MAX2269EVKIT [MAXIM]

Evaluation Kit for the MAX2267/MAX2268/MAX2269 ; 评估板MAX2267 / MAX2268 / MAX2269\n
MAX2269EVKIT
型号: MAX2269EVKIT
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Evaluation Kit for the MAX2267/MAX2268/MAX2269
评估板MAX2267 / MAX2268 / MAX2269\n

文件: 总12页 (文件大小:400K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-1567; Rev 0, 1/00  
MAX2267/MAX2268/MAX2269 Evaluation Kits  
General Description  
____________________________Features  
Easy Evaluation of MAX2267/MAX2268/MAX2269  
+2.7V to +4.5V Single-Supply Operation  
The MAX2267/MAX2268/MAX2269 evaluation kits (EV  
kits) simplify evaluation of the MAX2267/MAX2268/  
MAX2269 power amplifiers (PAs), which are optimized  
for IS-98-based CDMA and PDC cellular phones oper-  
ating in the Japanese cellular frequency band. The kits  
enable testing of the devices’ RF performance and  
require no additional support circuitry. The EV kits’ sig-  
nal inputs and outputs use SMA connectors to facilitate  
the connection of RF test equipment.  
RF Input/Output Matched for 887MHz to 925MHz  
Operation  
All Matching Components Included  
Ordering Information  
PART  
TEMP. RANGE  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
IC PACKAGE  
16 TSSOP-EP*  
16 TSSOP-EP*  
16 TSSOP-EP*  
Each kit is assembled with the MAX2267, MAX2268, or  
MAX2269 and incorporates input and output matching  
components optimized for the 887MHz to 925MHz RF  
frequency band. These EV kits are capable of operat-  
ing at RF frequencies from 750MHz to 1000MHz, with  
the appropriate matching components.  
MAX2267EVKIT  
MAX2268EVKIT  
MAX2269EVKIT  
*Exposed paddle  
MAX2267 EV Kit Component List  
DESIGNATION QTY  
DESCRIPTION  
DESIGNATION QTY  
DESCRIPTION  
5.1pF 0.25pF ceramic capacitor (060ꢁ)  
Murata GRMꢁ9COG5R1C50  
22pF 5ꢀ ceramic capacitor (0402)  
Murata GRMꢁ6COG220J050 or  
Taiyo Yuden UMK105CM220JW  
C1  
1
Cꢁ0  
1
C2, C4, C6,  
C7, C9,  
C14, C17  
100pF 5ꢀ ceramic capacitors (0402)  
Murata GRMꢁ6COG101J50 or  
Taiyo Yuden UMK105CH101JW  
GND, VCC  
IN, OUT  
JU1, JU2  
L1  
2
2
2
1
Test points  
7
SMA connectors (PC edge mount)  
EFJohnson 142-0701-801  
0.01µF 5ꢀ ceramic caps (0402)  
Murata GRMꢁ6X7R10ꢁJ16 or  
Taiyo Yuden EMK105B10ꢁKW  
Cꢁ, C5, C8,  
C1ꢁ, C16  
ꢁ-pin headers  
5
1
ꢁ.ꢁnH 0.ꢁnH inductor (060ꢁ)  
Murata LQG11AꢁNꢁS00  
5.6nH 2ꢀ inductor  
Coilcraft 1606-6G  
12nH 5ꢀ inductor (060ꢁ)  
Murata LQG11A12NJ00  
ꢁ9nH 5ꢀ inductor (060ꢁ)  
Murata LQG11Aꢁ9NJ00  
7.5pF 0.1pF porcelain capacitor  
ATC 100A7R5BW150X  
C10  
L2  
Lꢁ  
L4  
L5  
1
1
1
1
4.7pF 0.1pF porcelain capacitor  
ATC 100A4R7FW150X, mounted with  
top side aligned six tick marks from  
zero (ruler located to the right of C11;  
Figure ꢁ)  
C11  
1
1.2nH 0.ꢁnH inductor (060ꢁ)  
Murata LQG11A1N2S00  
Not installed  
4.7pF 0.1pF ceramic capacitor (0402)  
Murata GRMꢁ9COG4R7B50V  
C12  
C15, C27–C29  
C18  
1
0
1
Q2  
R1, Rꢁ  
R2, R7  
R4  
0
2
2
1
1
1
1
1
2
1
1
Not installed  
51k5ꢀ resistors (060ꢁ)  
26.1k1ꢀ resistors (060ꢁ)  
7.5k1ꢀ resistor (060ꢁ)  
24.ꢁk1ꢀ resistor (060ꢁ)  
Not installed  
220pF 5ꢀ ceramic capacitor (060ꢁ)  
Murata GRMꢁ9COG221J050  
10µF 20ꢀ, 16V tantalum capacitor  
AVX TAJB106M016  
C19  
C20  
C21  
1
1
1
R5  
R6  
0.01µF 5ꢀ ceramic capacitor (060ꢁ)  
Murata GRMꢁ9X7R10ꢁJ50  
R8, R9, R10  
U1  
0resistors (060ꢁ)  
100pF 5ꢀ ceramic capacitor (060ꢁ)  
Murata GRMꢁ9COG101J50  
MAX2267EUE (16-pin TSSOP-EP)  
05ꢀ resistor (0402)  
Shunts (JU1, JU2)  
U2  
0.1µF 10ꢀ ceramic capacitors (060ꢁ)  
Murata GRMꢁ9X7R104K50V or  
Taiyo Yuden EMK107BJ104KA  
None  
None  
None  
C22–C25  
C26  
4
1
MAX226Y PC board  
MAX2267/8/9 data sheet  
470pF 5ꢀ ceramic capacitor (060ꢁ)  
Murata GRMꢁ9COHG471J50  
________________________________________________________________ Maxim Integrated Products  
1
For free samples and the latest literature, visit www.maxim-ic.com or phone 1-800-998-8800.  
For small orders, phone 1-800-835-8769.  
MAX2267/MAX2268/MAX2269 Evaluation Kits  
MAX2268 EV Kit Component List  
DESIGNATION QTY  
DESCRIPTION  
DESIGNATION QTY  
DESCRIPTION  
ꢁ.9pF 0.25pF ceramic capacitor (060ꢁ)  
Murata GRMꢁ9COGꢁR9C050  
22pF 5ꢀ ceramic cap (0402)  
Murata GRMꢁ6COG220J050 or  
Taiyo Yuden UMKIO5CH220JW  
C1  
1
Cꢁ0  
1
2
100pF 5ꢀ ceramic capacitors (0402)  
Murata GRMꢁ6COG101J50 or  
Taiyo Yuden UMK105CH101JW  
C2, C4, C6,  
C7, C9  
5
Test points  
Mouser 151-20ꢁ  
GND, VCC  
SMA connectors (PC edge mount)  
EF Johnson 142-0701-801  
0.01µF 5ꢀ ceramic capacitors (0402)  
Murata GRMꢁ6X7R10ꢁJ16 or  
Taiyo Yuden EMK105B10ꢁKW  
IN, OUT  
JU1, JU2  
L1  
2
2
1
Cꢁ, C5, C8  
ꢁ-pin headers  
5.6nH 0.ꢁnH inductor (060ꢁ)  
Murata LQG11A5N6S00  
0.01µF 20ꢀ high-Q ceramic cap  
ATC 200A10ꢁMW50  
C10  
C11  
1
1
5.6nH 2ꢀ inductor  
Coilcraft 1606-6G  
L2  
1
0
6.8pF 0.1pF porcelain capacitor  
ATC 100A6R8BW150X  
Lꢁ, L5  
Not installed  
C12–C18,  
C24, C25,  
C28, C29  
ꢁ9nH 5ꢀ inductor (060ꢁ)  
Murata LQG11Aꢁ9NJ00  
L4  
L6  
1
1
0
0
Not installed  
2.2nH 0.ꢁnH inductor (060ꢁ)  
Coilcraft 0402CS-2N2XJBG  
10µF 20ꢀ, 16V tantalum capacitor  
AVX TAJB106M016  
C19  
C20  
C21  
1
1
1
Q1, Q2, R4,  
R5, R6  
Not installed  
0.01µF 5ꢀ ceramic capacitor (060ꢁ)  
Murata GRMꢁ9X7R10ꢁJ50  
R1, Rꢁ  
R2  
2
1
1
2
1
0
2
1
1
51k5ꢀ resistors (060ꢁ)  
ꢁ0.1k1ꢀ resistor (060ꢁ)  
26.1k1ꢀ resistor (060ꢁ)  
0resistors (060ꢁ)  
100pF 5ꢀ ceramic capacitor (060ꢁ)  
Murata GRMꢁ9COG101J50  
R7  
R9, R10  
U1  
0.1µF 10ꢀ ceramic capacitors (060ꢁ)  
Murata GRMꢁ9X7R104K50V or  
Taiyo Yuden EMK107BJ104KA  
C22, C2ꢁ  
2
MAX2268EUE (16-pin TSSOP-EP)  
Not installed  
U2  
470pF 5ꢀ ceramic capacitor (060ꢁ)  
Murata GRMꢁ9COG471J50  
None  
None  
None  
Shunts (JU1, JU2)  
C26  
C27  
1
1
MAX226Y PC board  
ꢁ.ꢁpF 5ꢀ High-Q ceramic cap (0402)  
Taiyo Yuden EVK105CHꢁRꢁJW  
MAX2267/8/9 data sheet  
Component Suppliers  
SUPPLIER  
PHONE  
FAX  
WEB  
ATC  
516-622-4700  
80ꢁ-946-0690  
847-6ꢁ9-6400  
402-474-4800  
219-489-15ꢁꢁ  
800-8ꢁ1-9172  
408-24ꢁ-2111  
408-4ꢁꢁ-2225  
408-57ꢁ-4150  
516-622-4748  
80ꢁ-626-ꢁ12ꢁ  
847-6ꢁ9-1469  
402-474-4858  
219-489-2261  
814-2ꢁ8-0490  
408-24ꢁ-2410  
408-4ꢁ4-05ꢁ1  
408-57ꢁ-4159  
www.atceramics.com  
www.aux-corp.com  
www.coilcraft.com  
www.efjohnson.com  
www.kamaya.com  
www.murata.com  
www.cel.com  
AVX  
Coilcraft  
EFJohnson  
Kamaya  
Murata Electronics  
NEC  
ROHM  
www.rohm.com  
Taiyo Yuden  
www.t-yuden.com  
2
_______________________________________________________________________________________  
MAX2267/MAX2268/MAX2269 Evaluation Kits  
MAX2269 EV Kit Component List  
DESIGNATION QTY  
DESCRIPTION  
DESIGNATION QTY  
DESCRIPTION  
470pF 5ꢀ ceramic capacitor (060ꢁ)  
Murata GRMꢁ9COHG471J50  
5.1pF 0.25pF ceramic capacitor (060ꢁ)  
Murata GRMꢁ9COG5R1C50  
C26  
GND, VCC  
IN, OUT  
JU1, JU2  
L1  
1
2
2
2
1
C1  
1
Test points  
C2, C4, C6,  
C7, C9,  
C14, C17  
100pF 5ꢀ ceramic capacitors (0402)  
Murata GRMꢁ6COG101J50 or  
Taiyo Yuden UMK105CH101JW  
7
SMA connectors (PC edge mount)  
EFJohnson 142-0701-801  
0.01µF 5ꢀ ceramic capacitors (0402)  
Murata GRMꢁ6X7R10ꢁJ16 or  
Taiyo Yuden EMK105B10ꢁKW  
ꢁ-pin headers  
Cꢁ, C5, C8,  
C1ꢁ, C16  
5
1
ꢁ.ꢁnH 0.ꢁnH inductor (060ꢁ)  
Murata LQG11AꢁRꢁS00  
ꢁ.6pF 0.1pF porcelain capacitor  
ATC 100AꢁR6BW150X  
5.6nH 2ꢀ inductor  
Coilcraft 1606-6G  
C10  
C11  
L2  
Lꢁ  
L4  
L5  
L6  
Q2  
1
1
1
1
1
1
5.6pF 0.1pF porcelain capacitor  
ATC 100A5R6FW150X, mounted with  
top side aligned seven tick marks from  
zero (ruler located to the right of C11;  
Figure ꢁ)  
4.7nH 5ꢀ inductor (060ꢁ)  
Murata LQG11A4N7J00  
1
ꢁ9nH 5ꢀ inductor (060ꢁ)  
Murata LQG11Aꢁ9NJ00  
1.2nH 0.ꢁnH inductor (060ꢁ)  
Murata LQG11A1N2S00  
4.7pF 0.1pF ceramic capacitor (0402)  
Murata GRMꢁ9COG4R7B50V  
C12  
C15, C27–C29  
C18  
1
0
1
100nH 5ꢀ inductor (060ꢁ)  
Murata LQG11AR10J00  
Not installed  
220pF 5ꢀ ceramic capacitor (060ꢁ)  
Murata GRMꢁ9COG221J050  
Open collector inverter  
ROHM DTC14ꢁZE  
10µF 20ꢀ, 16V tantalum capacitor  
AVX TAJB106M016  
C19  
C20  
C21  
1
1
1
R1, Rꢁ  
R2, R7  
R4  
2
2
1
1
1
1
1
1
2
1
1
51k5ꢀ resistors (060ꢁ)  
26.1k1ꢀ resistors (060ꢁ)  
7.5k1ꢀ resistor (060ꢁ)  
24.ꢁk1ꢀ resistor (060ꢁ)  
10k5ꢀ resistor (060ꢁ)  
0resistors (060ꢁ)  
0.01µF 5ꢀ ceramic capacitor (060ꢁ)  
Murata GRMꢁ9X7R10ꢁJ50  
R5  
100pF 5ꢀ ceramic capacitor (060ꢁ)  
Murata GRMꢁ9COG101J50  
R6  
R8, R9, R10  
R11  
0.1µF 10ꢀ ceramic capacitors (060ꢁ)  
Murata GRMꢁ9X7R104K50V or  
Taiyo Yuden EMK107BJ104KA  
5105ꢀ resistor (060ꢁ)  
MAX2269EUE (16-pin TSSOP-EP)  
NEC UPG152TA  
C22–C25  
Cꢁ0  
4
1
U1  
U2  
22pF 5ꢀ ceramic capacitor (0402)  
Murata GRMꢁ6COG220T050 or  
Taiyo Yuden UMK105CH220JW  
None  
None  
None  
Shunts (JU1, JU2)  
MAX226Z PC board  
MAX2267/8/9 data sheet  
_______________________________________________________________________________________  
3
MAX2267/MAX2268/MAX2269 Evaluation Kits  
5) Connect a power sensor to the 20dB high-power  
__________________________Quick Start  
attenuator.  
These EV kits are fully assembled and factory-tested.  
6) Place the HIGH/LOW jumper (JU1) in the HIGH  
position and the ON/OFF jumper (JU2) in the ON  
position.  
Follow the instructions in the Connections and Setup  
section for proper device evaluation.  
Test Equipment Required  
This section lists the test equipment recommended to  
verify operation of the EV kits. It is intended as a guide only,  
and some substitutions are possible.  
7) Turn on the DC supply. The supply current should  
read approximately 90mA to 100mA.  
8) Activate the RF generator’s output. Set the RF gener-  
ator’s output to produce a reading of +27dBm on the  
power meter. Verify that the voltmeter reads +ꢁ.5V.  
Iteratively adjust the power supply’s output and the  
RF generator’s output to produce a +ꢁ.5V reading on  
the voltmeter and a reading of 27dBm on the power  
meter:  
• An RF signal generator capable of delivering at least  
+10dBm of output power at the operating frequency  
with CDMA modulation (HP E44ꢁꢁG, or equivalent)  
• An RF power sensor capable of handling at least  
+20dBm of output power at the operating frequency  
(HP 8482A, or equivalent)  
a) For the MAX2267, the supply current should  
increase to approximately 490mA.  
• A 20dB high-power attenuator  
• An RF power meter capable of measuring up to  
+20dBm of output power at the operating frequency  
(HP EPM-441A, or equivalent)  
• An RF spectrum analyzer capable of measuring ACPR  
and covering the MAX2267/MAX2268/MAX2269’s  
operating frequency range (Rhodes at Schwartz  
FSEA20, for example)  
b) For the MAX2268, the supply current should  
increase to approximately 420mA.  
c) For the MAX2269, the supply current should  
increase to approximately 480mA.  
9) For the MAX2267/MAX2269 EV kits:  
a) Adjust the RF generator’s output to -10dBm.  
Turn off the RF generator’s output.  
• A power supply capable of up to 1A at +2.7V to +5V  
• A high-impedance voltmeter for measuring the actual  
operating voltage  
b)Place the HIGH/LOW jumper (JU1) in the LOW  
position.  
• An ammeter for measuring the supply current (optional)  
• Two 50SMA cables  
c) The supply current reading should drop to  
approximately ꢁ4mA.  
• A network analyzer (HP 875ꢁD, for example) to mea-  
sure small-signal return loss and gain (optional)  
d)Activate the RF generator’s output.  
e) Adjust the RF generator’s output for a +17dBm  
power meter reading. Iteratively adjust the power  
supply’s output and the RF generator’s output to  
produce a reading of +ꢁ.5V on the voltmeter and  
a +17dBm reading on the power meter. The sup-  
ply current should increase to approximately  
120mA/90mA (MAX2267/MAX2269).  
Connections and Setup  
This section provides a step-by-step guide to operating  
the EV kits and testing the devices’ functions. Do not turn  
on the DC power or RF signal generator until all con-  
nections are made:  
1) Connect a 20dB high-power attenuator to the OUT  
SMA connector on the EV kit. This will prevent over-  
loading the power sensor and the power meter.  
_______________________ Layout Issues  
A good PC board is an essential part of an RF circuit  
design. The EV kit PC board can serve as a guide for  
laying out a board using the MAX2267/MAX2268/  
MAX2269. Keep traces carrying RF signals as short as  
possible to minimize radiation and insertion loss due to  
the PC board. Each VCC node on the PC board should  
have its own decoupling capacitor. This minimizes sup-  
ply coupling from one section of the IC to another. Using  
a star topology for the supply layout, in which each VCC  
node on the circuit has a separate connection to a cen-  
tral VCC node, can further minimize coupling between  
sections of the IC.  
2) Connect a DC supply set to +ꢁ.5V (through an  
ammeter if desired), and connect the voltmeter to the  
EV kit’s VCC and GND terminals.  
ꢁ) Connect an RF signal generator to the IN SMA con-  
nector. Set the generator for a 906MHz output fre-  
quency at a 0dBm power level.  
4) Connect the power sensor to the power meter.  
Calibrate the power sensor for 906MHz. Set the  
power meter offset to compensate the 20dB attenua-  
tor plus any cable loss (between 0.5dB and 2dB) and  
circuit board losses (approximately 0.1dB).  
4
_______________________________________________________________________________________  
MAX2267/MAX2268/MAX2269 Evaluation Kits  
Figure 1. MAX2267 EV Kit Schematic  
_______________________________________________________________________________________  
5
MAX2267/MAX2268/MAX2269 Evaluation Kits  
Figure 2. MAX2268 EV Kit Schematic  
6
_______________________________________________________________________________________  
MAX2267/MAX2268/MAX2269 Evaluation Kits  
Figure 3. MAX2269 EV Kit Schematic  
_______________________________________________________________________________________  
7
MAX2267/MAX2268/MAX2269 Evaluation Kits  
Figure 4. MAX2267/MAX2268 EV Kits—Component Placement  
Guide  
Figure 5. MAX2267/MAX2268 EV Kits PC Board Layout—  
Component Side  
Figure 6. MAX2267/MAX2268 EV Kits PC Board Layout—  
Ground Plane  
8
_______________________________________________________________________________________  
MAX2267/MAX2268/MAX2269 Evaluation Kits  
Figure 7. MAX2267/MAX2268 EV Kits PC Board Layout—  
Power Plane  
Figure 8. MAX2267/MAX2268 EV Kits PC Board Layout—  
Solder Side  
Figure 9. MAX2269 EV Kit—Component Placement Guide  
Figure 10. MAX2269 EV Kit PC Board Layout—Component  
Side  
_______________________________________________________________________________________  
9
MAX2267/MAX2268/MAX2269 Evaluation Kits  
Figure 11. MAX2269 EV Kit PC Board Layout—Ground Plane  
Figure 12. MAX2269 EV Kit PC Board Layout—Power Plane  
Figure 13. MAX2269 EV Kit PC Board Layout—Solder Side  
10 ______________________________________________________________________________________  
MAX2267/MAX2268/MAX2269 Evaluation Kits  
NOTES  
______________________________________________________________________________________ 11  
MAX2267/MAX2268/MAX2269 Evaluation Kits  
NOTES  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
12 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
© 2000 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

相关型号:

MAX22700D

Ultra-High CMTI Isolated Gate Drivers
MAXIM

MAX22700DASA

Ultra-High CMTI Isolated Gate Drivers
MAXIM

MAX22700E

Ultra-High CMTI Isolated Gate Drivers
MAXIM

MAX22700EASA

Ultra-High CMTI Isolated Gate Drivers
MAXIM

MAX22701DASA

Ultra-High CMTI Isolated Gate Drivers
MAXIM

MAX22701EASA

Ultra-High CMTI Isolated Gate Drivers
MAXIM

MAX22701EVKIT

2 EV Kits to Support 3 Output Options: GNDB, Miller Clamp, or Adjustable UVLO
MAXIM

MAX22702D

Ultra-High CMTI Isolated Gate Drivers
MAXIM

MAX22702DASA

Ultra-High CMTI Isolated Gate Drivers
MAXIM

MAX22702E

Ultra-High CMTI Isolated Gate Drivers
MAXIM

MAX22702EASA

Ultra-High CMTI Isolated Gate Drivers
MAXIM

MAX2291

Evaluation Kit
MAXIM