MAX25232ATCA [MAXIM]

36V, 3A Mini Buck Converters with 3.5μA IQ;
MAX25232ATCA
型号: MAX25232ATCA
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

36V, 3A Mini Buck Converters with 3.5μA IQ

文件: 总21页 (文件大小:571K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Click here to ask about the production status of specific part numbers.  
MAX25232  
36V, 3A Mini Buck Converters with 3.5μA I  
Q
General Description  
Benefits and Features  
The MAX25232 is a small, synchronous buck converter  
with integrated high-side and low-side switches. The de-  
vice is designed to deliver up to 3A with 3.5V to 36V input  
voltages while using only 3.5µA quiescent current at no  
load.  
● Synchronous DC-DC Converter with Integrated FETs  
• MAX25232ATCA/ATCB/ATCG/ATCH = 2.5A I  
OUT  
• MAX25232ATCD/ATCE/ATCF = 3A I  
OUT  
• 3.5μA Quiescent Current in Standby Mode  
● Small Solution Size Saves Space  
• 65ns Minimum On-Time  
The device provides an accurate output voltage of ±2%  
in FPWM mode within the normal 6V to 18V operation in-  
put range. With 65ns minimum on-time capability, the con-  
verter is capable of large input-to-output conversion ra-  
tios. Voltage quality can be monitored by observing the  
PGOOD signal. The device can operate in dropout by run-  
ning at 99% duty cycle, making it ideal for automotive and  
industrial applications. The IC comes in fixed output volt-  
age and adjustable output voltage (MAX25232ATCF and  
MAX25232ATCG only) options. For MAX25232ATCF and  
MAX25232ATCG, output voltage can be set between 3V  
and 10V using an external resistor-divider. Frequency is  
internally fixed at 2.1MHz, which allows for small external  
components and reduced output ripple, and guarantees  
no AM interference. A 400kHz option is also offered to pro-  
vide minimum switching losses and maximum efficiency.  
The device automatically enters skip mode at light loads  
with ultra-low 3.5µA quiescent current at no load. The de-  
vice offers pin-enabled spread-spectrum-frequency mod-  
ulation designed to minimize EMI-radiated emissions due  
to the modulation frequency.  
• 2.1MHz or 400kHz Operating Frequency  
• Fixed 5V/3.3V Output Voltage with ±2% Output  
Accuracy in FPWM Mode (5V/3.3V)  
• Other Fixed V  
Options Between 3V - 5.5V (in  
OUT  
50mV steps) Available for Precise Output Voltage  
Setting  
• External Resistor Divider Options to Adjust the  
Output Voltage Between 3V and 10V  
• Fixed 3.5ms Internal Soft-Start  
• Innovative Current-Mode-Control Architecture  
Minimizes Total Board Space and BOM Count  
● PGOOD Output and High-Voltage EN Input Simplify  
Power Sequencing  
● Protection Features and Operating Range Ideal for  
Automotive Applications  
• 3.5V to 36V Operating V Range  
IN  
• 40V Load-Dump Protection  
• 99% Duty-Cycle Operation with Low Dropout  
• -40°C to +125°C Automotive Temperature Range  
• AEC-Q100 Qualified  
The MAX25232 variants are available in a small (3mm x  
3mm) 12-pin TDFN package with an exposed pad, and re-  
quires very few external components.  
Ordering Information appears at end of data sheet.  
Applications  
● Automotive  
● Industrial  
● High-Voltage DC-DC Converters  
19-100723; Rev 1; 10/20  
 
MAX25232  
36V, 3A Mini Buck Converters with 3.5μA I  
Q
Simplified Block Diagram  
SPS SYNC  
MAX25232  
REF  
EN  
HVLDO  
BANDGAP  
OSC  
BST  
SUP  
BIAS  
CLK  
CURRENT SENSE  
SOFTSTART  
+
SLOPE COMP  
LOGIC  
CONTROL  
LX  
OUT  
BIAS  
PWM  
EAMP  
COMP  
FB  
FB  
SW1  
V/RESET  
SW2  
GND  
MAX25232ATCF  
MAX25232ATCG  
PGOOD  
www.maximintegrated.com  
Maxim Integrated | 2  
MAX25232  
36V, 3A Mini Buck Converters with 3.5μA I  
Q
Absolute Maximum Ratings  
SUP ........................................................................ -0.3V to +40V  
EN........................................................................... -0.3V to +40V  
BST to LX (Note 1) ................................................................. +6V  
BST......................................................................... -0.3V to +45V  
LX Continuous RMS Current ....................................................3A  
OUT Short-Circuit Duration...........................................................  
ESD Protection Human Body Model.....................................±2kV  
Machine Model....................................................................±200V  
FB...............................................................-0.3V to V  
SYNC..........................................................-0.3V to V  
SPS ............................................................-0.3V to V  
OUT........................................................................ -0.3V to +18V  
PGOOD .................................................................... -0.3V to +6V  
PGND to AGND..................................................... -0.3V to +0.3V  
BIAS ...................................................................... -0.3V to +6.0V  
+ 0.3V  
+ 0.3V  
+ 0.3V  
Continuous Power Dissipation (T = +70°C) 12-pin SWTDFN  
BIAS  
BIAS  
BIAS  
A
(derate 24.4mW/°C above +70°C)..................................1951mW  
Storage Temperature Range ..............................-65ºC to +150ºC  
Operating Junction Temperature (Note 6) ..........-40ºC to +150ºC  
Lead Temperature (Soldering, 10s)..................................+300ºC  
Soldering Temperature (Reflow).......................................+260ºC  
Note 1: LX has internal clamp diodes to PGND/AGND and SUP. Applications that forward bias these diodes should take care not to  
exceed the IC’s package power-dissipation limits.  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the  
device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for  
extended periods may affect device reliability.  
Package Information  
12 TDFN  
Package Code  
TD1233+2C  
21-0664  
Outline Number  
Land Pattern Number  
90-0397  
THERMAL RESISTANCE, FOUR-LAYER BOARD  
Junction-to-Ambient (θ  
)
41°C/W  
9°C/W  
JA  
Junction-to-Case Thermal Resistance (θ  
)
JC  
For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages.  
Note that a “+”, “#”, or “-” in the package code indicates RoHS status only. Package drawings may show a different  
suffix character, but the drawing pertains to the package regardless of RoHS status.  
Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a  
four-layer board. For detailed information on package thermal considerations, refer to www.maximintegrated.com/  
thermal-tutorial.  
Electrical Characteristics  
(V  
= V , V  
= 14V, V  
= 0V, V  
= 5V, T = -40°C to +150°C, unless otherwise noted. (Notes 2 and 5))  
OUT J  
SUP  
EN SUP  
SYNC  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
3.5  
3
TYP  
MAX  
36  
UNITS  
Supply Voltage Range  
V
SUP  
After Start-Up  
t < 1s  
36  
V
40  
www.maximintegrated.com  
Maxim Integrated | 3  
 
MAX25232  
36V, 3A Mini Buck Converters with 3.5μA I  
Q
Electrical Characteristics (continued)  
(V  
= V , V  
= 14V, V  
= 0V, V  
= 5V, T = -40°C to +150°C, unless otherwise noted. (Notes 2 and 5))  
OUT J  
SUP  
EN SUP  
SYNC  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
EN  
= low  
1
5
No load, no  
switching  
3.5  
4.5  
6
8
MAX25232ATCB,  
MAX25232ATCE  
Supply Current  
LX Leakage  
I
No load (Note 3)  
µA  
SUP  
No load, no  
switching  
10  
MAX25232ATCA,  
MAX25232ATCD  
No load (Note 3)  
7.5  
I
V
= 40V, LX = 0 or 40V, T = +25°C  
-1  
+1  
µA  
V
LX,LEAK  
UVLO  
SUP  
A
VBIAS rising  
Hysteresis  
2.53  
2.73  
0.13  
5
2.93  
Undervoltage Lockout  
BIAS Voltage  
V
5.5V ≤ V  
≤ 36V, PWM mode  
SUP  
V
BIAS  
BUCK CONVERTER  
Skip mode (Note 3)  
4.85  
4.93  
3.2  
4.99  
5
5.1  
MAX25232ATCA,  
MAX25232ATCD  
Voltage Accuracy, 5V  
Voltage Accuracy, 3.3V  
Voltage Accuracy, 4V  
V
OUT,5V  
Fixed-frequency  
PWM mode  
5.07  
3.37  
3.35  
4.12  
4.08  
Skip mode (Note 3)  
3.3  
3.3  
4
MAX25232ATCB,  
MAX25232ATCE  
V
OUT,3.3V  
Fixed-frequency  
PWM mode  
3.25  
3.88  
3.92  
Skip Mode (Note 3)  
V
MAX25232ATCH  
V
OUT,4V  
Fixed-frequency  
PWM mode  
4
Output Voltage Range  
FB Voltage Accuracy  
V
MAX25232ATCF, MAX25232ATCG  
MAX25232ATCF, MAX25232ATCG  
3
10  
V
V
OUT  
V
0.985  
1
1.015  
FB  
MAX25232ATCF,  
MAX25232ATCG  
VFB = 1V, TA =  
+25°C  
FB Current  
I
0.02  
µA  
%/V  
mΩ  
mΩ  
FB  
MAX25232ATCF,  
MAX25232ATCG  
FB Line Regulation  
V
SUP  
= 6V to 36V  
0.02  
70  
High-Side Switch On-  
Resistance  
RON,HS  
V
= 5V, I = 1A  
LX  
BIAS  
BIAS  
Low-Side Switch On-  
Resistance  
R
V
= 5V, I = 1A  
70  
ON,LS  
LX  
MAX25232ATCA, MAX25232ATCB,  
MAX25232ATCG, MAX25232ATCH  
3.05  
4.10  
3.50  
4.70  
-1.2  
3.5  
3.95  
5.60  
High-Side Current-Limit  
Threshold  
I
A
A
LIM  
MAX25232ATCD, MAX25232ATCE,  
MAX25232ATCF  
Low-Side Negative  
Current-Limit Threshold  
I
NEG  
MAX25232ATCA, MAX25232ATCB,  
MAX25232ATCG, MAX25232ATCH  
5
Soft-Start Ramp Time  
(Note 4)  
I
ms  
ns  
SS  
MAX25232ATCD, MAX25232ATCE,  
MAX25232ATCF  
5.5  
65  
7.5  
Minimum On-Time  
t
(Note 3)  
ON  
www.maximintegrated.com  
Maxim Integrated | 4  
MAX25232  
36V, 3A Mini Buck Converters with 3.5μA I  
Q
Electrical Characteristics (continued)  
(V  
= V , V  
= 14V, V  
= 0V, V  
= 5V, T = -40°C to +150°C, unless otherwise noted. (Notes 2 and 5))  
OUT J  
SUP  
EN SUP  
SYNC  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Maximum Duty Cycle  
98  
99  
%
MAX25232ATCA, MAX25232ATCB,  
MAX25232ATCG, MAX25232ATCH  
1.925  
360  
2.1  
400  
±3  
2.275  
440  
MHz  
kHz  
%
PWM Switching  
Frequency  
f
SW  
MAX25232ATCD, MAX25232ATCE,  
MAX25232ATCF  
Spread-Spectrum  
Range  
SS  
V
SPS  
= 5V  
PGOOD  
PGOOD Threshold,  
Rising  
V
V
V
rising  
falling  
91  
90  
93  
95  
94  
%
%
THR,PGD  
OUT  
PGOOD Threshold,  
Falling  
V
92  
60  
THF,PGD  
OUT  
MAX25232ATCA,  
MAX25232ATCB,  
MAX25232ATCG,  
MAX25232ATCH  
PWM mode  
Skip mode  
90  
PGOOD Debounce  
Time  
t
µs  
DEB  
MAX25232ATCD,  
MAX25232ATCE,  
MAX25232ATCF  
PWM mode  
Skip mode  
80  
110  
PGOOD High-Leakage  
Current  
I
T
= +25°C  
1
µA  
V
LEAK,PGD  
A
PGOOD Low Level  
LOGIC LEVELS  
EN Level, High  
EN Level, Low  
V
Sinking 1mA  
0.4  
OUT,PGD  
V
2.4  
1.7  
V
V
IH,EN  
V
0.6  
1
IL,EN  
IN,EN  
EN Input Current  
I
V
= V  
= 14V, T = +25°C  
µA  
EN  
SUP  
A
MAX25232ATCA, MAX25232ATCB,  
MAX25232ATCG, MAX25232ATCH  
2.6  
MHz  
kHz  
External Input Clock  
Frequency  
FSYNC  
MAX25232ATCD, MAX25232ATCE,  
MAX25232ATCF  
325  
1.4  
500  
SYNC Threshold, High  
SYNC Threshold, Low  
SYNC Internal Pulldown  
SPS Threshold, High  
SPS Threshold, Low  
SPS Internal Pulldown  
THERMAL PROTECTION  
Thermal Shutdown  
V
V
V
IH,SYNC  
V
0.4  
0.4  
IL,SYNC  
R
1000  
1000  
kΩ  
V
PD,MODE  
V
1.4  
IH,SPS  
V
V
IL,SPS  
kΩ  
T
(Note 3)  
(Note 3)  
175  
15  
°C  
°C  
SHDN  
Thermal-Shutdown  
Hysteresis  
T
SHDN.HYS  
Note 2: Limits are 100% tested at T = +25°C. Limits over the operating temperature range and relevant supply voltage are guaranteed  
A
by design and characterization. Typical values are at T = +25°C.  
A
www.maximintegrated.com  
Maxim Integrated | 5  
MAX25232  
36V, 3A Mini Buck Converters with 3.5μA I  
Q
Note 3: Guaranteed by design; not production tested.  
Note 4: Soft-start time is measured as the time taken from EN going high to PGOOD going high.  
Note 5: The device is designed for continuous operation up to T = +125°C for 95,000 hours and T = +150°C for 5,000 hours.  
J
J
www.maximintegrated.com  
Maxim Integrated | 6  
MAX25232  
36V, 3A Mini Buck Converters with 3.5μA I  
Q
Typical Operating Characteristics  
(V  
= V  
= +14V, T = +25°C, unless otherwise noted.)  
EN A  
SUP  
QUIESCENT SUPPLY CURRENT  
EFFICIENCY vs. LOAD  
(fSW= 2.1MHz)  
EFFICIENCY vs. LOAD  
vs. INPUT VOLTAGE  
(fSW= 400kHz)  
3.3V  
(SKIP MODE)  
toc03  
toc01  
toc02  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
25  
20  
15  
10  
5
SKIP  
5V  
5V  
NO LOAD  
SKIP  
3.3V  
3.3V  
3.3V  
5V  
5V  
5V , 400kHz  
OUT  
3.3V , 400kHz  
OUT  
FPWM  
5V , 2.1MHz  
OUT  
FPWM  
VIN= 14V  
VIN= 14V  
L = 2.2 µH  
3.3V , 2.1MHz  
OUT  
L = 10µH  
0
0.001  
0.01  
0.1  
1
0.001  
0.01  
0.1  
1
6
16  
26  
36  
LOAD CURRENT (A)  
LOAD CURRENT (A)  
VIN(V)  
SHUTDOWN SUPPLY CURRENT  
vs. INPUT VOLTAGE  
LINE REGULATION  
(5VOUT, 2.1MHz)  
STANDBY CURRENT  
vs. LOAD CURRENT  
(5V , 2.1MHz)  
OUT  
toc05  
toc06  
toc04  
10  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
2.0  
1.5  
VEN= 0V  
1A LOAD  
FPWM  
5V, 400kHz  
5V, 2.1MHz  
1.0  
0.5  
1
0.0  
SKIP  
3.3V, 2.1MHz  
-0.5  
-1.0  
-1.5  
-2.0  
3.3V, 400kHz  
0.1  
0
6
16  
IN(V)  
26  
36  
0.0  
0.2  
0.4  
0.6  
0.8  
1.0  
6
16  
26  
36  
VIN (V)  
ILOAD(mA)  
V
LINE REGULATION  
(5VOUT, 400kHz)  
LOAD REGULATION  
(5VOUT, 2.1MHz)  
LOAD REGULATION  
(5VOUT, 400kHz)  
toc07  
toc08  
toc09  
2.0  
1.5  
2.0  
1.5  
2.0  
1.5  
1A LOAD  
FPWM  
VIN= 14V  
VIN= 14V  
1.0  
1.0  
1.0  
SKIP  
0.5  
0.5  
0.5  
FPWM  
0.0  
0.0  
0.0  
SKIP  
FPWM  
SKIP  
-0.5  
-1.0  
-1.5  
-2.0  
-0.5  
-1.0  
-1.5  
-2.0  
-0.5  
-1.0  
-1.5  
-2.0  
6
16  
26  
36  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
VIN (V)  
IOUT(A)  
IOUT(A)  
www.maximintegrated.com  
Maxim Integrated | 7  
MAX25232  
36V, 3A Mini Buck Converters with 3.5μA I  
Q
Typical Operating Characteristics (continued)  
(V  
= V  
= +14V, T = +25°C, unless otherwise noted.)  
EN A  
SUP  
SHUTDOWN WAVEFORM  
(5VOUT, 2.1MHz, 2.5A LOAD)  
STARTUP WAVEFORM  
(5VOUT, 2.1MHz)  
STEAD-YSTATE SWITCHING WAVEFORM  
(5VOUT, 2.1MHz, NO LOAD  
toc11  
toc12  
toc10  
VEN  
V
EN  
5V/div  
5V/div  
7V/div  
VLX  
5V/div  
2A/div  
5V/div  
5V/div  
IINDUCTOR  
V
PGOOD  
200mA/div  
VPGOOD  
IINDUCTOR  
5V/div  
5V/div  
V
OUT  
VOUT  
VOUT  
1ms/div  
200ns/div  
100µs/div  
SLOW IVN RAMP  
(5VOUT, 2.1MHz)  
UNDERVOLTAGE PULSE  
(5VOUT, 2.1MHz)  
SHOR-TCIRCUIT RESPONSE  
(5VOUT, 2.1MHz)  
toc13  
toc15  
toc14  
10mA Load  
VOUT  
VPGOOD  
VBIAS  
5V/div  
V
5V/div  
5V/div  
5V/div  
IN  
V
IN  
5V/div  
5V/div  
5V/div  
VOUT  
VBIAS  
VOUT  
2V/div  
5V/div  
5V/div  
VPGOOD  
IINDUCTOR  
VPGOOD  
1A/div  
5µs/div  
10ms/div  
5s/div  
SPECTRA-ELNERGY DENSITY  
vs. FREQUENCY  
LOAD-TRANSIENT RESPONSE  
LOAD-DUMP TEST  
(5VOUT, 2.1MHz)  
(5V , 2.1MHz)  
(5V , 2.1MHz)  
OUT  
OUT  
toc16  
toc17  
toc19  
0
VSPS= 5V  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
V
IN  
10V/div  
1A/div  
ILOAD  
VOUT  
5V/div  
5V/div  
100mV/div  
(AC-  
COUPLED)  
VOUT  
VBIAS  
1.85  
1.95  
2.05  
2.15  
2.25  
2.35  
20µs/div  
100ms/div  
FREQUENCY (MHz)  
www.maximintegrated.com  
Maxim Integrated | 8  
MAX25232  
36V, 3A Mini Buck Converters with 3.5μA I  
Q
Typical Operating Characteristics (continued)  
(V  
= V  
= +14V, T = +25°C, unless otherwise noted.)  
EN A  
SUP  
SHOR-TCIRCUIT RESPONSE  
(3.3VOUT, 400kHz)  
toc19  
VOUT  
5V/div  
5V/div  
VPGOOD  
5V/div  
2A/div  
VBIAS  
IINDUCTOR  
10µs/div  
Pin Configurations  
MAX25232ATCA, MAX25232ATCB, MAX25232ATCD, MAX25232ATCE, MAX25232ATCH  
MAX25232ATCA  
MAX25232ATCB  
MAX25232ATCD  
MAX25232ATCE  
MAX25232ATCH  
TDFN-EP  
(3mm x 3mm)  
www.maximintegrated.com  
Maxim Integrated | 9  
 
MAX25232  
36V, 3A Mini Buck Converters with 3.5μA I  
Q
MAX25232ATCF, MAX25232ATCG  
MAX25232ATCF  
MAX25232ATCG  
TDFN-EP  
(3mm x 3mm)  
Pin Description  
PIN  
MAX25232A  
TCA,  
MAX25232A  
TCB,  
MAX25232A  
TCD,  
MAX25232A  
TCE,  
MAX25232A  
TCF,  
MAX25232A  
TCG  
NAME  
FUNCTION  
MAX25232A  
TCH  
Spread-Spectrum Enable. Connect logic-high to enable spread spectrum of  
internal oscillator, or logic-low to disable spread spectrum. This pin has a 1MΩ  
internal pulldown.  
SPS  
SPS  
1
EN  
EN  
2
3
4
High-Voltage-Compatible Enable Input. If this pin is low, the part is off.  
Bootstrap Pin for HS Driver. It is recommended to use 0.1μF from BST to LX.  
Supply Input. Connect a 4.7μF ceramic capacitor from SUP to PGND.  
BST  
SUP  
BST  
SUP  
Buck Switching Node. Connect inductor between LX and OUT. See the Inductor  
Selection section. If the part is off, this node is high impedance.  
LX  
LX  
5
Power Ground. Ground return path for all high-current/high-frequency noisy  
signals.  
PGND  
AGND  
NC  
PGND  
AGND  
FB  
6
7
8
Analog Ground. Ground return path for all ‘quiet’ signals.  
Leave this pin unconnected for fixed output voltage options. For MAX25232ATCF  
and MAX25232ATCG, use it as a FB pin to set the output voltage.  
Buck Regulator Output-Voltage-Sense Input. Bypass OUT to PGND with ceramic  
capacitors.  
OUT  
OUT  
9
www.maximintegrated.com  
Maxim Integrated | 10  
 
MAX25232  
36V, 3A Mini Buck Converters with 3.5μA I  
Q
Pin Description (continued)  
PIN  
MAX25232A  
TCA,  
MAX25232A  
TCB,  
MAX25232A  
TCD,  
MAX25232A  
TCE,  
MAX25232A  
TCF,  
MAX25232A  
TCG  
NAME  
FUNCTION  
MAX25232A  
TCH  
BIAS  
BIAS  
10  
11  
5V Internal Bias Supply. Connect a 1μF (min) ceramic capacitor to AGND.  
Sync Input. If connected to ground or open, skip-mode operation is enabled under  
light loads; if connected to BIAS, forced-PWM mode is enabled. This pin has a  
1MΩ internal pulldown.  
SYNC  
SYNC  
PGOOD  
-
PGOOD  
12  
Open-Drain Reset Output. External pullup required.  
Exposed Pad. EP must be connected to ground plane on PCB, but is not a  
current-carrying path and is only needed for thermal transfer.  
EP  
www.maximintegrated.com  
Maxim Integrated | 11  
MAX25232  
36V, 3A Mini Buck Converters with 3.5μA I  
Q
Detailed Description  
The MAX25232 family of small, current-mode-controlled buck converters features synchronous rectification and requires  
no external compensation network. The devices are designed for 3A output current and can stay in dropout by running  
at 99% duty cycle. Each device provides an accurate output voltage of ±2% in FPWM mode within the 6V to 18V  
input range. Voltage quality can be monitored by observing the PGOOD signal. The devices operate at 2.1MHz (typ)  
frequency, which allows for small external components, reduced output ripple, and guarantees no AM band interference.  
The devices are also available at 400kHz (typ) for minimum switching losses and maximum efficiency.  
Each device features an ultra-low 3.5μA (typ) quiescent supply current in standby mode. The device enters standby  
mode automatically at light loads if the high-side FET (HSFET) does not turn on for eight consecutive clock cycles.  
The devices operate from a 3.5V to 36V supply voltage and can tolerate transients up to 40V, making them ideal for  
automotive applications. The devices are available in factory-trimmed output voltages (5V, 3.3V). MAX25232ATCF and  
MAX25232ATCG configuration can be used to program output voltage between 3V and 10V using an external resistor-  
divider. For fixed-output voltages outside of 3.3V and 5V, contact factory for availability.  
Enable Input (EN)  
Each device is activated by driving EN high. EN is compatible from a 3.3V logic level to automotive battery levels. EN  
can be controlled by microcontrollers and automotive KEY or CAN inhibit signals. The EN input has no internal pullup/  
pulldown current to minimize the overall quiescent supply current. To realize a programmable undervoltage-lockout level,  
use a resistor-divider from SUP to EN to AGND.  
Bias/UVLO  
Each device features undervoltage lockout. When the device is enabled, an internal bias generator turns on. LX begins  
switching after V  
has exceeded the internal undervoltage-lockout level, V  
= 2.73V (typ).  
UVLO  
BIAS  
Soft-Start  
Each device features an internal soft-start timer. The output voltage soft-start time is 3.5ms (typ), which includes the delay  
in PGOOD. If a short circuit or undervoltage is encountered after the soft-start timer has expired, the device is disabled  
for 7ms (typ) and then reattempts soft-start again. This pattern repeats until the short circuit has been removed.  
Oscillator/Synchronization and Efficiency (SYNC)  
Each device has an on-chip oscillator that provides a 2.1MHz (typ) or 400kHz (typ) switching frequency. There are two  
operation modes, depending on the condition of SYNC. If SYNC is unconnected or at AGND, the device operates in  
highly efficient pulse-skipping mode. If SYNC is connected to BIAS or has a clock applied to it, the device is in forced-  
PWM mode (FPWM). The device can be switched during operation between FPWM mode and skip mode by switching  
SYNC.  
Skip-Mode Operation  
The devices enter skip mode when the SYNC pin is connected to ground or is unconnected and the peak load current  
is < 600mA (typ). In this mode, the HSFET is turned on until the inductor current ramps up to 600mA (typ) peak value  
and the internal feedback voltage is above the regulation voltage (1.0V, typ). At this point, both the HSFETs and low-side  
FETs (LSFETs) are turned off. Depending on the choice of the output capacitor and the load current, the HSFET turns  
on when OUT (valley) drops below the 1.0V (typ) feedback voltage. When the device is in skip mode, the internal high-  
voltage LDO is turned off to save current. V  
is supplied by the output after the soft start is completed.  
BIAS  
Achieving High Efficiency at Light Loads  
Each device operates with very low-quiescent current at light loads to enhance efficiency and conserve battery life. When  
the device enters skip mode, the output current is monitored to adjust the quiescent current. The lowest quiescent-current  
standby mode is only available for factory-trimmed devices between 3.0V and 5.5V output voltages. When the output  
current is < approximately 5mA, the device operates in the lowest quiescent-current mode, also called standby mode. In  
www.maximintegrated.com  
Maxim Integrated | 12  
MAX25232  
36V, 3A Mini Buck Converters with 3.5μA I  
Q
this mode, the majority of the internal circuitry (excluding that necessary to maintain regulation) in the device is turned off  
to save current. Under no load and with skip mode enabled, the device typically draws 3.5μA for the 3.3V parts, and 6μA  
for the 5.0V parts. For load currents > 5mA, the device enters normal skip mode and still maintains very high efficiency.  
Output-Voltage Overshoot Protection  
In dropout, the output voltage closely follows the input voltage, but is below the regulation point. The device runs at  
maximum duty cycle to satisfy the loop, and the internal error-amplifier output is railed high. When the input voltage rises  
above the output, the device comes out of dropout, but the internal error-amplifier output takes some time to get back to  
steady state. This causes an overshoot in the output voltage. To limit this overshoot, the device clamps the output of the  
error amplifier while coming out of dropout, causing it to discharge faster and limiting the output-voltage overshoot. The  
actual value of the overshoot depends on the output capacitor, inductor, and load.  
Controlled EMI with Forced-Fixed Frequency  
In FPWM mode, the device attempts to operate at a constant switching frequency for all load currents. For tightest  
frequency control, apply the operating frequency to SYNC. The advantage of FPWM is a constant switching frequency,  
which improves EMI performance; the disadvantage is that considerable current can be thrown away. If the load current  
during a switching cycle is less than the current flowing through the inductor, the excess current is diverted to AGND.  
Extended Input Voltage Range  
In some cases, the device is forced to deviate from its operating frequency, independent of the state of SYNC. At high  
input voltages above 18V (especially for 2.1MHz operation), the required on-time to regulate its output voltage may be  
smaller than the minimum on-time (65ns, typ). In this event, the device is forced to lower its switching frequency by  
skipping pulses. If the input voltage is reduced and the device approaches dropout, it continuously tries to turn on the  
HSFET. To maintain gate charge on the HSFET, the BST capacitor must be periodically recharged. To ensure proper  
charge on the BST capacitor when in dropout, the HSFET is turned off every 20μs and the LSFET is turned on for  
approximately 200ns. This gives an effective duty cycle of > 99%, and a switching frequency of 50kHz when in dropout.  
Spread-Spectrum Option  
Each device has an optional spread spectrum enabled by the SPS pin. If SPS is pulled high, the internal operating  
frequency varies by ±3% relative to the internally generated 2.1MHz (typ) operating frequency. Spread spectrum is  
offered to improve EMI performance of the device. The internal spread spectrum does not interfere with the external clock  
applied on the SYNC pin. It is active only when the device is running with an internally generated switching frequency.  
Power-Good (PGOOD)  
Each device features an open-drain power-good output. PGOOD is an active-high output that pulls low when the output  
voltage is below 92% (typ) of its nominal value. PGOOD is high impedance when the output voltage is above 93% (typ)  
of its nominal value. Connect a 20kΩ (typ) pullup resistor to an external supply, or to the on-chip BIAS output.  
Overcurrent Protection  
Each device limits the peak output current to 3.5A (typ) for 2.1MHz switching frequency parts and 4.7A (typ) for the  
400kHz switching frequency parts. The accuracy of the current limit is ±12%, making selection of external components  
very easy. To protect against short-circuit events, the device shuts off when OUT is below 50% of V  
and an  
OUT  
overcurrent event is detected. The device attempts a soft-start restart every 7ms and stays off if the short circuit has not  
been removed. When the current limit is no longer present, it reaches the output voltage by following the normal soft-start  
sequence. If the device’s die reaches the thermal limit of 175°C (typ) during the current-limit event, it immediately shuts  
off.  
Thermal-Overload Protection  
Each device features thermal-overload protection. The device turns off when the junction temperature exceeds +175°C  
(typ). Once the device cools by 15°C (typ), it turns back on with a soft-start sequence.  
www.maximintegrated.com  
Maxim Integrated | 13  
MAX25232  
36V, 3A Mini Buck Converters with 3.5μA I  
Q
Applications Information  
Setting the Output Voltage  
MAX25232 comes with fixed V  
options (set internally) of 5V and 3.3V. For setting the output voltage between 3V  
OUT  
- 10V externally using resistor-dividers, chose MAX25232ATCF and MAX25232ATCG. Connect a resistor-divider from  
output (OUT) to FB to AGND (see Figure 1). Select R  
resistor) with the following equation:  
(FB to AGND resistor) ≤ 500kΩ. Calculate R  
(OUT to FB  
FB1  
FB2  
V
OUT  
R
= R  
− 1  
FB1  
FB2  
V
[
]
[
]
FB  
where V = 1V (see Electrical Characteristics).  
FB  
Other fixed-output voltage options (set internally) between 3V - 5.5V in 50mV steps are also available. Contact the factory  
if your application requires fixed output voltage in this range.  
V
OUT  
R
FB1  
MAX25232ATCF  
MAX25232ATCG  
FB  
R
FB2  
Figure 1. Setting the Output Voltage with External Resistor-Dividers  
Input Capacitor  
A 4.7μF low-ESR ceramic input capacitor is recommended for proper device operation. This value can be adjusted based  
on application input-voltage-ripple requirements.  
The discontinuous input current of the buck converter causes large input-ripple current. Switching frequency, peak  
inductor current, and the allowable peak-to-peak input-voltage ripple dictate the input-capacitance requirement.  
Increasing the switching frequency or the inductor value lowers the peak-to-average current ratio, yielding a lower input-  
capacitance requirement. The input ripple is mainly comprised of ΔV (caused by the capacitor discharge) and ΔV  
Q
ESR  
(caused by the ESR of the input capacitor). The total voltage ripple is the sum of ΔV and ΔV  
. Assume that input-  
Q
ESR  
voltage ripple from the ESR and the capacitor discharge is equal to 50% each. The following equations show the ESR  
and capacitor requirement for a target voltage ripple at the input:  
Equation 1:  
www.maximintegrated.com  
Maxim Integrated | 14  
 
 
MAX25232  
36V, 3A Mini Buck Converters with 3.5μA I  
Q
V  
ESR  
ESR =  
I
+ ( ∆ I  
2)  
/
OUT  
PP  
I
× D(1 − D)  
OUT  
V × × f  
C
=
IN  
Q
SW  
where:  
(V V  
) × V  
IN  
OUT  
× f  
OUT  
× L  
I  
=
P P  
V
IN SW  
and:  
V
OUT  
D =  
V
IN  
where I  
is the output current, D is the duty cycle, and f  
is the switching frequency. Use additional input capacitance  
SW  
OUT  
at lower input voltages to avoid possible undershoot below the UVLO threshold during transient loading.  
Inductor Selection  
See Table 1 for inductor selection. The nominal standard value selected should be within ±50% of the specified  
inductance. The specified values applies to all output voltage settings.  
Table 1. Inductor Selection  
PART  
INDUCTANCE (µH)  
For f  
For f  
= 2.1MHz  
= 400kHz  
2.2  
10  
SW  
SW  
Output Capacitor  
For optimal phase margin (> 60 degrees, typ), the recommended output capacitances are shown in Table 2.  
Recommended values are the actual capacitances after voltage derating is taken into account.  
If a lower output capacitance is required, contact the factory for recommendations. Additional output capacitance may  
be needed based on application-specific output-voltage-ripple requirements. The specified values applies to all output  
voltage settings.  
Table 2. Output-Capacitance Selection  
PART  
OUTPUT CAPACITANCE (µF)  
For f  
For f  
= 2.1MHz  
= 400kHz  
30  
44  
SW  
SW  
The allowable output-voltage ripple and the maximum deviation of the output voltage during step-load currents determine  
the output capacitance and its ESR. The output ripple comprises ΔV (caused by the capacitor discharge) and ΔVESR  
Q
(caused by the ESR of the output capacitor). Use low-ESR ceramic or aluminum electrolytic capacitors at the output.  
For aluminum electrolytic capacitors, the entire output ripple is contributed by ΔV  
. Use Equation 2 to calculate the  
ESR  
ESR requirement and choose the capacitor accordingly. If using ceramic capacitors, assume the contribution to the  
output ripple voltage from the ESR and the capacitor discharge to be equal. The following equations show the output  
capacitance and ESR requirement for a specified output-voltage ripple.  
Equation 2:  
V  
ESR  
ESR =  
I  
PP  
www.maximintegrated.com  
Maxim Integrated | 15  
MAX25232  
36V, 3A Mini Buck Converters with 3.5μA I  
Q
I  
PP  
C
=
OUT  
8 × V × f  
Q
SW  
where:  
(V V  
) × V  
IN  
OUT  
× f  
OUT  
× L  
I  
=
P P  
V
IN SW  
and:  
V
= ∆ V  
+ ∆ V  
OUT_RIPPLE  
ESR Q  
ΔI  
is the peak-to-peak inductor current as calculated above, and f  
is the converter’s switching frequency. The  
SW  
P-P  
allowable deviation of the output voltage during fast transient loads also determines the output capacitance and its ESR.  
The output capacitor supplies the step-load current until the converter responds with a greater duty cycle. The resistive  
drop across the output capacitor’s ESR and the capacitor discharge causes a voltage droop during a step load. Use a  
combination of low-ESR tantalum and ceramic capacitors for better transient-load and ripple/noise performance. Keep  
the maximum output-voltage deviations below the tolerable limits of the electronics being powered. When using a ceramic  
capacitor, assume an 80% and 20% contribution from the output-capacitance discharge and the ESR drop, respectively.  
Use the following equations to calculate the required ESR and capacitance value:  
Equation 3:  
V  
ESR  
ESR  
=
OUT  
I
STEP  
L
2
C
I  
×
OUT  
STEP  
2 × (V  
V  
) × DMAX × V  
SUP  
OUT  
Q
t
DELAY  
+ I  
×
STEP  
V  
Q
where I  
is the load step and t  
is the delay for the PWM mode, the worst-case delay would be (1-D) t  
when  
SW  
STEP  
DELAY  
the load step occurs right after a turn-on cycle. This delay is higher in skip mode.  
PCB Layout Guidelines  
Careful PCB layout is critical to achieve low switching power losses and clean, stable operation. Use a multilayer board  
whenever possible for better noise immunity. Follow the guidelines below for a good PCB layout:  
1. Place the input capacitor (C ) close to the device to reduce the input AC-current loop. AC current flows on the loop  
IN  
formed by the input capacitor and the half-bridge MOSFETs internal to the device (see Figure 2). A small loop would  
reduce the radiating effect of high switching currents and improve EMI functionality.  
2. Solder the exposed pad to a large copper-plane area under the device. To effectively use this copper area as heat  
exchanger between the PCB and ambient, expose the copper area on the top and bottom side. Add a few small vias  
or one large via on the copper pad for efficient heat transfer.  
3. Connect PGND and AGND pins directly to the exposed pad under the IC. This ensures the shortest connection path  
between AGND and PGND.  
4. Keep the power traces and load connections short. This practice is essential for high efficiency. Use thick copper  
PCB to enhance full-load efficiency and power-dissipation capability.  
5. Using internal PCB layers as ground plane helps to improve the EMI functionality as ground planes act as a shield  
against radiated noise. Have multiple vias spread around the board, especially near the ground connections to have  
better overall ground connection.  
6. Keep the bias capacitor (C  
) close to the device to reduce the bias current loop. This helps to reduce noise on the  
BIAS  
bias for smoother operation.  
www.maximintegrated.com  
Maxim Integrated | 16  
MAX25232  
36V, 3A Mini Buck Converters with 3.5μA I  
Q
GROUND  
SUP  
MAX25232  
VCC  
C
BIAS  
LX  
C
IN  
AC current  
loop  
INDUCTOR  
GROUND  
VIAS  
GROUND  
GROUND  
OUT  
Figure 2. Recommended PCB Layout for MAX25232  
www.maximintegrated.com  
Maxim Integrated | 17  
MAX25232  
36V, 3A Mini Buck Converters with 3.5μA I  
Q
Typical Application Circuits  
Circuit 1  
MAX25232  
SUP  
BST  
L
C
BST  
2.2µH  
C
IN  
0.1µF  
4.7µF  
LX  
NH  
NL  
OUT  
C
30µF  
OUT  
SYNC  
EN  
PGOOD  
BIAS  
C
1µF  
BIAS  
SPS  
AGND  
PGND  
Figure 3. 2.1MHz, 5V/3.3V Fixed Output Voltage Configuration in 12-Pin TDFN Package  
www.maximintegrated.com  
Maxim Integrated | 18  
MAX25232  
36V, 3A Mini Buck Converters with 3.5μA I  
Q
Typical Application Circuits (continued)  
Circuit 2  
MAX25232  
SUP  
BST  
L
C
BST  
10µH  
C
IN  
0.1µF  
4.7µF  
LX  
NH  
NL  
OUT  
C
44µF  
OUT  
SYNC  
EN  
PGOOD  
BIAS  
C
1µF  
BIAS  
SPS  
AGND  
PGND  
Figure 4. 400kHz, 5V/3.3V Fixed Output Voltage Configuration in 12-Pin TDFN Package  
www.maximintegrated.com  
Maxim Integrated | 19  
MAX25232  
36V, 3A Mini Buck Converters with 3.5μA I  
Q
Typical Application Circuits (continued)  
Circuit 3  
MAX25232  
SUP  
BST  
L
C
BST  
10µH  
C
IN  
0.1µF  
4.7µF  
LX  
NH  
NL  
OUT  
SYNC  
C
OUT  
44µF  
R
FB1  
EN  
FB  
PGOOD  
BIAS  
R
FB2  
C
1µF  
BIAS  
SPS  
AGND  
PGND  
Figure 5. 400kHz, External Resistor-Divider Configuration in 12-Pin TDFN Package  
Ordering Information  
PIN-  
PACKAGE  
I
OUT  
(A)  
PART  
TEMP RANGE  
DESCRIPTION  
2.1MHz, Fixed 5V output  
MAX25232ATCA/V+  
MAX25232ATCB/V+  
MAX25232ATCD/V+*  
MAX25232ATCE/V+*  
-40°C to +125°C 12 TDFN  
-40°C to +125°C 12 TDFN  
-40°C to +125°C 12 TDFN  
-40°C to +125°C 12 TDFN  
2.5  
2.5  
3
2.1MHz, Fixed 3.3V output  
400kHz, Fixed 5V output  
400kHz, Fixed 3.3V output  
3
400kHz, Adjustable Output Voltage Between 3V  
and 10V  
MAX25232ATCF/V+  
-40°C to +125°C 12 TDFN  
3
2.1MHz, Adjustable Output Voltage Between 3V  
and 10V  
MAX25232ATCG/V+  
MAX25232ATCH/V+*  
-40°C to +125°C 12 TDFN  
-40°C to +125°C 12 TDFN  
2.5  
2.5  
2.1MHz, Fixed 4V output  
Note: All parts are OTP versions, no metal mask differences.  
/V Denotes an automotive-qualified part.  
+ Denotes a lead(Pb)-free/RoHS-compliant package  
* Future product - contact factory for availability  
www.maximintegrated.com  
Maxim Integrated | 20  
MAX25232  
36V, 3A Mini Buck Converters with 3.5μA I  
Q
Revision History  
REVISION REVISION  
PAGES  
DESCRIPTION  
CHANGED  
NUMBER  
DATE  
0
7/20  
Initial release  
Updated Benefits and Features, Electrical Characteristics, Pin Configuration, Pin  
Description, Applications Information, and Ordering Information  
1, 4, 5, 9, 10, 14,  
20  
1
10/20  
For pricing, delivery, and ordering information, please visit Maxim Integrated’s online storefront at https://www.maximintegrated.com/en/storefront/storefront.html.  
Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent  
licenses are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max  
limits) shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.  
Maxim Integrated and the Maxim Integrated logo are trademarks of Maxim Integrated Products, Inc.  
© 2020 Maxim Integrated Products, Inc.  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY