MAX25206 [MAXIM]

Versatile Automotive 60V/70V 2.2MHz Buck Controller with 7μA IQ and Optional Bypass Mode;
MAX25206
型号: MAX25206
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Versatile Automotive 60V/70V 2.2MHz Buck Controller with 7μA IQ and Optional Bypass Mode

文件: 总30页 (文件大小:1108K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Click here to ask about the production status of specific part numbers.  
MAX25206/MAX25207/  
MAX25208  
Versatile Automotive 60V/70V 2.2MHz Buck  
Controller with 7µA I and Optional Bypass  
Q
Mode  
General Description  
Benefits and Features  
The MAX25206/MAX25207/MAX25208 are automotive  
● Meets Stringent Automotive OEM Module Power  
Consumption and Performance Specifications  
• 7µA Quiescent Current in Skip Mode  
• Fixed 5.0V/3.3V or Adjustable 0.7V to 20V Output  
• ±1.5% Output-Voltage Accuracy for 5V Fixed  
Setting  
2.2MHz synchronous step-down controllers with 7μA I .  
Q
These devices operate with an input voltage supply from  
3.5V to 60V (MAX25206/MAX25207) and 70V  
(MAX25208). They can operate in drop-out condition by  
running at 99% (typ) duty cycle. These controllers are in-  
tended for applications with mid- to high-power require-  
ments that operate at a wide input voltage range such  
as during automotive cold-crank or engine stop-start con-  
ditions. The MAX25207 has an optional bypass mode,  
which allows 100% high-side switch on until step-down  
function is needed during automotive transients.  
● Enables Crank-Ready Designs  
• Wide Input Supply Range from 3.5V to 60V/70V  
● EMI Reduction Features Reduce Interference with  
Sensitive Radio Bands without Sacrificing Wide Input  
Voltage Range  
• 50ns (typ) Minimum On-Time Allows Skip-Free  
Operation for 3.3V Output from Car Battery at  
2.2MHz  
The MAX25206/MAX25207/MAX25208 step-down con-  
trollers operate at a frequency up to 2.2MHz to allow small  
external components, reduced output ripple, and to elim-  
inate AM band interference. The switching frequency is  
resistor adjustable (220 kHz to 2200 kHz). SYNC input  
programmability enables three frequency modes for opti-  
mized performance: forced fixed-frequency operation (FP-  
WM), skip mode with ultra-low quiescent current, and syn-  
chronization to an external clock. The IC also provides  
SYNCOUT output to enable two controllers to operate  
in parallel. The MAX25206/MAX25207/MAX25208 have a  
pin-selectable spread-spectrum option for frequency mod-  
ulation to minimize EMI.  
• Spread-Spectrum Option  
• Frequency-Synchronization Input  
• Resistor-Programmable Frequency Between  
220kHz and 2.2MHz  
● Integration and Thermally Enhanced Packages Save  
Board Space and Cost  
• 2.2MHz Step-Down Controller  
• 180 Degrees Out-of-Phase SYNCOUT Output for  
Synchronization  
• Current-Mode Controller with Forced-Continuous  
and Skip Modes  
• Thermally Enhanced 20-Pin Side-Wettable (SW)  
4mm x 4mm TQFN-EP Package  
The MAX25206/MAX25207/MAX25208 feature a PGOOD  
monitor and undervoltage lockout. Protection features in-  
clude cycle-by-cycle current limit and thermal shutdown.  
These controllers are specified for operation over the  
-40°C to +125°C automotive temperature range.  
● Protection Features Improve System Reliability  
• Supply Undervoltage Lockout  
• Output Overvoltage and Undervoltage Monitoring  
• Overtemperature and Short-Circuit Protection  
• -40ºC to +125ºC Grade 1 Automotive Temperature  
Range  
Applications  
● Infotainment Systems  
● 48V Systems  
● General Purpose Point of Load (POL)  
Ordering Information appears at end of datasheet.  
19-100800; Rev 0; 8/20  
 
 
MAX25206/MAX25207/  
MAX25208  
Versatile Automotive 60V/70V 2.2MHz Buck  
Controller with 7µA I and Optional Bypass Mode  
Q
Simplified Block Diagram  
V
OUT  
-OR-  
L
R
CS  
V
– I*(R +R +R )  
DS DCR CS  
BAT  
V
BAT  
C
OUT  
C
BST  
PGND  
SUP  
C
IN  
CS  
EN  
OUT  
MAX25206/7/8  
FSYNC  
FB  
SYNCOUT  
FOSC  
R
FOSC  
R
C
C
BIAS  
C
F
C
C
www.maximintegrated.com  
Maxim Integrated | 2  
 
MAX25206/MAX25207/  
MAX25208  
Versatile Automotive 60V/70V 2.2MHz Buck  
Controller with 7µA I and Optional Bypass Mode  
Q
TABLE OF CONTENTS  
General Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Benefits and Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Simplified Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
Absolute Maximum Ratings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Recommended Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Package Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
20 SW TQFN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Typical Operating Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Pin Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
MAX25206/MAX25208. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
MAX25207 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Pin Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Functional Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Detailed Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Fixed 5V Linear Regulator (BIAS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
BIAS Switchover. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Undervoltage Lockout (UVLO) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Buck Controller. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Bypass Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Bypass Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Soft-Start . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Switching Frequency/External Synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Skip Mode for Light-Load-Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Forced-PWM Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Maximum Duty-Cycle Operation in Buck Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Spread Spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
MOSFET Gate Drivers (DH and DL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
High-Side Gate-Driver Supply (BST) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Current Limiting and Current-Sense Inputs (OUT and CS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Voltage Monitoring (PGOOD). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Thermal-Overload Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Overcurrent Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Overvoltage Protection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Applications Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Design Procedure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
www.maximintegrated.com  
Maxim Integrated | 3  
MAX25206/MAX25207/  
MAX25208  
Versatile Automotive 60V/70V 2.2MHz Buck  
Controller with 7µA I and Optional Bypass Mode  
Q
TABLE OF CONTENTS (CONTINUED)  
Effective Input Voltage Range in the Buck Converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Setting the Output Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Inductor Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Peak Inductor Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
MOSFET Selection in Buck Converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Current-Sense Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Input Capacitor in Buck Converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Output Capacitor in Buck Converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Control Loop / Compensation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Layout Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Typical Application Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Application Circuit 1: 5V  
2.2MHz 7A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
OUT  
Application Circuit 2: 16V  
Application Circuit 3: 12V  
440kHz 7A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
2.2MHz 7A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
OUT  
OUT  
Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
www.maximintegrated.com  
Maxim Integrated | 4  
MAX25206/MAX25207/  
MAX25208  
Versatile Automotive 60V/70V 2.2MHz Buck  
Controller with 7µA I and Optional Bypass Mode  
Q
LIST OF FIGURES  
Figure 1. Bypass Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Figure 2. Current-Sense Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Figure 3. Compensation Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Figure 4. Layout Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
www.maximintegrated.com  
Maxim Integrated | 5  
MAX25206/MAX25207/  
MAX25208  
Versatile Automotive 60V/70V 2.2MHz Buck  
Controller with 7µA I and Optional Bypass Mode  
Q
Absolute Maximum Ratings  
SUP, EN, LX to PGND (MAX25206, MAX25207) .... -0.3V to 65V  
SUP, EN, LX to PGND (MAX25208) ........................ -0.3V to 75V  
OUT to AGND........................................................... -0.3V to 22V  
CS to OUT............................................................... -0.3V to 0.3V  
SYNCOUT, SPS, FOSC, COMP, FB, ENBK to AGND ....-0.3V to  
BIAS + 0.3V  
BIAS to AGND............................................................ -0.3V to 6V  
PGOOD, FSYNC to AGND......................................... -0.3V to 6V  
DL to PGND ............................................... -.0.3V to BIAS + 0.3V  
BST to LX ................................................................... -0.3V to 6V  
DH to LX......................................................... -0.3V to BST+0.3V  
PGND to AGND ....................................................... -0.3V to 0.3V  
Package Thermal Characteristics  
T2044Y+6C  
Continuous Power Dissipation  
TQFN (derate 28mW/°C above +70°C) ...............2260mW  
Operating Temperature Range....................-40°C to +125°C  
Junction Temperature................................................+150°C  
Storage Temperature Range.......................-65°C to +150°C  
Soldering Temperature (reflow).................................+260°C  
Lead Temperature (soldering, 10s) ...........................+300°C  
Note 1: During initial startup, V  
, rising must cross 6V. The normal operating range is then valid.  
SUP  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the  
device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for  
extended periods may affect device reliability.  
Recommended Operating Conditions  
TYPICAL  
RANGE  
PARAMETER  
SYMBOL  
CONDITION  
UNIT  
-40 to  
+125  
Ambient Temperature Range  
ºC  
Note: These limits are not guaranteed.  
Package Information  
20 SW TQFN  
Package Code  
T2044Y+6C  
21-100388  
90-100132  
Outline Number  
Land Pattern Number  
Thermal Resistance, Four-Layer Board:  
Junction to Ambient (θ  
)
35.4 ºC/W  
4 ºC/W  
JA  
Junction to Case (θ  
)
JC  
For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a “+”, “#”, or “-” in the package code indicates  
RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.  
Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer board. For detailed information on package thermal  
considerations, refer to www.maximintegrated.com/thermal-tutorial.  
Electrical Characteristics  
(V  
= 24V (MAX25206, MAX25207)/48V (MAX25208), V  
= V  
, C  
SUP SUP  
= 4.7μF, C  
= 2.2μF, C  
= 0.1μF, R  
= 12kΩ,  
FOSC  
SUP  
EN  
BIAS  
BST  
T = -40°C to +150°C, unless otherwise noted. Typical values are at T = +25°C. (Note 2 and 5))  
J
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
SYNCHRONOUS STEP DOWN CONVERTER  
Normal Operation (MAX25206 and  
MAX25207) (Note 3)  
3.5  
3.5  
60  
70  
Supply Voltage Range  
V
SUP  
V
Normal Operation (MAX25208) (Note 3)  
www.maximintegrated.com  
Maxim Integrated | 6  
 
MAX25206/MAX25207/  
MAX25208  
Versatile Automotive 60V/70V 2.2MHz Buck  
Controller with 7µA I and Optional Bypass Mode  
Q
Electrical Characteristics (continued)  
(V  
= 24V (MAX25206, MAX25207)/48V (MAX25208), V  
= V  
, C  
SUP SUP  
= 4.7μF, C  
= 2.2μF, C  
= 0.1μF, R  
= 12kΩ,  
FOSC  
SUP  
EN  
BIAS  
BST  
T = -40°C to +150°C, unless otherwise noted. Typical values are at T = +25°C. (Note 2 and 5))  
J
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
107  
105  
1
MAX  
UNITS  
Detected with respect to V Rising  
Output Overvoltage  
Threshold  
FB  
%
Detected with respect to V Falling  
FB  
V
V
= 0V  
6
EN  
µA  
= V  
, V  
= 5V, No Switching,  
EN  
SUP OUT  
7
3
11  
Supply Current  
I
MAX25206/8  
SUP  
V
EN  
= V  
= 14V, MAX25207 in bypass  
SUP  
mA  
mode  
V
FB  
V
FB  
V
FB  
V
FB  
= V  
= V  
= V  
= V  
, V  
= 5V, PWM mode  
, V = 5V, skip mode  
BIAS OUT  
4.925  
4.9  
5
5.075  
5.1  
BIAS OUT  
5
Buck Fixed Output  
Voltage  
V
OUT  
V
, V  
= 3.3V, PWM mode  
= 3.3V, skip mode  
3.234  
3.234  
3.3  
3.3  
3.366  
3.366  
BIAS OUT  
, V  
BIAS OUT  
Output Voltage  
Adjustable Range  
Buck  
0.7  
20  
0.715  
1
V
V
Regulated Feedback  
Voltage  
V
0.689  
0.7  
0.01  
0.01  
450  
FB  
Feedback Leakage  
Current  
I
T
A
= +25°C  
µA  
%/V  
µS  
FB  
Feedback Line  
Regulation Error  
V
V
= 3.5V to 60V, V = 0.7V  
FB  
SUP  
Transconductance (from  
FB to COMP)  
g
= 0.7V, V = 5V  
BIAS  
220  
97  
650  
m, EA  
FB  
DL low to DH Rising  
DH low to DL Rising  
Buck  
15  
15  
Dead Time  
ns  
Max Duty Cycle  
%
Minimum On-Time  
t
Buck  
50  
ns  
ON,MIN  
PWM Switching  
Frequency Range  
f
Programmable  
0.22  
2
2.2  
2.4  
89  
MHz  
MHz  
mV  
SW  
Switching Frequency  
Accuracy  
R
FOSC  
= 12kΩ, V  
= 5V, 3.3V  
BIAS  
2.2  
80  
CS Current-Limit  
Voltage Threshold  
V
V
CS  
– V  
; V  
= 5V, V ≥ 2.5V  
OUT  
71  
LIMIT  
OUT BIAS  
Buck, fixed soft-start time regardless of  
frequency.  
Soft-Start Ramp Time  
t
3.7  
ms  
SOFT-START  
V
25°C  
= 6V, V = V  
or V  
, T =  
SUP A  
SUP  
LX  
PGND  
LX Leakage Current  
DH Pullup Resistance  
0.01  
2.7  
1
µA  
Ω
V
= 5V, I  
= 5V, I  
= -100mA  
= 100mA  
BIAS  
BIAS  
DH  
DH  
DH Pulldown  
Resistance  
V
Ω
DL Pullup Resistance  
V
V
= 5V, I = -100mA  
2.2  
1
Ω
Ω
BIAS  
DL  
DL Pulldown Resistance  
= 5V, I = 100mA  
DL  
BIAS  
www.maximintegrated.com  
Maxim Integrated | 7  
MAX25206/MAX25207/  
MAX25208  
Versatile Automotive 60V/70V 2.2MHz Buck  
Controller with 7µA I and Optional Bypass Mode  
Q
Electrical Characteristics (continued)  
(V  
= 24V (MAX25206, MAX25207)/48V (MAX25208), V  
= V  
, C  
SUP SUP  
= 4.7μF, C  
= 2.2μF, C  
= 0.1μF, R  
= 12kΩ,  
FOSC  
SUP  
EN  
BIAS  
BST  
T = -40°C to +150°C, unless otherwise noted. Typical values are at T = +25°C. (Note 2 and 5))  
J
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
95  
MAX  
UNITS  
P
% of target V  
% of target V  
, Rising  
, Falling  
GOOD_H  
OUT  
OUT  
PGOOD UV Threshold  
%
P
90.5  
93  
95.5  
1
GOOD_F  
PGOOD Leakage  
Current  
V
= 5V, T = 25°C  
0.01  
µA  
V
PGOOD  
A
PGOOD Output Low  
Voltage  
I
= 1mA  
0.2  
SINK  
PGOOD Debounce  
Time  
OV/UV Fault Detection, Rising and  
Falling  
32  
µs  
PGOOD Timeout  
OTP Option (default 0ms) rising  
0.5  
-3  
ms  
Bypass Mode  
Rising threshold where buck starts (14V  
to 18V, 0.5V Steps) MAX25207  
Bypass Mode Threshold  
V
BYP  
3
%
Hysteresis  
0.7  
V
V
ENBK Threshold, High  
ENBK Threshold, Low  
ENBK Internal Pulldown  
FSYNC INPUT  
V
1.4  
IH  
V
0.4  
V
IL  
620  
kΩ  
f
= 2.2MHz, minimum sync pulse >  
OSC  
1.8  
2.6  
MHz  
kHz  
(1/f  
- 1/f  
)
OSC  
SYNC  
FSYNC Frequency  
Range  
f
= 400kHz, minimum sync pulse >  
OSC  
320  
100  
1.4  
480  
(1/f  
- 1/f  
)
OSC  
SYNC  
Minimum sync-in pulse  
ns  
V
High Threshold  
FSYNC Switching  
Thresholds  
Low Threshold  
0.4  
3.5  
V
INTERNAL LDO BIAS  
Internal BIAS Voltage  
V
SUP  
V
BIAS  
V
BIAS  
> 6V  
5
V
V
Rising  
Falling  
3.1  
2.8  
BIAS UVLO Threshold  
2.6  
THERMAL OVERLOAD  
Thermal Shutdown  
Temperature  
T rising (Note 4)  
J
165  
20  
°C  
°C  
Thermal Shutdown  
Hysteresis  
(Note 4)  
Logic Levels  
EN High Threshold  
EN Low Threshold  
EN Input Bias Current  
SPS Threshold, High  
SPS Threshold, Low  
EN  
EN  
1.4  
1.4  
V
V
0.4  
1
EN logic input only, T = 25°C  
0.01  
μA  
V
A
V
IH,SPS  
V
0.4  
V
IL,SPS  
www.maximintegrated.com  
Maxim Integrated | 8  
MAX25206/MAX25207/  
MAX25208  
Versatile Automotive 60V/70V 2.2MHz Buck  
Controller with 7µA I and Optional Bypass Mode  
Q
Electrical Characteristics (continued)  
(V  
= 24V (MAX25206, MAX25207)/48V (MAX25208), V  
= V  
, C  
SUP SUP  
= 4.7μF, C  
= 2.2μF, C  
= 0.1μF, R  
= 12kΩ,  
FOSC  
SUP  
EN  
BIAS  
BST  
T = -40°C to +150°C, unless otherwise noted. Typical values are at T = +25°C. (Note 2 and 5))  
J
A
PARAMETER  
SPS Internal Pulldown  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
620  
kΩ  
SYNCOUT and Spread Spectrum Logic  
SYNCOUT Low Voltage  
I
= 5mA  
0.4  
1
V
SINK  
SYNCOUT Leakage  
Current  
T
= 25°C  
µA  
A
% of  
Spread Spectrum  
±6  
f
OSC  
o
Note 2: Limits are 100% production tested at T = +25 C. Limits over the operating temperature range and relevant supply voltage  
A
are guaranteed by design and characterization.  
Note 3: During initial startup, V  
, rising must cross 6V. The normal operating range is then valid.  
SUP  
Note 4: Guaranteed by design; not production tested.  
Note 5: The device is designed for continuous operation up to T = +125°C for 95,000 hours and T = +150°C for 5,000 hours.  
J
J
www.maximintegrated.com  
Maxim Integrated | 9  
MAX25206/MAX25207/  
MAX25208  
Versatile Automotive 60V/70V 2.2MHz Buck  
Controller with 7µA I and Optional Bypass Mode  
Q
Typical Operating Characteristics  
www.maximintegrated.com  
Maxim Integrated | 10  
MAX25206/MAX25207/  
MAX25208  
Versatile Automotive 60V/70V 2.2MHz Buck  
Controller with 7µA I and Optional Bypass Mode  
Q
Typical Operating Characteristics (continued)  
www.maximintegrated.com  
Maxim Integrated | 11  
MAX25206/MAX25207/  
MAX25208  
Versatile Automotive 60V/70V 2.2MHz Buck  
Controller with 7µA I and Optional Bypass Mode  
Q
Pin Configurations  
MAX25206/MAX25208  
TOP VIEW  
15  
14  
13  
12  
11  
LX 16  
10  
9
CS  
17  
18  
19  
20  
OUT  
FB  
DH  
MAX25206/8  
8
BST  
SUP  
7
AGND  
COMP  
+
6
EN  
1
2
3
4
5
TQFN  
4mm × 4mm  
MAX25207  
TOP VIEW  
15  
14  
13  
12  
11  
LX 16  
10  
9
CS  
17  
18  
19  
20  
OUT  
FB  
DH  
MAX25207  
8
BST  
SUP  
7
AGND  
COMP  
+
6
EN  
1
2
3
4
5
TQFN  
4mm × 4mm  
Pin Description  
PIN  
NAME  
FUNCTION  
MAX25206/  
MAX25208  
MAX25207  
Spread Spectrum Enable Pin. Pull to logic high for spread spectrum enabled. Pull  
to ground to disable spread spectrum.  
1
1
SPS  
www.maximintegrated.com  
Maxim Integrated | 12  
MAX25206/MAX25207/  
MAX25208  
Versatile Automotive 60V/70V 2.2MHz Buck  
Controller with 7µA I and Optional Bypass Mode  
Q
Pin Description (continued)  
PIN  
NAME  
FUNCTION  
MAX25206/  
MAX25208  
MAX25207  
Clock Output. SYNCOUT outputs 180 degrees out of phase relative to the internal  
oscillator.  
2
3
4
5
2
SYNCOUT  
External Clock Synchronization Input. Connect FSYNC to AGND to enable skip  
mode of operation (MAX25206/MAX25208 only). Connect to BIAS or an external  
clock to enable forced-PWM mode of operation. Tie FSYNC high for MAX25207. If  
external clock synchronization is required for MAX25207, contact factory for  
review. See Switching Frequency/External Synchronization section for additional  
information.  
3
4
5
FSYNC  
FOSC  
Frequency Setting Input. Connect a resistor to FOSC to set the switching  
frequency of the DC-DC controller.  
Open-Drain Power-Good Output for Buck Controller. PGOOD asserts low during  
soft-start and in shutdown. PGOOD becomes high impedance when OUT is in  
regulation. Actively pulled down if OUT is outside the regulation window. For  
MAX25207, PGOOD is always high impedance in bypass mode. To obtain a logic  
signal, pull up PGOOD with an external resistor connected to a positive voltage  
lower than 5.5V.  
PGOOD  
Buck Controller Error Amplifier Output. Connect an RC network between COMP  
and AGND to compensate the buck controller.  
6
7
6
7
COMP  
AGND  
Analog Ground for Controller  
Feedback Input for Buck Controller. Connect FB to BIAS for the fixed output or to  
a resistor divider between OUT and GND to adjust the output voltage between  
0.7V and 20V. In adjustable mode, FB regulates to 0.7V (typ).  
8
8
FB  
Output Sense and Negative Current-Sense Input for Buck Controller. When using  
the internal preset 5V feedback-divider (FB = BIAS), the controller uses OUT to  
sense the output voltage. Connect OUT to the negative terminal of the current-  
sense element. See Current Limiting and Current Sense Inputs and Current Sense  
Measurement sections.  
9
9
OUT  
Positive Current-Sense Input for Buck Controller. Connect CS to the positive  
terminal of the current-sense element. See Current Limiting and Current Sense  
Inputs and Current Sense Measurement sections.  
10  
11  
12  
10  
11  
12  
CS  
NC  
No Connect  
Force Buck Mode Pin. For bypass-enabled part MAX25207, pull to logic high to  
force buck mode, pull to ground to let the part decide operation mode (buck or  
bypass) based on supply voltage. Connect to ground for MAX25206/MAX25208.  
NC/ENBK  
5V Internal Linear Regulator Output. Bypass BIAS to GND with a low-ESR  
ceramic capacitor of 2.2µF minimum value. BIAS provides the power to the  
internal circuitry and gate drivers. See Fixed 5V Linear Regulator (BIAS) and BIAS  
Switchover sections.  
13  
13  
BIAS  
14  
15  
16  
17  
14  
15  
16  
17  
PGND  
DL  
Power Ground for Controller  
Low-Side Gate Driver Output. DL output voltage swings from V  
to V  
BIAS.  
PGND  
LX  
Inductor Connection. Connect LX to the switched side of the inductor.  
High-Side Gate Driver Output  
DH  
Bootstrap capacitor connection. Connect a ceramic capacitor between BST and  
LX. See High-Side Gate-Driver Supply (BST) section.  
18  
18  
BST  
www.maximintegrated.com  
Maxim Integrated | 13  
MAX25206/MAX25207/  
MAX25208  
Versatile Automotive 60V/70V 2.2MHz Buck  
Controller with 7µA I and Optional Bypass Mode  
Q
Pin Description (continued)  
PIN  
NAME  
FUNCTION  
MAX25206/  
MAX25208  
MAX25207  
Supply Input for IC. Bypass to ground with a 2.2μF or larger capacitor near the IC.  
19  
20  
19  
20  
SUP  
EN  
Connect to buck power stage input voltage (V ). Power stage needs additional  
input capacitors (C ).  
IN  
IN  
High-Voltage Tolerant, Active-High Digital Enable Input for Controller.  
Exposed Pad. Connect the exposed pad to ground. Connecting the exposed pad  
to ground does not remove the requirement for proper ground connections to  
PGND, AGND. The exposed pad is attached with epoxy to the substrate of the  
die, making it an excellent path to remove heat from the IC.  
EP  
EP  
www.maximintegrated.com  
Maxim Integrated | 14  
MAX25206/MAX25207/  
MAX25208  
Versatile Automotive 60V/70V 2.2MHz Buck  
Controller with 7µA I and Optional Bypass Mode  
Q
Functional Diagrams  
Block Diagram  
PGOOD  
COMP  
ENBK  
SUP  
OV  
UV  
BIAS  
FB  
CHARGE  
PUMP  
FEEDBACK  
SELECT  
E
AMP  
-
+
+
SOFT  
BST  
START  
REF = 0.7V  
PWM  
COMP  
GATE DRIVE &  
LOGIC  
DH  
LX  
OUT  
PWM  
80mV (typ)  
CSA  
CS  
EN  
DL  
ILIM  
COMP  
ILIM  
PGND  
LX  
SLOPE  
COMP  
ZERO  
CROSS  
FSYNC  
SELECT  
LOGIC  
FSYNC  
SUP  
OUT  
BIAS  
INTERNAL LDO  
/SWITCHOVER  
FOSC  
SPS  
CLK  
OSCILLATOR  
SYNCOUT  
AGND  
www.maximintegrated.com  
Maxim Integrated | 15  
MAX25206/MAX25207/  
MAX25208  
Versatile Automotive 60V/70V 2.2MHz Buck  
Controller with 7µA I and Optional Bypass Mode  
Q
Detailed Description  
The MAX25206/MAX25207/MAX25208 are automotive 2.2MHz synchronous step-down controller ICs with 5V/3.3V fixed  
or adjustable 0.7V to 20V output voltage. The MAX25207 offers a bypass mode that delivers high-efficiency, high-side  
switch-on mode.  
In skip mode (MAX25206/8), with no load, the total supply current is reduced to 7μA (typ). When the controller is disabled,  
the total current drawn is further reduced to 1μA (typ).  
To enable the IC, connect EN directly to V  
, or to a power-supply sequencing logic.  
SUP  
Fixed 5V Linear Regulator (BIAS)  
The internal circuitry of the IC requires a 5V bias supply. An internal 5V linear regulator (BIAS) generates this supply.  
Bypass BIAS to PGND with a 2.2μF or greater ceramic capacitor.  
The BIAS linear regulator can source up to 100mA for internal logic, DH, and DL drivers. The internal current consumption  
in the IC is estimated using the following equation:  
I
= I + f  
× (QG + QG ) = 20mA to 50mA (typ) for 400kHz  
BIAS  
CC  
SW DH DL  
where I  
is the internal supply current (3mA, typ), f  
is the switching frequency. QG  
is the gate charge of the upper  
DH  
CC  
SW  
MOSFET, and QG is the gate charge of the lower MOSFET. The BIAS linear regulator is not intended for powering  
DL  
external loads.  
BIAS Switchover  
MAX25206/MAX25208 have a BIAS switchover option available to reduce the power dissipation in the internal BIAS  
regulator if the target output voltage is in the BIAS switchover range (3.1V to 5.2V). In BIAS switchover, the internal BIAS  
regulator is switched off and the BIAS is supplied from the OUT pin.  
MAX25207 does not feature BIAS switchover.  
Undervoltage Lockout (UVLO)  
The BIAS undervoltage-lockout (UVLO) circuitry inhibits switching if the BIAS voltage is below the BIAS UVLO threshold.  
Once BIAS rises above its UVLO rising threshold and EN is high, the controller starts switching and the output is allowed  
to ramp up.  
Buck Controller  
The IC provides a buck controller with synchronous rectification. The step-down controller uses a PWM, current-mode  
control scheme. External MOSFETs allow for optimized load-current design. Output-current sensing provides an accurate  
current limit with an external sense resistor, or power dissipation can be reduced by using lossless current sensing across  
the inductor.  
Bypass Mode  
To maximize the efficiency of the front-end conversion stage, MAX25207 comes with a bypass mode. The IC enters  
bypass mode when the input voltage falls 0.7V below the bypass threshold (V  
< V  
- 0.7V). In this mode, the IC  
SUP  
BYP  
utilizes an internal charge pump to maintain 100% duty cycle on the high-side MOSFET. When V  
> V  
, the IC  
BYP  
SUP  
quickly resumes buck mode operation and regulates the output voltage.  
MAX25207 allows the customer to achieve high efficiency (no switching) at normal battery voltage (bypass mode) and  
provides a regulated output voltage during high line conditions. This protects the downstream parts from high voltage  
battery transients. MAX25207 also comes with an Enable Buck (ENBK) logic input which forces buck mode operation  
regardless of V  
when driven high. See Bypass Timing Diagram for valid states and corresponding output.  
SUP  
www.maximintegrated.com  
Maxim Integrated | 16  
MAX25206/MAX25207/  
MAX25208  
Versatile Automotive 60V/70V 2.2MHz Buck  
Controller with 7µA I and Optional Bypass Mode  
Q
Bypass Timing Diagram  
1
0
V
ENBK  
V
BYP  
V
SUP  
V
≈ V  
SUP  
OUT  
V
= INTERNALLY PROGRAMMED OR SET  
OUT  
USING EXTERNAL RESISTOR DIVIDER  
V
OUT  
BYPASS  
BUCK  
BYPASS  
BUCK  
Figure 1. Bypass Timing  
V
V
: Bypass voltage threshold. This is an OTP programmable threshold for bypass decision making in MAX25207.  
BYP  
: Output voltage. Buck mode output voltage is internally programmed or set using external resistor divider. Bypass  
OUT  
mode output voltage is approximately equal to the supply voltage.  
V
ENBK  
: Enable Buck. A logic high at ENBK pin forces buck mode regardless of V  
.
SUP  
Soft-Start  
The soft-start circuitry gradually ramps up the reference voltage during soft-start time (t  
) to reduce the input  
SOFT-START  
inrush current during startup. Before the device can begin soft-start, the following conditions must be met:  
● V  
● V  
exceeds the BIAS UVLO threshold  
is logic high  
BIAS  
EN  
During soft-start, PGOOD asserts low until an internal Soft-Start Done signal is received.  
The MAX25207 always starts up in buck mode. The bypass mode determination is made after soft-start is complete.  
Switching Frequency/External Synchronization  
The IC provides an internal oscillator, adjustable from 220kHz to 2.2MHz, set with an external resistor connected to  
FOSC. High-frequency operation results in smaller component size at the cost of higher switching losses. Low-frequency  
operation offers the best overall efficiency at the expense of component size and board space. To set the switching  
frequency, connect a resistor (R  
) from FOSC to AGND:  
FOSC  
400kHz × 66kΩ  
R
=
1 + 60ns × (2.2MHz − f  
[
)
OSC  
]
FOSC  
f
OSC  
where f  
is in Hz and R  
is in Ω.  
FOSC  
OSC  
The IC can be synchronized to an external clock by connecting the external clock signal to FSYNC. A rising edge on  
FSYNC resets the internal clock. Keep the FSYNC frequency ±20% of the internal frequency.  
The ICs can be used in parallel for multiphase operation when high power is required. Multiphase operation includes one  
master IC and one or more slave ICs. Synchronization is achieved by connecting the master IC's clock output SYNCOUT  
to the slave ICs' clock input FSYNC. Connect the COMP pin of the slave IC to that of the master. The error amplifier of  
the slave IC is disabled and the master IC will drive compensation adjustments. (Contact factory for slave versions of the  
IC)  
Skip Mode for Light-Load-Efficiency  
Drive FSYNC low to enable skip mode. In skip mode, the inductor current is not allowed to turn negative. Once inductor  
www.maximintegrated.com  
Maxim Integrated | 17  
MAX25206/MAX25207/  
MAX25208  
Versatile Automotive 60V/70V 2.2MHz Buck  
Controller with 7µA I and Optional Bypass Mode  
Q
current reaches zero, the low-side MOSFET is turned off. The high-side MOSFET is not turned on again until FB voltage  
drops below the reference voltage. Once FB voltage drops below the reference voltage, the high-side MOSFET is turned  
on until the inductor current reaches 20% of the current limit threshold.  
Forced-PWM Mode  
Driving FSYNC high or external synchronization prevents the IC from entering skip mode by disabling the zero-crossing  
detection of the inductor current. This allows the inductor current to reverse at light load and during transients.  
Forced-PWM mode is useful for improving load-transient response and eliminating unknown frequency harmonics that  
can interfere with AM radio bands.  
Maximum Duty-Cycle Operation in Buck Mode  
The IC has a maximum duty cycle of 99% (typ) (97% (min)) in buck mode. In maximum duty cycle operation, the internal  
logic of the IC monitors approximately 10 consecutive high-side FET ON pulses and then turns on the low-side FET for  
150ns (typ) every 12μs if bypass mode is not selected. The input voltage at which the IC enters this dropout condition  
changes depending on the input voltage, output voltage, switching frequency, load current, and the efficiency of the  
design. The input voltage at which the IC enters dropout can be approximated using the following equation:  
V
+ I  
R
+ R  
(
)
OUT OUT DS(ON)  
DCR  
V
IN  
0.97  
where R  
is the on-resistance of the high-side MOSFET.  
DS(ON)  
Spread Spectrum  
The IC features enhanced EMI performance. It performs ±6% dithering of the switching frequency to reduce peak  
emission noise at the clock frequency and its harmonics, making it easier to meet stringent emission limits. A logic high  
on SPS pin enables spread spectrum. Using external clock source (e.g., driving the FSYNC input with an external clock)  
disables spread spectrum.  
MOSFET Gate Drivers (DH and DL)  
The high-side n-channel MOSFET driver (DH) is powered from capacitor at BST, while the low-side driver (DL) is  
powered from BIAS. In BIAS switchover operation, the gate drive supply voltage may be low depending on the target  
V
OUT  
. The impact of low gate drive voltage in BIAS switchover designs should be considered when selecting MOSFETs.  
A shoot-through protection circuit monitors the gate-to-source voltage of the external MOSFETs to prevent simultaneous  
turn on of high-side and low-side MOSFETs. There must be a low-resistance, low-inductance forward and return path  
from the drivers to the MOSFET gates for the protection circuits to work properly.  
It may be necessary to decrease the slew rate for the gate drivers to reduce switching noise. For the high-side driver,  
connect a small 1Ω to 5Ω resistor between DH and the gate of the high-side MOSFET. For the low-side driver, use a 1Ω  
resistor between DL and the gate of the low-side MOSFET.  
High-Side Gate-Driver Supply (BST)  
The high-side MOSFET driver is supplied by a bootstrap capacitor (C  
) connected between BST and LX pins.  
BST  
C
re-charges from BIAS, through an internal switch, when the low-side MOSFET is on bringing LX to ground. For  
BST  
MAX25207 in bypass mode, C  
is kept charged using an internal charge pump.  
BST  
The bootstrap capacitance (C  
given by:  
) is selected to limit the voltage drop on C  
during high-side MOSFET turn on, as  
BST  
BST  
C
= QG V  
BST  
/
BST  
where QG is the total gate charge of the high-side MOSFET and ∆V  
(100mV to 300mV) is the voltage ripple on C  
.
BST  
BST  
A 100nF low-ESR ceramic capacitor is sufficient in most cases.  
www.maximintegrated.com  
Maxim Integrated | 18  
 
MAX25206/MAX25207/  
MAX25208  
Versatile Automotive 60V/70V 2.2MHz Buck  
Controller with 7µA I and Optional Bypass Mode  
Q
Current Limiting and Current-Sense Inputs (OUT and CS)  
The current-sense amplifier (CSA) uses differential current-sense inputs (OUT and CS) to sense the inductor current.  
For normal buck operation, this sensed signal is used for peak current mode control. If the current-sense signal exceeds  
the current-limit threshold (V  
= 80mV (typ)), the PWM controller turns off the high-side MOSFET. The maximum  
LIMIT  
load current is less than the peak current-limit threshold by half the inductor ripple current. Therefore, the maximum load  
capability is a function of the current-sense resistance, inductor value, switching frequency, and duty cycle (V /V ).  
OUT IN  
For accurate current sensing, use a current-sense shunt resistor (R ) between the inductor and the output capacitor.  
CS  
Connect CS to the inductor side of R  
and OUT to the output capacitor side. Select R  
such that  
CS  
CS  
ΔI  
V
L
LIMIT  
I
+
<
LOAD  
2 R  
CS  
where ΔI is the inductor current ripple.  
L
Inductor DCR sensing can be used for higher efficiency but can result in up to 30% error in current limit threshold due to  
variation in inductor DCR over temperature. See Current-Sense Measurement for information on DCR sensing network  
design.  
Voltage Monitoring (PGOOD)  
PGOOD is an open-drain power-good output for the buck controller that is pulled low when the output voltage is outside  
the PGOOD regulation window. PGOOD is low during soft-start, soft-discharge, or when the controller is disabled (EN is  
low). Connect a 10kΩ (typ) pullup resistor from PGOOD to the relevant logic rail to level shift the signal.  
For MAX25207, PGOOD is always high when operating in bypass mode.  
Thermal-Overload Protection  
Thermal-overload protection limits total power dissipation in the IC. When the junction temperature exceeds +165°C, an  
internal thermal sensor shuts down the IC, allowing it to cool. The thermal sensor turns on the IC again after the junction  
temperature cools by 20°C.  
Overcurrent Protection  
If the sensed voltage across CS/OUT exceeds the current limit threshold (V  
= 80mV (typ)), the high-side driver (DH)  
LIMIT  
turns off and the low-side driver (DL) turns on. The high side MOSFET does not turn on again until voltage across CS/  
OUT drops below the current-limit threshold.  
MAX25207 continues to offer current-limit protection in bypass mode.  
The part enters hiccup mode if the output voltage falls below the hiccup threshold (50% of target V  
for MAX25206/  
OUT  
MAX25208, 20% of target V  
for MAX25207).  
OUT  
Overvoltage Protection  
In case of an overvoltage on the output, the controller turns off high- and low-side MOSFET drivers (DH/DL). Switching  
resumes when the output voltage comes back into regulation.  
www.maximintegrated.com  
Maxim Integrated | 19  
MAX25206/MAX25207/  
MAX25208  
Versatile Automotive 60V/70V 2.2MHz Buck  
Controller with 7µA I and Optional Bypass Mode  
Q
Applications Information  
Design Procedure  
Effective Input Voltage Range in the Buck Converter  
Although the IC can operate from input supplies up to 60V/70V and regulate down to 0.7V, the minimum voltage  
conversion ratio for fixed frequency operation is limited by the minimum controllable on-time (t  
):  
ON,MIN  
V
OUT  
> t  
× f  
SW  
ON, MIN  
V
IN  
where f  
is the switching frequency. If the desired voltage conversion does not meet the above condition, pulse skipping  
SW  
occurs to maintain regulation. Decrease the switching frequency if constant switching frequency is required at higher  
input voltages.  
The maximum voltage conversion ratio in buck mode of operation is limited by the maximum duty cycle (see Maximum  
Duty-Cycle Operation in Buck Mode). During low-drop operation, the IC reduces the switching frequency (f ) to  
SW  
~80kHz.  
MAX25207 provides 100% duty cycle operation in bypass mode.  
Setting the Output Voltage  
Connect FB to BIAS to enable the fixed buck-controller output voltage (5V or 3.3V) set by a preset internal resistor  
voltage-divider connected between OUT and AGND. To externally adjust the output voltage between 0.7V and 20V,  
connect a resistor divider from the output (OUT) to FB to AGND.  
R
R
V
FB2  
FB1  
OUT  
=
− 1  
V
(
)
FB  
where V = 0.7V (typ) (see the Electrical Characteristics) and R  
, R  
FB2 FB1  
are top and bottom resistors in the feedback  
FB  
divider.  
In skip mode, the IC regulates the valley of the output ripple.  
Inductor Selection  
The inductor is selected based on trade-off among size, cost, efficiency, and transient performance. A good starting point  
for inductance comes from targeting 30% peak-to-peak ripple current to average current ratio. The switching frequency,  
input voltage, output voltage, and target ripple are related to inductance as shown below:  
V
V  
× D  
(
)
IN  
× I  
OUT  
L =  
f
× 30 %  
SW OUT  
where D (=V  
conditions).  
/V ) is the duty cycle. V , V  
, and I are typical values (so that efficiency is optimum for typical  
OUT  
OUT IN  
IN OUT  
The inductance must satisfy the slope compensation criterion:  
V
OUT  
V
f
>
A
R
SLOPE SW  
VCS CS  
2 × L  
where A  
is the current-sense amplifier gain (typical 13V/V). V  
is V dependent and is given by the following  
OUT  
VCS  
SLOPE  
equation:  
www.maximintegrated.com  
Maxim Integrated | 20  
MAX25206/MAX25207/  
MAX25208  
Versatile Automotive 60V/70V 2.2MHz Buck  
Controller with 7µA I and Optional Bypass Mode  
Q
V
= 105mV for 0V < V  
= 210mV for 3V < V  
≤ 3V  
SLOPE  
OUT  
OUT  
≤ 5.5V  
= 420mV for 5.5V < V  
≤ 9.7V  
OUT  
= 525mV  
otherwise  
Peak Inductor Current  
The peak inductor current is the sum of maximum load current and half of the peak-to-peak ripple current:  
I  
L
I
= I  
+
LOAD(MAX)  
2
PEAK  
For the selected inductance value, the actual peak-to-peak inductor ripple current (ΔI ) is calculated using the following  
L
equation:  
V
V
V  
(
)
OUT IN  
OUT  
× L  
I =  
L
V
× f  
IN SW  
The saturation current should be larger than I  
or at least in a range where the inductance does not degrade  
PEAK  
significantly. The MOSFETs are required to handle the same peak current.  
MOSFET Selection in Buck Converter  
The high- and low-side n-channel MOSFETs should be selected to have sufficient voltage and current ratings. In addition,  
they should be able to handle the heat generated and temperature rise.  
Both high- and low-side MOSFETs should be rated for maximum input voltage observed in the application. Provide  
additional margin for switch node ringing during switching.  
Select MOSFETs with logic-level gate drive with guaranteed on-resistance specifications at V  
= 4.5V. If BIAS  
GS  
switchover is enabled, the gate drive supply voltage follows V  
on-resistance at the lowest BIAS switchover voltage.  
. In those cases, select MOSFETs to have guaranteed  
OUT  
To reduce switching noise for smaller MOSFETs, use a series resistor in the BST path and additional gate capacitance.  
Contact factory for guidance using gate resistors.  
Current-Sense Measurement  
For best current-sense accuracy and overcurrent protection, use a ±1% tolerance current-sense resistor between the  
inductor and output, as shown in Figure 2 (A). This configuration continuously monitors inductor current, allowing  
accurate current-limit protection. Use low-inductance current-sense resistors for accurate measurement.  
Alternatively, high-power applications can reduce the overall power dissipation by connecting a DCR sensing network  
across the inductor Figure 2 (B). Select DCR network based on the following equations:  
R
2
L
1
1
R
=
R
and R =  
DCR  
+
R R  
CSHL  
DCR  
R + R  
C
(
)
(
)
1
2
eq  
1
2
where R  
is the required current-sense resistor based on the current-limit threshold (V  
) and R  
is the  
DCR  
CSHL  
LIMIT  
inductor DC resistance. If DCR sense is the preferred current-sense method, select R1 ≤ 1kΩ. See Figure 2 (B).  
Carefully observe the Layout Recommendations to ensure the noise and DC errors do not corrupt the differential current-  
sense signals seen by CS and OUT. Place the sense resistor close to the controller CS/OUT pins with short, direct traces,  
making a Kelvin-sense connection to the current-sense resistor.  
www.maximintegrated.com  
Maxim Integrated | 21  
MAX25206/MAX25207/  
MAX25208  
Versatile Automotive 60V/70V 2.2MHz Buck  
Controller with 7µA I and Optional Bypass Mode  
Q
INPUT (V  
)
IN  
C
IN  
L
MAX25206/7/8  
DH  
R
CS  
LX  
DL  
C
OUT  
PGND  
CS  
OUT  
(A) OUTPUT SERIES RESISTOR SENSING  
INPUT (V  
)
IN  
C
IN  
MAX25206/7/8  
INDUCTOR  
DH  
LX  
L
R
DCR  
C
OUT  
R1  
R2  
DL  
C
eq  
PGND  
CS  
OUT  
(B) LOSSLESS INDUCTOR DCR SENSING  
Figure 2. Current-Sense Configurations  
Input Capacitor in Buck Converter  
Select input capacitor to satisfy the following conditions  
● Withstand input ripple current in buck power stage  
● Limit the input voltage ripple  
The RMS current in the input capacitor is given by:  
I
= I  
D × (1 − D)  
LOAD(MAX)  
CIN.RMS  
The input voltage ripple is composed of ΔV  
of the input capacitor) given by:  
(caused by the capacitor discharge) and ΔV  
(caused by the ESR  
IN.ESR  
IN.C  
I
x D(1 − D)  
ΔI  
LOAD(MAX)  
L
ΔV  
=
and ΔV  
= ESR  
I
+
IN.C  
IN.ESR  
CIN LOAD(MAX)  
(
C
x f  
2
)
IN  
SW  
I
is the maximum output current, ΔI is the peak-to-peak inductor current ripple, and C is the input capacitor.  
LOAD(MAX)  
L
IN  
The internal 5V linear regulator (BIAS) includes an output UVLO with hysteresis to avoid unintentional chattering during  
turn-on. Use additional bulk capacitance if the input source impedance is high. At lower input voltages, additional input  
capacitance helps avoid possible undershoot below the undervoltage lockout threshold during transient loading.  
www.maximintegrated.com  
Maxim Integrated | 22  
MAX25206/MAX25207/  
MAX25208  
Versatile Automotive 60V/70V 2.2MHz Buck  
Controller with 7µA I and Optional Bypass Mode  
Q
Output Capacitor in Buck Converter  
The output capacitor is selected to meet ripple requirements, both in steady state and during transients. Low ESR  
ceramic capacitors can be utilized.  
The steady state output ripple has capacitive and ESR based components given by:  
ΔI  
1
L
ΔV  
=
and ΔV  
= ΔI × ESR  
OUT.ESR L COUT  
OUT.C  
8 f  
C
sw OUT  
When using low-capacity filter capacitors, such as ceramic capacitors, capacitor selection is usually driven by the need  
to limit undershoot and overshoot during load transients. The design should be verified in the lab to ensure undershoot  
and overshoot requirements are met.  
Control Loop / Compensation  
The IC uses a peak current-mode control scheme that regulates the output voltage by controlling the required current  
through the external inductor. Current mode control eliminates the double pole in the feedback loop caused by the  
inductor and output capacitor resulting in a smaller phase shift and requiring less elaborate error-amplifier compensation  
than voltage-mode control.  
A single series resistor (R ) and capacitor (C ) is required to have a stable, high-bandwidth loop in applications where  
C
C
ceramic capacitors are used for output filtering (see Figure 3). For high-ESR (non-ceramic) output capacitors, the zero  
created by the capacitance and ESR can be close to or lower than the desired closed-loop crossover frequency. To  
stabilize a high-ESR (non ceramic) output capacitor loop, add another compensation capacitor (C ) from COMP to AGND  
F
to cancel this ESR zero.  
The basic regulator loop is modeled as a power modulator, output feedback divider, and an error amplifier as shown in  
Figure 3. The DC gain of the modulator is given by:  
GAIN  
= g  
x R  
mc LOAD  
MOD(DC)  
where R  
= V  
/I  
in Ω and g  
= 1/(A  
x R ) in S. A  
is the voltage gain of the current-sense  
VCS  
LOAD  
OUT LOAD(MAX)  
mc  
VCS  
CS  
amplifier and is typically 13V/V. R  
is current-sense resistor in Ω. When using DCR sensing network, replace R  
with  
CS  
CS  
R
.
CSHL  
In a current-mode step-down converter, the output capacitor and the load resistance introduce a pole at the frequency:  
1
f
=
pMOD  
x C  
x R  
OUT  
LOAD  
The output capacitor and its ESR also introduce a zero given by:  
1
f
=
x ESR  
zMOD  
x C  
COUT  
OUT  
When C  
is composed of “n” identical capacitors in parallel, the resulting C  
= n x C  
, and ESR  
OUT(EACH) COUT  
OUT  
OUT  
= ESR  
/n. Note that the capacitor zero for a parallel combination of alike capacitors is the same as for an  
COUT(EACH)  
individual capacitor.  
The feedback voltage-divider has a gain of GAIN = V /V  
, where V is 0.7V (typ).  
FB  
FB  
FB OUT  
The transconductance error amplifier has a DC gain of GAIN  
= g  
x R  
, where g  
is the error  
m,EA  
EA(DC)  
m,EA  
OUT,EA  
amplifier transconductance, which is 450µS (typ), and R  
30MΩ (typ).  
is the output resistance of the error amplifier, which is  
OUT,EA  
A dominant pole (f  
) is set by the compensation capacitor (C ) and the amplifier output resistance (R  
). A zero  
OUT,EA  
dpEA  
C
(f  
) is set by the compensation resistor (R ) and the compensation capacitor (C ). There is an optional pole (f  
)
zEA  
C
C
pEA  
set by the compensation capacitor to cancel the output capacitor ESR zero if it occurs near the crossover frequency (f ,  
C
where the loop gain equals 1 (0dB)).  
1
1
1
f
=
ꢀ ꢀ f  
=
ꢀ ꢀ f  
=
dpEA  
zEA  
pEA  
x C x R  
x C x R  
C
C
F
C
2π  
x
C
x
R
+ R  
(
)
C
C
OUT, EA  
The loop-gain crossover frequency (f ) should be set below 1/5th of the switching frequency and much higher than the  
C
www.maximintegrated.com  
Maxim Integrated | 23  
MAX25206/MAX25207/  
MAX25208  
Versatile Automotive 60V/70V 2.2MHz Buck  
Controller with 7µA I and Optional Bypass Mode  
Q
power-modulator pole (f  
). Select a value for f in the range shown below:  
pMOD  
C
f
SW  
5
f
f ≤  
pMOD  
C
At the crossover frequency, the total loop gain is unity. Select R based on the target crossover frequency:  
C
V
OUT  
2π  
R = f ×  
×
× A  
R
× C  
C
C
VCS CS OUT  
V
g
FB  
m, EA  
Set the error-amplifier compensation zero formed by R and C at f  
:
C
C
pMOD  
1
C =  
C
2π × f  
× R  
pMOD  
C
If f  
is less than 5 x f , add a second capacitor C from COMP to AGND using the equation below:  
zMOD  
C
F
1
C =  
F
2π × f  
× R  
zMOD  
C
As the load current decreases, the modulator pole frequency also decreases; however, the modulator gain increases  
accordingly and the crossover frequency remains the same.  
g
= 1/(A  
x R  
CS  
)
mc  
VCS  
CS  
CURRENT-MODE  
POWER  
OUT  
MODULATION  
R
FB2  
g
= 450µS  
m,EA  
ESR  
C
COUT  
FB  
COMP  
ERROR  
AMP  
R
RFB1  
OUT  
V
REF  
30MΩ  
R
C
C
F
C
C
Figure 3. Compensation Network  
Layout Recommendations  
PCB layout is critical for stable operation, low noise, and high efficiency. Use the checklist below to achieve good circuit  
performance (See Figure 4 for an example):  
● Place the input capacitor (C ), the high-side MOSFET (QH), and the low-side MOSFET (QL) so that the "input loop"  
IN  
area involving high di/dt is minimized.  
● Use low-ESR/ESL ceramic capacitors (C ) close to the input loop. Bulk capacitor can be further away.  
IN  
● Place the output capacitors (C  
) so that input and output capacitor grounds are close together. In addition, connect  
OUT  
this common ground connection to ground plane layer(s) using multiple vias.  
● Use short and wide traces/areas for high current paths (V , V  
, LX, PGND). If possible, run them on multiple  
IN OUT  
layers in parallel to minimize resistance.  
www.maximintegrated.com  
Maxim Integrated | 24  
MAX25206/MAX25207/  
MAX25208  
Versatile Automotive 60V/70V 2.2MHz Buck  
Controller with 7µA I and Optional Bypass Mode  
Q
● Minimize the area of high dv/dt nodes (LX) to the extent permitted by heating considerations.  
● Route gate drive forward and return paths together using short and wide traces to minimize loop impedance.  
Wherever possible, use traces wider than 25 mils for outer layers and 50 mils for inner layers.  
● High-side gate charging path includes C  
. Place C  
. Place C  
as close to the IC pins (BST/LX) as possible.  
BST  
BST  
● Low-side gate charging path includes C  
as close to the IC pins (BIAS/PGND) as possible.  
BIAS  
BIAS  
● Low-side gate charge/discharge path includes PGND. Ensure that a continuous PGND plane is present under DL  
path.  
● Place the sense resistor (R ) close to the CS/OUT pins. Use Kelvin connections across the sense resistor (R  
)
CS  
CS  
and route differentially to the IC pins (CS/ OUT). Make the sense traces as short as possible. Place a 22nF capacitor  
near the CS/OUT pins to minimize noise due to sense trace inductance.  
● Use AGND as the reference ground for sensitive analog signals (FB, COMP). Connect the ground side of the bottom  
feedback resistor (R  
) and compensation components (C , C ) to AGND.  
FB1  
C F  
● Route sensitive traces (FB, CS/OUT) away from noisy (high dv/dt and di/dt) areas (BST, LX, DH, DL).  
● Connect AGND/PGND under the IC at one point (Figure 4).  
● Connect IC exposed pad through multiple vias to ground plane layer(s).  
2
● Use thicker copper (preferably 2oz/ft ) for higher current designs for better efficiency and thermal performance.  
SMALL  
INPUT  
LOOP  
LOW SIDE  
HIGH SIDE  
MOSFET (QL) INDUCTOR  
MOSFET (QH)  
V
IN  
C
C
IN  
IN  
GND  
AGND-PGND  
CONNECTION  
UNDER THE IC  
C
BIAS  
KELVIN-SENSE  
VIAS UNDER THE  
SENSE RESISTOR  
C
C
OUT  
OUT  
MAX25206/7/8  
(R  
)
CS  
OUT/CS  
DIFFERENTIAL  
ROUTING  
V
OUT  
Figure 4. Layout Example  
www.maximintegrated.com  
Maxim Integrated | 25  
 
MAX25206/MAX25207/  
MAX25208  
Versatile Automotive 60V/70V 2.2MHz Buck  
Controller with 7µA I and Optional Bypass Mode  
Q
Typical Application Circuits  
Application Circuit 1: 5V  
2.2MHz 7A  
OUT  
1.2µH  
10mΩ  
4.7µF  
2x47µF  
0.1µF  
PGND  
SUP  
2.2µF  
47µF  
CS  
EN  
OUT  
MAX25206/7/8  
FSYNC  
FB  
BIAS  
SYNCOUT  
FOSC  
12kΩ  
10kΩ  
100kΩ  
1500pF  
2.2µF  
www.maximintegrated.com  
Maxim Integrated | 26  
MAX25206/MAX25207/  
MAX25208  
Versatile Automotive 60V/70V 2.2MHz Buck  
Controller with 7µA I and Optional Bypass Mode  
Q
Typical Application Circuits (continued)  
Application Circuit 2: 16V  
440kHz 7A  
OUT  
10µH  
10mΩ  
4.7µF  
2x47µF  
0.1µF  
PGND  
SUP  
EN  
47µF  
2.2µF  
CS  
OUT  
MAX25206/7/8  
220kΩ  
FSYNC  
FB  
SYNCOUT  
FOSC  
10kΩ  
66.5kΩ  
10kΩ  
120kΩ  
1500pF  
2.2µF  
www.maximintegrated.com  
Maxim Integrated | 27  
MAX25206/MAX25207/  
MAX25208  
Versatile Automotive 60V/70V 2.2MHz Buck  
Controller with 7µA I and Optional Bypass Mode  
Q
Typical Application Circuits (continued)  
Application Circuit 3: 12V  
2.2MHz 7A  
OUT  
2.2µH  
10mΩ  
4.7µF  
2x47µF  
0.1µF  
PGND  
SUP  
EN  
2.2µF  
47µF  
CS  
OUT  
MAX25206/7/8  
162kΩ  
FSYNC  
FB  
SYNCOUT  
FOSC  
10kΩ  
12kΩ  
10kΩ  
165kΩ  
2.2µF  
1500pF  
www.maximintegrated.com  
Maxim Integrated | 28  
MAX25206/MAX25207/  
MAX25208  
Versatile Automotive 60V/70V 2.2MHz Buck  
Controller with 7µA I and Optional Bypass Mode  
Q
Ordering Information  
V
OUT  
PART  
SWITCHOVER IN FPWM  
BYPASS VOLTAGE  
ADJUSTABLE  
0.7V TO 20V  
0.7V TO 20V  
0.7V TO 20V  
0.7V TO 20V  
FIXED  
5V  
MAX25206ATPA/VY+  
MAX25206ATPB/VY+*  
MAX25207ATPA/VY+  
MAX25208ATPA/VY+*  
ON  
ON  
3.3V  
5V  
OFF  
ON  
14V  
5V  
+ Denotes a lead(Pb)-free/RoHS-compliant package.  
/V Denotes automotive qualified  
Y Denotes wettable flank  
*Future product—contact factory for availability  
Contact factory for switchover disabled  
www.maximintegrated.com  
Maxim Integrated | 29  
MAX25206/MAX25207/  
MAX25208  
Versatile Automotive 60V/70V 2.2MHz Buck  
Controller with 7µA I and Optional Bypass Mode  
Q
Revision History  
REVISION REVISION  
PAGES  
DESCRIPTION  
CHANGED  
NUMBER  
DATE  
0
8/20  
Initial release  
For pricing, delivery, and ordering information, please visit Maxim Integrated’s online storefront at https://www.maximintegrated.com/en/storefront/storefront.html.  
Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent  
licenses are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max  
limits) shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.  
Maxim Integrated and the Maxim Integrated logo are trademarks of Maxim Integrated Products, Inc.  
© 2020 Maxim Integrated Products, Inc.  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY