (if using a current-mode DAC), and differential input voltage range = 0 to 0.707V (if using a voltage-mode  
DAC). If using a current-mode DAC, voltage mode I/Q inputs are left open. If using a voltage-mode DAC, all current-mode I/Q inputs  
are left open. Typical values are at V  
= 5V and T = +25°C, unless otherwise noted.) (Notes 1, 2, 3)  
A
CC  
PARAMETER  
Frequency Range  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
MHz  
dB  
2040  
2240  
RF Input Return Loss  
RF Output Return Loss  
VOLTAGE MODE  
-14  
-16.4  
dB  
VI = VQ = 0.707V(radius = 1V)  
VI = VQ = 0.5V(radius = 0.707V)  
VI = VQ = 0.25V(radius = 0.35V)  
VI = VQ = 0.125V(radius = 0.175V)  
7
3.4  
-3  
Power Gain  
dB  
-8.7  
Difference in gain between VI = VQ = 0.707V and  
VI = VQ = 0.125V  
Power-Gain Range  
Reverse Isolation  
15.7  
-74  
dB  
dB  
Over entire control range  
Maximum Power Gain for  
Continuous Coverage of Phase  
Change  
0 to 360° (radius = 1V)  
6.1  
dB  
Maximum Power Gain with  
Reduced Phase Coverage  
0 to 360° (radius = 1V)  
7
dB  
Group Delay  
VI = VQ = 0.707V (radius = 1V)  
VI = VQ = 0.707V (radius = 1V)  
1.38  
ns  
Gain Drift Over Temperature  
-0.027  
dB/°C  
VI = VQ = 0.707V (radius = 1V); UMTS,  
Gain Flatness Over Frequency  
Phase Flatness Over Frequency  
0.21  
0.2  
dB  
f
IN  
= 2140MHz 100MHz  
Electrical delay removed, VI = VQ = 0.707V  
(radius = 1V), UMTS, f = 2140MHz 100MHz  
IN  
Degrees  
VI = VQ = 0.707V(radius = 1V)  
VI = VQ = 0.5V(radius = 0.707V)  
VI = VQ = 0.25V(radius = 0.35V)  
VI = VQ = 0.125V(radius = 0.175V)  
VI = VQ = 0.707V(radius = 1V)  
VI = VQ = 0.125V(radius = 0.175V)  
VI = VQ = 0.707V(radius = 1V)  
VI = VQ = 0.125V(radius = 0.175V)  
-147.7  
-148.3  
-148.2  
-148.1  
6.7  
Output Noise Power  
dBm/Hz  
IP1dB  
IIP3  
dBm  
dBm  
9.3  
15.2  
14.7  
_______________________________________________________________________________________  
3
High-Gain Vector Multipliers  
MAX2045 ELECTRICAL CHARACTERISTICS (continued)  
(Typical Operating Circuit as shown in Figure 1; V  
= 4.75V to 5.25V, T = -40°C to +85°C, R  
= 280, f = 2.14GHz, input cur-  
BIAS IN  
CC  
A
rent range = 0 to 4mA (if using a current-mode DAC), and differential input voltage range = 0 to 0.707V (if using a voltage-mode  
DAC). If using a current-mode DAC, voltage mode I/Q inputs are left open. If using a voltage-mode DAC, all current-mode I/Q inputs  
are left open. Typical values are at V  
= 5V and T = +25°C, unless otherwise noted.) (Notes 1, 2, 3)  
A
CC  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
CURRENT MODE  
II1 = IQ1 = 4mA, II2 = IQ2 = 0mA  
II1 = IQ1 = 1mA, II2 = IQ2 = 0mA  
6.2  
Power Gain (Note 4)  
dB  
dB  
-8.7  
Difference in gain between II1 = IQ1 = 4mA, II2 = IQ2 =  
0mA and II1 = IQ1 = 1mA, II2 = IQ2 = 0mA  
Power-Gain Range  
14.9  
0.27  
0.8  
II1 = IQ1 = 4mA, II2 = IQ2 = 0mA; UMTS,  
Gain Flatness Over Frequency  
Phase Flatness Over Frequency  
dB  
f
IN  
= 2140MHz 100MHz  
Electrical delay removed, II1 = IQ1 = 4mA,  
II2 = IQ2 = 0mA  
Degrees  
MAX2046 ELECTRICAL CHARACTERISTICS  
(Typical Operating Circuit as shown in Figure 1; V  
= 4.75V to 5.25V, T = -40°C to +85°C, R  
= 280, f = 1.9GHz, input cur-  
BIAS IN  
CC  
A
rent range = 0 to 4mA (if using a current-mode DAC), and differential input voltage range = 0 to 0.707V (if using a voltage-mode  
DAC). If using a current-mode DAC, voltage mode I/Q inputs are left open. If using a voltage-mode DAC, all current-mode I/Q inputs  
are left open. Typical values are at V  
= 5V and T = +25°C, unless otherwise noted.) (Notes 1, 2, 3)  
A
CC  
PARAMETER  
Frequency Range  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
MHz  
dB  
1740  
2060  
RF Input Return Loss  
RF Output Return Loss  
VOLTAGE MODE  
-21.1  
-21.7  
dB  
VI = VQ = 0.707V(radius = 1V)  
VI = VQ = 0.5V(radius = 0.707V)  
VI = VQ = 0.25V(radius = 0.35V)  
VI = VQ = 0.125V(radius = 0.175V)  
7.4  
3.8  
Power Gain  
dB  
-2.5  
-8.2  
Difference in gain between VI = VQ = 0.707V and  
VI = VQ = 0.125V  
Power-Gain Range  
Reverse Isolation  
15.6  
-76  
dB  
dB  
Over entire control range  
Maximum Power Gain for  
Continuous Coverage of Phase  
Change  
0 to 360° (radius = 1V)  
6.5  
dB  
Maximum Power Gain with  
Reduced Phase Coverage  
Group Delay  
0 to 360° (radius = 1V)  
7.4  
dB  
VI = VQ = 0.707V (radius = 1V)  
VI = VQ = 0.707V (radius = 1V)  
1.54  
ns  
Gain Drift Over Temperature  
-0.026  
dB/°C  
PCS, f = 1960MHz  
IN  
100MHz  
0.14  
0.3  
VI = VQ = 0.707V  
(radius = 1V)  
Gain Flatness Over Frequency  
dB  
DCS, f = 1842.5MHz  
IN  
100MHz  
4
_______________________________________________________________________________________  
High-Gain Vector Multipliers  
MAX2046 ELECTRICAL CHARACTERISTICS (continued)  
(Typical Operating Circuit as shown in Figure 1; V  
= 4.75V to 5.25V, T = -40°C to +85°C, R  
= 280, f = 1.9GHz, input cur-  
BIAS IN  
CC  
A
rent range = 0 to 4mA (if using a current-mode DAC), and differential input voltage range = 0 to 0.707V (if using a voltage-mode  
DAC). If using a current-mode DAC, voltage mode I/Q inputs are left open. If using a voltage-mode DAC, all current-mode I/Q inputs  
are left open. Typical values are at V  
= 5V and T = +25°C, unless otherwise noted.) (Notes 1, 2, 3)  
A
CC  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
PCS, f = 1960MHz  
100MHz  
IN  
1.3  
Electrical delay removed,  
VI = VQ = 0.707V(radius = 1V)  
Phase Flatness Over Frequency  
Degrees  
DCS, f = 1842.5MHz  
IN  
100MHz  
1.2  
VI = VQ = 0.707V(radius = 1V)  
VI = VQ = 0.5V(radius = 0.707V)  
VI = VQ = 0.25V(radius = 0.35V)  
-146.8  
-147.4  
-147.4  
-147.3  
6.5  
Output Noise Power  
IP1dB  
dBm/Hz  
VI = VQ = 0.125V(radius = 0.175V)  
VI = VQ = 0.707V(radius = 1V)  
VI = VQ = 0.125V(radius = 0.175V)  
VI = VQ = 0.707V(radius = 1V)  
VI = VQ = 0.125V(radius = 0.175V)  
dBm  
dBm  
9.1  
15.2  
IIP3  
14.8  
CURRENT MODE  
Power Gain (Note 4)  
II1 = IQ1 = 4mA, II2 = IQ2 = 0mA  
II1 = IQ1 = 1mA, II2 = IQ2 = 0mA  
6.6  
dB  
dB  
-8.2  
Difference in gain between II1 = IQ1 = 4mA, II2 = IQ2 =  
0mA and II1 = IQ1 = 1mA, II2 = IQ2 = 0mA  
Power-Gain Range  
14.8  
0.14  
0.33  
0.8  
PCS, f = 1960MHz  
IN  
100MHz  
II1 = IQ1 = 4mA, II2 = IQ2 =  
0mA  
Gain Flatness Over Frequency  
dB  
DCS, f = 1842.5MHz  
IN  
100MHz  
PCS, f = 1960MHz  
IN  
Electrical delay removed,  
II1 = IQ1 = 4mA,  
II2 = IQ2 = 0mA  
100MHz  
Phase Flatness Over Frequency  
Degrees  
DCS, f = 1842.5MHz  
IN  
1.6  
100MHz  
_______________________________________________________________________________________  
5
High-Gain Vector Multipliers  
MAX2047 ELECTRICAL CHARACTERISTICS  
(Typical Operating Circuit as shown in Figure 1; V  
= 4.75V to 5.25V, T = -40°C to +85°C, R  
= 280, f = 915MHz, input cur-  
BIAS IN  
CC  
A
rent range = 0 to 4mA (if using a current-mode DAC), and differential input voltage range = 0 to 0.707V (if using a voltage-mode  
DAC). If using a current-mode DAC, voltage mode I/Q inputs are left open. If using a voltage-mode DAC, all current-mode I/Q inputs  
are left open. Typical values are at V  
= 5V and T = +25°C, unless otherwise noted.) (Notes 1, 2, 3)  
A
CC  
PARAMETER  
Frequency Range  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
MHz  
dB  
790  
1005  
RF Input Return Loss  
RF Output Return Loss  
VOLTAGE MODE  
-21.8  
-11.7  
dB  
VI = VQ = 0.707V(radius = 1V)  
VI = VQ = 0.5V(radius = 0.707V)  
VI = VQ = 0.25V(radius = 0.35V)  
VI = VQ = 0.125V(radius = 0.175V)  
8.4  
5.1  
Power Gain  
dB  
-0.9  
-6.3  
Difference in gain between VI = VQ = 0.707V and  
VI = VQ = 0.125V  
Power-Gain Range  
Reverse Isolation  
14.7  
-75  
dB  
dB  
Over entire control range  
Maximum Power Gain for  
Continuous Coverage of Phase  
Change  
0 to 360° (radius = 1V)  
7.1  
dB  
Maximum Power Gain with  
Reduced Phase Coverage  
0 to 360° (radius = 1V)  
8.4  
dB  
Group Delay  
VI = VQ = 0.707V (radius = 1V)  
VI = VQ = 0.707V (radius = 1V)  
2.02  
ns  
Gain Drift Over Temperature  
-0.024  
dB/°C  
GSM, f = 942.5MHz  
IN  
62.5MHz  
0.25  
0.13  
0.1  
0.1  
0.9  
1.1  
1.2  
0.3  
US cell, f = 881.5MHz  
IN  
62.5MHz  
VI = VQ = 0.707V  
(radius = 1V)  
Gain Flatness Over Frequency  
dB  
JCDMA, f = 850MHz  
IN  
60MHz  
KDI/JDC/PDC, f = 820MHz  
IN  
30MHz  
GSM, f = 942.5MHz  
IN  
62.5MHz  
US cell, f = 881.5MHz  
IN  
62.5MHz  
Electrical delay removed ,  
VI = VQ = 0.707V(radius  
= 1V)  
Phase Flatness Over Frequency  
Degrees  
JCDMA, f = 850MHz  
IN  
60MHz  
KDI/JDC/PDC, f = 820MHz  
IN  
30MHz  
6
_______________________________________________________________________________________  
High-Gain Vector Multipliers  
MAX2047 ELECTRICAL CHARACTERISTICS (continued)  
(Typical Operating Circuit as shown in Figure 1; V  
= 4.75V to 5.25V, T = -40°C to +85°C, R  
= 280, f = 915MHz, input cur-  
BIAS IN  
CC  
A
rent range = 0 to 4mA (if using a current-mode DAC), and differential input voltage range = 0 to 0.707V (if using a voltage-mode  
DAC). If using a current-mode DAC, voltage mode I/Q inputs are left open. If using a voltage-mode DAC, all current-mode I/Q inputs  
are left open. Typical values are at V  
= 5V and T = +25°C, unless otherwise noted.) (Notes 1, 2, 3)  
A
CC  
PARAMETER  
CONDITIONS  
MIN  
TYP  
-147.5  
-148.4  
-148.6  
-148.6  
6.1  
MAX  
UNITS  
VI = VQ = 0.707V(radius = 1V)  
VI = VQ = 0.5V(radius = 0.707V)  
VI = VQ = 0.25V(radius = 0.35V)  
VI = VQ = 0.125V(radius = 0.175V)  
VI = VQ = 0.707V(radius = 1V)  
VI = VQ = 0.125V(radius = 0.175V)  
VI = VQ = 0.707V(radius = 1V)  
VI = VQ = 0.125V(radius = 0.175V)  
Output Noise Power  
IP1dB  
dBm/Hz  
dBm  
dBm  
6.9  
15.6  
IIP3  
14.1  
CURRENT MODE  
Power Gain (Note 4)  
II1 = IQ1 = 4mA, II2 = IQ2 = 0mA  
II1 = IQ1 = 1mA, II2 = IQ2 = 0mA  
8.1  
dB  
dB  
-6.2  
Difference in gain between II1 = IQ1 = 4mA, II2 = IQ2 =  
0mA and II1 = IQ1 = 1mA, II2 = IQ2 = 0mA  
Power-Gain Range  
14.3  
0.25  
0.12  
0.1  
GSM, f = 942.5MHz  
IN  
62.5MHz  
US cell, f = 881.5MHz  
IN  
62.5MHz  
II1 = IQ1 = 4mA,  
II2 = IQ2 = 0mA  
Gain Flatness Over Frequency  
dB  
JCDMA, f = 850MHz  
IN  
60MHz  
KDI/JDC/PDC, f = 820MHz  
IN  
30MHz  
0.1  
GSM, f = 942.5MHz  
IN  
62.5MHz  
0.8  
US cell, f = 881.5MHz  
IN  
62.5MHz  
1.1  
Electrical delay removed,  
II1 = IQ1 = 4mA,  
II2 = IQ2 = 0mA  
Phase Flatness Over Frequency  
Degrees  
JCDMA, f = 850MHz  
IN  
60MHz  
1.3  
KDI/JDC/PDC, f = 820MHz  
IN  
30MHz  
0.4  
Note 1: Guaranteed by design and characterization.  
Note 2: All specifications reflect losses and delays of external components (matching components, baluns, and PC board traces).  
Output measurements taken at the RF OUTPUT of the Typical Operating Circuit.  
Note 3: Radius is defined as (VI2 + VQ2)0.5. VI denotes the difference between VI1 and VI2. VQ denotes the difference between VQ1  
and VQ2. For differential operation: VI1 = V  
+ 0.5 VI, VI2 = V  
- 0.5 VI, VQ1 = V  
+ 0.5 VQ, VQ2 = V  
- 0.5 ✕  
REF  
REF  
REF  
REF  
VQ. For single-ended operation: VI1 = V  
+ VI, VI2 = V  
, VQ1 = V  
REF  
+ VQ, VQ2 = V  
.
REF  
REF  
REF  
Note 4: When using the I/Q current inputs, maximum gain occurs when one differential input current is zero and the other corre-  
sponding differential input is 5mA. Minimum gain occurs when both differential inputs are equal.  
_______________________________________________________________________________________  
7
High-Gain Vector Multipliers  
Typical Operating Characteristics (MAX2045)  
(V  
= 5V, f = 2140MHz, V_1 = VI1 and VQ1, V_2 = VI2 and VQ2, I_1 = II1 and IQ1, I_2 = II2 and IQ2, VI1 = VQ1 = 3.2V, VI2 =  
IN  
CC  
VQ2 = REFOUT, P = -15dBm per tone at 1MHz offset (IIP3), and T = +25°C, unless otherwise noted.)  
IN  
A
REFOUT AND SUPPLY CURRENT  
OUTPUT RETURN LOSS vs. FREQUENCY  
INPUT RETURN LOSS vs. FREQUENCY  
vs. TEMPERATURE AND SUPPLY VOLTAGE  
MAX2045 toc01  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
230  
220  
210  
200  
190  
180  
170  
160  
150  
140  
2.52  
2.51  
2.50  
2.49  
2.48  
2.47  
2.46  
2.45  
2.44  
2.43  
V_1 = 2.55V TO 3.5V  
V_1 = 2.55V TO 3.5V  
REFOUT LOADED WITH V_2  
V
= 5.25V  
CC  
V
= 5.0V  
CC  
V
= 4.75V  
CC  
SUPPLY CURRENT  
-15 10  
TEMPERATURE (°C)  
2000 2050 2100 2150 2200 2250 2300  
FREQUENCY (MHz)  
2000 2050 2100 2150 2200 2250 2300  
FREQUENCY (MHz)  
-40  
35  
60  
85  
GAIN vs. FREQUENCY  
GAIN vs. FREQUENCY  
GAIN vs. CONTROL VOLTAGE (VI1 = VQ1)  
15  
10  
15  
10  
20  
15  
V
= 4.75V TO 5.25V  
V_1 = 3.5V  
I_1 = 5mA  
I_1 = 4mA  
CC  
V_1 = 3.0V  
10  
5
5
V_1 = 2.75V  
5
0
0
V_1 = 2.625V  
0
-5  
I_1 = 3mA  
-5  
-5  
-10  
-15  
-20  
-25  
-30  
-10  
-15  
-20  
-25  
-30  
-10  
-15  
-20  
-25  
-30  
I_1 = 2mA  
I_1 = 1mA  
I_1 = 0  
V_1 = 2.55V  
2000 2050 2100 2150 2200 2250 2300  
FREQUENCY (MHz)  
2000 2050 2100 2150 2200 2250 2300  
FREQUENCY (MHz)  
2.50 2.75 3.00 3.25 3.50 3.75 4.00  
CONTROL VOLTAGE VI1, VQ1 (V)  
GAIN vs. CONTROL VOLTAGE (VI1 = VQ1)  
REVERSE ISOLATION vs. FREQUENCY  
OUTPUT NOISE POWER vs. FREQUENCY  
20  
15  
10  
5
0
30  
40  
-144.0  
-144.5  
-145.0  
-145.5  
-146.0  
-146.5  
-147.0  
-147.5  
-148.0  
-148.5  
-149.0  
V_1 = 2.55V TO 3.5V  
T
= -40°C  
A
V_1 = 3.5V  
50  
60  
T
= +25°C  
A
-5  
-10  
-15  
-20  
-25  
-30  
-35  
-40  
-45  
-50  
70  
V_1 = 2.55V  
T
= +85°C  
A
V_1 = 2.625V  
80  
90  
100  
110  
120  
V_1 = 2.75V  
V_1 = 3V  
2.50 2.75 3.00 3.25 3.50 3.75 4.00  
CONTROL VOLTAGE VI1, VQ1 (V)  
2000 2050 2100 2150 2200 2250 2300  
FREQUENCY (MHz)  
2000 2050 2100 2150 2200 2250 2300  
FREQUENCY (MHz)  
8
_______________________________________________________________________________________  
High-Gain Vector Multipliers  
Typical Operating Characteristics (MAX2045) (continued)  
(V  
= 5V, f = 2140MHz, V_1 = VI1 and VQ1, V_2 = VI2 and VQ2, I_1 = II1 and IQ1, I_2 = II2 and IQ2, VI1 = VQ1 = 3.2V, VI2 =  
IN  
CC  
VQ2 = REFOUT, P = -15dBm per tone at 1MHz offset (IIP3), and T = +25°C, unless otherwise noted.)  
IN  
A
OUTPUT NOISE POWER  
vs. CONTROL VOLTAGE (VI1 = VQ1)  
OUTPUT NOISE POWER  
vs. CONTROL VOLTAGE (VI1 = VQ1)  
INPUT P1-dB COMPRESSION  
vs. FREQUENCY  
-144.0  
-144.5  
-145.0  
-145.5  
-146.0  
-146.5  
-147.0  
-147.5  
-148.0  
-148.5  
-149.0  
-144.0  
-144.5  
-145.0  
-145.5  
-146.0  
-146.5  
-147.0  
-147.5  
-148.0  
-148.5  
-149.0  
9.0  
8.5  
8.0  
7.5  
7.0  
6.5  
6.0  
5.5  
5.0  
V_1 = 3.2V  
T
= +85°C  
V
= 5.25V  
A
CC  
V
= 5.25V  
CC  
V
= 5.0V  
CC  
V
= 5.0V  
CC  
T
= +-40°C  
A
V
= 4.75V  
CC  
V = 4.75V  
CC  
T
= +25°C  
A
2.50 2.75 3.00 3.25 3.50 3.75 4.00  
CONTROL VOLTAGE VI1, VQ1 (V)  
2.50 2.75 3.00 3.25 3.50 3.75 4.00  
CONTROL VOLTAGE VI1, VQ1 (V)  
2000 2050 2100 2150 2200 2250 2300  
FREQUENCY (MHz)  
INPUT P1-dB COMPRESSION  
vs. FREQUENCY  
INPUT P1-dB COMPRESSION  
vs. CONTROL VOLTAGE (VI1 = VQ1)  
INPUT P1-dB COMPRESSION  
vs. CONTROL VOLTAGE (VI1 = VQ1)  
9.0  
8.5  
8.0  
7.5  
7.0  
6.5  
6.0  
5.5  
5.0  
16  
15  
14  
13  
12  
11  
10  
9
16  
15  
14  
13  
12  
11  
10  
9
V_1 = 3.2V  
V
= 5.25V  
CC  
T
= +85°C  
A
T
= +25°C  
A
T
= +85°C  
A
V
= 5.0V  
CC  
T
= +25°C  
A
8
8
T
= -40°C  
A
7
7
V
= 4.75V  
6
6
CC  
T
= -40°C  
A
5
5
2000 2050 2100 2150 2200 2250 2300  
FREQUENCY (MHz)  
2.50 2.75 3.00 3.25 3.50 3.75 4.00  
CONTROL VOLTAGE VI1, VQ1 (V)  
2.50 2.75 3.00 3.25 3.50 3.75 4.00  
CONTROL VOLTAGE VI1, VQ1 (V)  
IIP3 vs. FREQUENCY  
IIP3 vs. FREQUENCY  
IIP3 vs. CONTROL VOLTAGE (VI1 = VQ1)  
16.0  
15.5  
15.0  
14.5  
14.0  
13.5  
13.0  
16.0  
15.5  
15.0  
14.5  
14.0  
13.5  
13.0  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
V_1 = 3.2V  
V_1 = 3.2V  
V
= 5.25V  
V
= 5.25V  
CC  
CC  
T
= +85°C  
A
V
= 5.0V  
CC  
V
= 4.75V  
CC  
V
= 5.0V  
CC  
V
= 4.75V  
CC  
T
= -40°C  
A
T
= +25°C  
A
8
7
6
5
2000 2050 2100 2150 2200 2250 2300  
FREQUENCY (MHz)  
2000 2050 2100 2150 2200 2250 2300  
FREQUENCY (MHz)  
2.50 2.75 3.00 3.25 3.50 3.75 4.00  
CONTROL VOLTAGE VI1 , VQ1, (V)  
_______________________________________________________________________________________  
9
High-Gain Vector Multipliers  
Typical Operating Characteristics (MAX2045) (continued)  
(V  
= 5V, f = 2140MHz, V_1 = VI1 and VQ1, V_2 = VI2 and VQ2, I_1 = II1 and IQ1, I_2 = II2 and IQ2, VI1 = VQ1 = 3.2V, VI2 =  
IN  
CC  
VQ2 = REFOUT, P = -15dBm per tone at 1MHz offset (IIP3), and T = +25°C, unless otherwise noted.)  
IN  
A
GAIN vs. PHASE  
S21 PHASE vs. FREQUENCY  
IIP3 vs. CONTROL VOLTAGE (VI1 = VQ1)  
10  
8
6
4
2
86.0  
85.5  
85.0  
84.5  
84.0  
83.5  
83.0  
82.5  
82.0  
81.5  
81.0  
80.5  
80.0  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
RADIUS = 0.875  
RADIUS = 1  
V_1 = 3.2V  
ONE ELECTRICAL DELAY  
REMOVED AT 5V  
T
= +85°C  
A
V
= 5.25V  
CC  
0
T
= +25°C  
A
T
= -40°C  
A
-2  
-4  
-6  
-8  
-10  
-12  
-14  
-16  
RADIUS = 0.75  
RADIUS = 0.5  
RADIUS = 0.625  
V
= 5.V  
CC  
RADIUS = 0.375  
V
= 4.75V  
CC  
8
7
6
5
RADIUS = 0.25  
RADIUS = 0.125  
0
45 90 135 180 225 270 315 360  
PHASE (DEGREES)  
2000 2050 2100 2150 2200 2250 2300  
FREQUENCY (MHz)  
2.50 2.75 3.00 3.25 3.50 3.75 4.00  
CONTROL VOLTAGE VI1 , VQ1, (V)  
S21 PHASE vs. FREQUENCY  
S21 PHASE vs. FREQUENCY  
S21 PHASE vs. FREQUENCY  
80.0  
79.5  
79.0  
78.5  
78.0  
77.5  
77.0  
76.5  
76.0  
75.5  
75.0  
74.5  
74.0  
90  
85  
80  
75  
70  
65  
60  
100  
95  
90  
85  
80  
75  
70  
65  
V_1 = 2.65V  
ONE ELECTRICAL DELAY  
V_1 = 2.65V  
V_1 = 3.2V  
ONE ELECTRICAL DELAY  
REMOVED AT +25°C  
T
= -40°C  
T
= -40°C  
A
ONE ELECTRICAL DELAY  
A
REMOVED AT 5V  
REMOVED AT +25°C  
V
= 5.25V  
CC  
T
= +25°C  
A
T
= +25°C  
A
V
= 5V  
CC  
V
= 4.75V  
CC  
T
= +85°C  
A
T
= +85°C  
A
2000 2050 2100 2150 2200 2250 2300  
FREQUENCY (MHz)  
2000 2050 2100 2150 2200 2250 2300  
FREQUENCY (MHz)  
2000 2050 2100 2150 2200 2250 2300  
FREQUENCY (MHz)  
GROUP DELAY vs. FREQUENCY  
SWITCHING SPEED  
1.90  
1.85  
1.80  
1.75  
1.70  
1.65  
1.60  
1.55  
1.50  
1.45  
1.40  
1.35  
1.30  
1.25  
1.20  
1.15  
1.10  
1.05  
1.00  
V_1 = 2.55V TO 3.5V  
SEE SWITCHING SPEED SECTION IN THE  
APPLICATIONS INFORMATION  
-0.7V  
+0.7V  
MIN GAIN,  
ORIGIN  
MAX GAIN, Q1  
MAX GAIN, Q3  
2000 2050 2100 2150 2200 2250 2300  
FREQUENCY (MHz)  
SWITCHING SPEED (1ns/div)  
10 ______________________________________________________________________________________  
High-Gain Vector Multipliers  
Typical Operating Characteristics (MAX2046)  
(V  
= 5V, f = 1900MHz, V_1 = VI1 and VQ1, V_2 = VI2 and VQ2, I_1 = II1 and IQ1, I_2 = II2 and IQ2, VI1 = VQ1 = 3.2V, VI2 =  
IN  
CC  
VQ2 = REFOUT, P = -15dBm per tone at 1MHz offset (IIP3), and T = +25°C, unless otherwise noted.)  
IN  
A
REFOUT AND SUPPLY CURRENT  
vs. TEMPERATURE AND SUPPLY VOLTAGE  
INPUT RETURN LOSS vs. FREQUENCY  
OUTPUT RETURN LOSS vs. FREQUENCY  
MAX2046 toc27  
220  
210  
200  
190  
180  
170  
160  
150  
140  
2.52  
2.51  
10  
12  
14  
16  
18  
20  
22  
24  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
REFOUT LOADED WITH V_2  
V_1 = 2.55V TO 3.5V  
V_1 = 2.55V TO 3.5V  
2.50  
2.49  
2.48  
2.47  
2.46  
2.45  
2.44  
V
= 5.25V  
CC  
V
= 5.0V  
CC  
V
= 4.75V  
CC  
SUPPLY CURRENT  
-40  
-15  
10  
35  
60  
85  
1700 1750 1800 1850 1900 1950 2000 2050 2100  
FREQUENCY (MHz)  
1700 1750 1800 1850 1900 1950 2000 2050 2100  
FREQUENCY (MHz)  
TEMPERATURE (°C)  
GAIN vs. FREQUENCY  
GAIN vs. CONTROL VOLTAGE (VI1 = VQ1)  
GAIN vs. FREQUENCY  
15  
10  
20  
15  
20  
15  
V
= 4.75V TO 5.25V  
I_1 = 5mA  
I_1 = 4mA  
CC  
V_1 = 3.5V  
V_1 = 3.0V  
10  
10  
5
V_1 = 2.75V  
5
5
0
V_1 = 2.625V  
0
0
-5  
I_1 = 3mA  
-5  
-5  
-10  
-15  
-20  
-25  
-30  
-10  
-15  
-20  
-25  
-30  
-10  
-15  
-20  
-25  
-30  
I_1 = 2mA  
I_1 = 1mA  
I_1 = 0  
V_1 = 2.55V  
1700 1750 1800 1850 1900 1950 2000 2050 2100  
FREQUENCY (MHz)  
2.50 2.75 3.00 3.25 3.50 3.75 4.00  
CONTROL VOLTAGE VI1, VQ1 (V)  
1700 1750 1800 1850 1900 1950 2000 2050 2100  
FREQUENCY (MHz)  
REVERSE ISOLATION vs. FREQUENCY  
OUTPUT NOISE POWER vs. FREQUENCY  
GAIN vs. CONTROL VOLTAGE (VI1 = VQ1)  
30  
40  
-144.0  
-144.5  
-145.0  
-145.5  
-146.0  
-146.5  
-147.0  
-147.5  
-148.0  
-148.5  
-149.0  
20  
15  
10  
5
0
V_1 = 2.55V TO 3.5V  
T
= -40°C  
A
V_1 = 3.5V  
50  
60  
T
= +25°C  
A
-5  
-10  
-15  
-20  
-25  
-30  
-35  
-40  
-45  
-50  
V_1 = 2.55V  
70  
V_1 = 2.625V  
T
= +85°C  
A
80  
90  
100  
110  
120  
V_1 = 3V  
V_1 = 2.75V  
1900  
1950 2000 2050  
2100  
1700 1750 1800 1850 1900 1950 2000 2050 2100  
FREQUENCY (MHz)  
1800 1850  
1700 1750  
2.50 2.75 3.00 3.25 3.50 3.75 4.00  
CONTROL VOLTAGE VI1, VQ1 (V)  
FREQUENCY (MHz)  
______________________________________________________________________________________ 11  
High-Gain Vector Multipliers  
Typical Operating Characteristics (MAX2046) (continued)  
(V  
= 5V, f = 1900MHz, V_1 = VI1 and VQ1, V_2 = VI2 and VQ2, I_1 = II1 and IQ1, I_2 = II2 and IQ2, VI1 = VQ1 = 3.2V, VI2 =  
IN  
CC  
VQ2 = REFOUT, P = -15dBm per tone at 1MHz offset (IIP3), and T = +25°C, unless otherwise noted.)  
IN  
A
OUTPUT NOISE POWER  
vs. CONTROL VOLTAGE (VI1 = VQ1)  
OUTPUT NOISE POWER  
vs. CONTROL VOLTAGE (VI1 = VQ1)  
INPUT P1-dB COMPRESSION  
vs. FREQUENCY  
-144.0  
-144.5  
-145.0  
-145.5  
-146.0  
-146.5  
-147.0  
-147.5  
-148.0  
-148.5  
-149.0  
-144.0  
-144.5  
-145.0  
-145.5  
-146.0  
-146.5  
-147.0  
-147.5  
-148.0  
-148.5  
-149.0  
9.0  
8.5  
8.0  
7.5  
7.0  
6.5  
6.0  
5.5  
5.0  
V_1 = 3.2V  
T
= +85°C  
V
= 4.75V  
CC  
A
V
= 5.0V  
CC  
V
= 5.25V  
CC  
V
= 5.25V  
CC  
T
= -40°C  
A
V
= 4.75V  
CC  
V
= 5.0V  
CC  
T
= +25°C  
A
2.50 2.75 3.00 3.25 3.50 3.75 4.00  
CONTROL VOLTAGE VI1, VQ1 (V)  
2.50 2.75 3.00 3.25 3.50 3.75 4.00  
CONTROL VOLTAGE VI1, VQ1 (V)  
1700 1750 1800 1850 1900 1950 2000 2050 2100  
FREQUENCY (MHz)  
INPUT P1-dB COMPRESSION  
vs. CONTROL VOLTAGE (VI1 = VQ1)  
INPUT P1-dB COMPRESSION  
vs. FREQUENCY  
INPUT P1-dB COMPRESSION  
vs. CONTROL VOLTAGE (VI1 = VQ1)  
16  
15  
14  
13  
12  
11  
10  
9
9.0  
8.5  
8.0  
7.5  
7.0  
6.5  
6.0  
5.5  
5.0  
16  
15  
14  
13  
12  
11  
10  
9
V_1 = 3.2V  
T
= +25°C  
T = +85°C  
A
A
V
= 5.25V  
CC  
T
= +85°C  
A
V
= 5.0V  
CC  
T
= +25°C  
8
A
8
T
= -40°C  
A
7
7
V
= 4.75V  
6
6
CC  
T
= -40°C  
A
5
5
2.50 2.75 3.00 3.25 3.50 3.75 4.00  
CONTROL VOLTAGE VI1, VQ1 (V)  
1700 1750 1800 1850 1900 1950 2000 2050 2100  
FREQUENCY (MHz)  
2.50 2.75 3.00 3.25 3.50 3.75 4.00  
CONTROL VOLTAGE VI1, VQ1 (V)  
IIP3 vs. FREQUENCY  
IIP3 vs. CONTROL VOLTAGE (VI1 = VQ1)  
IIP3 vs. FREQUENCY  
17.0  
16.5  
16.0  
15.5  
15.0  
14.5  
14.0  
13.5  
13.0  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
17.0  
16.5  
16.0  
15.5  
15.0  
14.5  
14.0  
13.5  
13.0  
V_1 = 3.2V  
V_1 = 3.2V  
V
= 5.25V  
CC  
V
= 5.25V  
T = +85°C  
A
CC  
V
= 5.0V  
CC  
V
= 4.75V  
CC  
V
= 4.75V  
CC  
V
CC  
= 5.0V  
8
7
6
5
T
= -40°C  
A
T
= +25°C  
A
1700 1750 1800 1850 1900 1950 2000 2050 2100  
FREQUENCY (MHz)  
2.50 2.75 3.00 3.25 3.50 3.75 4.00  
CONTROL VOLTAGE VI1 , VQ1, (V)  
1700 1750 1800 1850 1900 1950 2000 2050 2100  
FREQUENCY (MHz)  
12 ______________________________________________________________________________________  
High-Gain Vector Multipliers  
Typical Operating Characteristics (MAX2046) (continued)  
(V  
= 5V, f = 1900MHz, V_1 = VI1 and VQ1, V_2 = VI2 and VQ2, I_1 = II1 and IQ1, I_2 = II2 and IQ2, VI1 = VQ1 = 3.2V, VI2 =  
IN  
CC  
VQ2 = REFOUT, P = -15dBm per tone at 1MHz offset (IIP3), and T = +25°C, unless otherwise noted.)  
IN  
A
GAIN vs. PHASE  
S21 PHASE vs. FREQUENCY  
IIP3 vs. CONTROL VOLTAGE (VI1 = VQ1)  
10  
8
6
4
2
-140  
-141  
-142  
-143  
-144  
-145  
-146  
-147  
-148  
-149  
-150  
-151  
-152  
-153  
-154  
-155  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
RADIUS = 0.875  
RADIUS = 1  
V_1 = 3.2V  
ONE ELECTRICAL DELAY  
REMOVED AT 5V  
T
= +85°C  
A
0
T
= +25°C  
RADIUS = 0.75  
RADIUS = 0.5  
A
-2  
-4  
-6  
-8  
-10  
-12  
-14  
-16  
V
= 5.25V  
T
= -40°C  
CC  
A
RADIUS = 0.625  
V
CC  
= 5.V  
RADIUS = 0.375  
RADIUS = 0.25  
8
7
6
5
V
= 4.75V  
CC  
RADIUS = 0.125  
0
45 90 135 180 225 270 315 360  
PHASE (DEGREES)  
1700 1750 1800 1850 1900 1950 2000 2050 2100  
FREQUENCY (MHz)  
2.50 2.75 3.00 3.25 3.50 3.75 4.00  
CONTROL VOLTAGE VI1 , VQ1, (V)  
S21 PHASE vs. FREQUENCY  
S21 PHASE vs. FREQUENCY  
S21 PHASE vs. FREQUENCY  
-155  
-156  
-157  
-158  
-159  
-160  
-161  
-162  
-163  
-164  
-165  
-166  
-167  
-168  
-169  
-170  
-130  
-135  
-140  
-145  
-150  
-155  
-160  
-165  
-170  
-175  
-180  
-185  
-190  
-130  
-135  
-140  
-145  
-150  
-155  
-160  
-165  
-170  
-175  
-180  
-185  
-190  
V_1 = 2.65V  
ONE ELECTRICAL DELAY  
REMOVED AT 5V  
V_1 = 3.2V  
V_1 = 2.65V  
ONE ELECTRICAL DELAY  
REMOVED AT +25°C  
ONE ELECTRICAL DELAY  
REMOVED AT +25°C  
T
= -40°C  
A
T
= -40°C  
A
V
= 5.25V  
CC  
T
= +25°C  
A
V
= 5.V  
CC  
T
= +25°C  
A
T
= +85°C  
T
= +85°C  
A
A
V
= 4.75V  
CC  
1700 1750 1800 1850 1900 1950 2000 2050 2100  
FREQUENCY (MHz)  
1700 1750 1800 1850 1900 1950 2000 2050 2100  
FREQUENCY (MHz)  
1700 1750 1800 1850 1900 1950 2000 2050 2100  
FREQUENCY (MHz)  
SWITCHING SPEED  
GROUP DELAY vs. FREQUENCY  
1.90  
1.85  
1.80  
1.75  
1.70  
1.65  
1.60  
1.55  
1.50  
1.45  
1.40  
1.35  
1.30  
SEE SWITCHING SPEED SECTION IN THE  
V_1 = 2.55V TO 3.5V  
APPLICATIONS INFORMATION  
-0.7V  
+0.7V  
MIN GAIN,  
ORIGIN  
MAX GAIN, Q1  
MAX GAIN, Q3  
1700 1750 1800 1850 1900 1950 2000 2050 2100  
FREQUENCY (MHz)  
SWITCHING SPEED (1ns/div)  
______________________________________________________________________________________ 13  
High-Gain Vector Multipliers  
Typical Operating Characteristics (MAX2047)  
(V  
= 5V, f = 915MHz, V_1 = VI1 and VQ1, V_2 = VI2 and VQ2, I_1 = II1 and IQ1, I_2 = II2 and IQ2, VI1 = VQ1 = 3.2V, VI2 = VQ2  
IN  
CC  
= REFOUT, P = -15dBm per tone at 1MHz offset (IIP3), and T = +25°C, unless otherwise noted.)  
IN  
A
REFOUT AND SUPPLY CURRENT  
OUTPUT RETURN LOSS vs. FREQUENCY  
vs. TEMPERATURE AND SUPPLY VOLTAGE  
INPUT RETURN LOSS vs. FREQUENCY  
MAX2047 toc53  
8
9
210  
200  
190  
180  
170  
160  
150  
140  
2.52  
2.51  
2.50  
2.49  
2.48  
2.47  
2.46  
2.45  
10  
12  
14  
16  
18  
20  
22  
24  
26  
28  
30  
32  
V_1 = 2.55V TO 3.5V  
REFOUT LOADED WITH V_2  
V_1 = 2.55V TO 3.5V  
10  
11  
12  
13  
14  
15  
16  
V
= 5.25V  
CC  
V
= 5.0V  
CC  
V
= 4.75V  
CC  
SUPPLY CURRENT  
700 750 800 850 900 950 1000 1050 1100  
FREQUENCY (MHz)  
-40  
-15  
10  
35  
60  
85  
700 750 800 850 900 950 1000 1050 1100  
FREQUENCY (MHz)  
TEMPERATURE (°C)  
GAIN vs. FREQUENCY  
GAIN vs. FREQUENCY  
GAIN vs. CONTROL VOLTAGE (VI1 = VQ1)  
15  
10  
5
20  
15  
10  
5
20  
15  
I_1 = 5mA  
I_1 = 4mA  
V
= 4.75V TO 5.25V  
CC  
V_1 = 3.5V  
V_1 = 3.0V  
10  
5
V_1 = 2.75V  
0
0
I_1 = 3mA  
I_1 = 2mA  
0
-5  
-5  
-10  
-15  
-20  
-25  
-30  
-5  
-10  
-15  
-20  
-10  
-15  
-20  
V_1 = 2.625V  
I_1 =1mA  
I_1 = 0  
V_1 = 2.55V  
700 750 800 850 900 950 1000 1050 1100  
FREQUENCY (MHz)  
700 750 800 850 900 950 1000 1050 1100  
FREQUENCY (MHz)  
2.50 2.75 3.00 3.25 3.50 3.75 4.00  
CONTROL VOLTAGE VI1, VQ1 (V)  
OUTPUT NOISE POWER vs. FREQUENCY  
GAIN vs. CONTROL VOLTAGE (VI1 = VQ1)  
REVERSE ISOLATION vs. FREQUENCY  
-144  
-145  
-146  
-147  
-148  
-149  
-150  
-151  
20  
15  
30  
40  
V_1 = 2.55V TO 3.5V  
T
= -40°C  
A
V_1 = 3.5V  
10  
50  
5
60  
T
= +25°C  
0
A
V_1 = 2.625V  
V_1 = 2.75V  
V_1 = 2.55V  
-5  
70  
-10  
-15  
-20  
-25  
-30  
-35  
T = +85°C  
A
80  
90  
V_1 = 3V  
100  
110  
120  
700 750 800 850 900 950 1000 1050 1100  
FREQUENCY (MHz)  
2.50 2.75 3.00 3.25 3.50 3.75 4.00  
CONTROL VOLTAGE VI1, VQ1 (V)  
700 750 800 850 900 950 1000 1050 1100  
FREQUENCY (MHz)  
14 ______________________________________________________________________________________  
High-Gain Vector Multipliers  
Typical Operating Characteristics (MAX2047) (continued)  
(V  
= 5V, f = 915MHz, V_1 = VI1 and VQ1, V_2 = VI2 and VQ2, I_1 = II1 and IQ1, I_2 = II2 and IQ2, VI1 = VQ1 = 3.2V, VI2 = VQ2  
IN  
CC  
= REFOUT, P = -15dBm per tone at 1MHz offset (IIP3), and T = +25°C, unless otherwise noted.)  
IN  
A
OUTPUT NOISE POWER  
vs. CONTROL VOLTAGE (VI1 = VQ1)  
OUTPUT NOISE POWER  
vs. CONTROL VOLTAGE (VI1 = VQ1)  
INPUT P1-dB COMPRESSION  
vs. FREQUENCY  
-145.0  
-145.5  
-146.0  
-146.5  
-147.0  
-147.5  
-148.0  
-148.5  
-149.0  
-149.5  
-150.0  
-145.0  
-145.5  
-146.0  
-146.5  
-147.0  
-147.5  
-148.0  
-148.5  
-149.0  
-149.5  
-150.0  
9.0  
8.5  
8.0  
7.5  
7.0  
6.5  
6.0  
5.5  
5.0  
V_1 = 3.2V  
V
= 5.25V  
T
= +85°C  
CC  
A
V = 5.25V  
CC  
V
= 5.0V  
CC  
V
= 5.0V  
CC  
T
= -40°C  
A
V
= 4.75V  
CC  
T
= +25°C  
A
V
= 4.75V  
CC  
2.50 2.75 3.00 3.25 3.50 3.75 4.00  
CONTROL VOLTAGE VI1, VQ1 (V)  
2.50 2.75 3.00 3.25 3.50 3.75 4.00  
CONTROL VOLTAGE VI1, VQ1 (V)  
700 750 800 850 900 950 1000 1050 1100  
FREQUENCY (MHz)  
INPUT P1-dB COMPRESSION  
vs. CONTROL VOLTAGE (VI1 = VQ1)  
INPUT P1-dB COMPRESSION  
vs. FREQUENCY  
INPUT P1-dB COMPRESSION  
vs. CONTROL VOLTAGE (VI1 = VQ1)  
9.0  
8.5  
8.0  
7.5  
7.0  
6.5  
6.0  
5.5  
5.0  
4.5  
4.0  
10.0  
9.5  
9.0  
8.5  
8.0  
7.5  
7.0  
6.5  
6.0  
5.5  
5.0  
4.5  
4.0  
9.0  
8.5  
8.0  
7.5  
7.0  
6.5  
6.0  
5.5  
5.0  
V_1 = 3.2V  
T
= +85°C  
V
= 5.0V  
A
CC  
T
= +85°C  
A
T
= +25°C  
A
V
= 5.25V  
CC  
T
= +25°C  
A
T
= -40°C  
A
T
= -40°C  
A
V
= 4.75V  
CC  
2.50 2.75 3.00 3.25 3.50 3.75 4.00  
CONTROL VOLTAGE VI1, VQ1 (V)  
2.50 2.75 3.00 3.25 3.50 3.75 4.00  
CONTROL VOLTAGE VI1, VQ1 (V)  
700 750 800 850 900 950 1000 1050 1100  
FREQUENCY (MHz)  
IIP3 vs. CONTROL VOLTAGE (VI1 = VQ1)  
IIP3 vs. FREQUENCY  
IIP3 vs. FREQUENCY  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
19.0  
18.5  
18.0  
17.5  
17.0  
16.5  
16.0  
15.5  
15.0  
14.5  
14.0  
18.5  
18.0  
17.5  
17.0  
16.5  
16.0  
15.5  
15.0  
14.5  
V_1 = 3.2V  
V_1 = 3.2V  
V
= 5.25V  
CC  
V
= 5.25V  
CC  
T
= -40°C  
A
V
= 4.75V  
CC  
V
= 5.0V  
CC  
T
= +25°C  
A
V
= 4.75V  
CC  
V
CC  
= 5.0V  
8
T
= +85°C  
A
7
2.50 2.75 3.00 3.25 3.50 3.75 4.00  
CONTROL VOLTAGE VI1 , VQ1 (V)  
700 750 800 850 900 950 1000 1050 1100  
FREQUENCY (MHz)  
700 750 800 850 900 950 1000 1050 1100  
FREQUENCY (MHz)  
______________________________________________________________________________________ 15  
High-Gain Vector Multipliers  
Typical Operating Characteristics (MAX2047) (continued)  
(V  
= 5V, f = 915MHz, V_1 = VI1 and VQ1, V_2 = VI2 and VQ2, I_1 = II1 and IQ1, I_2 = II2 and IQ2, VI1 = VQ1 = 3.2V, VI2 = VQ2  
IN  
CC  
= REFOUT, P = -15dBm per tone at 1MHz offset (IIP3), and T = +25°C, unless otherwise noted.)  
IN  
A
IIP3 vs. CONTROL VOLTAGE (VI1 = VQ1)  
GAIN vs. PHASE  
S21 PHASE vs. FREQUENCY  
11  
9
7
5
3
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
150  
145  
140  
135  
130  
125  
120  
115  
110  
RADIUS = 0.875  
RADIUS = 1  
V_1 = 3.2V  
ONE ELECTRICAL DELAY  
REMOVED AT 5V  
T
= -40°C  
A
1
T
= +25°C  
RADIUS = 0.75  
RADIUS = 0.5  
V
= 5.25V  
CC  
A
-1  
-3  
-5  
-7  
-9  
-11  
-13  
-15  
RADIUS = 0.625  
T
= +85°C  
A
RADIUS = 0.375  
RADIUS = 0.25  
V
= 5.V  
CC  
RADIUS = 0.125  
V
= 4.75V  
CC  
8
7
2.50 2.75 3.00 3.25 3.50 3.75 4.00  
CONTROL VOLTAGE VI1 , VQ1 (V)  
0
45 90 135 180 225 270 315 360  
PHASE (DEGREES)  
700 750 800 850 900 950 1000 1050 1100  
FREQUENCY (MHz)  
S21 PHASE vs. FREQUENCY  
S21 PHASE vs. FREQUENCY  
S21 PHASE vs. FREQUENCY  
160  
150  
140  
130  
120  
110  
100  
90  
150  
145  
140  
135  
130  
125  
120  
115  
110  
105  
100  
160  
150  
140  
130  
120  
110  
100  
V_1 = 2.65V  
ONE ELECTRICAL DELAY  
REMOVED AT +25°C  
V_1 = 2.65V  
ONE ELECTRICAL DELAY  
REMOVED AT 5V  
V_1 = 3.2V  
ONE ELECTRICAL DELAY  
REMOVED AT +25°C  
V
= 5.25V  
CC  
T = -40°C  
A
T
= -40°C  
A
T
= +25°C  
A
V
= 5.V  
CC  
T
= +25°C  
A
T
= +85°C  
A
V
= 4.75V  
T
= +85°C  
CC  
A
700 750 800 850 900 950 1000 1050 1100  
FREQUENCY (MHz)  
700 750 800 850 900 950 1000 1050 1100  
FREQUENCY (MHz)  
700 750 800 850 900 950 1000 1050 1100  
FREQUENCY (MHz)  
SWITCHING SPEED  
GROUP DELAY vs. FREQUENCY  
2.7  
2.6  
2.5  
2.4  
2.3  
2.2  
2.1  
2.0  
1.9  
1.8  
1.7  
1.6  
V_1 = 2.55V TO 3.5V  
SEE SWITCHING SPEED SECTION IN THE  
APPLICATIONS INFORMATION  
-0.7V  
+0.7V  
MIN GAIN,  
ORIGIN  
MAX GAIN, Q1  
MAX GAIN, Q3  
700 750 800 850 900 950 1000 1050 1100  
FREQUENCY (MHz)  
SWITCHING SPEED (1ns/div)  
16 ______________________________________________________________________________________  
High-Gain Vector Multipliers  
Pin Description  
PIN  
1
NAME  
VI1  
FUNCTION  
Noninverting in-phase voltage-control input. Requires common-mode input voltage (2.5V typ).  
Inverting in-phase voltage-control input. Requires common-mode input voltage (2.5V typ).  
Noninverting quadrature voltage-control input. Requires common-mode input voltage (2.5V typ).  
Inverting quadrature voltage-control input. Requires common-mode input voltage (2.5V typ).  
Noninverting in-phase current-control input. This pin can only sink current. It cannot source current.  
Inverting in-phase current-control input. This pin can only sink current. It cannot source current.  
Noninverting quadrature current-control input. This pin can only sink current. It cannot source current.  
Inverting quadrature current-control input. This pin can only sink current. It cannot source current.  
2
VI2  
3
VQ1  
VQ2  
II1  
4
5
6
II2  
7
IQ1  
IQ2  
8
2.5V Reference Output. Integrated reference voltage provides a 2.5V output for single-ended voltage-  
control applications. For single-ended operation, connect REFOUT to the inverting voltage inputs (VI2,  
VQ2).  
9
REFOUT  
10, 11, 14,  
15, 16, 19,  
20, 21,  
GND  
Ground  
2327, 30,  
31, 32  
12  
13  
RFOUT1 Noninverting RF Output  
RFOUT2 Inverting RF Output  
17, 18  
V
Supply Voltage  
CC  
Bias Setting Resistor. Connect a 280( 1%) resistor from this pin to ground to set the bias current for  
the IC.  
22  
RBIAS  
28  
29  
RFIN1  
RFIN2  
Noninverting RF Input  
Inverting RF Input  
Exposed  
Pad  
Exposed Pad. Exposed pad on the bottom of the IC should be soldered to the ground plane for proper  
heat dissipation and RF grounding.  
RF Ports  
Detailed Description  
The RF input and output ports require external matching  
for optimal performance. See Figures 1 and 2 for appro-  
priate component values. The output ports require  
external biasing. In Figures 1 and 2, the outputs are  
biased through the balun (T2). The RF input ports can  
be driven differentially or single ended (Figures 1, 2)  
using a balun. The matching values for the MAX2045/  
MAX2046 were set to be the same during characteriza-  
tion. An optimized set of values can be found in the  
MAX2045/MAX2046/MAX2047 Evaluation Kit data  
sheet.  
The MAX2045/MAX2046/MAX2047 provide vector  
adjustment through the differential I/Q amplifiers. Each  
part is optimized for separate frequency ranges:  
MAX2045 for f = 2040MHz to 2240MHz, MAX2046 for  
IN  
f
= 1740MHz to 2060MHz, and MAX2047 for f  
=
IN  
IN  
790MHz to 1005MHz. All three devices can be inter-  
faced using current- and/or voltage-mode DACs.  
The MAX2045/MAX2046/MAX2047 accept differential  
RF inputs, which are internally phase shifted 90  
degrees to produce differential I/Q signals. The phase  
and magnitude of each signal can then be adjusted  
using the voltage- and/or current-control inputs.  
Figure 1 shows a typical operating circuit when using  
both current- and voltage-mode DACs. When using  
only one of the two, leave the unused I/Q inputs open.  
I/Q Inputs  
The control amplifiers convert a voltage, current, or  
voltage and current input to a predistorted voltage that  
controls the multipliers. The I/Q voltage-mode inputs  
can be operated differentially (Figure 1) or single  
ended (Figure 2). A 2.5V reference is provided on-chip  
for single-ended operation.  
______________________________________________________________________________________ 17  
High-Gain Vector Multipliers  
C1  
RF INPUT  
L1*  
T1  
C2  
C3  
VI1  
VI2  
VQ1  
VQ2  
II1  
GND  
GND  
RBIAS  
GND  
GND  
GND  
C4  
C6  
1
2
3
4
5
6
7
8
24  
23  
22  
21  
20  
19  
18  
17  
VOLTAGE-  
MODE DAC  
CONTROL  
90°  
C5  
C7  
AMPLIFIER I  
PHASE  
SHIFTER  
MAX2045  
MAX2046  
MAX2047  
R1  
VECTOR  
MULTIPLIER  
C8  
CONTROL  
AMPLIFIER Q  
CURRENT-  
MODE DAC  
II2  
C9  
V
CC  
OUTPUT  
STAGE  
2.5V  
REFERENCE  
V
IQ1  
IQ2  
CC  
C10  
C16  
C17  
V
CC  
C11  
L2  
DESCRIPTION  
MAX2046  
3.3pF  
220pF  
22pF  
0.01µF  
1.6pF CAP  
10nH  
DESIGNATION  
MAX2045  
3.3pF  
220pF  
MAX2047  
47pF  
47pF  
47pF  
0.01µF  
15nH  
C14  
C1  
C2, C3  
C4–C16  
C17  
L1*  
RF OUTPUT  
22pF  
0.01µF  
1.6pF CAP  
10nH  
C15  
T2  
C13  
L2  
39nH  
R1  
280Ω  
280Ω  
280Ω  
T1  
T2  
1:1 balun  
4:1 balun  
1:1 balun  
4:1 balun  
1:1 balun  
4:1 balun  
*POPULATED WITH AN INDUCTOR OR CAPACITOR,  
DEPENDING ON THE VERSION.  
Figure 1. Typical Operating Circuit Using Differential Current- and Voltage-Mode DACs  
18 ______________________________________________________________________________________  
High-Gain Vector Multipliers  
C1  
RF INPUT  
L1*  
T1  
C2  
C3  
VI1  
VI2  
VQ1  
VQ2  
II1  
GND  
GND  
RBIAS  
GND  
GND  
GND  
VOLTAGE-  
MODE DAC  
1
2
3
4
5
6
7
8
24  
23  
22  
21  
20  
19  
18  
17  
C4  
C6  
CONTROL  
90°  
AMPLIFIER I  
PHASE  
SHIFTER  
MAX2045  
MAX2046  
MAX2047  
R1  
VECTOR  
MULTIPLIER  
CONTROL  
AMPLIFIER Q  
II2  
V
CC  
OUTPUT  
STAGE  
2.5V  
REFERENCE  
V
IQ1  
IQ2  
CC  
C16  
C17  
V
CC  
C12  
L2  
DESCRIPTION  
MAX2046  
3.3pF  
DESIGNATION  
MAX2045  
3.3pF  
220pF  
MAX2047  
47pF  
47pF  
C14  
C1  
C2, C3  
RF OUTPUT  
220pF  
C4, C6, C12C16  
22pF  
22pF  
47pF  
C17  
L1*  
L2  
C15  
0.01µF  
1.6pF CAP  
10nH  
0.01µF  
1.6pF CAP  
10nH  
0.01µF  
15nH  
39nH  
T2  
C13  
R1  
280Ω  
280Ω  
280Ω  
T1  
T2  
1:1 balun  
4:1 balun  
1:1 balun  
4:1 balun  
1:1 balun  
4:1 balun  
*POPULATED WITH AN INDUCTOR OR CAPACITOR,  
DEPENDING ON THE VERSION.  
Figure 2. Typical Operating Circuit Using Single-Ended Voltage Mode DACs  
______________________________________________________________________________________ 19  
High-Gain Vector Multipliers  
As the differential control signal approaches zero, the  
On-Chip Reference Voltage  
An on-chip, 2.5V reference voltage is provided for  
single-ended control mode. Connect REFOUT to VI2  
and VQ2 to provide a stable reference voltage. The  
equivalent output resistance of the REFOUT pin is  
approximately 80. REFOUT is capable of sourcing  
1mA of current, with <10mV drop-in voltage.  
gain approaches its minimum value. This appears as  
the null in the Typical Operating Characteristics. The  
measurement results include rise-time errors from the  
crystal detector (specified by manufacturing to be  
approximately 8ns to 12ns), the comparator (approxi-  
mately 500ps), and the 500MHz BW oscilloscope (used  
to measure the control and detector signals).  
Applications Information  
Layout Issues  
A properly designed PC board is an essential part of  
any RF/microwave circuit. Keep RF signal lines as short  
as possible to reduce losses, radiation, and inductance.  
For best performance, route the ground pin traces  
directly to the exposed pad underneath the package.  
This pad should be connected to the ground plane of  
the board by using multiple vias under the device to  
provide the best RF/thermal conduction path. Solder the  
exposed pad on the bottom of the device package to a  
PC board exposed pad.  
RF Single-Ended Operation  
The RF input impedance is 50differential into the IC.  
An external low-loss 1:1 balun can be used for single-  
ended operation. The RF output impedance is 300Ω  
differential into the IC. An external low-loss 4:1 balun  
transforms this impedance down to 50single-ended  
output (Figures 1 and 2).  
Bias Resistor  
The bias resistor value (280) was optimized during  
characterization at the factory. This value should not be  
adjusted. If the 280( 1%) resistor is not readily avail-  
able, substitute a standard 280( 5%) resistor, which  
may result in more current part-to-part variation.  
The MAX2045/MAX2046/MAX2047 Evaluation Kit can  
be used as a reference for board layout. Gerber files  
are available upon request at www.maxim-ic.com.  
Power-Supply Bypassing  
Switching Speed  
The control inputs have a typical 3dB BW of 260MHz.  
This BW provides the device with the ability to adjust  
gain/phase at a very rapid rate. The Switching Speed  
graphs in the Typical Operating Characteristics try to  
capture the control ability of the vector multipliers.  
These measurements were done by first removing  
capacitors C4C7 to reduce driving capacitance.  
Proper voltage-supply bypassing is essential for high-  
frequency circuit stability. Bypass the V  
pins with  
CC  
10nF and 22pF (47pF for the MAX2047) capacitors.  
Connect the high-frequency capacitor as close to the  
device as possible.  
Exposed Paddle RF Thermal  
Considerations  
The EP of the 32-lead thin QFN package provides a low  
thermal-resistance path to the die. It is important that the  
PC board on which the IC is mounted be designed to  
conduct heat from this contact. In addition, the EP  
provides a low-inductance RF ground path for the device.  
The test for gathering the curves shown, uses a  
MAX9602 differential output comparator to drive VI1,  
VI2, VQ1, and VQ2. One output of the comparator is  
connected to VI1/VQ1, while the other is connected to  
VI2/VQ2. The input to the vector multiplier is driven by  
an RF source and the output is connected to a crystal  
detector. The switching signal produces a waveform  
that results in a 0.7V differential input signal to the  
vector multiplier.  
It is recommended that the EP be soldered to a ground  
plane on the PC board, either directly or through an  
array of plated via holes.  
Soldering the pad to ground is also critical for proper heat  
dissipation. Use a solid ground plane wherever possible.  
This signal switches the signal from quadrant 3 (-0.7V  
case), through the origin (maximum attenuation), and  
into quadrant 1 (+0.7V case). The before-and-after  
amplitude (S21) stays about the same between the two  
quadrants but the phase changes by 180°.  
Chip Information  
TRANSISTOR COUNT: 599  
20 ______________________________________________________________________________________  
High-Gain Vector Multipliers  
Package Information  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,  
go to www.maxim-ic.com/packages.)  
D2  
0.15  
C A  
D
b
0.10 M  
C A B  
C
L
D2/2  
D/2  
k
PIN # 1  
I.D.  
0.15  
C
B
PIN # 1 I.D.  
0.35x45  
E/2  
E2/2  
C
(NE-1) X  
e
L
E2  
E
k
L
DETAIL A  
e
(ND-1) X  
e
C
C
L
L
L
L
e
e
0.10  
C
A
0.08  
C
C
A3  
A1  
PROPRIETARY INFORMATION  
TITLE:  
PACKAGE OUTLINE  
16, 20, 28, 32L, QFN THIN, 5x5x0.8 mm  
APPROVAL  
DOCUMENT CONTROL NO.  
REV.  
1
21-0140  
C
2
COMMON DIMENSIONS  
EXPOSED PAD VARIATIONS  
NOTES:  
1. DIMENSIONING & TOLERANCING CONFORM TO ASME Y14.5M-1994.  
2. ALL DIMENSIONS ARE IN MILLIMETERS. ANGLES ARE IN DEGREES.  
3. N IS THE TOTAL NUMBER OF TERMINALS.  
4. THE TERMINAL #1 IDENTIFIER AND TERMINAL NUMBERING CONVENTION SHALL CONFORM TO JESD 95-1  
SPP-012. DETAILS OF TERMINAL #1 IDENTIFIER ARE OPTIONAL, BUT MUST BE LOCATED WITHIN THE  
ZONE INDICATED. THE TERMINAL #1 IDENTIFIER MAY BE EITHER A MOLD OR MARKED FEATURE.  
5. DIMENSION b APPLIES TO METALLIZED TERMINAL AND IS MEASURED BETWEEN 0.25 mm AND 0.30 mm  
FROM TERMINAL TIP.  
6. ND AND NE REFER TO THE NUMBER OF TERMINALS ON EACH D AND E SIDE RESPECTIVELY.  
7. DEPOPULATION IS POSSIBLE IN A SYMMETRICAL FASHION.  
8. COPLANARITY APPLIES TO THE EXPOSED HEAT SINK SLUG AS WELL AS THE TERMINALS.  
9. DRAWING CONFORMS TO JEDEC MO220.  
PROPRIETARY INFORMATION  
TITLE:  
PACKAGE OUTLINE  
10. WARPAGE SHALL NOT EXCEED 0.10 mm.  
16, 20, 28, 32L, QFN THIN, 5x5x0.8 mm  
APPROVAL  
DOCUMENT CONTROL NO.  
REV.  
2
21-0140  
C
2
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ____________________ 21  
© 2003 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  
This datasheet has been download from:  
www.datasheetcatalog.com  
Datasheets for electronics components.  

相关型号:

MAX2045ETJ+

Baseband Circuit, 5 X 5 MM, 0.80 MM HEIGHT, TQFN-32
MAXIM

MAX2045ETJ+T

暂无描述
MAXIM

MAX2045ETJ-T

High-Gain Vector Multipliers
MAXIM

MAX2045EVKIT

Fully Assembled and Tested
MAXIM

MAX2045EVKIT|MAX2046EVKIT|MAX2047EVKIT

Evaluation Kits for the MAX2045/MAX2046/MAX2047
MAXIM

MAX2046

High-Gain Vector Multipliers
MAXIM

MAX20461

Automotive High-Current Step-Down Converter with USB-C Protection/Host Charger
MAXIM

MAX20461AATJA

Automotive High-Current Step-Down Converter with USB-C Protection/Host Charger
MAXIM

MAX20461AATJD

Automotive High-Current Step-Down Converter with USB-C Protection/Host Charger
MAXIM

MAX20461ATJA

Automotive High-Current Step-Down Converter with USB-C Protection/Host Charger
MAXIM

MAX20461ATJD

Automotive High-Current Step-Down Converter with USB-C Protection/Host Charger
MAXIM

MAX2046ETJ+

Baseband Circuit, 5 X 5 MM, 0.80 MM HEIGHT, TQFN-32
MAXIM