MAX25220ATJ [MAXIM]

Automotive 4-Channel TFT-LCD Power Supply with VCOM Buffer;
MAX25220ATJ
型号: MAX25220ATJ
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Automotive 4-Channel TFT-LCD Power Supply with VCOM Buffer

CD
文件: 总55页 (文件大小:722K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Click here to ask about the production status of specific part numbers.  
MAX25220/MAX25221/  
MAX25221B  
Automotive 4-Channel TFT-LCD Power Supply  
with VCOM Buffer  
General Description  
Benefits and Features  
The MAX25220/MAX25221/MAX25221B are 4-channel  
TFT-LCD power ICs that provide symmetrical positive  
● High Integration  
• Synchronous Boost Provides AVDD of 4.2V to  
10.5V at up to 200mA  
AVDD and negative NAVDD supplies as well as VG  
ON  
and VG  
gate supplies. In addition, a VCOM buffer with  
• NAVDD Inverter Output at up to -200mA  
OFF  
output voltage range above and below ground and a tem-  
• 15mA VG  
Output (7.6V to 20.2V) from 3x  
ON  
perature measurement block are integrated (MAX25221/  
B).  
Regulated Charge Pump  
• VG  
(-18.2V to -5.6V) from Regulated Charge  
OFF  
Pump at up to -15mA (charge-pump doubler)  
• Controlled Sequencing during Power-On and  
Power-Off of All Rails  
• VCOM Output Range +1V to -2.49V in 6.83mV  
Steps (MAX25221)  
• NTC Input for Temperature Measurement/  
Compensation (MAX25221)  
The devices contain non-volatile memory so that the val-  
ues of all outputs can be calibrated for the lifetime of the  
device (maximum five times).  
2
Programming is carried out using the built-in I C interface,  
which can also be used to read back diagnostic informa-  
tion. A stand-alone mode is also available.  
The temperature sensor interface block measures the  
temperature optionally allowing the VCOM output voltage  
to be adjusted depending on the measured temperature.  
● Low EMI  
• 420kHz/2.1MHz Switching Frequency with Spread  
Spectrum  
The MAX25220/MAX25221/MAX25221B are available in  
a TQFN package and operate in the -40 to 125°C temper-  
ature range.  
2
● I C Control/Diagnostic Interface with FLTB (Interrupt)  
Output  
• UV diagnostics on All Outputs  
● Versatile  
Applications  
• Non-Volatile Output Voltage Settings on AVDD/  
● Infotainment Displays  
● Central Information Displays  
● Instrument Clusters  
NAVDD, VG , VG  
, VCOM, and Sequencing  
ON  
OFF  
• Supports Stand-Alone Operation Mode after  
Programming  
• Compact 5mm x 5mm TQFN32 Package  
● AECQ100 Grade 1  
Ordering Information appears at end of datasheet.  
19-100803; Rev 4; 11/20  
 
 
MAX25220/MAX25221/  
MAX25221B  
Automotive 4-Channel TFT-LCD Power Supply  
with VCOM Buffer  
Simplified Block Diagram  
RREF TEMP  
V18  
IN  
IN  
DAC  
REG  
VCOM  
8b ADC FOR  
TEMP  
COMPENSATION  
VCOMN  
BST  
NAVDD  
NEG.  
REGULATOR  
VCB  
PGVDD  
FC2+  
TFT BOOST  
CONTROL  
420kHz/2.1MHz  
UVLO  
HVINP  
LXP  
FC2-  
PGND  
POSITIVE  
CHARGE PUMP  
FC1+  
0.9V  
TEMP  
WARNING,  
SHUTDOWN  
FC1-  
HVINP  
AVDD  
VGON  
REFERENCE  
POSITIVE  
SOFT-START  
AND  
VGOFF  
DN  
DISCHARGE  
ENABLE, CONTROL  
AND FAULT LOGIC  
NEGATIVE  
CHARGE PUMP  
NEGATIVE  
SOFT-START  
AND  
NAVDD  
DISCHARGE  
CPGND  
EN  
FLTB  
DGND  
INVERTING  
REGULATOR  
420kHz/2.1MHz  
PROGRAMMING  
LOGIC &  
NV MEMORY  
INN  
I2C  
LXN  
MAX25221/B  
ADD  
GND  
SCL SDA  
VPROG  
www.maximintegrated.com  
Maxim Integrated | 2  
 
MAX25220/MAX25221/  
MAX25221B  
Automotive 4-Channel TFT-LCD Power Supply  
with VCOM Buffer  
TABLE OF CONTENTS  
General Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Benefits and Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Simplified Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
Absolute Maximum Ratings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Package Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
TQFN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
TQFN-SW. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Typical Operating Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Pin Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
MAX25220 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
MAX25221/B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Pin Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Functional Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
MAX25220 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
MAX25221/B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Detailed Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Power-Up state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Switching Frequency. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Stand-Alone Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
2
I C Read-Only Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Source Driver Power Supplies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Gate-Driver Power Supplies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Sequencing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Sequencing Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
VCOM Buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
VCOMN Negative Power Supply. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Limiting the Range of VCOM Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
VCOM Temperature Compensation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
NTC Connection Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Internal Temperature Sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Temperature Compensation Curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Fault Handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Undervoltage Faults on the Source, Gate and VCOM Outputs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Thermal Warning and Shutdown. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
NV Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Auto-Refresh Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
www.maximintegrated.com  
Maxim Integrated | 3  
MAX25220/MAX25221/  
MAX25221B  
Automotive 4-Channel TFT-LCD Power Supply  
with VCOM Buffer  
TABLE OF CONTENTS (CONTINUED)  
BURN, REBOOT and RESTART Commands. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
2
I C Interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
2
I C Slave Addresses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Parity Checking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Register Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
MAX25220/MAX25221/MAX25221B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Register Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Applications Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Boost Converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Boost Converter Inductor Selection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Boost Output Filter Capacitor Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Boost Input Filter Capacitor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Setting the AVDD Voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
NAVDD Inverting Regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
NAVDD Regulator Inductor Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
NAVDD External Diode Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
NAVDD Output Capacitor Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Setting the VG  
and VG  
Output Voltages. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
OFF  
ON  
VG  
Voltage Higher than Three Times AVDD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
ON  
4x Charge Pump . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
VCOM Block. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
VCB Transistor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
VCOM Temperature Compensation Example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Sample VCOM Temperature Compensation Curve. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Using the NV Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Layout Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
Typical Application Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
MAX25220 Applications Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
MAX25221 Applications Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
www.maximintegrated.com  
Maxim Integrated | 4  
MAX25220/MAX25221/  
MAX25221B  
Automotive 4-Channel TFT-LCD Power Supply  
with VCOM Buffer  
LIST OF FIGURES  
Figure 1. Sequencing Example (Sequence 1, Not to Scale). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Figure 2. Possible NTC Connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Figure 3. Temperature Compensation Curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Figure 4. Quadrupler Charge-Pump at 2.1MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Figure 5. Sample VCOM Temperature Compensation Curve. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
www.maximintegrated.com  
Maxim Integrated | 5  
MAX25220/MAX25221/  
MAX25221B  
Automotive 4-Channel TFT-LCD Power Supply  
with VCOM Buffer  
LIST OF TABLES  
Table 1. DEVICE BEHAVIOR AFTER START-UP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Table 2. Available Sequences. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Table 3. VCOM Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Table 4. FLTB Duty Cycle in Stand-Alone Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
2
Table 5. I C Slave Addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Table 6. ADC Result vs Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Table 7. VCOM Setting Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
www.maximintegrated.com  
Maxim Integrated | 6  
MAX25220/MAX25221/  
MAX25221B  
Automotive 4-Channel TFT-LCD Power Supply  
with VCOM Buffer  
Absolute Maximum Ratings  
IN, INN to GND......................................................... -0.3V to +6V  
IN to INN................................................................ -0.3V to +0.3V  
V18 to GND ........................................................... -0.3V to +2.2V  
HVINP to GND.......................................................... -0.3V to 16V  
LXP, AVDD to GND.................................. -0.3V to HVINP + 0.3V  
BST to GND............................................................ -0.3V to +16V  
BST to LXP............................................................ -0.3V to +2.2V  
LXN to INN ............................................................. -22V to +0.3V  
PGND, CPGND, DGND to GND............................ -0.3V to +0.3V  
VCB to GND .......................................... V18 - 22V to V18 + 0.3V  
VCOMN to GND....................................... V18 - 6V to V18 + 0.3V  
PGVDD, FC1-, FC2-, DN to GND.............-0.3V to HVINP + 0.3V  
FC1+ to GND .......................................... -0.3V to PGVDD + 0.3V  
FC2+ TO FC1+ .......................................................-0.3V to +22V  
VG  
to FC2+ ........................................................-0.3V to +22V  
ON  
FC2+, VG  
to GND ..............................................-0.3V to +24V  
ON  
EN, FLTB, SCL, SDA to GND...................................-0.3V to +6V  
ADD, TEMP, R to GND .......................... -0.3V to V18 + 0.3V  
REF  
V
PROG  
to GND .......................................................-0.3V to +14V  
Continuous Power Dissipation (Multilayer Board) (T = +70ºC,  
A
VG  
, NAVDD to GND ............................. IN - 22V to IN + 0.3V  
derate 21.3mW/ºC above +70ºC) ...................................2222mW  
Operating Temperature Range.............................-40°C to 125°C  
OFF  
VCOM to GND.................................. VCOMN - 0.3V to IN + 0.3V  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the  
device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for  
extended periods may affect device reliability.  
Package Information  
TQFN  
Package Code  
T3255+6C  
21-0140  
90-0603  
Outline Number  
Land Pattern Number  
Thermal Resistance, Single-Layer Board:  
Junction to Ambient (θ  
)
47°C/W  
3°C/W  
JA  
Junction to Case (θ  
)
JC  
Thermal Resistance, Four-Layer Board:  
Junction to Ambient (θ  
)
36°C/W  
3°C/W  
JA  
Junction to Case (θ  
)
JC  
TQFN-SW  
Package Code  
Outline Number  
T3255Y+6C  
21-100041  
90-100066  
Land Pattern Number  
Thermal Resistance, Single-Layer Board:  
Junction to Ambient (θ  
)
47°C/W  
3°C/W  
JA  
Junction to Case (θ  
)
JC  
Thermal Resistance, Four-Layer Board:  
Junction to Ambient (θ  
)
36°C/W  
3°C/W  
JA  
Junction to Case (θ  
)
JC  
For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a “+”, “#”, or “-” in the package code indicates  
RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.  
Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer board. For detailed information on package thermal  
considerations, refer to www.maximintegrated.com/thermal-tutorial.  
www.maximintegrated.com  
Maxim Integrated | 7  
 
MAX25220/MAX25221/  
MAX25221B  
Automotive 4-Channel TFT-LCD Power Supply  
with VCOM Buffer  
Electrical Characteristics  
(V = 3.3V, V  
IN  
= 3.3V, Limits are 100% guaranteed between T = -40°C and T = +125°C. )  
INN  
A A  
PARAMETER  
INPUT SUPPLY  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
IN Voltage Range  
IN UVLO Threshold  
2.65  
2.4  
5.5  
V
V
IN_UVLO_R  
Rising  
2.5  
2.57  
IN_UVLO_HY  
S
IN UVLO Hysteresis  
100  
mV  
IN Shutdown Current  
IN Quiescent Current  
V18 REGULATOR  
V18 Output Voltage  
V18 Current Limit  
I
EN = GND, V = 3.3V, T = 25°C  
7
12  
µA  
IN_SHDN  
IN  
A
I
V
EN  
= V = 3.3V, no switching.  
1.5  
2.5  
mA  
IN_Q  
IN  
1.72  
60  
1.8  
1.88  
1.7  
V
mA  
V18 Undervoltage  
Lockout  
V18 rising  
1.6  
1.65  
150  
V
V18 Undervoltage  
Hysteresis  
mV  
OSCILLATOR  
f
bit = 0, dither disabled. Switching  
SW  
f
frequency for boost, inverter, and charge  
pumps.  
1950  
385  
2100  
2250  
455  
BOOSTH  
Operating Frequency  
kHz  
%
f
bit = 1, dither disabled. Switching  
SW  
f
frequency for boost, inverter, and charge  
pumps.  
420  
±6  
BOOSTL  
f
BOOSTD  
Frequency Dither  
BOOST REGULATOR  
HVINP Output Voltage  
Range  
V
V
+ 1  
10.5  
10.5  
V
V
V
V
HVINP  
IN  
AVDD Output Voltage  
Range  
4.2  
AVDD Adjustment Step  
Size  
0.1  
6.8  
AVDD Output  
Regulation  
avdd[5:0] = 0x1A, full load current and  
input voltage range  
V
6.664  
6.936  
AVDD  
420kHz switching frequency  
2.1MHz switching frequency  
87  
84  
88.5  
87  
90  
90  
Oscillator Maximum  
Duty Cycle  
%
Low-Side Switch On-  
Resistance  
LXP_RON_LS  
I
= 0.1A  
0.1  
0.1  
0.2  
0.2  
Ω
Ω
LXP  
Synchronous Rectifier  
On-Resistance  
Synchronous Rectifier  
Zero-Crossing  
Threshold  
ZX_TH  
70  
2
mA  
LXP Leakage Current  
LXP Current Limit  
LXP_L_LEAK  
V
= 0V, V  
= 10.5V  
LXP  
20  
µA  
A
EN  
I
Duty cycle = 50%  
1.7  
2.3  
LIMPH  
www.maximintegrated.com  
Maxim Integrated | 8  
 
MAX25220/MAX25221/  
MAX25221B  
Automotive 4-Channel TFT-LCD Power Supply  
with VCOM Buffer  
Electrical Characteristics (continued)  
(V = 3.3V, V  
IN  
= 3.3V, Limits are 100% guaranteed between T = -40°C and T = +125°C. )  
INN  
A A  
PARAMETER  
Soft-Start Period  
SYMBOL  
CONDITIONS  
Current-limit ramp  
MIN  
TYP  
MAX  
UNITS  
t
5
ms  
BOOST_SS  
INVERTING REGULATOR  
2.1MHz switching frequency  
INV_MAXDC 420kHz switching frequency  
92  
88  
95  
90  
Oscillator Maximum  
Duty Cycle  
%
V
= 2.65V to 5.5V, V  
= 6.8V,  
AVDD  
INN  
V
+ V  
V
AVDD  
NAVDD  
NAVDD_AVD  
D_REG  
1mA < I  
load as NAVDD  
< 200mA, I  
= same  
-34  
0
34  
mV  
NAVDD  
AVDD  
Regulation Voltage  
LXN On-Resistance  
LXN Leakage Current  
LXN_RON  
INN to LXN, I  
= 0.1A  
0.25  
0.5  
20  
Ω
LXN  
LXN  
V
IN  
= 3.6V, V  
= V  
= -6.8V, T  
NAVDD A  
LXN_LEAK  
µA  
= +25°C  
LXN Current Limit  
Soft-Start Period  
I
Duty cycle = 80%  
Current-limit ramp  
1.55  
1.9  
5
2.25  
A
LIMNH  
t
ms  
INV_SS  
NAVDD Discharge  
Resistance  
2
kΩ  
V
POSITIVE CHARGE-PUMP REGULATOR  
VG Threshold for  
ON  
V
-
HVINP  
0.8  
Charge-Pump Switching  
Enable  
FC1-, FC2- Switches  
Current Limit, High-side  
90  
72  
120  
100  
4
mA  
mA  
Ω
FC1-, FC2- Switches  
Current Limit, Low-side  
FC1-, FC2- to CPGND  
On-Resistance  
6.5  
FC1-, FC2- to HVINP  
On-Resistance  
6
10.5  
Ω
FC2+ to PGVDD, FC1+  
to FC2+ and VG  
FC1+ Switches On-  
Resistance  
to  
ON  
2.5  
4.5  
Ω
VG  
I C Mode  
Voltage Range,  
ON  
7.6  
20.2  
V
V
2
VG Adjustment Step  
Size, I C Mode  
ON  
0.2  
12  
3
2
vgon[5:0] = 0x16, full load current and  
> 5V, charge-pump tripler  
VG  
Output Voltage  
V
VGON  
11.7  
2.2  
12.3  
3.8  
V
ON  
ON  
V
HVINP  
VG  
Resistance  
Discharge  
kΩ  
NEGATIVE CHARGE-PUMP REGULATOR  
DN Current Limit  
75  
100  
mA  
V
VG  
2
Voltage Range,  
OFF  
-18.2  
-5.6  
I C Mode  
www.maximintegrated.com  
Maxim Integrated | 9  
MAX25220/MAX25221/  
MAX25221B  
Automotive 4-Channel TFT-LCD Power Supply  
with VCOM Buffer  
Electrical Characteristics (continued)  
(V = 3.3V, V  
IN  
= 3.3V, Limits are 100% guaranteed between T = -40°C and T = +125°C. )  
INN  
A A  
PARAMETER  
Adjustment Step  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
VG  
OFF  
0.2  
V
2
Size, I C Mode  
VG Output-Voltage  
Accuracy  
vgoff[5:0] = 0x16, full load current and  
input voltage range, 420kHz operation.  
OFF  
-10.3  
-10  
6
-9.7  
10  
V
Ω
DN On-Resistance,  
High-Side  
DN On-Resistance,  
Low-Side  
I
= -10mA  
3.5  
1.5  
6.5  
DN  
VG  
Discharge  
OFF  
mA  
Current  
SEQUENCE SWITCHES  
AVDD ON Resistance  
AVDD Current Limit  
Between HVINP and AVDD, I  
200mA  
=
AVDD  
R
0.5  
1
mA  
kΩ  
Ω
ONAVDD  
ILIM  
300  
80  
600  
POS  
AVDD Discharge  
Resistance  
1.2  
6
PGVDD On resistance  
PGVDD Current Limit  
(HVINP-PGVDD), I  
= 3mA  
9
PGVDD  
Expires when PGVDD charging is  
completed  
100  
mA  
FAULT PROTECTION  
Fault Timeout  
tfault[1:0] = 10  
60  
1.9  
1
ms  
s
Fault Retry Time  
tretry[1:0] = 10 or 11  
Stand-alone mode only  
FLTB Output Frequency  
0.88  
1.12  
kHz  
FLTB Output Duty  
Cycle, VG  
Fault  
or VG  
Stand-alone mode only  
75  
50  
%
%
ON  
OFF  
FLTB Output Duty Cycle  
with AVDD, NAVDD or  
HVINP Fault  
Stand-alone mode only  
Stand-alone mode only  
FLTB Output Duty  
Cycle, VCOM Fault  
25  
85  
40  
85  
40  
85  
%
%
%
%
%
%
V
AVDD Undervoltage  
Fault Threshold  
Relative measurement between HVINP  
and AVDD  
80  
35  
80  
35  
80  
90  
45  
90  
45  
90  
AVDD Short-Circuit  
Fault Threshold  
Relative measurement between HVINP  
and AVDD  
NAVDD Undervoltage  
Fault Threshold  
Measured with respect to AVDD  
Measured with respect to AVDD  
Of set value  
NAVDD Short-Circuit  
Fault Threshold  
VG  
Undervoltage  
ON  
Fault Threshold  
VG Short-Circuit  
V
-
ON  
HVINP  
1.1  
VG  
Falling  
ON  
Fault Threshold  
www.maximintegrated.com  
Maxim Integrated | 10  
MAX25220/MAX25221/  
MAX25221B  
Automotive 4-Channel TFT-LCD Power Supply  
with VCOM Buffer  
Electrical Characteristics (continued)  
(V = 3.3V, V  
IN  
= 3.3V, Limits are 100% guaranteed between T = -40°C and T = +125°C. )  
INN  
A A  
PARAMETER  
Undervoltage  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
VG  
OFF  
Of set value  
80  
85  
90  
%
Fault Threshold  
VG Short-Circuit  
Fault Threshold  
OFF  
35  
40  
10  
45  
%
Short-Circuit and  
Overload Fault Delay  
µs  
VCOM BUFFER  
VCOMN Output Voltage  
VCB Output Current  
I
= 120mA, V  
= -10.5V  
NAVDD  
-3.5  
12  
-3.2  
21  
V
VCOM  
5
mA  
VCOM Output Current  
Limit, Sinking  
Dynamic output current, t < t  
Dynamic output current, t < t  
120  
200  
200  
70  
300  
300  
85  
mA  
mA  
FAULT  
FAULT  
VCOM Output Current  
Limit, Sourcing  
I
120  
60  
LIMCOMP  
VCOM Overcurrent  
Detection Threshold  
of  
I
LIMCOMP  
VCOM Offset Voltage,  
Complete Range  
V
load  
= -2.49V and V  
= +1V, no  
VCOM  
VCOM  
-20  
+20  
mV  
VCOM Offset Voltage,  
25°C  
T
= 25°C, VCOM = -0.5V  
-6  
+6  
+10  
1
mV  
mV  
V
A
VCOM Offset Voltage  
VCOM = -0.5V  
Temperature compensation disabled  
-10  
VCOM Output Voltage  
Range  
-2.49  
VCOM DAC Step Size  
VCOM Buffer Slew Rate  
VCOM Fault Threshold  
6.83  
0.72  
+0.25  
60  
mV  
V/μs  
V
C
+1V  
= 10nF, VCOM from -2.49V to  
VCOM  
Deviation from set voltage  
tfault[1:0] = 10  
VCOM Fault Detection  
Filter Time  
ms  
VCOM Discharge  
Resistance  
to GND  
9
0
14  
22  
kΩ  
R
REF  
INPUT  
R
REF  
Input Voltage  
1.25  
V
Range  
R
R
ADC Resolution  
Conversion Rate  
4.88  
128  
625  
mV  
kHz  
mV  
REF  
REF  
TEMP Voltage  
V
TEMP  
I
I
= 10 to 500μA  
= 10 to 500μA  
TEMP  
TEMP Current Mirror  
Gain  
1
μA/μA  
TEMP  
Internal Temperature  
Sensor Voltage  
T
A
= 25°C  
620  
5
mV  
mV  
R
REF  
DAC Offset  
www.maximintegrated.com  
Maxim Integrated | 11  
MAX25220/MAX25221/  
MAX25221B  
Automotive 4-Channel TFT-LCD Power Supply  
with VCOM Buffer  
Electrical Characteristics (continued)  
(V = 3.3V, V  
IN  
= 3.3V, Limits are 100% guaranteed between T = -40°C and T = +125°C. )  
INN  
A A  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
mV  
R
Error  
DAC Full-Scale  
REF  
5
R
R
DAC Gain Error  
DAC Differential  
-0.4  
+0.4  
%
REF  
REF  
0.5  
0.5  
LSB  
Non-linearity  
R
REF  
DAC Integral Non-  
LSB  
Linearity  
LOGIC INPUTS and OUTPUTS (EN, SCL, ADD, SDA)  
EN Glitch Filter  
EN_BLK  
10  
µs  
EN Minimum Low Time  
For Reset  
C
V18  
= 1uF  
1
ms  
EN Input Logic-High  
EN Input Logic-Low  
ADD Input Logic-High  
ADD Input Logic-Low  
1.22  
V
V
V
V
0.6  
1.22  
0.66  
12  
ADD Input Pulldown  
Current  
10  
μA  
V
SCL, SDA Input, Logic-  
High  
1.22  
-1  
SCL, SDA Input, Logic-  
Low  
0.6  
+1  
V
SCL Input Leakage  
Current  
µA  
V
FLTB, SDA Output Low  
Voltage  
V
Sinking 5mA  
5.5V  
0.4  
+1  
OL  
FLTB, SDA Output  
Leakage Current  
I
-1  
µA  
LEAK  
PROGRAMMING VOLTAGE  
V
V
Voltage  
Voltage  
8.2  
8.5  
8
8.8  
8.2  
V
V
PROG  
PROG  
V
V
rising  
falling  
PROG  
Undervoltage Threshold  
V
PROG  
Voltage  
8.8  
9
V
PROG  
Overvoltage Threshold  
VPROG Input Current  
NV Programming Time  
THERMAL SHUTDOWN  
During NV programming, T = 25°C  
9
25  
20  
mA  
ms  
A
16  
Thermal Warning  
Threshold  
125  
160  
15  
°C  
°C  
°C  
Thermal-Shutdown  
Threshold  
T
SHDN  
Thermal-Shutdown  
Hysteresis  
T
SHDN_HYS  
www.maximintegrated.com  
Maxim Integrated | 12  
MAX25220/MAX25221/  
MAX25221B  
Automotive 4-Channel TFT-LCD Power Supply  
with VCOM Buffer  
Electrical Characteristics (continued)  
(V = 3.3V, V  
IN  
= 3.3V, Limits are 100% guaranteed between T = -40°C and T = +125°C. )  
INN  
A A  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
2
I C INTERFACE  
Clock Frequency  
f
0.4  
MHz  
ns  
SCL  
Hold Time (Repeated)  
START  
t
600  
HD:STA  
SCL Low Time  
SCL High Time  
t
1300  
600  
ns  
ns  
LOW  
t
HIGH  
Setup Time (Repeated)  
START  
t
600  
ns  
SU:STA  
HD:DAT  
Data Hold Time  
Data Setup Time  
t
0
ns  
ns  
t
100  
SU:DAT  
Setup Time for STOP  
Condition  
t
600  
ns  
ns  
SU:STO  
Spike Suppression  
50  
Note 1: Note 1: Limits are 100% tested at T = +25°C. Limits over the operating temperature range and relevant supply voltage range  
A
are guaranteed by design and characterization.  
www.maximintegrated.com  
Maxim Integrated | 13  
MAX25220/MAX25221/  
MAX25221B  
Automotive 4-Channel TFT-LCD Power Supply  
with VCOM Buffer  
Typical Operating Characteristics  
(V = +3.3V, F  
IN  
= 2.1MHz, T = +25 C unless otherwise noted.)  
SW  
A
www.maximintegrated.com  
Maxim Integrated | 14  
 
MAX25220/MAX25221/  
MAX25221B  
Automotive 4-Channel TFT-LCD Power Supply  
with VCOM Buffer  
Typical Operating Characteristics (continued)  
(V = +3.3V, F  
IN  
= 2.1MHz, T = +25 C unless otherwise noted.)  
SW  
A
www.maximintegrated.com  
Maxim Integrated | 15  
MAX25220/MAX25221/  
MAX25221B  
Automotive 4-Channel TFT-LCD Power Supply  
with VCOM Buffer  
Pin Configurations  
MAX25220  
TOP VIEW  
24 23 22 21 20 19 18 17  
25  
26  
27  
28  
29  
30  
31  
32  
16  
DN  
AVDD  
15  
14  
13  
12  
11  
10  
9
HVINP  
LXP  
SDA  
SCL  
FLTB  
I.C.  
PGND  
BST  
MAX25220  
GND  
V18  
I.C.  
DGND  
NAVDD  
+
ADD  
1
2
3
4
5
6
7
8
TQFN  
5mm x 5mm  
www.maximintegrated.com  
Maxim Integrated | 16  
MAX25220/MAX25221/  
MAX25221B  
Automotive 4-Channel TFT-LCD Power Supply  
with VCOM Buffer  
MAX25221/B  
TOP VIEW  
24 23 22 21 20 19 18 17  
25  
26  
27  
28  
29  
30  
31  
32  
16  
DN  
AVDD  
15  
14  
13  
12  
11  
10  
9
HVINP  
LXP  
SDA  
SCL  
FLTB  
PGND  
BST  
MAX25221/B  
RREF  
TEMP  
DGND  
NAVDD  
GND  
V18  
+
ADD  
1
2
3
4
5
6
7
8
TQFN  
5mm x 5mm  
Pin Description  
PIN  
NAME  
FUNCTION  
MAX25220  
MAX25221/B  
Programming Voltage. Apply a voltage of 8.5V to this pin during the programming  
of non-volatile registers. Connect to GND through a resistor during normal  
operation.  
1
1
V
PROG  
2
3
2
3
LXN  
INN  
IC  
DC-DC Inverting Converter Inductor/Diode Connection.  
Inverting Converter Input. Connect 10μF + 0.1μF ceramic capacitors from this pin  
to ground for proper operation.  
4
4
Internally connected. Leave this pin open.  
Drive Output for External npn Pass Transistor for VCOMN regulator. Connect to  
the base of the external npn transistor.  
VCB  
5
6
5
IC  
VCOM  
IC  
Internally Connected. Leave this pin open.  
Output of VCOM amplifier.  
Internally Connected. Connect this pin to GND.  
Negative Supply for VCOM Buffer. Connect a ceramic capacitor of at least 1μF  
from VCOMN to GND.  
7
6
7
VCOMN  
IN  
Supply Connection for Display Bias Circuitry. Bypass IN with local 10μF and 0.1μF  
capacitors.  
www.maximintegrated.com  
Maxim Integrated | 17  
 
MAX25220/MAX25221/  
MAX25221B  
Automotive 4-Channel TFT-LCD Power Supply  
with VCOM Buffer  
Pin Description (continued)  
PIN  
NAME  
FUNCTION  
MAX25220  
MAX25221/B  
Enable Input Pin. When EN is low, the device is in shutdown. When EN is taken  
high, the device is active. In stand-alone mode, the outputs are turned on in the  
stored sequence when EN goes high.  
8
8
EN  
2
Device Address Select pin. Connect to GND or V18 to Select the Device I C  
2
2
Address. See the I C address table. To use stand-alone mode (without I C) leave  
the ADD pin open. In this mode, the device turns on all outputs in the programmed  
sequence when EN is taken high.  
9
9
ADD  
10  
11  
10  
11  
V18  
Output of Internal 1.8V Regulator. Connect a 1μF capacitor from V18 to GND.  
Ground Connection  
GND  
Bootstrap Capacitor Connection for Synchronous Rectifier Driver. Connect a  
0.1μF ceramic capacitor between BST and LXP.  
12  
13  
14  
15  
16  
12  
13  
14  
15  
16  
BST  
PGND  
LXP  
Ground Connection for Boost Switching Device and VCOM Buffer. Connect to  
GND using a low-impedance trace.  
Switching Node of Boost Converter. Connect the boost inductor between LXP and  
IN.  
Boost Output and Input to Positive and Negative Charge-Pump Drivers. Bypass  
HVINP with a 10μF output capacitor placed close to the pin.  
HVINP  
AVDD  
Switched Output of Boost Converter. Connect a bypass capacitor of value 2.2μF  
from AVDD to PGND.  
Supply Voltage for Positive Charge Pump. PGVDD is connected to HVINP by  
means of an internal switch when the positive charge pump is enabled. Bypass  
PGVDD with a ceramic capacitor of 1μF to GND.  
17  
17  
PGVDD  
Positive Connection for Second Flying Capacitor. Connect a 22nF capacitor from  
FC2- to FC2+.  
18  
19  
20  
21  
18  
19  
20  
21  
FC2+  
FC2-  
FC1+  
FC1-  
Negative Connection for Second Flying Capacitor. Connect a 22nF capacitor from  
FC2- to FC2+.  
Positive Connection for First Flying Capacitor. Connect a 22nF capacitor from  
FC1- to FC1+.  
Negative Connection for First Flying Capacitor. Connect a 22nF capacitor from  
FC1- to FC1+.  
Output of Positive Charge-Pump Block. Connect a 1μF capacitor from VG  
GND.  
to  
ON  
22  
23  
24  
22  
23  
24  
VG  
ON  
CPGND  
VG  
Ground Connection for Charge Pumps.  
Output of Negative Charge-Pump Block. Connect a 1μF capacitor from this pin to  
GND.  
OFF  
25  
26  
27  
25  
26  
27  
DN  
Negative Charge-Pump Push-Pull Drive Output.  
2
SDA  
SCL  
Bidirectional I C Data Pin.  
2
I C Clock Pin.  
Open-Drain, Active-Low Fault Output. Connect a pullup resistor from FLTB to a  
logic supply ≤5V. In stand-alone mode, the duty cycle of the FLTB pin indicates an  
error condition, if present (see Table 4). When the serial interface is used, FLTB is  
either a 0 (indicating data to be read from the internal registers) or a 1.  
28  
29  
28  
FLTB  
IC  
Internally Connected. Leave this pin open.  
www.maximintegrated.com  
Maxim Integrated | 18  
MAX25220/MAX25221/  
MAX25221B  
Automotive 4-Channel TFT-LCD Power Supply  
with VCOM Buffer  
Pin Description (continued)  
PIN  
NAME  
FUNCTION  
MAX25220  
MAX25221/B  
Reference Resistor Pin. When using the temperature compensation function,  
30  
31  
32  
29  
30  
31  
32  
R
REF  
connect a resistor from R  
to GND. If unused, leave R  
unconnected.  
REF  
REF  
IC  
Internally Connected. Leave this pin open.  
Temperature Sensor Pin. When using the temperature compensation function,  
connect an NTC from TEMP to GND. If unused, leave TEMP unconnected.  
TEMP  
DGND  
NAVDD  
Logic Ground.  
Negative Source-Driver Output Voltage. Connect ceramic capacitors of value  
0.1μF and 10μF from this pin to GND with the smallest capacitor closest to the pin.  
www.maximintegrated.com  
Maxim Integrated | 19  
MAX25220/MAX25221/  
MAX25221B  
Automotive 4-Channel TFT-LCD Power Supply  
with VCOM Buffer  
Functional Diagrams  
MAX25220  
IN  
V18  
REG  
BST  
TFT BOOST  
CONTROL  
420kHz/2.1MHz  
PGVDD  
FC2+  
HVINP  
LXP  
FC2-  
PGND  
POSITIVE  
CHARGE PUMP  
FC1+  
FC1-  
0.9V  
TEMP  
WARNING,  
SHUTDOWN  
HVINP  
AVDD  
VGON  
REFERENCE  
POSITIVE  
SOFT-START  
AND  
VGOFF  
DN  
DISCHARGE  
ENABLE, CONTROL  
AND FAULT LOGIC  
NEGATIVE  
CHARGE PUMP  
NEGATIVE  
SOFT-START  
AND  
NAVDD  
DISCHARGE  
CPGND  
EN  
FLTB  
DGND  
INVERTING  
REGULATOR  
420kHz/2.1MHz  
PROGRAMMING  
LOGIC &  
NV MEMORY  
INN  
I2C  
LXN  
MAX25220  
ADD  
GND  
SCL SDA  
VPROG  
www.maximintegrated.com  
Maxim Integrated | 20  
MAX25220/MAX25221/  
MAX25221B  
Automotive 4-Channel TFT-LCD Power Supply  
with VCOM Buffer  
Functional Diagrams (continued)  
MAX25221/B  
RREF TEMP  
V18  
IN  
IN  
DAC  
REG  
VCOM  
8b ADC FOR  
TEMP  
COMPENSATION  
VCOMN  
BST  
NAVDD  
NEG.  
REGULATOR  
VCB  
PGVDD  
FC2+  
TFT BOOST  
CONTROL  
UVLO  
HVINP  
420kHz/2.1MHz  
LXP  
FC2-  
PGND  
POSITIVE  
CHARGE PUMP  
FC1+  
0.9V  
TEMP  
WARNING,  
SHUTDOWN  
FC1-  
HVINP  
AVDD  
VGON  
REFERENCE  
POSITIVE  
SOFT-START  
AND  
VGOFF  
DN  
DISCHARGE  
ENABLE, CONTROL  
AND FAULT LOGIC  
NEGATIVE  
CHARGE PUMP  
NEGATIVE  
SOFT-START  
AND  
NAVDD  
DISCHARGE  
CPGND  
EN  
FLTB  
DGND  
INVERTING  
REGULATOR  
420kHz/2.1MHz  
PROGRAMMING  
LOGIC &  
NV MEMORY  
INN  
I2C  
LXN  
MAX25221/B  
ADD  
GND  
SCL SDA  
VPROG  
www.maximintegrated.com  
Maxim Integrated | 21  
MAX25220/MAX25221/  
MAX25221B  
Automotive 4-Channel TFT-LCD Power Supply  
with VCOM Buffer  
Detailed Description  
The MAX25220/MAX25221/MAX25221B are 4-channel TFT-LCD power ICs that provide symmetrical positive AVDD  
and negative NAVDD supplies as well as VG and V gate supplies. In addition, a VCOM buffer with output  
ON  
GOFF  
voltage range above and below ground and a temperature-measurement block are integrated in the MAX25221 and  
MAX25221B.  
The devices contain non-volatile memory so that the values of all outputs can be calibrated for the lifetime of the device.  
2
Programming is carried out using the built-in I C interface, which can also be used to read back diagnostic information.  
Operation in stand-alone mode is also possible.  
The temperature-sensor interface block in the MAX25221 and MAX25221B determines the temperature by measuring  
the voltage on the R  
pin when a temperature-sensitive component, such as an NTC, is connected to TEMP. The  
REF  
VCOM output voltage can be adjusted as a function of the measured temperature.  
Power-Up state  
When power is applied, the MAX25220/1 are in low-quiescent-current mode until the EN pin is taken high. When EN is  
taken high (if the device supply voltage on IN exceeds the undervoltage lockout voltage of 2.5V) the 1.8V regulator is  
turned on and the device is functional after a delay of 1ms. Subsequent operation depends on the device configuration  
and type as follows:  
Table 1. DEVICE BEHAVIOR AFTER START-UP  
DEVICE  
ADD = 0  
ADD PIN FLOATING  
ADD = V18  
MAX25220/ Outputs turned on when start bit in  
Outputs turned on  
Outputs turned on when start bit in  
1
register REG_CTRL is written to 1.  
immediately when EN high. register REG_CTRL is written to 1.  
Outputs turned on Outputs turned on immediately when EN  
immediately when EN high. high.  
Outputs turned on immediately when EN  
high.  
MAX25221B  
If the non-volatile memory has been written to previously the stored values are read and the outputs are turned on in the  
programmed sequence. If the device has not been programmed previously it powers up with the default voltages of 6.8V  
(AVDD), 12V (VG ) and -10V (VG  
ON  
).  
OFF  
2
When I C is used, all values can be programmed and the outputs turned on using the start bit in the REG_CTRL register.  
The values can subsequently be stored in non-volatile memory using the burn_otp command, if required.  
If at any time the internal 1.8V regulator is out of range, the v18oor bit is set in register FAULT2 and the FLTB pin is  
2
asserted low, assuming the device is being used in I C mode. No other action is taken unless the V18 voltage is below  
its undervoltage lockout level.  
Switching Frequency  
The switching frequency of the boost and inverting converters and the charge pumps is set using the f  
bit in register  
SW  
CONFIG. When f  
is 0, the switching frequency is 2.1MHz. When f  
is set to 1, the switching frequency is 420kHz.  
SW  
SW  
The switching frequency can have spread-spectrum applied to improve EMI performance using the en_ss bit in register  
CONFIG.  
Stand-Alone Operation  
Stand-alone operation is used when the device has already been programmed and should start up with the pre-  
programmed values when power is applied and the EN pin taken high. In stand-alone mode, leave the ADD pin  
unconnected.  
2
I C Read-Only Mode  
The MAX25221B starts up immediately with the pre-programmed values when power is applied and the EN pin taken  
2
high. If the ADD pin is connected to V18 the I C interface is in read-only mode and can only be used to read the device  
registers, writing is not possible. The 7-bit I2C address of the device is 0x29 (0x53 when the read bit is added) in this  
www.maximintegrated.com  
Maxim Integrated | 22  
MAX25220/MAX25221/  
MAX25221B  
Automotive 4-Channel TFT-LCD Power Supply  
with VCOM Buffer  
mode.  
Source Driver Power Supplies  
The source-driver power supplies consist of a boost converter with output switch and an inverting buck-boost converter  
that generate up to +10.5V maximum and down to -10.5V minimum, respectively, and can deliver up to 200mA on the  
positive regulator and -200 mA on the negative regulator. The positive source-driver power supply’s regulation voltage  
2
(AVDD) is set by writing the avdd[5:0] value in the AVDD_SET register using the I C interface, and can be programmed  
into non-volatile memory. The default AVDD output voltage is 6.8V.  
The negative source-driver supply voltage (NAVDD) is automatically tightly regulated to -AVDD within ±34mV. NAVDD  
cannot be adjusted independently of AVDD.  
The AVDD boost converter is a current-mode converter with two internal switches and internal compensation. The direct  
output of the converter is HVINP while AVDD is a switched-output version. The NAVDD converter is a current-mode  
converter with one internal switch, an external diode and internal compensation.  
Gate-Driver Power Supplies  
The positive gate-driver power supply (VG ) is a regulated charge-pump tripler and generates up to +20.2V. Note also  
ON  
that the maximum output voltage is 3 x AVDD - R  
x I  
x K, where R  
is typically 30Ω and K is a  
ONTOTAL  
VGON  
ONTOTAL  
factor 0.75. In cases where a doubler charge pump is sufficient, set the cp_2stage bit and leave pins FC1- and FC1+  
unconnected in order to increase efficiency.  
The negative gate-driver power supply (VG  
) generates a maximum negative voltage of -18.2V and requires external  
OFF  
diodes and capacitors. The VG  
and VG  
blocks switch at the same frequency as the AVDD and NAVDD converters.  
OFF  
ON  
Both supplies are capable of output currents up to 15mA, assuming sufficient headroom. The VG  
regulation voltages are set by writing the vgon[5:0] and vgoff[5:0] values in the register map using the I C interface, and  
can be stored in the non-volatile section of the register map.  
and VG  
OFF  
ON  
2
Sequencing  
The power-on and power-off sequences are controlled by the seq_set[2:0] bits in the VCOM_L register. The setting  
should be written before the sequence is to be executed and should not be changed during the turn-on or turn-off  
sequences. The sequence options are as follows:  
Table 2. Available Sequences  
POWER-OFF (REVERSE-ORDER  
SEQUENCE SET BITS  
POWER-ON  
OF POWER-ON)  
2nd 3rd  
after t3 after t2 after t1  
NOTES  
2nd  
3rd  
4th  
4th  
Sequence  
No.  
seq_set2 seq_set1 seq_set0 1st  
after t1 after t2 after t3 1st  
ms  
ms  
ms  
ms  
ms  
ms  
VG  
/
VGON/  
ON  
1
2
3
4
5
6
0
0
0
0
1
1
0
0
1
1
0
0
0
1
0
1
0
1
AVDD  
AVDD  
NAVDD VG  
NAVDD VG  
VG  
NAVDD AVDD  
NAVDD AVDD  
OFF  
ON  
OFF  
ON  
VCOM VCOM  
VG VG  
VCOM VCOM  
/
/
OFF  
OFF  
VG  
VG  
VG  
VG VG  
VCOM VCOM  
/
/
ON  
Default  
setting  
ON  
NAVDD AVDD  
NAVDD AVDD  
VG  
AVDD  
AVDD  
NAVDD  
NAVDD  
NAVDD  
OFF  
OFF  
ON  
VG VG  
VCOM VCOM  
/
/
OFF  
OFF  
VGON  
AVDD  
VG VGON/  
VCOM VCOM  
/
ON  
NAVDD VG  
AVDD  
VG  
OFF  
ON  
OFF  
ON  
AVDD/ AVDD/  
VCOM VCOM  
VG  
VG  
NAVDD  
NAVDD VG  
VG  
OFF  
OFF  
www.maximintegrated.com  
Maxim Integrated | 23  
MAX25220/MAX25221/  
MAX25221B  
Automotive 4-Channel TFT-LCD Power Supply  
with VCOM Buffer  
Table 2. Available Sequences (continued)  
AVDD/  
NAVDD  
VG  
VCOM  
/
VG  
VCOM  
/
ON  
AVDD/  
NAVDD  
ON  
7
1
1
0
VG  
-
-
VG  
-
-
OFF  
OFF  
AVDD/  
NAVDD  
VG  
VCOM  
/
VG  
VCOM  
/
OFF  
AVDD/  
NAVDD  
OFF  
8
1
1
1
VG  
VGON  
ON  
The times in the above table are determined by the delayt1, delayt2 and delayt3 settings in the DELAY-VCOM_LSB  
register. The fastest power-up is obtained by setting the delays to 0.  
The output voltages are not monitored during off sequencing; each output is turned off in turn using the programmed  
delays. When the delays are set to zero, outputs are turned off in sequence with 1ms delays .A sequence can be stored  
in non-volatile memory by writing to the burn_otp_reg register.  
The V18 linear regulator is powered down 200ms after the power-down sequence is complete. After this time, the device  
is in shut-down mode and can be restarted by setting the EN input high.  
Sequencing Diagram  
VGON  
tBOOST_SS  
AVDD  
EN  
0V  
1ms  
VCOM  
delayt3  
delayt2  
delayt1  
delayt1  
delayt2  
delayt3  
NAVDD  
VGOFF  
tINV_SS  
Figure 1. Sequencing Example (Sequence 1, Not to Scale)  
VCOM Buffer  
2
The VCOM output voltage is programmed using I C to a value between -2.49V and +1V. The 9-bit value can also be  
stored in non-volatile memory. The most-significant bits of the VCOM voltage setting are in the VCOM25 register while  
the least-significant bit is the vcom25_0 bit in the DELAY-DELAYVCOM_LSB register.  
The VCOM buffer can output peak currents up to ±120mA. If the VCOM output voltage deviates from the set value by  
more than 0.25V, a VCOM fault is detected and flagged with the vcom_flt bit in the FAULT2 register. When this fault is  
detected, the VCOM buffer continues to function—it is not automatically disabled. Note that a fault condition can lead to  
high power dissipation in the VCOM buffer and could lead to thermal shutdown of the entire device. If the VCOM buffer is  
continuously in current limit for more than the time set by tfault[1:0], it is disabled together with the AVDD, NAVDD, VG  
H
and VG outputs to avoid damage to the IC. Also in this case the vcom_flt bit is set.  
L
The maximum capacitive load on the VCOM output is 10nF. If higher capacitance loads are used, a series resistor should  
be employed to maintain stability.  
To calculate the value to write to the VCOM25 register use the following equation:  
www.maximintegrated.com  
Maxim Integrated | 24  
MAX25220/MAX25221/  
MAX25221B  
Automotive 4-Channel TFT-LCD Power Supply  
with VCOM Buffer  
V
+ 2.49  
COM  
VCOM25 =  
0.00683  
The correspondence between the VCOM set value and the VCOM voltage is shown in table 2.  
Table 3. VCOM Settings  
VCOM25 REGISTER VALUE  
VCOM VOLTAGE (V)  
0x1FF  
0x1FE  
...  
1
0.9932  
...  
0x16E  
0x16D  
0x16C  
...  
+0.0098  
+0.003  
-0.0039  
...  
0x002  
0x001  
0x000  
-2.4763  
-2.4832  
-2.49  
VCOMN Negative Power Supply  
A linear regulator is implemented to derive a regulated -3.5V for the VCOM buffer from the NAVDD supply.The npn  
transistor connected to the VCB pin acts as the pass transistor of the regulator. The peak output current of the regulator  
is the same as the peak negative drive current from the VCOM output, or at least 120mA. The device senses the voltage  
at VCOMN and regulates it to -3.5V by driving VCB. The peak drive current for the base of the external npn is at least  
5mA.  
Limiting the Range of VCOM Voltage  
When temperature compensation is not enabled, it is possible to limit the excursion of VCOM to a range between the  
values set in the VCOM_MIN and VCOM_MAX registers. If an attempt is made to write a value outside the set range to  
2
VCOM25, the VCOM output voltage is not updated and the I C interface issues a NACK.  
VCOM Temperature Compensation  
The VCOM output voltage can be compensated for temperature changes using a temperature-sensitive component (e.g.  
an NTC thermistor) connected to the TEMP input or an internal temperature sensor. Select the sensor to be used with  
the int_sensor bit in the CONFIG register (the default configuration is to use the external sensor). The TEMP pin is forced  
to 625mV and the current drawn from it is mirrored on the R  
pin. The voltage generated due to the resistor on R  
REF  
REF  
is fed to the internal 8-bit ADC, which has a reference voltage of 1.25V. The input to the ADC is therefore as follows:  
0.625 × R  
RREF  
V
=
ADC  
R
TEMP  
With reference to Figure 2: R  
= (R  
| | R1) + R2  
NTC  
TEMP  
The highly non-linear NTC characteristic can be modified depending on which temperature (cold, room, or hot)  
necessitates the highest resolution. As an example in Figure 2, a reference resistor is connected to R while a  
REF  
combination of the NTC and two low-TC resistors R1 and R2 are connected to TEMP. In this way, an ADC reading that is  
steeper at higher temperatures is obtained, enhancing the resolution of the ADC there. When temperature compensation  
is enabled, the value of the voltage on the R  
pin is available in the TEMP (0x01) register.  
REF  
Temperature compensation is enabled by setting the T_comp_en bit in the DELAY-VCOM_LSB register. When  
T_comp_en is high, the voltage on the R pin is measured and the VCOM output voltage is updated at a rate of 1Hz.  
REF  
At start-up, even with temperature compensation enabled, there is a delay before compensation becomes active due to  
the time needed to sample the temperature. For this reason, the device always starts up with the VCOM25 voltage value  
on VCOM.  
www.maximintegrated.com  
Maxim Integrated | 25  
MAX25220/MAX25221/  
MAX25221B  
Automotive 4-Channel TFT-LCD Power Supply  
with VCOM Buffer  
The VCOM value at 25°C is the value written in the VCOM25 register together with the LSB from DELAY-VCOM_LSB  
register. This value serves as the reference for all other VCOM values. The 5-bit values in the VCOM_L, and VCOM_H1  
registers represent the change in VCOM from the VCOM25 value at the temperature represented by an ADC reading of  
VTEMP_L and VTEMP_H1. The value in the VCOM_H2 register represents the positive shift in VCOM from VCOM_H1.  
The VCOM_L value represents a negative shift in VCOM while VCOM_H1 and VCOM_H2 represent positive shifts.  
NTC Connection Diagram  
V18  
1.25V  
DAC  
TEMP  
SENSOR  
ADC  
0.625V  
8
TEMP  
RREF  
T
R1  
R2  
Figure 2. Possible NTC Connection  
Internal Temperature Sensor  
The internal temperature sensor senses the junction temperature of the IC which may be significantly different from  
the ambient temperature. To use the internal sensor, set the int_sensor bit in the CONFIG register to 1. The internal  
temperature sensor has a temperature coefficient of 2mV/°C and a nominal output voltage of 620mV at 25°C.  
When the internal temperature sensor is selected, it is connected directly to the ADC input at RREF.  
www.maximintegrated.com  
Maxim Integrated | 26  
MAX25220/MAX25221/  
MAX25221B  
Automotive 4-Channel TFT-LCD Power Supply  
with VCOM Buffer  
Temperature Compensation Curve  
1V  
VCOM (V)  
ADC READING  
VCOM_H2  
VCOM_H1  
VCOM_L  
-1V  
VCOM25  
-2V  
-2.49V  
Figure 3. Temperature Compensation Curve  
Fault Handling  
2
The reaction to faults is dependent on whether the device is in I C or stand-alone mode.  
2
In I C mode, the following faults, if not masked, cause the FLTB pin to assert low: avdd_uv, navdd_uv, vgon_uv,  
vgoff_uv, vcom_flt, nv_flt, th_shdn, vin_uvlo, and par_err. The th_warn fault is masked by default and must be explicitly  
enabled using the th_warn_mask bit.  
2
When the ADD pin is left floating (I C interface not used) the FLTB pin outputs a pulse train of varying duty cycle  
depending on the detected fault as shown in Table 4.  
Table 4. FLTB Duty Cycle in Stand-Alone Mode  
DUTY-CYCLE  
FAULT  
or VG  
75%  
VG  
fault  
OFF  
ON  
50%  
25%  
AVDD, NAVDD or HVINP fault  
VCOM fault  
0% (continuously low)  
NV fault or thermal shutdown  
The frequency at the FLTB pin is 1kHz when indicating a fault. If multiple faults are present, the highest-priority fault is  
indicated. The list above is in order of priority with the highest priority listed last.  
Undervoltage Faults on the Source, Gate and VCOM Outputs  
When an undervoltage is detected on any of the AVDD, NAVDD, VG , or VG  
outputs, all of the outputs are turned  
OFF  
ON  
off and the appropriate fault bit is set in the FAULT1 register. At the same time, the FLTB pin asserts low. Depending on  
the setting of the tretry[1:0] bits, the subsequent behavior of the device is as follows:  
● tretry = 01, 10 or 11: After 0.95s or 1.9s a retry is performed where all outputs are turned on in the appropriate  
sequence. If the fault is still present, the output will be disabled again after tfault[1:0]. A total of three retries are  
performed, after which no further retry attempts are performed (the device can be restarted by toggling power or the  
EN pin or by using the RESTART command). If tretry = 11 retries continue until the fault is removed and normal  
www.maximintegrated.com  
Maxim Integrated | 27  
 
MAX25220/MAX25221/  
MAX25221B  
Automotive 4-Channel TFT-LCD Power Supply  
with VCOM Buffer  
function can resume.  
● tretry = 00: No retry is attempted (the device can be restarted by toggling power or the EN pin or by using the  
RESTART command).  
If a short-circuit is encountered during start-up, device operation is halted, all outputs are disabled, and the subsequent  
behavior depends on the setting of retry[1:0] as described above. The short-circuit checks on VG  
enabled 1ms after the pins are enabled.  
and VG  
are  
OFF  
ON  
During retry, faults are no longer monitored and the fault or faults which caused retry are indicated using the  
corresponding fault bits. During retry, the FLTB pin asserts low unless the fault which caused the retry is masked.  
Thermal Warning and Shutdown  
When the junction temperature reaches 125°C, the thermal warning bit is set. The device takes no further action.  
If the device junction temperature reaches 160°C, all outputs are turned off immediately. When the junction temperature  
drops by 15°C, the outputs are re-enabled using the stored sequence.  
NV Memory  
The MAX25220/MAX25221/MAX25221B include five blocks of one-time-programmable memory. The user can store the  
block of volatile registers from 0x07 to 0x15 in non-volatile memory which is in turn mapped to register locations 0x17 to  
0x25. Note that before the non-volatile memory has been programmed, a read from the locations 0x17 to 0x25 yields the  
result 0xFF.  
The contents of the non-volatile memory are protected by a single-error correction/double-error detection (SECDED)  
redundant code while data transfer from non-volatile memory to registers 0x07 to 0x15 is protected by a parity check. If  
the parity check fails, a retry is performed two times. If all three attempts are unsuccessful, the device does not start up,  
the nv_flt bit is set, and the FLTB pin is asserted low. If the SECDED check fails, the device does not start up, the nv_flt  
bit is set, and the FLTB pin is asserted low.  
If there are no errors, the outputs are turned on with the stored values and in the stored sequence.  
To store the contents of registers 0x07 to 0x15 to non-volatile memory a voltage source of 8.5V ±2% capable of supplying  
2
more than 25mA should be connected to the V  
pin. When the V  
voltage is stable an I C NV write command  
PROG  
PROG  
can be performed by writing to the burn_otp_reg register. If the NV write is unsuccessful (because the V  
voltage  
PROG  
was out of range or because of a general memory error) the nv_flt bit is set, FLTB pin goes low. After an NV write  
command is executed, the nv_flt bit should be checked. If nv_flt is high another NV write can be attempted.  
Connect V  
to GND if non-volatile memory is not used.  
PROG  
Ensure that temperature compensation is disabled when programming VCOM.  
Auto-Refresh Function  
When the refresh bit in register CONFIG is set, the device reads from the non-volatile registers at intervals of 1s and  
writes the data into the corresponding volatile registers. This avoids the effect of possible corruption of the volatile  
registers. Auto-refresh reads are subject to error correction in the same way as the initial read after device power-up.  
When programming the non-volatile memory, the auto-refresh function should be enabled immediately before performing  
the burn_otp_reg write. See the section Using the NV Memory in Applications Information.  
BURN, REBOOT and RESTART Commands  
The BURN and REBOOT commands are used to store the contents of registers 0x07 to 0x15 in non-volatile memory  
or to fetch the contents of non-volatile memory and load them into registers 0x07 to 0x15, respectively. The RESTART  
command is used to restart the device from a latched-fault mode. When a RESTART command is performed, all fault bits  
are cleared.  
A BURN command is performed by writing to register address 0x78 (burn_otp_reg).  
A REBOOT command is performed by writing to register address 0x79 (reboot_otp_reg).  
A RESTART command is performed by writing to register address 0x7A (soft_restart).  
www.maximintegrated.com  
Maxim Integrated | 28  
MAX25220/MAX25221/  
MAX25221B  
Automotive 4-Channel TFT-LCD Power Supply  
with VCOM Buffer  
When parity checking is enabled and one of these user commands is sent to the device, the third byte should be such as  
to have even parity over the 3 bytes sent.  
2
I C Interface  
2
The MAX25220/MAX25221/MAX25221B include an I C, 2-wire serial interface consisting of a serial-data line (SDA) and  
a serial-clock line (SCL). SDA and SCL facilitate communication between the IC and the master at clock rates up to  
400kHz. The master, typically a microcontroller, generates SCL and initiates data transfer on the bus.  
The Slave ID of the MAX25220/MAX25221/MAX25221B depends on the connection of the ADD pin according to Table  
4.  
A master device communicates with the MAX25220/MAX25221/MAX25221B by transmitting the correct Slave ID with  
appended R/W bit, followed by the register address and data word (for a write transaction only). Each transmit sequence  
is framed by a START (S) or Repeated START (Sr) condition, and a STOP (P) condition. Each word transmitted over the  
bus is 8 bits long and is always followed by an acknowledge clock pulse.  
The IC's SDA line operates as both an input and an open-drain output. A pullup resistor greater than 1kΩ is required on  
the SDA bus. In general, the resistor should be selected as a function of bus capacitance such that the rise time on the  
bus is not greater than 120ns. The IC's SCL line operates as an input only. A pullup resistor greater than 1kΩ is required  
on SCL if there are multiple masters on the bus, or if the master in a single-master system has an open-drain SCL output.  
In general, for the SCL-line resistor selection, the same recommendations as for SDA apply. Series resistors in line with  
SDA and SCL are optional. The SCL and SDA inputs suppress noise spikes to assure proper device operation even on  
a noisy bus.  
2
I C Slave Addresses  
2
Table 5. I C Slave Addresses  
DEVICE ADDRESS  
WRITE  
ADDRESS  
READ  
ADDRESS  
ADD PIN CONNECTION  
A6  
0
A5  
1
A4  
0
A3  
0
A2  
0
A1  
0
A0  
1
GND  
V18  
0x42  
0x43  
0x53  
0
1
0
1
0
0
1
0x52*  
* On the MAX25221B writing to the device is not possible when ADD is connected to V18.  
Parity Checking  
Even parity checking for write transactions can be enabled by setting the par_en bit in REG_CTRL to 1. The parity bit is  
the most-significant bit of the register address byte and should be set to attain even parity. The parity check is performed  
over all 3 bytes received by the device: the slave address, the register address, and the data payload. Burst-mode write  
2
is not supported when parity checking is enabled; a complete I C transaction is needed to write to each single register.  
2
When a parity bit error is detected the par_err bit is set, the I C interface issues a NACK and no write is performed.  
When writing any of the BURN, REBOOT, and RESTART commands, parity must be adjusted by changing the third or  
payload byte; the command byte must not be changed.  
www.maximintegrated.com  
Maxim Integrated | 29  
MAX25220/MAX25221/  
MAX25221B  
Automotive 4-Channel TFT-LCD Power Supply  
with VCOM Buffer  
Register Map  
MAX25220/MAX25221/MAX25221B  
ADDRESS  
NAME  
MSB  
LSB  
USER REGISTERS  
0x00  
0x01  
0x02  
DEVICE[7:0]  
TEMP[7:0]  
dev_id[5:0]  
temp[7:0]  
REG_CTRL[7:0]  
FLTMASK1[7:0]  
par_en  
start  
rev_id[2:0]  
avdd_uv  
_mask  
navdd_u  
v_mask  
vgon_uv  
_mask  
vgoff_uv  
_mask  
0x03  
0x04  
par_err_ vin_uvlo hvinp_uv  
vcom_flt th_warn_  
_mask  
FLTMASK2[7:0]  
mask  
avdd_uv  
par_err  
refresh  
_mask  
_mask  
mask  
navdd_u  
v
0x05  
0x06  
0x07  
FAULT1[7:0]  
FAULT2[7:0]  
CONFIG[7:0]  
vgon_uv  
nv_flt  
vgoff_uv  
th_warn  
v18oor  
vin_uvlo hvinp_uv th_shdn  
en_ss fSW  
delayt2[1:0]  
vcom25[7:0]  
vcom_flt  
int_sens  
or  
tretry[1:0]  
delayt3[1:0]  
tfault[1:0]  
DELAY-  
VCOM_LSB[7:0]  
T_comp_ vcom25_  
en  
0x08  
delayt1[1:0]  
0
0x09  
0x0A  
0x0B  
0x0C  
0x0D  
0x0E  
0x0F  
0x10  
0x11  
0x12  
0x13  
VCOM25[7:0]  
VCOM_L[7:0]  
seq_set[2:0]  
vcom_l[4:0]  
VCOM_H1[7:0]  
VCOM_H2[7:0]  
VTEMP25[7:0]  
VTEMP_L[7:0]  
VTEMP_H1[7:0]  
VTEMP_H2[7:0]  
VCOM_MIN[7:0]  
VCOM_MAX[7:0]  
AVDD_SET[7:0]  
vcom_h1[4:0]  
vcom_h2[4:0]  
vtemp25[7:0]  
vtemp_l[7:0]  
vtemp_h1[7:0]  
vtemp_h2[7:0]  
vcom_min[7:0]  
vcom_max[7:0]  
avdd[5:0]  
cp_2stag  
e
0x14  
0x15  
0x17  
VGON[7:0]  
vgon[5:0]  
vgoff[5:0]  
VGOFF[7:0]  
nv_int_s nv_refres nv_en_s  
ensor  
NV_CONFIG[7:0]  
nv_fSW  
nv_retry[1:0]  
nv_tfault[1:0]  
h
s
NV_DELAY-  
VCOM_LSB[7:0]  
nv_T_co nv_vcom  
0x18  
nv_delayt1[1:0]  
nv_delayt2[1:0]  
nv_delayt3[1:0]  
mp_en  
25_0  
0x19  
0x1A  
0x1B  
0x1C  
0x1D  
0x1E  
0x1F  
NV_VCOM25[7:0]  
NV_VCOM_L[7:0]  
NV_VCOM_H1[7:0]  
NV_VCOM_H2[7:0]  
NV_VTEMP25[7:0]  
NV_VTEMP_L[7:0]  
NV_TEMP_H1[7:0]  
nv_vcom25[7:0]  
nv_seq_set[2:0]  
nv_vcom_l[4:0]  
nv_vcom_h1[4:0]  
nv_vcom_h2[4:0]  
nv_vtemp25[7:0]  
nv_vtemp_l[7:0]  
nv_vtemp_h1[7:0]  
www.maximintegrated.com  
Maxim Integrated | 30  
 
MAX25220/MAX25221/  
MAX25221B  
Automotive 4-Channel TFT-LCD Power Supply  
with VCOM Buffer  
ADDRESS  
0x20  
NAME  
MSB  
LSB  
NV_TEMP_H2[7:0]  
NV_VCOM_MIN[7:0]  
NV_VCOM_MAX[7:0]  
NV_AVDD_SET[7:0]  
nv_vtemp_h2[7:0]  
0x21  
nv_vcom_min[7:0]  
0x22  
nv_vcom_max[7:0]  
0x23  
nv_avdd[5:0]  
nv_vgon[5:0]  
nv_vgoff[5:0]  
nv_cp_2  
stage  
0x24  
0x25  
NV_VGON[7:0]  
NV_VGOFF[7:0]  
USER COMMANDS  
0x78  
0x79  
0x7A  
burn_otp_reg[7:0]  
burn_otp[7:0]  
reboot_otp_reg[7:0]  
soft_restart[7:0]  
reboot_otp[7:0]  
soft_restart[7:0]  
Register Details  
DEVICE (0x00)  
BIT  
Field  
7
6
5
4
3
2
1
0
0
0
dev_id[5:0]  
Reset  
Access  
Type  
Read Only  
BITFIELD  
BITS  
DESCRIPTION  
dev_id  
5:0  
Device ID. Reads 0x20/21  
TEMP (0x01)  
BIT  
7
6
5
4
3
2
1
Field  
temp[7:0]  
0x0  
Reset  
Access  
Type  
Read Only  
BITFIELD  
BITS  
DESCRIPTION  
pin.  
temp  
7:0  
Voltage reading from R  
REF  
REG_CTRL (0x02)  
BIT  
7
6
5
4
3
2
1
Field  
par_en  
0x0  
start  
0x0  
rev_id[2:0]  
0x1  
Reset  
Access  
Type  
Write, Read Write, Read  
Read Only  
BITFIELD  
BITS  
DESCRIPTION  
Parity enable bit. When 1 this bit enables parity checking on write transactions  
to the device.  
par_en  
7
www.maximintegrated.com  
Maxim Integrated | 31  
MAX25220/MAX25221/  
MAX25221B  
Automotive 4-Channel TFT-LCD Power Supply  
with VCOM Buffer  
BITFIELD  
BITS  
DESCRIPTION  
Enable bit. When this bit is set to 1 the turn-on sequence set using the  
seq_set bits is executed. The default value of this bit is 0 except in the  
MAX25221B where it is 1.  
start  
6
rev_id  
2:0  
Revision ID. Reads 0x1.  
FLTMASK1 (0x03)  
BIT  
7
6
5
4
3
2
1
0
avdd_uv_m  
ask  
navdd_uv_  
mask  
vgon_uv_m  
ask  
vgoff_uv_m  
ask  
Field  
Reset  
0x0  
0x0  
0x0  
0x0  
Access  
Type  
Write, Read  
Write, Read  
Write, Read  
Write, Read  
BITFIELD  
BITS  
DESCRIPTION  
avdd_uv_mask  
6
When 1 this bit prevents an undervoltage on AVDD from asserting FLTB low.  
When 1 this bit prevents an undervoltage on NAVDD from asserting FLTB  
low.  
navdd_uv_mask  
vgon_uv_mask  
vgoff_uv_mask  
4
2
0
When 1 this bit prevents an undervoltage on VGON from asserting FLTB low.  
When 1 this bit prevents an undervoltage on VGOFF from asserting FLTB  
low.  
FLTMASK2 (0x04)  
BIT  
7
6
5
4
3
2
1
0
par_err_ma vin_uvlo_m hvinp_uv_m  
vcom_flt_m th_warn_ma  
Field  
sk  
ask  
ask  
ask  
sk  
Reset  
0x0  
0x0  
0x0  
0x0  
0x1  
Access  
Type  
Write, Read Write, Read Write, Read  
Write, Read Write, Read  
BITFIELD  
par_err_mask  
BITS  
DESCRIPTION  
6
5
When 1 prevents parity errors from asserting the FLTB pin.  
vin_uvlo_mask  
When 1 this bit prevents an undervoltage on IN from asserting the FLTB pin.  
Mask bit for hvinp_uv diagnostic. When 1 an undervoltage on HVINP does not  
cause FLTB to assert.  
hvinp_uv_mask  
vcom_flt_mask  
th_warn_mask  
4
1
0
When 1 this bit prevents a fault on VCOM from asserting FLTB low.  
When 1 this bit prevents an overtemperature warning from asserting FLTB  
low.  
FAULT1 (0x05)  
BIT  
Field  
7
6
5
4
3
2
1
0
avdd_uv  
0x0  
navdd_uv  
0x0  
vgon_uv  
0x0  
vgoff_uv  
0x0  
Reset  
Access  
Type  
Read  
Clears All  
Read  
Clears All  
Read  
Clears All  
Read  
Clears All  
BITFIELD  
BITS  
DESCRIPTION  
avdd_uv  
6
When 1 this bit indicates an undervoltage on AVDD.  
www.maximintegrated.com  
Maxim Integrated | 32  
MAX25220/MAX25221/  
MAX25221B  
Automotive 4-Channel TFT-LCD Power Supply  
with VCOM Buffer  
BITFIELD  
navdd_uv  
BITS  
DESCRIPTION  
4
2
0
When 1 this bit indicates an undervoltage on NAVDD.  
vgon_uv  
vgoff_uv  
When 1 this bit indicates an undervoltage on VG  
When 1 this bit indicates an undervoltage on VG  
.
ON  
.
OFF  
FAULT2 (0x06)  
BIT  
Field  
7
6
5
4
3
2
1
0
v18oor  
0x0  
par_err  
0x0  
vin_uvlo  
0x0  
hvinp_uv  
0x0  
th_shdn  
0x0  
nv_flt  
0x0  
vcom_flt  
0x0  
th_warn  
0x0  
Reset  
Access  
Type  
Read  
Clears All  
Read  
Clears All  
Read  
Clears All  
Read  
Clears All  
Read  
Clears All  
Read  
Clears All  
Read  
Clears All  
Read  
Clears All  
BITFIELD  
v18oor  
BITS  
DESCRIPTION  
Indicates that the 1.8V output is out of range, either above its overvoltage  
level or below its undervoltage level.  
7
6
2
par_err  
Indicates that a parity error was detected on an I C transaction.  
Indicates an undervoltage condition on the IN pin. When this happens the  
device turns off all outputs and waits for IN to return above the IN UVLO level,  
after which the outputs are re-enabled in the programmed sequence.  
vin_uvlo  
5
hvinp_uv  
th_shdn  
4
3
When 1 this bit indicates an undervoltage on the boost output, HVINP.  
When 1 this bit indicates an overtemperature shutdown.  
Non-volatile memory failure - unsuccessful transfer of the contents of NV  
memory to working memory or more than one error detected.  
nv_flt  
2
When 1 indicates a fault on the VCOM output either due to it being 0.25V  
away from its set value (unfiltered) or because the VCOM buffer was in  
vcom_flt  
th_warn  
1
0
current limit for a time t  
.
fault  
When 1 this bit indicates a thermal warning.  
CONFIG (0x07)  
BIT  
7
6
5
4
3
2
1
0
Field  
int_sensor  
0x0  
refresh  
0x0  
en_ss  
0x0  
fSW  
0x0  
tretry[1:0]  
0x1  
tfault[1:0]  
0x0  
Reset  
Access  
Type  
Write, Read Write, Read Write, Read Write, Read  
Write, Read  
Write, Read  
BITFIELD  
BITS  
DESCRIPTION  
DECODE  
Set this bit to 1 to use the internal  
temperature sensor.  
int_sensor  
refresh  
7
When this bit is 1 the contents of the NV  
registers are automatically copied to the  
volatile registers every second.  
0x0: Refresh disabled.  
0x1: Refresh enabled.  
6
Enable spread-spectrum by setting this bit to  
1.  
en_ss  
fSW  
5
4
0x0: 2.1MHz  
0x1: 420kHz  
Sets switching frequency.  
0x0: Retry disabled  
0x1: Retry after 0.95s, total 3 retries.  
0x2: Retry after 1.9s, total 3 retries.  
0x3: Retry after 1.9s  
tretry  
3:2  
Sets retry time after a fault.  
www.maximintegrated.com  
Maxim Integrated | 33  
MAX25220/MAX25221/  
MAX25221B  
Automotive 4-Channel TFT-LCD Power Supply  
with VCOM Buffer  
BITFIELD  
BITS  
DESCRIPTION  
DECODE  
0x0: 15ms  
0x1: 30ms  
0x2: 60ms  
0x3: 90ms  
tfault  
1:0  
Sets fault delay time.  
DELAY-VCOM_LSB (0x08)  
BIT  
Field  
7
6
5
4
3
2
1
0
delayt1[1:0]  
0x2  
delayt2[1:0]  
0x2  
delayt3[1:0]  
0x2  
T_comp_en  
0x0  
vcom25_0  
0x0  
Reset  
Access  
Type  
Write, Read  
Write, Read  
Write, Read  
Write, Read Write, Read  
BITFIELD  
BITS  
DESCRIPTION  
Set delay t1 in the start-up sequence. Choose between 0, 5ms, 10ms and  
15ms.  
delayt1  
delayt2  
delayt3  
7:6  
Set delay t2 in the start-up sequence. Choose between 0, 5ms, 10ms and  
15ms.  
5:4  
3:2  
Set delay t3 in the start-up sequence. Choose between 0, 5ms, 10ms and  
15ms.  
When 1 this bit enables temperature compensation of the output of the VCOM  
amplifier.  
T_comp_en  
vcom25_0  
1
0
LSB of VCOM setting at 25°C.  
VCOM25 (0x09)  
BIT  
Field  
7
6
5
4
3
2
1
0
vcom25[7:0]  
0x0  
Reset  
Access  
Type  
Write, Read  
BITFIELD  
BITS  
DESCRIPTION  
vcom25  
7:0  
VCOM setting at 25°C.  
VCOM_L (0x0A)  
BIT  
Field  
7
6
5
4
3
2
1
0
seq_set[2:0]  
0x2  
vcom_l[4:0]  
0x00  
Reset  
Access  
Type  
Write, Read  
Write, Read  
BITFIELD  
BITS  
DESCRIPTION  
DECODE  
0x0: Sequence 1.  
0x1: Sequence 2.  
0x2: Sequence 3.  
0x3: Sequence 4.  
0x4: Sequence 5.  
0x5: Sequence 6.  
0x6: Sequence 7.  
0x7: Sequence 8.  
seq_set  
7:5  
Sequence selection bits.  
www.maximintegrated.com  
Maxim Integrated | 34  
MAX25220/MAX25221/  
MAX25221B  
Automotive 4-Channel TFT-LCD Power Supply  
with VCOM Buffer  
BITFIELD  
BITS  
DESCRIPTION  
DECODE  
Delta VCOM at at the temperature  
corresponding to VTEMP_L. This value sets  
the difference between the VCOM value at  
25°C and that at VTEMP_L.  
vcom_l  
4:0  
VCOM_H1 (0x0B)  
BIT  
Field  
7
6
5
4
3
2
1
0
vcom_h1[4:0]  
0x00  
Reset  
Access  
Type  
Write, Read  
BITFIELD  
BITS  
DESCRIPTION  
Delta VCOM at VTEMP_H1. This value sets the difference between the  
VCOM value at 25°C and that at VTEMP_H1.  
vcom_h1  
4:0  
VCOM_H2 (0x0C)  
BIT  
Field  
7
6
5
4
3
2
1
0
vcom_h2[4:0]  
0x0  
Reset  
Access  
Type  
Write, Read  
BITFIELD  
BITS  
DESCRIPTION  
Delta VCOM at VTEMP_H2. This value sets the difference between the  
VCOM value at VTEMP_H1 and that at VTEMP_H2.  
vcom_h2  
4:0  
VTEMP25 (0x0D)  
BIT  
Field  
7
6
5
4
3
2
1
0
vtemp25[7:0]  
0x0  
Reset  
Access  
Type  
Write, Read  
BITFIELD  
BITS  
DESCRIPTION  
vtemp25  
7:0  
Voltage at TEMP pin at 25°C.  
VTEMP_L (0x0E)  
BIT  
Field  
7
6
5
4
3
2
1
0
vtemp_l[7:0]  
0x0  
Reset  
Access  
Type  
Write, Read  
BITFIELD  
BITS  
DESCRIPTION  
Voltage at TEMP pin corresponding to low-temperature breakpoint in VCOM  
compensation curve.  
vtemp_l  
7:0  
www.maximintegrated.com  
Maxim Integrated | 35  
MAX25220/MAX25221/  
MAX25221B  
Automotive 4-Channel TFT-LCD Power Supply  
with VCOM Buffer  
VTEMP_H1 (0x0F)  
BIT  
Field  
7
7
7
6
5
4
3
2
1
0
vtemp_h1[7:0]  
Reset  
0x0  
Access  
Type  
Write, Read  
BITFIELD  
BITS  
DESCRIPTION  
Voltage at TEMP pin corresponding to first high-temperature breakpoint in  
VCOM compensation curve.  
vtemp_h1  
7:0  
VTEMP_H2 (0x10)  
BIT  
Field  
6
5
4
3
2
1
0
vtemp_h2[7:0]  
Reset  
0x0  
Access  
Type  
Write, Read  
BITFIELD  
BITS  
DESCRIPTION  
Voltage at TEMP pin corresponding to second high-temperature breakpoint in  
VCOM compensation curve.  
vtemp_h2  
7:0  
VCOM_MIN (0x11)  
BIT  
Field  
6
5
5
5
4
3
2
1
1
1
0
0
0
vcom_min[7:0]  
Reset  
0x0  
Access  
Type  
Write, Read  
BITFIELD  
BITS  
DESCRIPTION  
vcom_min  
7:0  
Lower limit for VCOM setting.  
VCOM_MAX (0x12)  
BIT  
Field  
7
6
4
3
2
vcom_max[7:0]  
Reset  
0xFF  
Access  
Type  
Write, Read  
BITFIELD  
BITS  
DESCRIPTION  
vcom_max  
7:0  
Upper limit for VCOM setting.  
AVDD_SET (0x13)  
BIT  
Field  
7
6
4
3
2
avdd[5:0]  
0x1A  
Reset  
Access  
Type  
Write, Read  
www.maximintegrated.com  
Maxim Integrated | 36  
MAX25220/MAX25221/  
MAX25221B  
Automotive 4-Channel TFT-LCD Power Supply  
with VCOM Buffer  
BITFIELD  
BITS  
DESCRIPTION  
DECODE  
0x0: 4.2  
0x1: 4.3  
0x2: 4.4  
0x3: 4.5  
0x4: 4.6  
0x5: 4.7  
0x6: 4.8  
0x7: 4.9  
0x8: 5  
0x9: 5.1  
0xA: 5.2  
0xB: 5.3  
0xC: 5.4  
0xD: 5.5  
0xE: 5.6  
0xF: 5.7  
0x10: 5.8  
0x11: 5.9  
0x12: 6  
0x13: 6.1  
0x14: 6.2  
0x15: 6.3  
0x16: 6.4  
0x17: 6.5  
0x18: 6.6  
0x19: 6.7  
0x1A: 6.8  
0x1B: 6.9  
0x1C: 7V  
0x1D: 7.1  
0x1E: 7.2  
0x1F: 7.3  
0x20: 7.4  
0x21: 7.5  
0x22: 7.6  
0x23: 7.7  
0x24: 7.8  
0x25: 7.9  
0x26: 8  
avdd  
5:0  
Sets AVDD and NAVDD voltages.  
0x27: 8.1  
0x28: 8.2  
0x29: 8.3  
0x2A: 8.4  
0x2B: 8.5  
0x2C: 8.6  
0x2D: 8.7  
0x2E: 8.8  
0x2F: 8.9  
0x30: 9  
0x31: 9.1  
0x32: 9.2  
0x33: 9.3  
0x34: 9.4  
0x35: 9.5  
0x36: 9.6  
0x37: 9.7  
0x38: 9.8  
www.maximintegrated.com  
Maxim Integrated | 37  
MAX25220/MAX25221/  
MAX25221B  
Automotive 4-Channel TFT-LCD Power Supply  
with VCOM Buffer  
BITFIELD  
BITS  
DESCRIPTION  
DECODE  
0x39: 9.9  
0x3A: 10  
0x3B: 10.1  
0x3C: 10.2  
0x3D: 10.3  
0x3E: 10.4  
0x3F: 10.5  
VGON (0x14)  
BIT  
7
6
5
4
3
2
1
0
Field  
cp_2stage  
0x0  
vgon[5:0]  
0x16  
Reset  
Access  
Type  
Write, Read  
Write, Read  
BITFIELD  
BITS  
DESCRIPTION  
DECODE  
Set this bit to 1 when using a two-stage  
charge-pump.  
cp_2stage  
6
www.maximintegrated.com  
Maxim Integrated | 38  
MAX25220/MAX25221/  
MAX25221B  
Automotive 4-Channel TFT-LCD Power Supply  
with VCOM Buffer  
BITFIELD  
BITS  
DESCRIPTION  
DECODE  
0x0: 7.6  
0x1: 7.8  
0x2: 8  
0x3: 8.2  
0x4: 8.4  
0x5: 8.6  
0x6: 8.8  
0x7: 9  
0x8: 9.2  
0x9: 9.4  
0xA: 9.6  
0xB: 9.8  
0xC: 10  
0xD: 10.2  
0xE: 10.4  
0xF: 10.6  
0x10: 10.8  
0x11: 11  
0x12: 11.2  
0x13: 11.4  
0x14: 11.6  
0x15: 11.8  
0x16: 12  
0x17: 12.2  
0x18: 12.4  
0x19: 12.6  
0x1A: 12.8  
0x1B: 13  
0x1C: 13.2  
0x1D: 13.4  
0x1E: 13.6  
0x1F: 13.8  
0x20: 14  
vgon  
5:0  
Sets VG  
voltage.  
ON  
0x21: 14.2  
0x22: 14.4  
0x23: 14.6  
0x24: 14.8  
0x25: 15  
0x26: 15.2  
0x27: 15.4  
0x28: 15.6  
0x29: 15.8  
0x2A: 16  
0x2B: 16.2  
0x2C: 16.4  
0x2D: 16.6  
0x2E: 16.8  
0x2F: 17  
0x30: 17.2  
0x31: 17.4  
0x32: 17.6  
0x33: 17.8  
0x34: 18  
0x35: 18.2  
0x36: 18.4  
0x37: 18.6  
0x38: 18.8  
www.maximintegrated.com  
Maxim Integrated | 39  
MAX25220/MAX25221/  
MAX25221B  
Automotive 4-Channel TFT-LCD Power Supply  
with VCOM Buffer  
BITFIELD  
BITS  
DESCRIPTION  
DECODE  
0x39: 19  
0x3A: 19.2  
0x3B: 19.4  
0x3C: 19.6  
0x3D: 19.8  
0x3E: 20  
0x3F: 20.2  
VGOFF (0x15)  
BIT  
Field  
7
6
5
4
3
2
1
0
vgoff[5:0]  
0x16  
Reset  
Access  
Type  
Write, Read  
www.maximintegrated.com  
Maxim Integrated | 40  
MAX25220/MAX25221/  
MAX25221B  
Automotive 4-Channel TFT-LCD Power Supply  
with VCOM Buffer  
BITFIELD  
BITS  
DESCRIPTION  
DECODE  
0x0: -5.6  
0x1: -5.8  
0x2: -6  
0x3: -6.2  
0x4: -6.4  
0x5: -6.6  
0x6: -6.8  
0x7: -7  
0x8: -7.2  
0x9: -7.4  
0xA: -7.6  
0xB: -7.8  
0xC: -8  
0xD: -8.2  
0xE: -8.4  
0xF: -8.6  
0x10: -8.8  
0x11: -9  
0x12: -9.2  
0x13: -9.4  
0x14: -9.6  
0x15: -9.8  
0x16: -10  
0x17: -10.2  
0x18: -10.4  
0x19: -10.6  
0x1A: -10.8  
0x1B: -11  
0x1C: -11.2  
0x1D: -11.4  
0x1E: -11.6  
0x1F: -11.8  
0x20: -12  
0x21: -12.2  
0x22: -12.4  
0x23: -12.6  
0x24: -12.8  
0x25: -13  
0x26: -13.2  
0x27: -13.4  
0x28: -13.6  
0x29: -13.8  
0x2A: -14  
0x2B: -14.2  
0x2C: -14.4  
0x2D: -14.6  
0x2E: -14.8  
0x2F: -15  
0x30: -15.2  
0x31: -15.4  
0x32: -15.6  
0x33: -15.8  
0x34: -16  
0x35: -16.2  
0x36: -16.4  
0x37: -16.6  
0x38: -16.8  
vgoff  
5:0  
Sets VG  
voltage.  
OFF  
www.maximintegrated.com  
Maxim Integrated | 41  
MAX25220/MAX25221/  
MAX25221B  
Automotive 4-Channel TFT-LCD Power Supply  
with VCOM Buffer  
BITFIELD  
BITS  
DESCRIPTION  
DECODE  
0x39: -17  
0x3A: -17.2  
0x3B: -17.4  
0x3C: -17.6  
0x3D: -17.8  
0x3E: -18  
0x3F: -18.2  
NV_CONFIG (0x17)  
Non-volatile configuration register  
BIT  
7
6
5
4
3
2
1
0
nv_int_sens  
or  
Field  
nv_refresh  
nv_en_ss  
nv_fSW  
nv_retry[1:0]  
nv_tfault[1:0]  
Read Only  
Reset  
Access  
Type  
Read Only  
Read Only  
Read Only  
Read Only  
Read Only  
BITFIELD  
BITS  
DESCRIPTION  
DECODE  
nv_int_senso  
r
When this bit is 1 the internal temperature  
sensor is used.  
7
When this bit is 1 the contents of the NV  
registers are automatically copied to the  
volatile registers every second.  
nv_refresh  
6
When this bit is 1 spread-spectrum is  
enabled.  
nv_en_ss  
nv_fSW  
5
4
0x0: 2.2MHz  
0x1: 440kHz  
Sets switching frequency.  
nv_retry  
nv_tfault  
3:2  
1:0  
Sets retry time after a fault.  
Sets retry time after a fault.  
NV_DELAY-VCOM_LSB (0x18)  
BIT  
7
6
5
4
3
2
1
0
nv_T_comp nv_vcom25  
Field  
nv_delayt1[1:0]  
nv_delayt2[1:0]  
nv_delayt3[1:0]  
_en  
0x0  
_0  
Reset  
Access  
Type  
Read Only  
Read Only  
Read Only  
Read Only  
Read Only  
BITFIELD  
BITS  
DESCRIPTION  
Set delay t1 in the start-up sequence. Choose between 0, 5ms, 10ms and  
15ms.  
nv_delayt1  
7:6  
Set delay t2 in the start-up sequence. Choose between 0, 5ms, 10ms and  
15ms.  
nv_delayt2  
5:4  
3:2  
1
Set delay t3 in the start-up sequence. Choose between 0, 5ms, 10ms and  
15ms.  
nv_delayt3  
When 1 this bit enables temperature compensation of output of the VCOM  
amplifier.  
nv_T_comp_en  
nv_vcom25_0  
When 1 this bit enables temperature compensation of output of the VCOM  
amplifier.  
0
www.maximintegrated.com  
Maxim Integrated | 42  
MAX25220/MAX25221/  
MAX25221B  
Automotive 4-Channel TFT-LCD Power Supply  
with VCOM Buffer  
NV_VCOM25 (0x19)  
BIT  
Field  
7
6
5
4
3
2
1
0
nv_vcom25[7:0]  
Reset  
Access  
Type  
Read Only  
BITFIELD  
nv_vcom25  
BITS  
DESCRIPTION  
7:0  
VCOM setting at 25°C.  
NV_VCOM_L (0x1A)  
BIT  
Field  
7
6
5
4
3
2
1
0
nv_seq_set[2:0]  
nv_vcom_l[4:0]  
Reset  
Access  
Type  
Read Only  
Read Only  
BITFIELD  
BITS  
DESCRIPTION  
nv_seq_set  
nv_vcom_l  
7:5  
Sequence selection bits.  
Delta VCOM at at the temperature corresponding to VTEMP_L. This value  
sets the difference between the VCOM value at 25°C and that at VTEMP_L.  
4:0  
NV_VCOM_H1 (0x1B)  
BIT  
Field  
7
6
5
4
3
2
1
0
nv_vcom_h1[4:0]  
Reset  
Access  
Type  
Read Only  
BITFIELD  
nv_vcom_h1  
BITS  
DESCRIPTION  
Delta VCOM at VTEMP_H1. This value sets the difference between the  
VCOM value at 25°C and that at VTEMP_H1.  
4:0  
NV_VCOM_H2 (0x1C)  
BIT  
Field  
7
6
5
4
3
2
1
0
nv_vcom_h2[4:0]  
Reset  
Access  
Type  
Read Only  
BITFIELD  
nv_vcom_h2  
BITS  
DESCRIPTION  
Delta VCOM at VTEMP_H2. This value sets the difference between the  
VCOM value at VTEMP_H1 and that at VTEMP_H2.  
4:0  
www.maximintegrated.com  
Maxim Integrated | 43  
MAX25220/MAX25221/  
MAX25221B  
Automotive 4-Channel TFT-LCD Power Supply  
with VCOM Buffer  
NV_VTEMP25 (0x1D)  
BIT  
Field  
7
6
5
4
3
2
1
0
nv_vtemp25[7:0]  
Reset  
Access  
Type  
Read Only  
BITFIELD  
nv_vtemp25  
BITS  
DESCRIPTION  
7:0  
Voltage at TEMP pin at 25°C.  
NV_VTEMP_L (0x1E)  
BIT  
Field  
7
6
5
4
3
2
1
0
nv_vtemp_l[7:0]  
Reset  
Access  
Type  
Read Only  
BITFIELD  
nv_vtemp_l  
BITS  
DESCRIPTION  
Voltage at TEMP pin corresponding to low-temperature breakpoint in VCOM  
compensation curve.  
7:0  
NV_TEMP_H1 (0x1F)  
BIT  
Field  
7
6
5
4
3
2
1
0
nv_vtemp_h1[7:0]  
Reset  
Access  
Type  
Read Only  
BITFIELD  
nv_vtemp_h1  
BITS  
DESCRIPTION  
Voltage at TEMP pin corresponding to first high-temperature breakpoint in  
VCOM compensation curve.  
7:0  
NV_TEMP_H2 (0x20)  
BIT  
Field  
7
6
5
4
3
2
1
0
nv_vtemp_h2[7:0]  
Reset  
Access  
Type  
Read Only  
BITFIELD  
nv_vtemp_h2  
BITS  
DESCRIPTION  
Voltage at TEMP pin corresponding to second high-temperature breakpoint in  
VCOM compensation curve.  
7:0  
www.maximintegrated.com  
Maxim Integrated | 44  
MAX25220/MAX25221/  
MAX25221B  
Automotive 4-Channel TFT-LCD Power Supply  
with VCOM Buffer  
NV_VCOM_MIN (0x21)  
BIT  
Field  
7
6
5
5
5
5
4
3
2
1
1
1
0
0
0
0
nv_vcom_min[7:0]  
Reset  
Access  
Type  
Read Only  
BITFIELD  
nv_vcom_min  
BITS  
DESCRIPTION  
7:0  
Lower limit for VCOM setting.  
NV_VCOM_MAX (0x22)  
BIT  
Field  
7
6
4
3
2
nv_vcom_max[7:0]  
Reset  
Access  
Type  
Read Only  
BITFIELD  
nv_vcom_max  
BITS  
DESCRIPTION  
7:0  
Upper limit for VCOM setting.  
NV_AVDD_SET (0x23)  
BIT  
Field  
7
6
4
3
2
nv_avdd[5:0]  
Reset  
Access  
Type  
Read Only  
BITFIELD  
BITS  
DESCRIPTION  
nv_avdd  
5:0  
Sets AVDD and NAVDD voltages. See table for register 0x13.  
NV_VGON (0x24)  
BIT  
7
6
4
3
2
1
nv_cp_2sta  
ge  
Field  
nv_vgon[5:0]  
Read Only  
Reset  
Access  
Type  
Read Only  
BITFIELD  
nv_cp_2stage  
nv_vgon  
BITS  
6
DESCRIPTION  
When this bit is set to 1 a two-stage charge-pump is used.  
Sets VG voltage. See table for register 0x14.  
5:0  
ON  
NV_VGOFF (0x25)  
BIT  
Field  
7
6
5
4
3
2
1
0
nv_vgoff[5:0]  
Read Only  
Reset  
Access  
Type  
www.maximintegrated.com  
Maxim Integrated | 45  
MAX25220/MAX25221/  
MAX25221B  
Automotive 4-Channel TFT-LCD Power Supply  
with VCOM Buffer  
BITFIELD  
nv_vgoff  
BITS  
5:0  
DESCRIPTION  
Sets VGOFF voltage. See table for register 0x15.  
burn_otp_reg (0x78)  
BIT  
Field  
7
6
5
5
5
4
3
2
1
0
burn_otp[7:0]  
0x0  
Reset  
Access  
Type  
Write Only  
BITFIELD  
burn_otp  
BITS  
DESCRIPTION  
Command to copy the contents of registers 0x07-0x15 to the non-volatile  
registers 0x17-0x25.  
7:0  
reboot_otp_reg (0x79)  
BIT  
Field  
7
6
4
3
2
1
0
reboot_otp[7:0]  
Reset  
Access  
Type  
Write Only  
BITFIELD  
reboot_otp  
BITS  
DESCRIPTION  
Command to copy the contents of the non-volatile registers 0x17-0x15 to the  
working registers 0x17-0x25.  
7:0  
soft_restart (0x7A)  
BIT  
Field  
7
6
4
3
2
1
0
soft_restart[7:0]  
0x00  
Reset  
Access  
Type  
Write Only  
BITFIELD  
BITS  
DESCRIPTION  
Command used to re-start the device from a latched fault mode. All faults are  
cleared when this command is executed.  
soft_restart  
7:0  
www.maximintegrated.com  
Maxim Integrated | 46  
MAX25220/MAX25221/  
MAX25221B  
Automotive 4-Channel TFT-LCD Power Supply  
with VCOM Buffer  
Applications Information  
Boost Converter  
Boost Converter Inductor Selection  
Three key inductor parameters must be specified for operation with the device: Inductance value (L), inductor saturation  
current (I ), and DC resistance (R ). To determine the inductance value, first select the ratio of inductor peak-to-  
SAT  
DC  
peak ripple current to average output current (LIR). Higher LIR values mean higher RMS inductor current and therefore  
2
higher I R losses. To achieve a lower LIR value, a high-valued inductor, which may be physically larger, must be used. A  
good compromise between size and loss is to select a 30% to 60% peak-to-peak ripple current to average-current ratio  
(LIR from 0.3 to 0.6). If extremely thin high-resistance inductors are used, as is common for LCD-panel applications, the  
best LIR may lie between 0.5 and 1.0. The value of the inductor is determined below.  
V
× D  
IN  
L =  
LIR × I × f  
IN SW  
using:  
V
× I  
OUT OUT  
I
=
IN  
η × V  
IN  
V
IN  
D = 1 −  
V
OUT  
where V is the input voltage, V  
is the output voltage, I  
is the output current, I is the calculated average boost  
OUT IN  
IN  
OUT  
input current, η is the efficiency of the boost converter, D is the duty cycle, and f  
is either 420kHz or 2.1MHz (the  
SW  
selected switching frequency of the boost converter). The efficiency of the boost converter can be estimated from the  
Typical Operating Characteristics and accounts for losses in the internal switch, inductor, and capacitors.  
The inductor’s saturation rating must exceed the maximum current-limit of 2.3A.  
Boost Output Filter Capacitor Selection  
The primary criterion for selecting the output filter capacitor is low effective series resistance (ESR). The product of the  
peak inductor current and the output filter capacitor’s ESR determine the amplitude of the high-frequency ripple seen  
on the output voltage. For stability, the boost output-filter capacitor should have a value of 10μF or greater when using  
2.1MHz switching.  
To avoid a large drop on HVINP when AVDD is enabled, the capacitance on the HVINP node should be at least three  
times larger than that on AVDD.  
Boost Input Filter Capacitor  
Sufficient input capacitance must be used to avoid input voltage drop when transients are encountered on the AVDD or  
NAVDD outputs and when the AVDD switch is closed. If the IN voltage drops below 2.57V, the device is likely to reset so  
input capacitance must prevent this. The total value of capacitance depends on the expected transients and the series  
resistance in the IN connection. A good starting point is a total input capacitance of 2 x 22μF ceramic capacitors in parallel  
with 2 x 10μF ceramic capacitors. Depending on the particular application circumstances more or less capacitance may  
be needed.  
Input capacitance requirements are significantly relaxed when an input voltage of 5V is used.  
Setting the AVDD Voltage  
The AVDD output voltage is set by writing a 6-bit value to the AVDD_SET register.  
The NAVDD converter outputs a negative voltage whose absolute value is the same as AVDD.  
NAVDD Inverting Regulator  
www.maximintegrated.com  
Maxim Integrated | 47  
MAX25220/MAX25221/  
MAX25221B  
Automotive 4-Channel TFT-LCD Power Supply  
with VCOM Buffer  
NAVDD Regulator Inductor Selection  
The inductor value for the NEG regulator can be selected using the formula below.  
V
× (1 − D)  
NAVDD  
L =  
LIR × I  
× f  
NAVDD SW  
where V  
is the output voltage, I  
the output current, LIR the desired inductor ripple ratio, and f  
the  
SW  
NAVDD  
NAVDD  
switching frequency.  
Calculate the duty-cycle D using:  
V
NAVDD  
D =  
V
+ V  
IN  
NAVDD  
The inductor's saturation current rating must exceed the maximum current-limit of 2.25A.  
NAVDD External Diode Selection  
Select a diode with a peak current rating of at least the LXN current limit (I  
) for use with the NAVDD output.  
LIMNH  
The diode breakdown-voltage rating should exceed the sum of the maximum INN voltage and the absolute value of the  
NAVDD voltage. A Schottky diode improves the overall efficiency of the converter but should be selected to have low  
leakage at the maximum operating temperature.  
NAVDD Output Capacitor Selection  
The primary criterion for selecting the output filter capacitor is low ESR and capacitance value, as the NAVDD capacitor  
provides the load current when the internal switch is on. The voltage ripple on the NAVDD output has two components:  
1. Ripple to due ESR which is the product of the peak inductor current and the output filter capacitor’s ESR  
2. Ripple due to bulk capacitance that can be determined as follows.  
D
I
×
NAVDD  
f
SW  
ΔV  
=
BULK  
C
NAVDD  
For stability, the NAVDD output capacitor should have a value of 10μF or greater when using 2.1MHz switching  
frequency.  
Setting the VG  
and VG  
Output Voltages  
OFF  
ON  
The internal positive charge pump can output a voltage approximately three times AVDD. If a voltage of twice the HVINP  
voltage is sufficient leave the FC1+ and FC1- pins unconnected and set the cp_2stage bit.  
For V  
the VG  
, the number of charge-pump stages should be chosen to ensure sufficient output voltage while maintaining  
voltage within its permitted operating range.  
GOFF  
OFF  
The VG  
The VG  
output voltage is set by writing a 6-bit value to the vgon[5:0] field in the VG  
register.  
ON  
ON  
voltage is set by writing a 6-bit value to the vgoff[5:0] field in the VG  
register.  
OFF  
OFF  
VG  
Voltage Higher than Three Times AVDD  
ON  
In exceptional cases, it may be necessary to produce a VG  
voltage greater than three times AVDD. In such cases,  
ON  
an external charge-pump circuit can be used as shown in Figure 4. When using the device in this way, leave the FC1-,  
FC1+ and FC2+ pins unconnected and set the cp_2stage bit to 1.  
www.maximintegrated.com  
Maxim Integrated | 48  
MAX25220/MAX25221/  
MAX25221B  
Automotive 4-Channel TFT-LCD Power Supply  
with VCOM Buffer  
4x Charge Pump  
PGVDD  
1mF  
470nF  
22nF  
22nF  
22nF  
MAX25220/1  
470nF  
FC2-  
1mF  
VGON  
<4xVAVDD  
Figure 4. Quadrupler Charge-Pump at 2.1MHz  
VCOM Block  
VCB Transistor  
Select an external npn transistor with a minimum current gain of 30. When designing the PCB, ensure that the parasitic  
capacitance between the base and collector of the npn is minimized to avoid oscillation. Note that high continuous DC  
current on VCOM causes very high power dissipation in the npn device and a device with low thermal resistance should  
therefore be selected.  
VCOM Temperature Compensation Example  
Assume that an NTC with 10kΩ resistance at 25°C is connected from TEMP to GND and that the R  
resistor is of  
REF  
value 2400Ω. At various temperatures, the following voltages will be observed on R  
will be as follows:  
and the ADC measurement result  
REF  
Table 6. ADC Result vs Temperature  
TEMPERATURE  
NTC RESISTANCE  
R
VOLTAGE  
ADC RESULT  
0x02  
DESIRED VCOM VOLTAGE  
REF  
-30°C  
113kΩ  
10kΩ  
3kΩ  
13mV  
-1.09V  
-1V  
25°C  
150mV  
500mV  
1V  
0x1F  
60°C  
0x66  
-0.98V  
-0.91V  
85°C  
1.5kΩ  
0xCD  
The rightmost column of the previous table indicates the desired VCOM output voltage at each temperature, which will  
be the inflection points in the temperature compensation curve. The following values are written to the relevant registers  
(remembering that each LSB of the VCOM setting represents 6.83mV):  
Table 7. VCOM Setting Example  
REGISTER  
FIELD  
SETTING  
0
NOTES  
DELAYVCOM_LSB[7:0]  
VCOM25  
vcom25_0  
vcom25[7:0]  
vcom_l[4:0]  
9-bit value is 011011010 or 0xDA which corresponds to -1V  
Represents shift of -89mV from VCOM25  
0x6D  
0x0D  
VCOM_L  
www.maximintegrated.com  
Maxim Integrated | 49  
MAX25220/MAX25221/  
MAX25221B  
Automotive 4-Channel TFT-LCD Power Supply  
with VCOM Buffer  
Table 7. VCOM Setting Example (continued)  
VCOM_H1  
VCOM_H2  
VTEMP25  
VTEMP_L  
VTEMP_H1  
VTEMP_H2  
vcom_h1[4:0]  
vcom_h2[4:0]  
vtemp25[7:0]  
vtemp_l[7:0]  
vtemp_h1[7:0]  
vtemp_h2[7:0]  
0x03  
0x0A  
0x1F  
0x02  
0x66  
0xCD  
Represents shift of +20mV from VCOM25  
Represents shift of +68mV from VCOM_H1  
ADC result at 25°C  
ADC result at -30°C  
ADC result at 60°C  
ADC result at 85°C  
With these settings, the VCOM output voltage at 25°C is -1V, while at the temperature represented by 13mV at the R  
REF  
pin the VCOM voltage decreases to -1.09V as set by the VCOM_L register. Similarly, the VCOM_H1 and VCOM_H2  
values are output on VCOM when the TEMP voltage is 500mV and 1V, respectively. In between these values the device  
interpolates the correct VCOM voltage value with a resolution of 6.83mV. The complete curve is shown in Figure 5.  
When setting the values VTEMP_xx and VCOM_xx, it is important to avoid values which can cause wraparound in the  
temperature compensation algorithm thus possibly leading to sudden changes in the value of VCOM.  
Sample VCOM Temperature Compensation Curve  
1V  
VCOM (V)  
1V  
0xCD  
13mV  
0x02  
150mV  
0x1F  
499mV  
0x66  
ADC READING  
-0.91V  
VCOM_H2  
-0.98V  
VCOM_H1  
VCOM_L  
-1.09V  
-1V  
VCOM25  
-2V  
-2.49V  
Figure 5. Sample VCOM Temperature Compensation Curve  
Using the NV Memory  
Follow the sequence below to perform non-volatile programming of the device when the auto-refresh function is not used:  
2
1. Apply a voltage between 3.3V and 5V to the IN and INN pins with the device in I C mode  
2. Write the desired values to be stored in OTP to the registers from 0x07 to 0x15  
3. Apply 8.5V to V  
PROG  
4. Optionally wait to ensure the 8.5V at V  
is stable  
PROG  
5. Send burn_otp_reg (write any value to 0x78) command. If parity is enabled ensure the overall parity is even by  
altering the final byte if necessary.  
6. Wait 20ms  
7. If the nv_flt bit is 0, the write was successful, go to next step. If nv_flt = 1, perform re-try (steps 5,6).  
www.maximintegrated.com  
Maxim Integrated | 50  
 
MAX25220/MAX25221/  
MAX25221B  
Automotive 4-Channel TFT-LCD Power Supply  
with VCOM Buffer  
8. Send reboot_otp (write any value to 0x79) command.  
Special care is required when performing non-volatile programming with the auto-refresh feature enabled. In such cases  
follow the sequence below when at least one calibration has already been performed:  
1. Apply a voltage between 3.3V and 5V to the IN and INN pins  
2. Write the desired values to be stored in NV memory to the registers from 0x07 to 0x15 (keep auto-refresh bit  
disabled until here)  
3. Enable the auto-refresh feature  
4. Start polling one of the registers from 0x07 to 0x15 which has changed its value until that value gets refreshed to  
the older one (auto-refresh is active)  
5. The following steps from #6 to #10 must be completed within 1s  
6. Write the desired values to be stored in OTP to the registers from 0x07 to 0x15 (including auto-refresh bit).  
7. Apply 8.5V to V  
PROG  
8. Optionally wait to ensure the 8.5V at V  
is stable  
PROG  
9. Send burn_otp_reg (write any value to 0x78) command. If parity is enabled ensure the overall parity is even by  
altering the final byte if necessary  
10. Wait 20ms  
11. If the nv_flt bit is 0, the write was successful, go to next step. If nv_flt = 1, perform retry from step 2.  
12. Send reboot_otp (write any value to 0x79) command  
The non-volatile memory can be written to a total of 5 times.  
Layout Considerations  
The MAX25220/MAX25221/MAX25221B include high-frequency switching converters to generate the voltages for TFT-  
LCDs. Take proper care while laying out the circuit board to ensure correct operation. The switching-converter portions  
of the circuit have nodes with very fast voltage changes that could lead to undesirable effects on the sensitive parts of the  
circuit as well as electromagnetic interference (EMI). Follow the guidelines below to reduce noise as much as possible:  
● Connect the bypass capacitors on IN and INN as close as possible to the device and connect the capacitor ground to  
the analog ground plane using vias close to the capacitor terminal. Ensure that the power connection to IN and INN  
uses a very wide trace or complete board layer to avoid input undervoltage problems.  
● Connect the GND pin of the device to the analog ground plane using a via close to GND. Lay the analog ground plane  
on the inner layer, preferably next to the top layer. Use the analog ground plane to cover the entire area under critical  
signal components for the power converter.  
● Have a power-ground plane for the switching-converter power circuit under the power components (i.e., input filter  
capacitor, output filter capacitor, inductor, MOSFET, rectifier diode, and current-sense resistor). Connect PGND to the  
power-ground plane closest to PGND. Connect all other ground connections to the power ground plane using vias  
close to the terminals.  
● Minimize the copper area of all switching nodes to avoid EMI. Minimize the loop areas for the AVDD and NAVDD  
converters by placing all components close to the LXP and LXN pins. Place the input and output capacitor grounds  
close to each other. In the case of AVDD the input/output capacitor grounds should also connect directly to the PGND  
pin.  
● Connect GND, CPGND and PGND at the exposed pad of the device.  
● Refer to the MAX25220/MAX25221/MAX25221B evaluation kit (EV kit) data sheet for a sample layout.  
In addition, when using an external NTC temperature sensor for temperature compensation connect the grounded end  
directly to the grounded end of the RREF resistor. This avoids possible differences in ground potential between different  
points on the circuit board.  
www.maximintegrated.com  
Maxim Integrated | 51  
MAX25220/MAX25221/  
MAX25221B  
Automotive 4-Channel TFT-LCD Power Supply  
with VCOM Buffer  
Typical Application Circuits  
MAX25220 Applications Diagram  
TFT POWER INPUT  
10mF  
IN  
V18  
FC2+  
1mF  
FC2-  
FC1+  
FC1-  
PGVDD  
VGON  
1mF  
TFT POWER INPUT  
BST  
VGOFF  
DN  
L3  
LX  
MAX25220  
HVINP  
10mF  
PGND  
AVDD  
2.2mF  
GND  
EN  
TFT POWER INPUT  
INN  
NAVDD  
LXN  
SDA  
SCL  
FLT  
I2C BUS  
FAULT OUTPUT  
VPROG  
EP  
CPGND  
DGND  
ADD  
10mF  
www.maximintegrated.com  
Maxim Integrated | 52  
MAX25220/MAX25221/  
MAX25221B  
Automotive 4-Channel TFT-LCD Power Supply  
with VCOM Buffer  
Typical Application Circuits (continued)  
MAX25221 Applications Diagram  
TFT POWER INPUT  
10mF  
IN  
PGVDD  
V18  
1mF  
1mF  
VCOM  
FC2+  
FC2-  
0.1mF  
VCOMN  
VCB  
FC1+  
1mF  
1kW  
FC1-  
VGON  
NAVDD  
TEMP  
T
TFT POWER INPUT  
BST  
VGOFF  
0.1mF  
MAX25221/B  
LX  
DN  
1mF  
HVINP  
10mF  
RREF  
PGND  
AVDD  
2.2mF  
GND  
EN  
TFT POWER INPUT  
INN  
NAVDD  
SDA  
I2C BUS  
SCL  
FLT  
LXN  
FAULT OUTPUT  
VPROG  
EP  
CPGND  
DGND  
ADD  
10mF  
www.maximintegrated.com  
Maxim Integrated | 53  
MAX25220/MAX25221/  
MAX25221B  
Automotive 4-Channel TFT-LCD Power Supply  
with VCOM Buffer  
Ordering Information  
PART NUMBER  
MAX25220ATJ/V+  
MAX25221ATJ/V+  
MAX25220ATJ/VY+  
MAX25221ATJ/VY+*  
MAX25221BATJ/V+  
TEMPERATURE RANGE  
PIN-PACKAGE  
32 TQFN-EP  
FEATURES  
Without VCOM buffer  
-40 to +125°C  
-40 to +125°C  
-40 to +125°C  
-40 to +125°C  
-40 to +125°C  
32 TQFN-EP  
With VCOM buffer  
32 SWTQFN-EP  
32 SWTQFN-EP  
32 TQFN-EP  
Without VCOM buffer  
With VCOM buffer  
EN pin turn-on, VCOM buffer  
+ Denotes a lead(Pb)-free/RoHS-compliant package.  
/V denotes an automotive qualified part.  
Y = Side-wettable package.  
T Denotes tape-and-reel.  
*Future product - contact factory for availability.  
www.maximintegrated.com  
Maxim Integrated | 54  
 
MAX25220/MAX25221/  
MAX25221B  
Automotive 4-Channel TFT-LCD Power Supply  
with VCOM Buffer  
Revision History  
REVISION REVISION  
PAGES  
DESCRIPTION  
CHANGED  
NUMBER  
DATE  
5/20  
6/20  
6/20  
0
1
2
Initial release  
Removed future product notation from MAX25221ATJ/V+ in Ordering Information  
Added Typical Operating Characteristics  
54  
14, 15  
Updated Package Information and Electrical Characteristics; removed future product  
notation for MAX25220ATJ/VY+ in Ordering Information  
3
4
10/20  
11/20  
7, 11, 54  
19, 54  
Updated Pin Descriptions and Ordering Information.  
For pricing, delivery, and ordering information, please visit Maxim Integrated’s online storefront at https://www.maximintegrated.com/en/storefront/storefront.html.  
Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent  
licenses are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max  
limits) shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.  
Maxim Integrated and the Maxim Integrated logo are trademarks of Maxim Integrated Products, Inc.  
© 2020 Maxim Integrated Products, Inc.  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY