MAX20812TAFH [MAXIM]

Dual-Output, 6A, 3MHz, 2.7V to 16V, Step-Down Switching Regulator;
MAX20812TAFH
型号: MAX20812TAFH
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Dual-Output, 6A, 3MHz, 2.7V to 16V, Step-Down Switching Regulator

文件: 总26页 (文件大小:876K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Click here for production status of specific part numbers.  
MAX20812  
Dual-Output, 6A, 3MHz, 2.7V to 16V, Step-Down  
Switching Regulator  
General Description  
Benefits and Features  
The MAX20812 is a dual-output, fully integrated, highly  
efficient, step-down DC-DC switching regulator. This  
device operates from 2.7V to 16V input supplies, and  
each output can be regulated from 0.5V to 5.8V. The IC  
delivers up to 6A of load current per output. The two  
outputs can be connected in parallel as a single-output,  
dual-phase regulator that supports up to 12A load  
current.  
High Power Density with Low Component Count  
Dual-Output or Dual-Phase Operation  
Single-Supply Operation with Integrated LDO for  
Bias Generation  
Optional 2.5V to 5.5V External Bias for Higher  
Efficiency  
Compact 3.5mm x 4.6mm, 21-Pin, FC2QFN  
Package  
Internal Compensation  
Wide Operating Range  
The switching frequency of this device can be configured  
from 500kHz to 3.0MHz and provides the capability of  
optimizing the design in terms of solution size and  
performance.  
2.7V to 16V Input Voltage Range  
0.5V to 5.8V Output Voltage Range  
500kHz to 3MHz Configurable Switching  
Frequency  
-40°C to +125°C Junction Temperature Range  
Three Pin-Strap Programming Pins to Select  
Different Configurations  
Independent Enable and Power Good for Each  
Output  
Optimized Performance and Efficiency  
The MAX20812 utilizes fixed-frequency, current-mode  
control with internal compensation. The dual-switching  
regulators operate 180° out-of-phase. The MAX20812  
features a selectable advanced modulation scheme  
(AMS) to provide improved dynamic load transient  
performance. The device also features selectable  
discontinuous current mode (DCM) operation to improve  
light load efficiency. Operation settings and configurable  
features can be selected by connecting pin-strap  
resistors from the PGM_ pins to ground.  
92.5% Peak Efficiency with V  
= 12V,  
DDH  
= 1MHz  
V
OUT  
= 1.8V, and f  
SW  
Interleaved 180° Out-of-Phase Operation  
Selectable AMS to Improve Load Transient  
Selectable DCM to Improve Light Load Efficiency  
Active Current Balancing for Dual-Phase  
Operation  
The MAX20812 has an internal 1.8V LDO output to  
power the gate drives (V ) and internal circuitry  
CC  
(AVDD). The device also has an optional LDO input pin  
(LDOIN), allowing connection from a 2.5V to 5.5V bias  
input supply for optimized efficiency.  
Electrical and Thermal Ratings  
The MAX20812 integrates multiple protections including  
positive and negative overcurrent protection, output  
overvoltage protection, and overtemperature protection  
to ensure a robust design.  
CURRENT  
RATING*  
(DUAL-  
PHASE)  
(A)  
INPUT  
VOLTAGE VOLTAGE  
OUTPUT  
DESCRIPTION  
(V)  
2.7 to 16  
12  
(V)  
0.5 to 5.8  
1.8  
The MAX20812 is available in a compact 3.5mm x  
4.6mm FC2QFN package that supports -40°C to +125°C  
junction temperature operation.  
Electrical Rating  
Thermal Rating  
12  
T
= +85°C,  
12  
12  
A
Applications  
No Air Flow  
Thermal Rating  
Communications Equipment  
Networking Equipment  
Servers and Storage Equipment  
Point-of-Load Voltage Regulators  
μP Chipsets  
Memory V  
DDQ  
I/O Pins of an FPGA/DSP/MCU  
T
= +55°C,  
12  
5.0  
A
200LFM Air Flow  
*Maximum T = +125°C. For specific operating conditions, see  
J
the Safe Operating Area (SOA) curves in the Typical Operating  
Characteristics.  
Ordering Information appears at end of data sheet.  
19-100887; Rev 1; 3/21  
www.maximintegrated.com  
Click here for production status of specific part numbers.  
MAX20812  
Dual-Output, 6A, 3MHz, 2.7V to 16V, Step-Down  
Switching Regulator  
Simplified Application Circuits  
DUAL-OUTPUT APPLICATION CIRCUIT  
2.7V TO 16V INPUT  
MAX20812  
BST2  
V
DDH1  
V
DDH2  
LX2  
OUTPUT2: 0.5V TO 5.8V, 6A  
OPTIONAL 2.5V TO 5.5V  
LDOIN  
SNSP2  
V
CC  
AVDD  
BST1  
PGOOD1  
PGOOD2  
EN1  
LX1  
OUTPUT1: 0.5V TO 5.8V, 6A  
SNSP1  
EN2  
PGM0  
PGM1  
PGM2  
PGND1  
PGND2  
AGND  
SINGLE-OUTPUT DUAL-PHASE APPLICATION CIRCUIT  
2.7V TO 16V INPUT  
MAX20812  
BST2  
LX2  
V
DDH1  
V
DDH2  
OUTPUT: 0.5V TO 5.8V, 12A  
LDOIN  
OPTIONAL 2.5V TO 5.5V  
AVDD  
COUPLED  
INDUCTOR  
OR  
DISCRETE  
INDUCTORS  
SNSP2  
BST1  
V
CC  
AVDD  
PGOOD1  
PGOOD2  
EN1  
LX1  
SNSP1  
EN2  
PGM0  
PGM1  
PGM2  
PGND1  
PGND2  
AGND  
19-100887; Rev 1; 3/21  
MAX20812  
Dual-Output, 6A, 3MHz, 2.7V to 16V, Step-Down  
Switching Regulator  
Absolute Maximum Ratings  
PGND to AGND..................................................-0.3V to +0.3V  
VDDH1, VDDH2 to PGND (Note 1)......................... -0.3V to +19V  
LX1, LX2 to PGND (DC) ..................................... -0.3V to +19V  
LX1, LX2 to PGND (AC) (Note 2) ........................ -10V to +23V  
VCC to PGND......................................................-0.3V to +2.5V  
AVDD to AGND ..................................................-0.3V to +2.5V  
EN1, EN2 to AGND ...............................................-0.3V to +4V  
PGOOD1, PGOOD2 to AGND ..............................-0.3V to +4V  
SNSP1, SNSP2 to AGND.........................-0.3V to AVDD+0.3V  
LDOIN to AGND ....................................................-0.3V to +6V  
PGM0, PGM1, PGM2 to AGND................-0.3V to AVDD+0.3V  
Peak LX_ Current .................................................-12A to +19A  
Junction Temperature (TJ).............................................+150°C  
Storage Temperature Range.......................... -65°C to +150°C  
Peak Reflow Temperature Lead-Free...........................+260°C  
VDDH1 to LX1 (DC) (Note 1) ................................ -0.3V to +19V  
VDDH1 to LX1 (AC) (Note 2) ................................. -10V to +19V  
VDDH2 to LX2 (DC) (Note 1) ................................ -0.3V to +19V  
VDDH2 to LX2 (AC) (Note 2) ................................. -10V to +19V  
BST1, BST2 to PGND (DC)............................. -0.3V to +21.5V  
BST1, BST2 to PGND (AC) (Note 2) .................. -7V to +25.5V  
BST1 to LX1....................................................... -0.3V to +2.5V  
BST2 to LX2....................................................... -0.3V to +2.5V  
Note 1:  
Note 2:  
Input HF capacitors placed not more than 40 mils away from the VDDH_ pins are required to keep inductive voltage spikes  
within Absolute Maximum limits.  
AC is limited to 25ns.  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or  
any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect  
device reliability.  
Package Information  
21 FC2QFN  
Ordering Part Number  
MAX20812AFH+ (exposed top)  
F213A4F+1  
MAX20812TAFH+ (closed top)  
F213A4F+2  
Package Code  
Outline Number  
21-100394  
21-100513  
Land Pattern Number  
90-100134  
90-100184  
Thermal Resistance, Four-Layer Board  
Junction to Ambient (θJA) JEDEC  
Junction to Ambient (θJA) on MAX20812EVKIT#  
Junction to Case (θJC)  
44.96°C/W  
20°C/W  
43.9°C/W  
20°C/W  
0.51°C/W  
10.1°C/W  
For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a “+”, “#”, or “-” in the package code indicates RoHS status only.  
Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.  
Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer board. For detailed information on package thermal considerations,  
refer to www.maximintegrated.com/thermal-tutorial.  
www.maximintegrated.com  
Maxim Integrated | 3  
MAX20812  
Dual-Output, 6A, 3MHz, 2.7V to 16V, Step-Down  
Switching Regulator  
Electrical Characteristics  
(See the Typical Application Circuits. V  
= V  
= 12V, V  
= 3.3V, T = T = -40°C to +125°C, unless otherwise noted.  
LDOIN A J  
DDH1  
DDH2  
Specifications are production tested at T = +32°C; limits within the operating temperature range are guaranteed by design and  
A
characterization.)  
PARAMETER  
INPUT SUPPLY  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Input Voltage Range  
V
2.7  
16  
V
DDH  
V
V
= 3.3V, EN_ = AGND  
= AVDD, EN_ = AGND  
0.1  
2.2  
LDOIN  
LDOIN  
Input Supply Current  
I
mA  
VDDH  
Linear Regulator Input  
Voltage  
V
2.5  
5.5  
V
mA  
V
LDOIN  
LDOIN  
V
V
= 3.3V, EN_ = AGND  
2.6  
Linear Regulator Input  
Current  
LDOIN  
LDOIN  
I
= 3.3V, EN_ = 1.8V, f  
= 1MHz  
22.1  
SW  
Internal LDO Regulated  
Output  
V
1.71  
1.95  
CC  
V
V
V
= AVDD  
= 3.3V  
80  
LDOIN  
LDOIN  
Linear Regulator  
Current Limit  
100  
mA  
< 1.6V  
20  
CC  
AVDD Undervoltage  
Lockout  
AVDD Undervoltage  
Lockout Hysteresis  
AVDD  
Rising  
1.65  
2.4  
1.67  
1.70  
2.6  
V
mV  
V
UVLO  
55  
2.5  
100  
2.3  
100  
V
Undervoltage  
DDH_  
V
Rising  
DDH_UVLO  
Lockout  
V
Undervoltage  
DDH_  
mV  
V
Lockout Hysteresis  
LDOIN Undervoltage  
Lockout  
LDOIN Undervoltage  
Lockout Hysteresis  
VLDOIN_UVLO  
2.2  
2.4  
V
mV  
LDOIN_UVLO  
OUTPUT VOLTAGE RANGE AND ACCURACY  
0.4945  
0.497  
0.500  
0.500  
0.5055  
0.503  
Internal Reference  
Voltage  
V
T
T
= T = 0°C to +85°C  
J
A
A
Voltage Sense Leakage  
Current  
I
= T = +25°C  
1
µA  
SNSP_  
J
SWITCHING FREQUENCY  
500  
750  
1000  
1500  
2000  
3000  
Switching Frequency  
f
kHz  
SW_  
Switching Frequency  
Accuracy  
Phase Shift Between  
Two Outputs/Phases  
-10  
+10  
%
°
f
= f  
SW2  
180  
SW1  
www.maximintegrated.com  
Maxim Integrated | 4  
MAX20812  
Dual-Output, 6A, 3MHz, 2.7V to 16V, Step-Down  
Switching Regulator  
(See the Typical Application Circuits. V  
= V  
= 12V, V  
= 3.3V, T = T = -40°C to +125°C, unless otherwise noted.  
LDOIN A J  
DDH1  
DDH2  
Specifications are production tested at T = +32°C; limits within the operating temperature range are guaranteed by design and  
A
characterization.)  
PARAMETER  
SYMBOL  
CONDITIONS  
(Note 3)  
(Note 3)  
MIN  
TYP  
MAX  
UNITS  
Minimum Controllable  
On-Time  
Minimum Controllable  
Off-Time  
I
I
= 0A  
= 0A  
40  
47  
ns  
OUT  
100  
800  
110  
ns  
OUT  
ENABLE AND STARTUP  
Initialization Time  
t
µs  
V
INIT  
Rising  
Falling  
0.9  
EN_ Threshold  
0.6  
t
EN_RISING_DE  
Rising  
Falling  
200  
LAY  
EN_ Filtering Delay  
Soft-Start Time  
µs  
t
EN_FALLING_D  
2
3
ELAY  
t
ms  
SS  
POWER GOOD AND FAULT PROTECTIONS  
PGOOD_ Output Low  
I
= 4mA  
0.4  
-10  
V
PGOOD  
Output Undervoltage  
(UV) Threshold  
Output UV Deglitch  
Delay  
Output Overvoltage  
Protection (OVP)  
Threshold  
-16  
10  
-13  
4
%
μs  
%
13  
16  
Output OVP Threshold  
Deglitch Delay  
2
μs  
Positive Overcurrent  
Protection (POCP)  
Threshold  
Inductor peak current, POCP = 9A  
Inductor peak current, POCP = 6A  
7.65  
5.1  
9.00  
6.0  
36  
10.35  
6.9  
POCP  
A
ns  
A
POCP Deglitch Delay  
Fast Positive  
Overcurrent Protection  
(FPOCP) Threshold  
Negative Overcurrent  
Protection (NOCP)  
Threshold to POCP  
Threshold Ratio  
FPOCP  
NOCP  
12.5  
14.5  
-83  
16.5  
With respect to POCP threshold (typ)  
%
NOCP Accuracy  
-20  
1.47  
1.41  
+20  
1.62  
1.56  
%
V
V
Rising  
Falling  
1.57  
1.51  
BST  
BST UVLO Threshold  
Overtemperature  
Protection (OTP) Rising  
Threshold  
OTP  
155  
°C  
OTP Accuracy  
6
%
°C  
ms  
OTP Hysteresis  
20  
20  
Hiccup Protection Time  
t
HICCUP  
www.maximintegrated.com  
Maxim Integrated | 5  
MAX20812  
Dual-Output, 6A, 3MHz, 2.7V to 16V, Step-Down  
Switching Regulator  
(See the Typical Application Circuits. V  
= V  
= 12V, V  
= 3.3V, T = T = -40°C to +125°C, unless otherwise noted.  
LDOIN A J  
DDH1  
DDH2  
Specifications are production tested at T = +32°C; limits within the operating temperature range are guaranteed by design and  
A
characterization.)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
DCM OPERATION MODE  
Inductor valley  
current  
Inductor valley  
current  
POCP = 9A  
-440  
-310  
100  
DCM Comparator  
Threshold to Enter DCM  
mA  
mA  
POCP = 6A  
DCM Comparator  
Threshold to Exit DCM  
Inductor valley current  
PROGRAMMING PINS  
PGM_ Pin Resistor  
Range  
PGM_ Resistor  
Accuracy  
R
0.095  
-1  
115  
+1  
kΩ  
PGM_  
%
Guaranteed by design.  
Note 3:  
Typical Operating Characteristics  
(Typical Application Circuits, V  
= 12V, tested on MAX20812EVKIT#, T = +25°C, unless otherwise noted.)  
DDH  
A
EFFICIENCY (MAX20812)  
(SINGLE-PHASE, L = PA5003.XXXNLT)  
EFFICIENCY (MAX20812)  
(SINGLE-PHASE, L = PA5003.XXXNLT)  
EFFICIENCY (MAX20812)  
(SINGLE-PHASE, L = PA5003.XXXNLT)  
(VDDH = 12V, fSW = 1MHz, VLDOIN = 3.3V)  
(VDDH = 12V, fSW = 1MHz, VLDOIN = OPEN)  
(VDDH = 5V, fSW = 1MHz, VLDOIN = OPEN)  
toc01  
toc02  
toc03  
100  
95  
90  
85  
80  
75  
70  
65  
100  
95  
90  
85  
80  
75  
70  
65  
100  
95  
90  
85  
80  
75  
70  
65  
VOUT = 0.8V  
VOUT = 1.0V  
VOUT = 1.2V  
VOUT = 1.8V  
VOUT = 3.3V  
VOUT = 5.0V  
VOUT = 0.8V  
VOUT = 1.0V  
VOUT = 1.2V  
VOUT = 1.8V  
VOUT = 3.3V  
VOUT = 5.0V  
VOUT = 0.8V  
VOUT = 1.0V  
VOUT = 1.2V  
VOUT = 1.8V  
VOUT = 3.3V  
0
1
2
3
4
5
6
0
1
2
3
4
5
6
0
1
2
3
4
5
6
LOAD CURRENT (A)  
LOAD CURRENT (A)  
LOAD CURRENT (A)  
EFFICIENCY (MAX20812)  
(SINGLE-PHASE, L = PA5005.XXXNLT)  
(VDDH = 12V, fSW = 500kHz, VLDOIN = 3.3V)  
EFFICIENCY (MAX20812)  
(SINGLE-PHASE, L = PA5005.XXXNLT)  
(VDDH = 12V, fSW = 500kHz, VLDOIN = OPEN)  
EFFICIENCY  
(MAX20812, DCM vs CCM)  
(VDDH = 12V, VOUT = 1.0V, VLDOIN = OPEN)  
toc04  
toc05  
toc06  
100  
95  
90  
85  
80  
75  
70  
65  
100  
95  
90  
85  
80  
75  
70  
65  
80  
70  
60  
50  
40  
30  
20  
VOUT = 0.8V  
VOUT = 1.0V  
VOUT = 1.2V  
VOUT = 1.8V  
VOUT = 3.3V  
VOUT = 5.0V  
VOUT = 0.8V  
VOUT = 1.0V  
VOUT = 1.2V  
VOUT = 1.8V  
VOUT = 3.3V  
VOUT = 5.0V  
DCM ENABLED  
DCM DISABLED  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0
1
2
3
4
5
6
0
1
2
3
4
5
6
LOAD CURRENT (A)  
LOAD CURRENT (A)  
LOAD CURRENT (A)  
www.maximintegrated.com  
Maxim Integrated | 6  
 
 
MAX20812  
Dual-Output, 6A, 3MHz, 2.7V to 16V, Step-Down  
Switching Regulator  
LOAD AND LINE REGULATIONS  
(SINGLE-PHASE OPERATION)  
SAFE OPERATING AREA (MAX20812)  
(VDDH = 12V, fSW = 1MHz, VLDOIN = 3.3V)  
EXTERNAL BIAS SUPPLY CURRENT  
(MAX20812, VLDOIN = 3.3V)  
(VOUT = 1.8V)  
(400LFM AIR FLOW, NO HEATSINK, 2 PHASE)  
toc07  
toc08  
toc09  
1.801  
1.8008  
1.8006  
1.8004  
1.8002  
1.8  
50  
45  
40  
35  
30  
25  
20  
15  
10  
14  
12  
10  
8
fSW = 3MHz  
f
SW = 2MHz  
fSW = 1.5MHz  
6
1.7998  
1.7996  
1.7994  
1.7992  
1.799  
VOUT = 0.8V  
VOUT = 1.2V  
VOUT = 1.8V  
VOUT = 3.3V  
VOUT = 5.0V  
VIN = 2.7V  
VIN = 5.0V  
VIN = 9.0V  
VIN = 12V  
VIN = 16V  
4
2
fSW = 1MHz  
fSW = 750kHz  
fSW = 500kHz  
0
2
4
6
8
10  
12  
14  
16  
75  
85  
95  
105  
115  
125  
0
1
2
3
4
5
6
INPUT VOLTAGE (V)  
AMBIENT TEMPERATURE (°C)  
LOAD CURRENT (A)  
SAFE OPERATING AREA (MAX20812)  
(VDDH = 12V, fSW = 1MHz, VLDOIN = 3.3V)  
SAFE OPERATING AREA (MAX20812)  
(VDDH = 12V, fSW = 1MHz, VLDOIN = 3.3V)  
(NO AIR FLOW, NO HEATSINK, 2 PHASE)  
SAFE OPERATING AREA (MAX20812)  
(VDDH = 12V, fSW = 1MHz, VLDOIN = OPEN)  
(200LFM AIR FLOW, NO HEATSINK, 2 PHASE)  
(400LFM AIR FLOW, NO HEATSINK, 2 PHASE)  
toc10  
toc11  
toc12  
14  
12  
10  
8
14  
12  
10  
8
14  
12  
10  
8
6
6
6
VOUT = 0.8V  
VOUT = 1.2V  
VOUT = 1.8V  
VOUT = 3.3V  
VOUT = 5.0V  
VOUT = 0.8V  
VOUT = 1.2V  
VOUT = 1.8V  
VOUT = 3.3V  
VOUT = 5.0V  
VOUT = 0.8V  
VOUT = 1.2V  
VOUT = 1.8V  
VOUT = 3.3V  
VOUT = 5.0V  
4
4
4
2
2
2
0
0
0
75  
85  
95  
105  
115  
125  
75  
85  
95  
105  
115  
125  
75  
85  
95  
105  
115  
125  
AMBIENT TEMPERATURE (°C)  
AMBIENT TEMPERATURE (°C)  
AMBIENT TEMPERATURE (°C)  
SAFE OPERATING AREA (MAX20812)  
(VDDH = 12V, fSW = 1MHz, VLDOIN = OPEN)  
SAFE OPERATING AREA (MAX20812)  
(VDDH = 12V, fSW = 1MHz, VLDOIN = OPEN)  
SAFE OPERATING AREA (MAX20812)  
(VDDH = 5V, fSW = 1MHz, VLDOIN = OPEN)  
(200LFM AIR FLOW, NO HEATSINK, 2 PHASE)  
(NO AIR FLOW, NO HEATSINK, 2 PHASE)  
(400LFM AIR FLOW, NO HEATSINK, 2 PHASE)  
toc13  
toc14  
toc15  
14  
12  
10  
8
14  
12  
10  
8
14  
12  
10  
8
6
6
6
VOUT = 0.8V  
VOUT = 1.2V  
VOUT = 1.8V  
VOUT = 3.3V  
VOUT = 5.0V  
VOUT = 0.8V  
VOUT = 1.2V  
VOUT = 1.8V  
VOUT = 3.3V  
VOUT = 5.0V  
4
4
4
VOUT = 0.8V  
VOUT = 1.2V  
VOUT = 1.8V  
VOUT = 3.3V  
2
2
2
0
0
0
75  
85  
95  
105  
115  
125  
75  
85  
95  
105  
115  
125  
75  
85  
95  
105  
115  
125  
AMBIENT TEMPERATURE (°C)  
AMBIENT TEMPERATURE (°C)  
AMBIENT TEMPERATURE (°C)  
STARTUP  
(SINGLE-PHASE OPERATION)  
(IOUT1 = 6A)  
SAFE OPERATING AREA (MAX20812)  
(VDDH = 5V, fSW = 1MHz, VLDOIN = OPEN)  
SAFE OPERATING AREA (MAX20812)  
(VDDH = 5V, fSW = 1MHz, VLDOIN = OPEN)  
(NO AIR FLOW, NO HEATSINK, 2 PHASE)  
(200LFM AIR FLOW, NO HEATSINK, 2 PHASE)  
toc18  
toc17  
toc16  
14  
12  
10  
8
14  
12  
10  
8
200mV/div  
2V/div  
2V/div  
EN1  
PGOOD1  
6
6
4
4
VOUT1  
VOUT = 0.8V  
VOUT = 1.2V  
VOUT = 1.8V  
VOUT = 3.3V  
VOUT = 0.8V  
VOUT = 1.2V  
VOUT = 1.8V  
VOUT = 3.3V  
2
2
LX1  
10V/div  
0
0
75  
85  
95  
105  
115  
125  
75  
85  
95  
105  
115  
125  
500μs/div  
AMBIENT TEMPERATURE (°C)  
AMBIENT TEMPERATURE (°C)  
www.maximintegrated.com  
Maxim Integrated | 7  
MAX20812  
Dual-Output, 6A, 3MHz, 2.7V to 16V, Step-Down  
Switching Regulator  
PRE-BIASED STARTUP  
(SINGLE-PHASE OPERATION)  
SHUTDOWN  
(SINGLE-PHASE OPERATION)  
(IOUT1 = 3A)  
OUTPUT VOLTAGE RIPPLE  
(SINGLE-PHASE OPERATION)  
(OUT1 = 1.0V, 1MHz; OUT2 = 1.8V, 2MHz)  
(VPREBIAS = 0.5V)  
toc19  
toc22  
toc25  
toc20  
toc21  
200mV/div  
2V/div  
VOUT1  
EN1  
VOUT1  
20mV/div  
500mV/div  
2V/div  
EN1  
2V/div  
10V/div  
PGOOD1  
LX1  
VOUT1  
2V/div  
PGOOD1  
LX1  
VOUT2  
20mV/div  
LX1  
10V/div  
LX2  
10V/div  
10V/div  
500μs/div  
2μs/div  
1μs/div  
OUTPUT VOLTAGE RIPPLE  
(DCM OPERATION)  
(VOUT = 1.8V, IOUT = 100mA)  
LOAD-TRANSIENT RESPONSE  
(SINGLE-PHASE OPERATION)  
(VOUT1 = 1.0V, 1A TO 6A, 10A/μs)  
CURRENT BALANCE  
(DUAL-PHASE OPERATION)  
(IOUT = 0A to 8A LOAD TRANSIENT)  
toc24  
toc23  
VOUT  
50mV/div  
VOUT  
100mV/div  
1
VOUT1  
20mV/div  
5A/div  
2A/div  
2A/div  
ILX2  
ILX1  
IOUT1  
LX1  
5V/div  
5A/div  
IOUT  
100μs/div  
20μs/div  
4μs/div  
POSITIVE OVERCURRENT PROTECTION  
(SINGLE-PHASE OPERATION)  
(VOUT1 = 1.2V, fSW1 = 1MHz, POCP = 9A)  
CURRENT BALANCE  
(DUAL-PHASE OPERATION)  
(IOUT = 8A to 0A LOAD TRANSIENT)  
BODE PLOT  
(SINGLE-PHASE OPERATION)  
(VOUT1 = 1.8V, IOUT1 = 6A, fSW1 = 2MHz)  
toc27  
toc26  
100  
80  
200  
160  
120  
80  
VOUT1  
VOUT  
50mV/div  
PHASE MARGIN = 59°  
60  
500mV/div  
5A/div  
40  
20  
40  
ILX1  
ILX2  
0
0
ILX1  
-20  
-40  
-60  
-80  
-100  
-40  
-80  
-120  
-160  
-200  
2A/div  
2A/div  
BANDWIDTH = 208kHz  
PGOOD1  
GAIN MARGIN = 14dB  
2V/div  
IOUT  
LX1  
10V/div  
5A/div  
10  
100  
FREQUENCY (kHz)  
1000  
4μs/div  
200μs/div  
POCP HICCUP AND AUTO-RETRY  
(SINGLE-PHASE OPERATION)  
(VOUT1 = 1.2V, fSW1 = 1MHz, POCP = 9A)  
toc28  
VOUT1  
500mV/div  
5A/div  
ILX1  
PGOOD1  
2V/div  
LX1  
10V/div  
10ms/div  
www.maximintegrated.com  
Maxim Integrated | 8  
MAX20812  
Dual-Output, 6A, 3MHz, 2.7V to 16V, Step-Down  
Switching Regulator  
Pin Configuration  
21  
18  
20  
19  
1
17  
V
DDH2  
V
DDH1  
PGND2  
2
16  
PGND1  
EN2  
PGOOD1  
PGM2  
3
4
5
6
15  
14  
13  
12  
V
CC  
MAX20812  
PGOOD2  
PGM1  
EN1  
PGM0  
7
8
9
10  
11  
(TOP VIEW)  
Pin Descriptions  
PIN  
NAME  
FUNCTION  
and V should be connected on the PCB.  
1
V
Regulator Input Supply for OUTPUT2. V  
DDH1  
DDH2  
DDH2  
2
PGND2  
EN2  
Power Ground. PGND1 and PGND2 should be connected on the PCB.  
Output Enable for OUTPUT2.  
3
4
PGOOD1 Open-Drain Power-Good Output for OUTPUT1.  
5
PGM2  
PGM0  
Program Input. Connect this pin to ground though a programming resistor.  
Program Input. Connect this pin to ground though a programming resistor.  
6
OUTPUT2 Voltage Sense Feedback Pin. Connect SNSP2 to V  
at the load. A resistive voltage-  
OUT2  
7
8
SNSP2  
AVDD  
divider can be inserted between the output and SNSP2 to regulate the output above the 0.5V fixed  
reference voltage. Connect SNSP2 to AVDD to select dual-phase operation.  
1.8V Supply for Analog Circuitry. Connect a 2.2Ω to 4.7Ω resistor from AVDD to V . Connect a 1μF or  
CC  
greater ceramic capacitor from AVDD to AGND.  
Optional 2.5V to 5.5V LDO Input Supply. Connect this pin to AVDD or GND, or leave this pin floating if  
unused.  
9
LDOIN  
AGND  
10  
Analog Ground.  
OUTPUT1 Voltage Sense Feedback Pin. Connect SNSP1 to V  
at the load. A resistive voltage-  
OUT1  
11  
12  
SNSP1  
EN1  
divider can be inserted between the output and SNSP1 to regulate the output above the 0.5V fixed  
reference voltage.  
Output Enable for OUTPUT1.  
www.maximintegrated.com  
Maxim Integrated | 9  
MAX20812  
Dual-Output, 6A, 3MHz, 2.7V to 16V, Step-Down  
Switching Regulator  
13  
14  
15  
16  
17  
18  
19  
20  
21  
PGM1  
Program Input. Connect this pin to ground though a programming resistor.  
PGOOD2 Open-Drain Power-Good Output for OUTPUT2.  
V
Internal 1.8V LDO Output. Connect a 2.2μF or greater ceramic capacitor from V  
to PGND.  
CC  
CC  
PGND1  
Power Ground. PGND1 and PGND2 should be connected on the PCB.  
V
Regulator Input Supply for OUTPUT1. V  
and V  
should be connected on the PCB.  
DDH1  
DDH1  
DDH2  
BST1  
LX1  
Bootstrap Pin for OUTPUT1. Connect a 0.22μF ceramic capacitor from BST1 to LX1.  
Switching Node of OUTPUT1. Connect LX1 directly to the output inductor.  
Switching Node of OUTPUT2. Connect LX2 directly to the output inductor.  
Bootstrap Pin for OUTPUT2. Connect a 0.22μF ceramic capacitor from BST2 to LX2.  
LX2  
BST2  
www.maximintegrated.com  
Maxim Integrated | 10  
MAX20812  
Dual-Output, 6A, 3MHz, 2.7V to 16V, Step-Down  
Switching Regulator  
Block Diagram  
PGOOD1  
EN2  
PGOOD2  
AVDD  
V
CC  
EN1  
CLOCK  
DIGITAL CORE  
OTP BANK  
LDO  
LDOIN  
TO ANALOG/  
PGM0  
PGM1  
PGM2  
DIGITAL CORE  
TO  
GATE  
DRIVE  
RADC  
FAULT  
DETECT  
BST1  
BST  
SNSP1  
CONTROLLER  
1
V
DDH1  
MODULATOR  
1
HS  
PWM  
DRIVER  
LOGIC  
OVP  
PGOOD  
LX1  
IRECON  
LS  
DRIVER  
PGND1  
ZERO  
CROSS  
OVP  
PGOOD  
FAULT  
DETECT  
BST2  
BST  
SNSP2  
AGND  
CONTROLLER  
2
V
DDH2  
MODULATOR  
2
HS  
PWM  
DRIVER  
LOGIC  
BANDGAP  
CORE  
LX2  
IRECON  
LS  
DRIVER  
BIAS  
PGND2  
ZERO  
CROSS  
MAX20812  
Detailed Description  
Dual-Output or Dual-Phase Operation  
The MAX20812 by default is configured as a dual-output step-down regulator. This device has two independent control  
loops for the two outputs, and the loop parameters can be independently selected.  
This device can also each be configured as a single output, dual-phase 12A converter by connecting the SNSP2 pin to  
AVDD. When configured to dual-phase operation, only the control loop for OUTPUT1 will work, and the control loop for  
OUTPUT2 is bypassed. EN1 and PGOOD1 are used in dual-phase operation mode to enable the device and indicate  
power-good status. EN2 and PGOOD2 can be disconnected.  
www.maximintegrated.com  
Maxim Integrated | 11  
MAX20812  
Dual-Output, 6A, 3MHz, 2.7V to 16V, Step-Down  
Switching Regulator  
Control Architecture  
Fixed-Frequency, Peak Current-Mode Control Loop  
The MAX20812 control loops are based on fixed-frequency, peak current-mode control architecture. A simplified control  
architecture is shown in Figure 1. Each loop contains an error amplifier stage, internal voltage loop compensation network,  
current sense, internal slope compensation, and a PWM modulator that generates the PWM signals to drive high-side  
and low-side MOSFETs. The device has a fixed 0.5V reference voltage (V  
). The difference of V  
and the sensed  
REF  
REF  
) is used as the input of the voltage loop  
output voltage is amplified by the first error amplifier. Its output voltage (V  
ERR_  
compensation network. The output of the compensation network (V  
) is fed to a PWM comparator with the current-  
COMP_  
). The output of the PWM comparator is the input of the PWM  
sense signal (V  
) and slope compensation (V  
RAMP_  
ISENSE_  
modulator. The turning on of the high-side MOSFET is aligned with an internal clock. It can either be a fixed-frequency  
clock or a phase-shifted clock if AMS is enabled.  
AMS_ENABLE  
CLOCK  
FIXED_CLK  
AMS_CLK  
PWM  
MODULATOR  
V
REF  
VOLTAGE LOOP  
COMPENSATION  
NETWORK  
V
V
COMP_  
ERR_  
V
SNSP_  
V
ISENSE_  
 
V
RAMP_  
Figure 1. Simplified Control Architecture  
Advanced Modulation Scheme (AMS)  
The MAX20812 offers a selectable AMS to provide improved dynamic load-transient response. AMS provides a significant  
advantage over conventional fixed-frequency PWM schemes. Enabling the AMS feature allows for modulation at both  
leading and trailing edges, which results in a fast switching response during large load transients. Figure 2 shows the  
scheme to include leading-edge modulation to the traditional trailing-edge modulation when AMS is enabled in the device.  
The modulation scheme allows the turn on and off with minimal delay. Since the total inductor current increases very  
quickly, thus satisfying the load demand, the current drawn from the output capacitors is reduced. With AMS enabled, the  
system closed-loop bandwidth can be extended without phase-margin penalty. As a result, the output capacitance can  
be minimized.  
www.maximintegrated.com  
Maxim Integrated | 12  
 
MAX20812  
Dual-Output, 6A, 3MHz, 2.7V to 16V, Step-Down  
Switching Regulator  
FIXED_CLK  
-V  
ERR_  
AMS_RAMP  
INTERMEDIATE_AMS_CLK  
AMS_CLK  
Figure 2. AMS Operation  
Discontinuous Current Mode (DCM) Operation  
Discontinuous current mode (DCM) operation can be enabled to improve light-load efficiency. V  
must be at least 2V  
DDH  
higher than the desired V  
for the device to operate in DCM. The device has a DCM current-detection comparator to  
OUT  
monitor the inductor valley current while operating in CCM. At light load, if the inductor valley current is below the DCM  
comparator threshold for 48 consecutive cycles, the device transitions seamlessly to DCM. Once in DCM, the switching  
frequency decreases as load decreases. The MAX20812 transitions back to CCM operation as soon as the inductor valley  
current is higher than 100mA.  
Active Current Balancing  
When configured to dual-phase operation, the MAX20812 operates with active current balancing for enhanced dynamic-  
current sharing or balancing between two phase currents. This feature maintains the current balance during load  
transients, even at a load-step frequency close to the switching frequency or its harmonics. The active current-balancing  
circuit adjusts the individual phase-current control signal in order to minimize the phase-current imbalance.  
Internal Linear Regulator  
The MAX20812 contains an internal 1.8V linear regulator. The 1.8V voltage on V  
is derived from the V  
pin by  
DDH1  
CC  
default. To improve efficiency, it is recommended to apply an external 2.5V to 5.5V bias input supply on the LDOIN pin  
so that the 1.8V voltage on V is converted from the LDOIN pin instead. The LDOIN pin can be connected to the output  
CC  
voltage if the output voltage falls within the 2.5V to 5.5V range. The optional LDOIN bias input supply can be applied or  
removed anytime during regulation without affecting regulation.  
The 1.8V voltage on the V  
pin supplies the current to the MOSFET drivers of both outputs. A decoupling capacitor of  
CC  
at least 2.2μF must be connected between V  
and PGND. The AVDD pin of the MAX20812 also requires a 1.8V supply  
CC  
to power the device’s internal analog circuitry. A 2.2Ω to 4.7Ω resistor must be connected between AVDD and V . A  
CC  
1μF or greater decoupling capacitor must be used between AVDD and AGND.  
Startup and Shutdown  
The startup and shutdown timing is shown in Figure 3. When the AVDD pin voltage is above its rising UVLO threshold,  
the device goes through an initialization procedure. The dual-output or dual-phase operation is detected. Configuration  
resistors on the PGM_ pins are read. Once initialization is complete, the device detects the V  
UVLO and EN_ status.  
DDH  
When both are above their rising thresholds, soft-start begins and switching is enabled. The output voltage of the enabled  
output starts to ramp up. The soft-start ramp time is 3ms. If there are no faults, the open-drain PGOOD_ pin is released  
from being held low after the soft-start ramp is complete. The device supports smooth startup with the output pre-biased.  
www.maximintegrated.com  
Maxim Integrated | 13  
 
MAX20812  
Dual-Output, 6A, 3MHz, 2.7V to 16V, Step-Down  
Switching Regulator  
During operation, if either V  
UVLO or EN_ falls below its threshold, switching is stopped immediately. The PGOOD_  
DDH  
pin is driven low. The output voltage is discharged by the load current.  
V
DDH  
V
CC  
AND AVDD  
EN_  
t
INIT  
t
SS  
t
EN_FALLING_DELAY  
V
OUT_  
(PRE-BIASED)  
INTERNAL  
SOFT-START RAMP  
t
EN_RISING_DELAY  
PGOOD_  
LX_  
t
t
t
t
= 800µs  
INIT  
= 200µs  
EN_RISING_DELAY  
= 3ms  
SS  
= 2µs  
EN_FALLING_DELAY  
Figure 3. Startup and Shutdown Timing  
Fault Handling  
Input Undervoltage Lockout (V  
UVLO)  
DDH  
The MAX20812 internally monitors V  
with a UVLO circuit. When the input supply voltage is below the UVLO threshold,  
DDH  
the device stops switching and drives the PGOOD_ pin low. The device restarts after 20ms hiccup protection time if the  
UVLO status is cleared. See the Startup and Shutdown section for the startup sequence.  
V
DDH  
Output Overvoltage Protection (OVP)  
The feedback voltage on SNSP_ is monitored for overvoltage once the soft-start ramp is complete. If the feedback voltage  
is above the OVP threshold beyond the OVP deglitch filtering delay, the device stops switching and drives the PGOOD_  
pin low. The device restarts after 20ms hiccup protection time if the OVP status is cleared. When configured to dual-  
output operation, the OVP of one output does not affect the operation of the other output.  
Positive Overcurrent Protection (POCP)  
The device’s peak current mode control architecture provides inherent current limiting and short-circuit protection. The  
inductor current is continuously monitored while switching. The inductor peak current is limited on a cycle-by-cycle basis.  
In each switching cycle, once the sensed inductor current exceeds the POCP threshold, the device turns off the high-side  
MOSFET and turns on the low-side MOSFET to allow the inductor current to be discharged by output voltage. An up-  
down counter is used to accumulate the number of consecutive POCP events each switching cycle. If the counter exceeds  
www.maximintegrated.com  
Maxim Integrated | 14  
MAX20812  
Dual-Output, 6A, 3MHz, 2.7V to 16V, Step-Down  
Switching Regulator  
1024, the device stops switching and drives the PGOOD_ pin low. The device restarts after 20ms hiccup protection time.  
When configured to dual-output operation, the POCP of one output does not affect the operation of the other output.  
The MAX20812 offers two POCP thresholds (9A and 6A) for each output, which can be selected by the PGM1 and PGM2  
pins (see Pin-Strap Programmability). Due to POCP deglitch delay, for a specific application use case, the actual POCP  
threshold should be higher (see Output Inductor Selection).  
Negative Overcurrent Protection (NOCP)  
The device also has negative overcurrent protection against inductor valley current. The NOCP threshold is -83% of the  
POCP threshold. In each switching cycle, once the sensed inductor current exceeds the NOCP threshold, the device  
turns off the low-side MOSFET and turns on the high-side MOSFET for a fixed 180ns time to allow the inductor current  
to be charged by input voltage. Same as the POCP, an up-down counter is used to accumulate the number of consecutive  
NOCP events. If the counter exceeds 1024, the device stops switching and drives the PGOOD_ pin low. The device  
restarts after 20ms hiccup protection time. When configured to dual-output operation, the NOCP of one output does not  
affect the operation of the other output.  
Overtemperature Protection (OTP)  
The overtemperature protection threshold is +155°C with 20°C hysteresis. If the junction temperature reaches the OTP  
threshold during operation, the device stops switching and drives the PGOOD_ pin low. The device restarts if the OTP  
status is cleared.  
Pin-Strap Programmability  
The MAX20812 has three program pins (PGM0, PGM1, and PGM2) to set some of the key configurations of the device.  
A pin-strap resistor is connected from the PGM_ pin to AGND, and its value is read during startup initialization. PGM0  
selects the common settings that apply to both outputs (AMS and switching frequencies). When the device is configured  
to dual-output operation, PGM1 selects the POCP and internal compensation parameters of OUTPUT1; PGM2 selects  
the POCP and internal compensation parameters of OUTPUT2. When the device is configured to dual-phase operation,  
the POCP and internal compensation parameters are selected only by PGM1. See the Internal Compensation Selection  
section for information about how to select the compensation parameters for optimized control loop performance.  
Table 1. PGM0 Switching Frequency, AMS, and DCM Selections  
PGM0  
CODES  
R
(Ω)  
95.3  
200  
309  
f
f
SW1  
SW2  
AMS  
DCM  
(kHz)  
500  
500  
(kHz)  
500  
1000  
750  
0
1
2
750  
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
422  
536  
649  
768  
750  
1500  
500  
1000  
2000  
750  
1500  
1000  
2000  
3000  
500  
1000  
750  
1500  
500  
1000  
2000  
750  
1000  
1000  
1000  
1500  
1500  
2000  
2000  
3000  
500  
500  
750  
750  
1000  
1000  
1000  
1500  
Disable  
909  
1050  
1210  
1400  
1620  
1870  
2150  
2490  
2870  
3740  
8060  
12400  
16900  
Disable  
Enable  
www.maximintegrated.com  
Maxim Integrated | 15  
 
MAX20812  
Dual-Output, 6A, 3MHz, 2.7V to 16V, Step-Down  
Switching Regulator  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
21500  
26100  
30900  
36500  
42200  
48700  
56200  
64900  
75000  
86600  
100000  
115000  
1500  
2000  
2000  
3000  
500  
1500  
1000  
2000  
3000  
500  
1000  
750  
500  
1000  
1500  
2000  
3000  
500  
750  
1000  
1000  
1500  
2000  
3000  
Enable  
Table 2. PGM1 Configurations for OUTPUT1 or Dual-Phase Operation  
VOLTAGE  
LOOP GAIN  
MULTIPLIER 1  
PGM1  
CODES  
R
(Ω)  
POCP1  
(A)  
SLOPE1  
(μA)  
0
1
2
3
4
5
6
7
95.3  
200  
309  
422  
536  
649  
768  
909  
1.5  
2.6  
3.7  
6.0  
7.0  
8.0  
1.5  
2.6  
3.7  
6.0  
7.0  
8.0  
1.5  
2.6  
3.7  
6.0  
7.0  
8.0  
1.5  
2.6  
3.7  
6.0  
7.0  
1.5  
2.6  
7.0  
1.5  
2.6  
7.0  
1.5  
2.6  
7.0  
0.4  
0.7  
8
9
1050  
1210  
1400  
1620  
1870  
2150  
2490  
2870  
3740  
8060  
12400  
16900  
21500  
26100  
30900  
36500  
42200  
48700  
56200  
64900  
75000  
86600  
100000  
115000  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
9
1
1.5  
0.4  
0.7  
1
6
www.maximintegrated.com  
Maxim Integrated | 16  
MAX20812  
Dual-Output, 6A, 3MHz, 2.7V to 16V, Step-Down  
Switching Regulator  
Table 3. PGM2 Configurations for OUTPUT2  
PGM2  
CODES  
0
R
POCP2  
(A)  
VOLTAGE LOOP GAIN  
MULTIPLIER 2  
SLOPE2  
(μA)  
1.5  
2.6  
3.7  
6.0  
7.0  
8.0  
1.5  
2.6  
3.7  
6.0  
7.0  
8.0  
1.5  
2.6  
3.7  
6.0  
7.0  
8.0  
1.5  
2.6  
3.7  
6.0  
7.0  
1.5  
2.6  
7.0  
1.5  
2.6  
7.0  
1.5  
2.6  
7.0  
(Ω)  
95.3  
1
200  
2
3
4
5
6
7
8
9
309  
422  
536  
649  
768  
909  
0.4  
0.7  
1050  
1210  
1400  
1620  
1870  
2150  
2490  
2870  
3740  
8060  
12400  
16900  
21500  
26100  
30900  
36500  
42200  
48700  
56200  
64900  
75000  
86600  
100000  
115000  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
9
1
1.5  
0.4  
0.7  
1
6
Reference Design Procedure  
Output Voltage Sensing  
The MAX20812 has an internal 0.5V reference voltage. When the desired output voltage is higher than 0.5V, it is required  
to use resistor-dividers R and R to sense the output voltage (see the Typical Application Circuits). It is  
FB1  
recommended that the value R  
FB2  
does not exceed 5kΩ. The resistor-divider ratio is given by the following equation:  
FB2  
R
R
FB1  
V
= V  
1+  
OUT  
REF  
FB2   
where:  
V
V
= Output voltage  
OUT  
REF  
= 0.5V fixed reference voltage  
= Top resistor-divider  
R
FB1  
www.maximintegrated.com  
Maxim Integrated | 17  
MAX20812  
Dual-Output, 6A, 3MHz, 2.7V to 16V, Step-Down  
Switching Regulator  
R
FB2  
= Bottom resistor-divider  
Switching Frequency Selection  
The MAX20812 offers a wide range of selectable switching frequencies from 500kHz to 3MHz. Switching frequency  
selection can be optimized for different applications. Higher switching frequencies are recommended for applications  
prioritizing solution size so that the value and size of output LC filter can be reduced. Lower switching frequencies are  
recommended for applications prioritizing efficiency and thermal dissipation due to reduced switching losses. The  
frequency must be selected so that the minimum controllable on-time and minimum controllable off-time are not violated.  
The maximum recommended switching frequency is calculated by the following equation:  
V
V
V  
OUT  
DDHMIN OUT  
f
= MIN  
,
SWMAX  
t
V  
t
V  
ONMIN  
DDHMAX OFFMIN  
DDHMIN   
where:  
f
= Maximum selectable switching frequency  
SWMAX  
V
V
= Maximum input voltage  
= Minimum input voltage  
DDHMAX  
DDHMIN  
t
t
= Minimum controllable on-time  
= Minimum controllable off-time  
ONMIN  
OFFMIN  
Due to system noise injection, even at steady-state operation, typically the LX rising and falling edges would have some  
random jittering noise. The selection of the switching frequency (f ) should take into consideration the jittering and be  
SW  
. To improve the LX jittering, it is recommended to use smaller inductor values and lower voltage loop  
lower than f  
SWMAX  
gain to minimize the noise sensitivity.  
Output Inductor Selection  
The output inductor has an important influence on the overall size, cost, and efficiency of the voltage regulator. Since the  
inductor is typically one of the larger components in the system, a minimum inductor value is particularly important in  
space-constrained applications. Smaller inductor values also permit faster transient response, reducing the amount of  
output capacitance needed to maintain transient tolerance.  
To improve current loop noise immunity, typically the output inductor is selected so that the inductor current ripple is at  
least 1A. The inductor value is calculated by the following equation:  
V
(V  
V  
)
OUT DDH  
OUT  
L =  
V
I  
f  
DDH RIPPLE SW  
where:  
V
DDH  
= Input voltage  
I
= Inductor current ripple peak-to-peak value  
RIPPLE  
The inductor should also be selected so that maximum load current delivery can be guaranteed by the selected POCP  
threshold. The MAX20812 offers two POCP thresholds (9A and 6A) for each output, which can be selected by the PGM1  
and PGM2 pins (see Pin-Strap Programmability). Due to deglitch delay from the POCP comparator tripping to the high-  
side MOSFET turning off for a specific application use case, the adjusted POCP threshold should take into consideration  
the inductor value, input voltage, and output voltage, which can be calculated by the following equation:  
(V  
V  
)t  
DDH  
OUT POCP  
POCP  
= POCP +  
ADJUST  
L
where:  
POCP  
= Adjusted POCP threshold  
ADJUST  
www.maximintegrated.com  
Maxim Integrated | 18  
 
MAX20812  
Dual-Output, 6A, 3MHz, 2.7V to 16V, Step-Down  
Switching Regulator  
POCP = POCP level specified in the Electrical Characteristics table  
= POCP deglitch delay (36ns, typ)  
t
POCP  
It needs to be verified that the peak inductor current in normal operation does not exceed the minimum adjusted POCP  
threshold:  
I
I
RIPPLE  
OUTMAX  
+
POCP  
ADJUST(MIN)  
N
2
where:  
N = Number of phases  
I
= Maximum load current  
OUTMAX  
POCP  
= Minimum adjusted POCP threshold, calculated with the minimum value of the POCP threshold  
ADJUST(MIN)  
Table 4 shows some suitable inductor part numbers which are verified on the MAX20812 evaluation (EV) kit to offer  
optimal performance.  
Table 4. Recommended Inductors  
VALUE  
(μH)  
0.22  
0.33  
0.47  
0.56  
1.0  
I
R
(mΩ)  
8
FOOTPRINT  
(mm)  
HEIGHT  
(mm)  
1.2  
SAT  
(A)  
9
8.4  
26  
22.2  
16.5  
10  
DC  
COMPANY  
PART NUMBER  
TDK  
TDK  
Pulse  
Pulse  
Pulse  
Pulse  
2.5 × 2.0  
3.2 × 2.5  
5.5 × 5.3  
5.5 × 5.3  
5.5 × 5.3  
5.5 × 5.3  
TFM252012ALMAR22MTAA  
TFM322512ALMAR33MTAA  
PA5003.471NLT  
PA5003.561NLT  
PA5003.102NLT  
10  
1.2  
2.9  
2.9  
2.9  
3.75  
4.05  
6.9  
2.2  
13.2  
2.9  
PA5003.222NLT  
Output Capacitor Selection  
One major factor in determining the total required output capacitance is the output-voltage ripple. To meet the output-  
voltage ripple requirement, the minimum output capacitance should satisfy the following equation:  
I
RIPPLE  
C
OUT  
8Nf  
(V  
ESRI  
)
RIPPLE  
SW  
OUTRIPPLE  
where:  
V
= Maximum allowed output-voltage ripple  
OUTRIPPLE  
ESR = ESR of output capacitors  
The other important factors in determining the total required output capacitance are the maximum allowable output voltage  
overshoot and undershoot during load transients. For a given loading or unloading current step, the minimum required  
output capacitance can be estimated by the following equation:  
2
2
I
I
RIPPLE  
I  
N
I  
N
RIPPLE  
2
+
L N  
V  
+
LN  
2
C
MAX  
,
OUT  
2 V  
V  
(
2 V  
V  
)
OUT  
DDH  
OUT  
OUT OUT  
where:  
= Output capacitance  
C
OUT  
www.maximintegrated.com  
Maxim Integrated | 19  
MAX20812  
Dual-Output, 6A, 3MHz, 2.7V to 16V, Step-Down  
Switching Regulator  
I = Loading or unloading current step  
V  
OUT  
= Maximum allowed output voltage undershoot or overshoot  
Input Capacitor Selection  
The input capacitance selection is determined by the input voltage ripple requirement. The V  
and V pins of the  
DDH2  
DDH1  
MAX20812 should be connected on the PCB. When configured to dual-output operation, the input capacitance is shared  
between the two outputs. The minimum required input capacitance is estimated by the following equation:  
I
V  
I
V  
OUT2(MAX) OUT2  
OUT1(MAX)  
OUT1  
C
MAX  
,
IN  
f
V  
V  
f
V  
V  
SW1  
DDH  
INPP SW2  
DDH INPP  
where:  
C
IN  
= Input capacitance  
I
= Maximum output current of OUTPUT_  
= Output voltage of OUTPUT_  
OUT_(MAX)  
V
OUT_  
f
= Switching frequency of OUTPUT_  
SW_  
V
INPP  
= Peak-to-peak input voltage ripple  
When configured to dual-phase operation, the minimum required input capacitance is estimated by the following equation:  
I
V  
OUT  
OUT(MAX)  
C
IN  
2f  
V  
V  
INPP  
SW  
Besides the minimum required input capacitance, it is also required to place 0.1μF and 1μF high-frequency decoupling  
capacitors next to each V pin to suppress the high-frequency switching noises.  
DDH  
DDH_  
Internal Compensation Selection  
Voltage Loop Gain  
For stability purposes, it is recommended that the voltage loop bandwidth (BW) be lower than 1/5 of the switching  
frequency. Consider the case of using MLCC output capacitors that have nearly ideal impedance characteristics in the  
frequency range of interest with negligible ESR and ESL. The voltage loop BW can be estimated using the following  
equation:  
R
R
VGA  
10kΩ  
FB2  
+ R  
N  
R
FB2  
FB1  
BW =  
2π 20mΩC  
OUT  
where:  
= The voltage loop gain resistance, which is set by the switching frequency and voltage loop gain multiplier selected  
R
VGA  
by PGM_ pin resistors (Table 5)  
Table 5. Voltage Loop Gain Resistance  
SWITCHING  
FREQUENCY  
(kHz)  
VOLTAGE  
LOOP GAIN  
MULTIPLIER  
R
(kΩ)  
VGA  
0.4  
0.7  
1
15.6  
27  
37  
500  
www.maximintegrated.com  
Maxim Integrated | 20  
 
MAX20812  
Dual-Output, 6A, 3MHz, 2.7V to 16V, Step-Down  
Switching Regulator  
1.5  
0.4  
0.7  
1
1.5  
0.4  
0.7  
1
1.5  
0.4  
0.7  
1
1.5  
0.4  
0.7  
1
52.2  
22  
31  
44.5  
62.3  
22  
750  
1000  
37  
52.2  
74.5  
27  
44.5  
62.3  
104.4  
31  
52.2  
74.5  
104.4  
1500  
2000 or 3000  
Slope Compensation  
1.5  
Slope compensation is applied to guarantee current loop stability when the duty cycle is higher than 50%. For applications  
where the duty cycle is smaller than 50%, it is also recommended to apply slope compensation to improve current loop  
noise immunity. The minimum and maximum slope compensation values are calculated using the following equation:  
V
V
f  
C  
I
I
RIPPLE  
1.6Ω  
1.6Ω  
OUT  
IN SW  
SLOPE  
OUTMAX  
C  
SLOPE   
800mV −  
+
SLOPE  
L
25  
V
N
2
25  
OUT  
where:  
C
= 5pF  
SLOPE  
The slope-compensation options of the MAX20812 can be selected by resistor values on PGM1 and PGM2. A higher  
slope value is recommended to help reduce duty cycle jittering and improve stability.  
Typical Reference Designs  
See the Typical Application Circuits for examples of reference schematics. Reference design examples for some common  
output voltages are shown in Table 6.  
Table 6. Reference Design Examples  
I
(A)  
PGM1 OR  
PGM2  
(kΩ)  
OUT  
(PER  
V
(V)  
f
R
(kΩ)  
R
(kΩ)  
PGM0  
(kΩ)  
L
(μH)  
C
(PER EACH  
IN  
OUT  
SW  
FB1  
FB2  
C
OUT  
(kHz)  
V
PIN)  
DDH  
PHASE)  
0.8  
0.9  
1.0  
1.2  
1.8  
3.3  
5.0  
6
6
6
6
6
5
4
750  
1.82  
2.40  
3.01  
4.22  
7.87  
16.9  
22.6  
3.01  
3.01  
3.01  
3.01  
3.01  
3.01  
2.49  
2.49  
8.06  
8.06  
8.06  
21.5  
30.9  
30.9  
2.49  
2.49  
2.49  
2.49  
2.49  
2.15  
100  
0.47  
0.47  
0.47  
0.56  
0.56  
1.0  
10μF +1μF +0.1μF  
10μF +1μF +0.1μF  
10μF +1μF +0.1μF  
10μF +1μF +0.1μF  
10μF +1μF +0.1μF  
10μF +1μF +0.1μF  
10μF +1μF +0.1μF  
3 × 47μF  
3 × 47μF  
3 × 47μF  
3 × 47μF  
2 × 47μF  
2 × 47μF  
1 × 47μF  
1000  
1000  
1000  
1500  
2000  
2000  
2.2  
www.maximintegrated.com  
Maxim Integrated | 21  
 
MAX20812  
Dual-Output, 6A, 3MHz, 2.7V to 16V, Step-Down  
Switching Regulator  
PCB Layout Guidelines  
For electrical and thermal reasons, the second layer from the top and bottom of the PCB should be reserved for power  
ground (PGND) planes.  
The input decoupling capacitor should be located the closest to the IC and no more than 40 mils from the VDDH_ pins.  
The VCC decoupling capacitors should be connected to PGND and placed as close as possible to VCC pin.  
An analog ground copper polygon or island should be used to connect all analog control-signal grounds. This “quiet”  
analog ground copper polygon or island should be connected to the PGND through a single connection close to the AGND  
pin. The analog ground can be used as a shield and ground reference for the control signals (PGM_ and SNSP_).  
The AVDD decoupling capacitors should be connected to AGND and placed as close as possible to AVDD pin.  
The boost capacitors should be placed as close as possible to LX_ and BST_ pins on the same side of the PCB as  
the IC.  
The feedback resistor-divider and optional external compensation network should be placed close to the IC to minimize  
the noise injection.  
The voltage sense line should be shielded by ground plane and be kept away from switching node and the inductor.  
Multiple vias are recommended for all paths that carry high currents and for heat dissipation.  
The input capacitors and output inductors should be placed near the IC and the traces to the components should be  
kept as short and wide as possible to minimize parasitic inductance and resistance.  
www.maximintegrated.com  
Maxim Integrated | 22  
MAX20812  
Dual-Output, 6A, 3MHz, 2.7V to 16V, Step-Down  
Switching Regulator  
Typical Application Circuits  
Dual-Output Operation  
www.maximintegrated.com  
Maxim Integrated | 23  
MAX20812  
Dual-Output, 6A, 3MHz, 2.7V to 16V, Step-Down  
Switching Regulator  
Dual-Phase Operation  
www.maximintegrated.com  
Maxim Integrated | 24  
MAX20812  
Dual-Output, 6A, 3MHz, 2.7V to 16V, Step-Down  
Switching Regulator  
Ordering Information  
PART NUMBER  
MAX20812AFH+  
MAX20812AFH+T  
MAX20812TAFH+*  
MAX20812TAFH+T*  
TEMPERATURE RANGE  
PIN-PACKAGE  
-40°C to +125°C  
-40°C to +125°C  
-40°C to +125°C  
-40°C to +125°C  
21 FC2QFN (exposed top)  
21 FC2QFN (exposed top)  
21 FC2QFN (closed top)  
21 FC2QFN (closed top)  
+Denotes a lead(Pb)-free/RoHS-compliant package.  
T = Tape and reel.  
*Future productcontact factory for availability.  
www.maximintegrated.com  
Maxim Integrated | 25  
MAX20812  
Dual-Output, 6A, 3MHz, 2.7V to 16V, Step-Down  
Switching Regulator  
Revision History  
REVISION  
NUMBER  
0
REVISION  
DATE  
PAGES  
CHANGED  
DESCRIPTION  
8/20  
Initial release  
Updated General Description, Benefits and Features, Electrical and Thermal Ratings,  
Absolute Maximum Ratings, Package Information, Electrical Characteristics table,  
Typical Operating Characteristics, Pin Configurations, Pin Descriptions, Block Diagrams,  
Detailed Description, Applications Information, Typical Application Circuits, Ordering  
Information table  
1, 39, 11, 13,  
1516, 1825  
1
3/21  
For pricing, delivery, and ordering information, please visit Maxim Integrated’s online storefront at https://www.maximintegrated.com/en/storefront/storefront.html.  
Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses  
are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits)  
shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.  
Maxim Integrated and the Maxim Integrated logo are trademarks of Maxim Integrated Products, Inc.  
©2021 Maxim Integrated Products, Inc.  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY