MAX30004 [MAXIM]

Ultra-Low Power, Single-Channel Integrated Biopotential (R-to-R Detection) AFE;
MAX30004
型号: MAX30004
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Ultra-Low Power, Single-Channel Integrated Biopotential (R-to-R Detection) AFE

文件: 总39页 (文件大小:3262K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MAX30004  
Ultra-Low Power, Single-Channel Integrated  
Biopotential (R-to-R Detection) AFE  
General Description  
Benefits and Features  
Heart Rate Detection with Interrupt Feature  
Eliminates the Need to Extract and Process the ECG  
Data on the Microcontroller  
The MAX30004 is a complete, biopotential, analog front-  
end solution for wearable applications. It offers high  
performance for clinical and fitness applications, with  
ultra-low power for long battery life. The MAX30004 is a  
single biopotential channel providing heart rate detection.  
• Robust R-R Detection in High Motion Environment  
at Extremely Low Power  
Clinical-Grade Biopotential AFE with High-Resolution  
The biopotential channel has ESD protection, EMI filtering,  
internal lead biasing, DC leads-off detection, ultra-low  
power leads-on detection during standby mode. Soft power-  
up sequencing ensures no large transients are injected  
into the electrodes. The biopotential channel also has high  
input impedance, low noise, high CMRR, programmable  
gain, various low-pass and high-pass filter options, and  
Data Converter  
• 15.5 Bits Effective Resolution with 5µV  
Noise  
P-P  
Better Dry Starts Due to Much Improved Real World  
CMRR and High Input Impedance  
• Fully Differential Input Structure with CMRR > 100dB  
Offers Better Common-Mode to Differential Mode  
Conversion Due to High Input Impedance  
a
high resolution analog-to-digital converter. The  
biopotential channel is DC coupled, can handle large  
electrode voltage offsets, and has a fast recovery mode  
to quickly recover from overdrive conditions, such as  
defibrillation and electrosurgery.  
High Input Impedance > 500MΩ for Extremely Low  
Common-to-Differential Mode Conversion  
Minimum Signal Attenuation at the Input During Dry  
Start Due to High Electrode Impedance  
The MAX30004 is available in a 28-pin TQFN and  
30-bump wafer-level package (WLP), operating over the  
0°C to +70°C commercial temperature range.  
High DC Offset Range of ±650mV (1.8V, typ) Allows  
to Be Used with Wide Variety of Electrodes  
High AC Dynamic Range of 65mV  
Will Help the  
P-P  
Applications  
Single Lead Wireless Patches for At-Home/  
AFE Not Saturate in the Presence of Motion/Direct  
Electrode Hits  
In-Hospital Monitoring  
Chest Band Heart Rate Monitors for Fitness Applications  
Longer Battery Life Compared to Competing Solutions  
• 85µW at 1.1V Supply Voltage  
Leads-On Interrupt Feature Keeps µC in Deep Sleep  
Mode with RTC Off Until Valid Lead Condition is  
Detected  
Ordering Information appears at end of data sheet.  
• Lead-On Detect Current: 0.7µA (typ)  
● Configurable Interrupts Allows the µC Wake-Up Only on  
Every Heart Beat Reducing the Overall System Power  
High-Speed SPI Interface  
Shutdown Current of 0.5µA (typ)  
19-8732; Rev 0; 12/16  
MAX30004  
Ultra-Low Power, Single-Channel Integrated  
Biopotential (R-to-R Detection) AFE  
Functional Diagram  
AVDD  
DVDD  
OVDD  
MAX30004  
BIOPOTENTIAL CHANNEL  
CSB  
SDI  
AAF  
INP  
ESD, EMI,  
14-BIT  
INPUT MUX ,  
DC LEAD  
CHECK  
INPUT  
AMP  
18-BIT  
ΣΔ ADC  
DECIMATION  
FILTER  
R-TO-R  
DETECTOR  
f-3dB  
=600Hz  
PGA  
INN  
SCLK  
SDO  
SPI INTERFACE  
AND  
-40dB/dec  
REGISTERS  
FAST  
SETTLING  
INTB  
CAPP  
CAPN  
INT2B  
SUPPORT CIRCUITRY  
COMMON -MODE  
BUFFER  
REFERENCE  
BUFFER  
fCLK  
FCLK  
SEQUENCER  
BANDGAP  
BIASING  
PLL  
fHFC  
AGND  
VCM  
VBG  
VREF  
CPLL  
DGND  
Maxim Integrated  
2  
www.maximintegrated.com  
MAX30004  
Ultra-Low Power, Single-Channel Integrated  
Biopotential (R-to-R Detection) AFE  
Absolute Maximum Ratings  
AV  
to AGND.....................................................-0.3V to +2.0V  
Continuous Power Dissipation (T = +70°C)  
A
DD  
DV  
AV  
to DGND ....................................................-0.3V to +2.0V  
to DV ......................................................-0.3V to +0.3V  
DD  
28-Pin TQFN (derate 34.5mW/°C above +70°C)...2758.6mW  
30-Bump WLP (derate 24.3mW/°C  
DD  
DD  
OV  
to DGND....................................................-0.3V to +3.6V  
above +70°C).....................................................1945.5mW  
Operating Temperature Range...............................0°C to +70°C  
Junction Temperature......................................................+150°C  
Storage Temperature Range............................ -65°C to +150°C  
Lead Temperature (Soldering, 10sec).............................+300°C  
Soldering Temperature (reflow).......................................+260°C  
DD  
AGND to DGND ...................................................-0.3V to +0.3V  
CSB, SCLK, SDI, FCLK to DGND .......................-0.3V to +3.6V  
SDO, INTB, INT2B to  
DGND.............-0.3V to the lower of (3.6V and OV  
All other pins to  
+ 0.3V)  
DD  
AGND ..............-0.3V to the lower of (2.0V and AV  
+ 0.3V)  
DD  
Maximum Current into Any Pin.........................................±50mA  
(Note 1)  
Package Thermal Characteristics  
TQFN  
WLP  
Junction-to-Ambient Thermal Resistance (θ ) ..........29°C/W  
Junction-to-Ambient Thermal Resistance (θ ) ..........44°C/W  
JA  
JA  
Junction-to-Case Thermal Resistance (θ ).................2°C/W  
JC  
Note 1: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer  
board. For detailed information on package thermal considerations, refer to www.maximintegrated.com/thermal-tutorial.  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these  
or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect  
device reliability.  
Electrical Characteristics  
(V  
= V  
= +1.1V to +2.0V, V  
= +1.65V to +3.6V, f  
= 32.768kHz, T = T  
to T  
, unless otherwise noted. Typical  
MAX  
DVDD  
AVDD  
OVDD  
FCLK  
A
MIN  
values are at V  
= V  
= +1.8V, V = +2.5V, T = +25°C.) (Note 2)  
OVDD A  
DVDD  
AVDD  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
-15  
TYP  
MAX  
+15  
UNITS  
BIOPOTENTIAL CHANNEL  
V
V
V
V
V
= +1.1V, THD < 0.3%  
= +1.8V, THD < 0.3%  
AVDD  
AVDD  
AVDD  
AVDD  
AVDD  
AC Differential Input Range  
mV  
p-p  
±32.5  
±650  
= +1.1V, shift from nominal gain < 2%  
= +1.8V  
-300  
+300  
DC Differential Input Range  
Common Mode Input Range  
mV  
= +1.1V, from V  
, shift from  
MID  
-150  
+150  
nominal gain < 2%  
mV  
dB  
V
= +1.8V, from V  
, shift from  
AVDD  
MID  
±550  
nominal gain < 2%  
0W source impedance, f = 64Hz (Note 3)  
115  
77  
105  
Common Mode Rejection  
Ratio  
CMRR  
(Note 4)  
0.82  
5.4  
µV  
µV  
RMS  
BW = 0.05 - 150Hz, G  
= 20x  
CH  
µV  
p-p  
Input Referred Noise  
0.53  
3.5  
1.0  
6.6  
+1  
RMS  
BW = 0.05 - 40Hz, G  
= 20x (Note 3)  
CH  
µV  
p-p  
Input Leakage Current  
Input Impedance (INA)  
T
= +25°C  
-1  
0.1  
nA  
A
Common-mode, DC  
Differential, DC  
45  
GΩ  
MΩ  
1500  
Maxim Integrated  
3  
www.maximintegrated.com  
MAX30004  
Ultra-Low Power, Single-Channel Integrated  
Biopotential (R-to-R Detection) AFE  
Electrical Characteristics (continued)  
(V  
= V  
= +1.1V to +2.0V, V  
= +1.65V to +3.6V, f  
= 32.768kHz, T = T  
to T  
, unless otherwise noted. Typical  
MAX  
DVDD  
AVDD  
OVDD  
FCLK  
A
MIN  
values are at V  
= V  
= +1.8V, V = +2.5V, T = +25°C.) (Note 2)  
OVDD A  
DVDD  
AVDD  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
= +1.80V, V = 65mV  
,
AVDD  
IN  
p-p  
F
= 64Hz, G  
= 20x,  
0.025  
IN  
CH  
electrode offset = ±300mV  
= +1.1V, V = 30mV ,  
p-p  
Total Harmonic Distortion  
THD  
%
V
AVDD  
IN  
F
= 64Hz, G  
= 20x,  
0.3  
IN  
CH  
electrode offset = ±300mV  
Programmable, see Register Map  
20 to  
160  
Gain Setting  
Gain Error  
G
V/V  
%
CH  
V
= +1.8V, G  
= 20x,  
= 20x,  
AVDD  
CH  
-2.5  
-4.5  
+2.5  
+4.5  
INP = INN = VMID  
V
= +1.1V, G  
AVDD  
CH  
%
INP = INN = VMID  
% of  
FSR  
Offset Error  
(Note 5)  
0.1  
18  
ADC Resolution  
Bits  
125 to  
512  
ADC Sample Rate  
Programmable, see Register Map  
FHP = 1/(2R x R x C ), C =  
HPF  
SPS  
HPF  
HPF  
CAPP to CAPN Impedance  
R
320  
450  
600  
kΩ  
HPF  
capacitance between CAPP and CAPN  
Fast recovery enabled (1.8V)  
Fast recovery enabled (1.1V)  
Fast recovery disabled  
160  
55  
Analog High-Pass Filter Slew  
Current  
µA  
0.09  
Fast Settling Recovery Time  
Digital Low Pass Filter  
C
= 10µF  
500  
40  
ms  
Hz  
HPF  
DLPF[0:1] = 01  
DLPF[0:1] = 10  
DLPF[0:1] = 11  
Linear phase  
FIR filter.  
100  
150  
0.5  
Digital High Pass Filter  
Power Supply Rejection  
INPUT MUX  
Phase-corrected 1st-order IIR filter. DHPF = 1  
Hz  
dB  
Lead bias disabled, DC  
107  
110  
PSRR  
Lead bias disabled, f  
= 64Hz  
SW  
DCLOFF_IMAG[2:0] = 001  
DCLOFF_IMAG[2:0] = 010  
DCLOFF_IMAG[2:0] = 011  
DCLOFF_IMAG[2:0] = 100  
DCLOFF_IMAG[2:0] = 101  
5
10  
Pullup/  
pulldown  
DC Lead Off Check  
nA  
20  
50  
100  
Maxim Integrated  
4  
www.maximintegrated.com  
MAX30004  
Ultra-Low Power, Single-Channel Integrated  
Biopotential (R-to-R Detection) AFE  
Electrical Characteristics (continued)  
(V  
= V  
= +1.1V to +2.0V, V  
= +1.65V to +3.6V, f  
= 32.768kHz, T = T  
to T  
, unless otherwise noted. Typical  
MAX  
DVDD  
AVDD  
OVDD  
FCLK  
A
MIN  
values are at V  
= V  
= +1.8V, V = +2.5V, T = +25°C.) (Note 2)  
OVDD A  
DVDD  
AVDD  
PARAMETER  
SYMBOL  
CONDITIONS  
DCLOFF_VTH[1:0] = 11 (Note 6)  
DCLOFF_VTH[1:0] = 10 (Note 7)  
DCLOFF_VTH[1:0] = 01 (Note 8)  
DCLOFF_VTH[1:0] = 00  
MIN  
TYP  
- 0.50  
MAX  
UNITS  
V
V
V
V
MID  
MID  
MID  
MID  
MID  
MID  
MID  
MID  
- 0.45  
- 0.40  
- 0.30  
+ 0.50  
+ 0.45  
+ 0.40  
+ 0.30  
DC Lead Off Comparator Low  
Threshold  
V
DCLOFF_VTH[1:0] = 11 (Note 6)  
DCLOFF_VTH[1:0] = 10 (Note 7)  
DCLOFF_VTH[1:0] = 01 (Note 8)  
DCLOFF_VTH[1:0] = 00  
V
V
V
V
DC Lead Off Comparator  
High Threshold  
V
RBIASV[1:0] = 00  
50  
Lead bias  
enabled  
RBIASV[1:0] = 10  
Lead bias enabled  
Lead Bias Impedance  
Lead Bias Voltage  
RBIASV[1:0] = 01  
100  
200  
MΩ  
V
/
AVDD  
2.15  
V
V
MID  
INTERNAL REFERENCE/COMMON-MODE  
V
Output Voltage  
V
0.650  
100  
V
BG  
BG  
BG  
V
Output Impedance  
kΩ  
External V  
Capacitor  
Compensation  
BG  
C
V
1
µF  
VBG  
V
V
V
V
Output Voltage  
T
T
= +25°C  
0.995  
1.000  
10  
1.005  
V
REF  
REF  
REF  
REF  
REF  
A
Temperature Coefficient  
Buffer Line Regulation  
Buffer Load  
TC  
= 0°C to +70°C  
ppm/°C  
µV/V  
REF  
A
330  
I
= 0 to 100µA  
25  
µV/µA  
LOAD  
Regulation  
External V  
Capacitor  
Compensation  
REF  
C
1
10  
0.650  
10  
µF  
V
REF  
V
Output Voltage  
V
CM  
CM  
CM  
External V  
Capacitor  
Compensation  
CM  
C
1
µF  
DIGITAL INPUTS (SDI, SCLK, CSB, FCLK)  
0.7 ×  
Input-Voltage High  
Input-Voltage Low  
Input Hysteresis  
V
V
V
V
IH  
V
OVDD  
0.3 ×  
V
IL  
V
OVDD  
0.05 ×  
V
HYS  
V
OVDD  
Maxim Integrated  
5  
www.maximintegrated.com  
MAX30004  
Ultra-Low Power, Single-Channel Integrated  
Biopotential (R-to-R Detection) AFE  
Electrical Characteristics (continued)  
(V  
= V  
= +1.1V to +2.0V, V  
= +1.65V to +3.6V, f  
= 32.768kHz, T = T  
to T  
, unless otherwise noted. Typical  
MAX  
DVDD  
AVDD  
OVDD  
FCLK  
A
MIN  
values are at V  
= V  
= +1.8V, V = +2.5V, T = +25°C.) (Note 2)  
OVDD A  
DVDD  
AVDD  
PARAMETER  
Input Capacitance  
Input Current  
DIGITAL OUTPUTS (SDO, INTB, INT2B)  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
pF  
C
10  
IN  
I
-1  
+1  
µA  
IN  
V
OVDD  
0.4  
Output Voltage High  
V
I
I
= 1mA  
SOURCE  
V
OH  
Output Voltage Low  
V
= 1mA  
SINK  
0.4  
+1  
V
OL  
Three-State Leakage Current  
-1  
µA  
Three-State Output  
Capacitance  
15  
pF  
POWER SUPPLY  
Analog Supply Voltage  
V
Connect V  
Connect V  
to V  
DVDD  
1.1  
2.0  
V
AVDD  
AVDD  
DVDD  
Digital Supply Voltage  
V
V
to V  
1.1  
2.0  
3.6  
V
V
DVDD  
AVDD  
Interface Supply Voltage  
Power for I/O drivers only  
1.65  
OVDD  
V
V
V
= V  
= V  
= V  
= +1.1V  
= +1.8V  
= +2.0V  
76  
AVDD  
AVDD  
AVDD  
DVDD  
DVDD  
DVDD  
R-R  
Operation  
100  
I
+
AVDD  
I
Supply Current  
µA  
110  
0.98  
0.73  
122  
2.5  
DVDD  
T
T
= +70°C  
= +25°C  
A
A
ULP Lead  
On Detect  
V
V
= +1.65V, ADC at 512sps (Note 9)  
= +3.6V, ADC at 512sps (Note 9)  
0.2  
0.6  
OVDD  
OVDD  
Interface Supply Current  
Shutdown Current  
I
µA  
µA  
OVDD  
1.6  
V
V
2.0V  
=
T = +70°C  
0.79  
0.51  
AVDD  
DVDD  
A
I
+
SAVDD  
=
I
SDVDD  
T
= +25°C  
2.5  
1.1  
A
I
V
= +3.6V, V  
= V  
= +2.0V  
SOVDD  
OVDD  
AVDD  
DVDD  
ESD PROTECTION  
IEC61000-4-2 Contact Discharge (Note 10)  
IEC61000-4-2 Air-Gap Discharge (Note 10)  
HMM  
±8  
±15  
±8  
INP, INN  
kV  
Maxim Integrated  
6  
www.maximintegrated.com  
MAX30004  
Ultra-Low Power, Single-Channel Integrated  
Biopotential (R-to-R Detection) AFE  
Timing Characteristics  
(V  
V
= V  
= +1.8V, V  
= +1.1V to +2.0V, V  
= +1.65V to +3.6V, T = T  
to T  
, unless otherwise noted. Typical values are at  
MAX  
DVDD  
DVDD  
AVDD  
OVDD  
A
MIN  
= +2.5V, T = +25°C.) (Notes 2, 3)  
OVDD A  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
TIMING CHARACTERISTICS  
SCLK Frequency  
f
t
t
t
0
12  
MHz  
ns  
SCLK  
CP  
SCLK Period  
83  
15  
15  
SCLK Pulse Width High  
SCLK Pulse Width Low  
ns  
CH  
ns  
CL  
CSB Fall to SCLK Rise  
Setup Time  
t
t
t
t
To 1st SCLK rising edge (RE)  
15  
0
ns  
ns  
ns  
ns  
CSS0  
CSH0  
CSH1  
CSA  
CSB Fall to SCLK Rise  
Hold Time  
Applies to inactive RE preceding 1st RE  
Applies to 32nd RE, executed write  
CSB Rise to SCLK Rise  
Hold Time  
10  
15  
Applies to 32nd RE, aborted write  
sequence  
CSB Rise to SCLK Rise  
SCLK Rise to CSB Fall  
t
t
t
t
Applies to 32nd RE  
100  
20  
8
ns  
ns  
ns  
ns  
ns  
CSF  
CSPW  
DS  
CSB Pulse-Width High  
SDI-to-SCLK Rise Setup Time  
SDI to SCLK Rise Hold Time  
8
DH  
C
C
= 20pf  
40  
20  
LOAD  
SCLK Fall to SDO Transition  
t
DOT  
= 20pf, V  
= V  
1.8V,  
LOAD  
DVDD  
AVDD  
DVDD  
ns  
V
≥ 2.5V  
SCLK Fall to SDO Hold  
CSB Fall to SDO Fall  
t
t
C
= 20pf  
LOAD  
2
ns  
ns  
DOH  
DOE  
Enable time, C  
= 20pf  
30  
LOAD  
Maxim Integrated  
7  
www.maximintegrated.com  
MAX30004  
Ultra-Low Power, Single-Channel Integrated  
Biopotential (R-to-R Detection) AFE  
Timing Characteristics (continued)  
(V  
V
= V  
= +1.8V, V  
= +1.1V to +2.0V, V  
= +1.65V to +3.6V, T = T  
to T  
, unless otherwise noted. Typical values are at  
MAX  
DVDD  
DVDD  
AVDD  
OVDD  
A
MIN  
= +2.5V, T = +25°C.) (Notes 2, 3)  
OVDD A  
PARAMETER  
SYMBOL  
CONDITIONS  
Disable time  
MIN  
TYP  
MAX  
UNITS  
ns  
CSB Rise to SDO Hi-Z  
FCLK Frequency  
t
f
t
t
t
35  
DOZ  
FCLK  
FP  
External reference clock  
32.768  
kHz  
µs  
FCLK Period  
30.52  
15.26  
15.26  
FCLK Pulse-Width High  
FCLK Pulse-Width Low  
50% duty cycle assumed  
50% duty cycle assumed  
µs  
FH  
µs  
FL  
Note 2: Limits are 100% tested at T = +25°C. Limits over the operating temperature range and relevant supply voltage range are  
A
guaranteed by design and characterization.  
Note 3: Guaranteed by design and characterization. Not tested in production.  
Note 4: One electrode drive with <10Ω source impedance, the other driven with 51kΩ in parallel with a 47nF per IEC60601-2-47.  
Note 5: Inputs connected to 51kΩ in parallel with a 47nF to V  
.
CM  
Note 6: Use this setting only for V  
Note 7: Use this setting only for V  
Note 8: Use this setting only for V  
= V  
= V  
= V  
≥ 1.65V.  
≥ 1.55V.  
≥ 1.45V.  
AVDD  
AVDD  
AVDD  
DVDD  
DVDD  
DVDD  
Note 9: f  
= 4MHz, burst mode, EFIT = 8, C  
= C  
= 50pF.  
SCLK  
SDO  
INTB  
Note 10: ESD test performed with 1kΩ series resistor designed to withstand 8kV surge voltage.  
SDI  
A6  
A5  
tDS  
A4  
A3  
tDH  
A2  
tCP  
A1  
A0  
R/WB DIN23 DIN22  
DIN1  
DIN0  
A6'  
SCLK  
1
2
3
4
5
6
7
8
9
10  
31  
32  
1'  
tCSA  
tCSH0  
tCH  
tCSH1  
tCSS0  
tCL  
CSB  
SDO  
tCSPW  
Z
tDOT  
tDOH  
tCSF  
Z
DO23  
DO22  
DO1  
DO0  
tDOZ  
tDOE  
Figure 1a. SPI Timing Diagram  
tFP  
FCLK  
tFH  
tFL  
Figure 1b. FCLK Timing Diagram  
Maxim Integrated  
8  
www.maximintegrated.com  
MAX30004  
Ultra-Low Power, Single-Channel Integrated  
Biopotential (R-to-R Detection) AFE  
Typical Operating Characteristics  
(V  
= V  
= +1.8V, V  
= 2.5V, T = +25°C, unless otherwise noted.)  
DVDD  
AVDD  
OVDD A  
CHANNEL NOISE SPECTRUM vs. FREQUENCY  
INPUTS SHORTED, GAIN = 20, LPF = 40Hz  
CHANNEL NOISE SPECTRUM vs. FREQUENCY  
INPUTS SHORTED, GAIN = 20, LPF = 150Hz  
CHANNEL NOISE SPECTRUM vs. FREQUENCY  
INPUTS SHORTED, GAIN = 160, LPF = 40Hz  
toc01  
toc02  
toc03  
0
-50  
0
-50  
0
-50  
-100  
-150  
-200  
-250  
-100  
-150  
-200  
-250  
-100  
-150  
-200  
-250  
0
64  
128  
192  
256  
0
64  
128  
192  
256  
0
64  
128  
192  
256  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
CHANNEL INPUT-REFERRED NOISE vs.TIME  
GAIN = 20, LPF = 40Hz  
CHANNEL NOISE SPECTRUM vs. FREQUENCY  
INPUTS SHORTED, GAIN = 160, LPF = 150Hz  
(10 seconds)  
toc05  
toc04  
4
3
0
-50  
-100  
-150  
-200  
-250  
2
1
0
-1  
-2  
-3  
-4  
0
2
4
6
8
10  
0
64  
128  
192  
256  
TIME (s)  
FREQUENCY (Hz)  
CHANNEL INPUT-REFERRED NOISE vs. TIME  
GAIN = 20, LPF = 150Hz  
CHANNEL INPUT-REFERRED NOISE vs. TIME  
GAIN = 160, LPF = 40Hz  
(10 seconds)  
(10 seconds)  
toc06  
toc07  
4
3
4
3
2
2
1
1
0
0
-1  
-2  
-3  
-4  
-1  
-2  
-3  
-4  
0
2
4
6
8
10  
0
2
4
6
8
10  
TIME (s)  
TIME (s)  
Maxim Integrated  
9
www.maximintegrated.com  
MAX30004  
Ultra-Low Power, Single-Channel Integrated  
Biopotential (R-to-R Detection) AFE  
Typical Operating Characteristics  
(V  
= V  
= +1.8V, V  
= 2.5V, T = +25°C, unless otherwise noted.)  
DVDD  
AVDD  
OVDD A  
CHANNEL INPUT-REFERRED NOISE vs. TIME  
GAIN = 160, LPF = 150Hz  
DIFFERENTIAL INPUT RESISTANCE  
vs. FREQUENCY  
CHANNEL PSRR vs. FREQUENCY  
(10 seconds)  
toc08  
toc09  
toc10  
4
3
1000  
100  
10  
10000  
1000  
100  
10  
NO LEAD  
BIAS  
2
1
0
200M  
LEAD BIAS  
50MΩ  
LEAD  
BIAS  
-1  
-2  
-3  
-4  
100MΩ  
LEAD BIAS  
1
1
0
64  
128  
192  
256  
0
2
4
6
8
10  
0
0.5  
1
1.5  
2
2.5  
FREQUENCY (Hz)  
TIME (s)  
FREQUENCY (MHz)  
DIFFERENTIAL INPUT RESISTANCE  
vs. VOLTAGE  
COMMON-MODE INPUT  
RESISTANCE vs. FREQUENCY  
toc11  
toc12  
10000  
10000  
NO LEAD  
BIAS  
200M  
LEAD BIAS  
200M  
LEAD BIAS  
NO LEAD  
BIAS  
1000  
100  
10  
1000  
100  
10  
100MΩ  
LEAD BIAS  
50MΩ  
LEAD  
BIAS  
100MΩ  
LEAD BIAS  
50MΩ  
LEAD BIAS  
1
1
0
64  
128  
FREQUENCY (Hz)  
192  
256  
-500  
-300  
-100  
100  
300  
500  
VINP-VINN (mV)  
COMMON-MODE INPUT  
COMMON-MODE INPUT  
RESISTANCE vs. VOLTAGE  
RESISTANCE vs. TEMPERATURE  
toc13  
toc14  
10000000  
1000000  
100000  
10000  
1000  
1000000.00  
100000.00  
10000.00  
1000.00  
100.00  
NO LEAD  
BIAS  
NO LEAD  
BIAS  
200MΩ  
LEAD BIAS  
200MΩ  
LEAD BIAS  
100  
10.00  
100MΩ  
50MΩ  
LEAD BIAS  
10  
50MΩ  
LEAD BIAS  
100MΩ  
LEAD BIAS  
LEAD BIAS  
1.00  
1
0
10  
20  
30  
40  
50  
60  
70  
-400  
-200  
0
200  
400  
TEMPERATURE (°C)  
VCM-VMID (mV)  
Maxim Integrated  
10  
www.maximintegrated.com  
MAX30004  
Ultra-Low Power, Single-Channel Integrated  
Biopotential (R-to-R Detection) AFE  
Typical Operating Characteristics  
(V  
= V  
= +1.8V, V  
= 2.5V, T = +25°C, unless otherwise noted.)  
DVDD  
AVDD  
OVDD A  
DIFFERENTIAL INPUT  
RESISTANCE vs. TEMPERATURE  
VREF vs. TEMPERATURE  
toc15  
toc16  
10000.00  
1000.00  
100.00  
10.00  
1000.6  
1000.5  
1000.4  
1000.3  
1000.2  
1000.1  
1000  
NO LEAD  
BIAS  
200MΩ  
LEAD BIAS  
100MΩ  
LEAD BIAS  
50MΩ  
LEAD BIAS  
999.9  
999.8  
999.7  
999.6  
1.00  
0
10  
20  
30  
40  
50  
60  
70  
0
10  
20  
30  
40  
50  
60  
70  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
AVDD AND DVDD SUPPLY CURRENT  
(RtoR ENABLED) vs. TEMPERATURE  
AVDD AND DVDD ULP CURRENT  
vs. TEMPERATURE  
toc18  
toc17  
1.2  
1
120  
110  
100  
90  
2.0V  
1.8V  
2.0V  
0.8  
0.6  
0.4  
0.2  
0
1.8V  
1.5V  
1.5V  
80  
1.1V  
70  
1.1V  
60  
0
10  
20  
30  
40  
50  
60  
70  
0
10  
20  
30  
40  
50  
60  
70  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
OVDD SHUTDOWN CURRENT  
vs. TEMPERATURE  
and AVDD (OVDD = 3.6V)  
AVDD SHUTDOWN CURRENT  
toc19  
toc20  
0.25  
0.20  
0.15  
0.10  
0.05  
0.00  
0.12  
0.10  
0.08  
0.06  
0.04  
0.02  
0.00  
VAVDD = 1.1V  
2.0V  
VAVDD = 1.5V  
VAVDD = 1.8V  
VAVDD = 2.0V  
1.8V  
1.5V  
1.1V  
0
10  
20  
30  
40  
50  
60  
70  
0
10  
20  
30  
40  
50  
60  
70  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Maxim Integrated  
11  
www.maximintegrated.com  
MAX30004  
Ultra-Low Power, Single-Channel Integrated  
Biopotential (R-to-R Detection) AFE  
Pin Configurations  
Pin Description  
PIN  
BUMP  
WLP  
NAME  
FUNCTION  
TQFN  
1, 2, 4, 5, 24,  
26  
A1, A2, A3,  
A4, B2, C2  
I.C.  
Internally Connected. Connect to AGND.  
B3, B4, C3,  
C4, D4  
Analog Power and Reference Ground. Connect into the printed circuit board  
ground plane.  
3,8,28  
AGND  
6
7
A5  
A6  
INP  
INN  
Positive Input  
Negative Input  
Analog High-Pass Filter Input. Connect a 1μF X7R capacitor (CHPF) between CAPP  
and CAPN to form a 0.5Hz high-pass response in the channel.  
9
B6  
CAPP  
Analog High-Pass Filter Input. Connect a 1μF X7R capacitor (CHPF) between CAPP  
and CAPN to form a 0.5Hz high-pass response in the channel.  
10  
11  
B5  
C6  
CAPN  
CPLL  
PLL Loop Filter Input. Connect 1nf COG cap between CPLL and AGND.  
Maxim Integrated  
12  
www.maximintegrated.com  
MAX30004  
Ultra-Low Power, Single-Channel Integrated  
Biopotential (R-to-R Detection) AFE  
Pin Description (continued)  
PIN  
BUMP  
WLP  
NAME  
FUNCTION  
TQFN  
Digital Ground for Both Digital Core and I/O Pad Drivers. Recommended to connect  
to AGND plane.  
12  
13  
14  
C5  
D6  
D5  
DGND  
DVDD  
FCLK  
Digital Core Supply Voltage. Connect to AVDD  
External 32.768kHz Clock that Controls the Sampling of the Internal Sigma-Delta  
Converters and Decimator.  
15  
16  
E6  
E5  
CSB  
Active-Low Chip-Select Input. Enables the serial interface.  
SCLK  
Serial Clock Input. Clocks data in and out of the serial interface when CSB is low.  
Serial Data Input. SDI is sampled into the device on the rising edge of SCLK when  
CSB is low.  
17  
E4  
SDI  
Serial Data Output. SDO will change state on the falling edge of SCLK when CSB  
is low. SDO is three-stated when CSB is high.  
18  
19  
20  
E3  
D3  
E2  
SDO  
OVDD  
INT2B  
Logic Interface Supply Voltage  
Interrupt 2 Output. INT2B is an active-low status output. It can be used to interrupt  
an external device.  
Interrupt Output. INTB is an active low status output. It can be used to interrupt an  
external device.  
21  
22  
23  
D2  
E1  
D1  
INTB  
AVDD  
VREF  
Analog Core Supply Voltage. Connect to DVDD.  
ADC Reference Buffer Output. Connect a 10μF X5R ceramic capacitor between  
VREF and AGND.  
Common Mode Buffer Output. Connect a 10μF X5R ceramic capacitor between  
VCM and AGND.  
25  
C1  
VCM  
Bandgap Noise Filter Output. Connect a 1.0μF X7R ceramic capacitor between  
VBG and AGND.  
27  
B1  
VBG  
EP  
Exposed Paddle. Connect to AGND.  
Maxim Integrated  
13  
www.maximintegrated.com  
MAX30004  
Ultra-Low Power, Single-Channel Integrated  
Biopotential (R-to-R Detection) AFE  
filtering, lead biasing, leads off checking, and ultra-low  
power leads-on checking. The output of this analog channel  
drives a high-resolution ADC.  
Detailed Description  
Biopotential Channel  
Figure 2 illustrates the biopotential channel block diagram,  
excluding the ADC. The channel comprises an input  
MUX, a fast-recovering instrumentation amplifier, an anti-  
alias filter, and a programmable gain amplifier. The MUX  
includes several features such as ESD protection, EMI  
Input MUX  
The input MUX shown in Figure 3 contains integrated  
ESD and EMI protection, DC leads off detect current  
sources, lead-on detect, series isolation switches, and  
lead biasing.  
PCB  
AAF  
INP  
ESD, EMI,  
INPUT MUX ,  
DC LEAD  
CHECK  
INPUT  
AMP  
PGA  
INN  
f
= 600Hz  
-3dB  
-40dB/dec  
FAST  
SETTLING  
CAPP  
CAPN  
C
MAX30004  
HPF  
Figure 2. Channel Input Amplifier and PGA Excluding the ADC  
MAX30004  
ESD PROTECTION  
AND  
EMI FILTER  
INPUT AND  
POLARITY  
SWITCHES  
ULP LEAD-ON  
CHECK  
LEAD  
BIAS  
DC LEAD-OFF CHECK  
VTHH  
AVDD  
AVDD  
VMID  
50,  
15MΩ  
100,  
200MΩ  
5-100nA  
VTHL  
TO ECG  
INA IN+  
INP  
AVDD  
AVDD  
5-100nA  
R
AGND  
AGND  
AGND  
5-100nA  
3R  
AGND  
TO ECG  
INA IN-  
AGND  
INN  
VTHH  
5-100nA  
50,  
100,  
200MΩ  
5MΩ  
AGND  
AGND  
AGND  
VTHL  
AGND  
AGND  
VMID  
Figure 3. Input MUX  
Maxim Integrated  
14  
www.maximintegrated.com  
MAX30004  
Ultra-Low Power, Single-Channel Integrated  
Biopotential (R-to-R Detection) AFE  
protects against false flags generated by the input amplifier  
and input chopping. The comparator checks for a minimum  
continuous violation (or threshold exceeded) of 115ms to  
140ms depending on the setting of FMSTR[1:0] before  
asserting any one of the LDOFF_* interrupt flags (Figure  
4). See registers CNFG_GEN (0x10) and CNFG_MUX  
0x14) for configuration settings and see Table 1 for  
recommended values given electrode type and supply  
voltage.  
The ULP lead on detect operates by pulling INN low with a  
pulldown resistance larger than 5mΩ and pulling INP high  
with a pullup resistance larger than 15mΩ. A low-power  
comparator determines if INP is pulled below a  
predefined threshold that occurs when both electrodes  
make contact with the body. When the impedance between  
INP and INN is less than 20Ω, an interrupt LONINT is  
asserted, alerting the µC to a leads-on condition.  
EMI Filtering and ESD Protection  
EMI filtering of the INP and INN inputs consists of a single  
pole, low pass, differential, and common mode filter with  
the pole located at approximately 2MHz. The INP and INN  
inputs also have input clamps that protect the inputs from  
ESD events.  
±8kV using the Contact Discharge method specified  
in IEC61000-4-2 ESD  
±15kV using the Air Gap Discharge method specified  
in IEC61000-4-2 ESD  
±8kV HBM  
● For IEC61000-4-2 ESD protection, use 1kΩ series  
resistors on INP and INN that is rated to withstand  
8kV surge voltages.  
DC Leads-Off Detection and ULP  
Leads-On Detection  
The input MUX leads-off detect circuitry consists of  
programmable sink/source DC current sources that allow  
for DC leads-off detection, while the channel is powered  
up in normal operation and an ultra-low-power (ULP)  
leads-on detect while the channel is powered-down.  
A 0nA/V  
± 300mV selection is available allowing  
MID  
monitoring of the input compliance of the INA during non-  
DC lead-off checks.  
Lead Bias  
The MAX30004 limits the INP and INN DC input common  
The MAX30004 accomplishes DC leads-off detection by  
applying a DC current to pull the input voltage up to above  
mode range to V  
±150mV. This range can be maintained  
MID  
either through external/internal lead-biasing.  
V
MID  
+ V  
or down to below V - V . The current  
MID TH  
TH  
sources have user selectable values of 0nA, 5nA, 10nA,  
20nA, 50nA, and 100nA that allow coverage of dry and  
wet electrode impedance ranges. Supported thresholds  
Internal DC lead-biasing consists of 50MΩ, 100MΩ,  
or 200MΩ selectable resistors to V  
that drive the  
MID  
electrodes within the input common mode requirements  
of the channel and can drive the connected body to the  
proper common mode voltage level. See register CNFG_  
GEN (0x10) to select a configuration.  
are V  
± 0.30V (recommended), V  
± 0.40V, V  
±
MID  
MID  
MID  
0.45V, and V  
± 0.50V. A threshold of 400mV, 450mV,  
MID  
and 500mV should only be used when V  
≥ 1.45V,  
AVDD  
1.55V, and 1.65V, respectively. A dynamic comparator  
VDD  
VTHH  
VMID  
INP,N  
VTHL  
VSS  
ABOVE  
BELOW  
THRESHOLD  
THRESHOLD  
>115ms  
<115ms  
INTB  
LDOFF_*H  
BITS  
ASSERTED  
Figure 4. Lead-Off Detect Behavior  
Maxim Integrated  
15  
www.maximintegrated.com  
MAX30004  
Ultra-Low Power, Single-Channel Integrated  
Biopotential (R-to-R Detection) AFE  
Table 1. Recommended Lead Bias (Rb), Current Source Values,  
and Thresholds for Electrode Impedances  
ELECTRODE IMPEDANCE  
I
V
DC  
100kΩ -  
200kΩ  
200kΩ -  
400kΩ  
400kΩ -  
1MΩ  
1MΩ -  
2MΩ  
2MΩ - 4  
MΩ  
4MΩ -  
10MΩ  
10MΩ -  
20MΩ  
TH  
<100kΩ  
All settings of R  
b
I
I
= 10nA  
V
= V  
DC  
DC  
TH MID  
± 300mV, ±400mV  
All settings  
of R  
b
All settings of R  
All settings of V  
V
= V  
b
TH MID  
= 20nA  
±400mV,  
±450mV,  
±500mV  
TH  
All settings  
of R  
b
= V  
All settings of R  
b
I
I
= 50nA  
V
DC  
TH MID  
All settings of V  
TH  
±450mV,  
±500mV  
All settings  
of Rb  
All settings of R  
V
= V  
b
TH MID  
= 100nA  
DC  
All settings of V  
±400mV,  
±450mV,  
±500mV  
TH  
provides the most motion artifact rejection, making it best  
suited for heart rate monitoring. 0.5Hz and 0.05Hz can be  
used for applications requiring moderate and no motion  
artifact rejection respectively. The high-pass corner  
frequency is calculated by the following equation:  
Isolation Switches  
The series switches in the MAX30004 isolate INP and  
INN pins (subject) from the internal signal path. the series  
switches are disabled by default. They must be enabled  
to record R-to-R data.  
1/(2π x R  
x C  
)
HPF  
HPF  
Gain Settings and Input Range  
RHPF is specified in the Electrical Characteristics table.  
The device’s biopotential channel contains an input  
instrumentation amplifier that provides low-noise, fixed  
20V/V gain amplification of the differential signal, rejects  
differential DC voltage due to electrode polarization,  
rejects common-mode interference primarily due to AC  
mains interference, and provides high input impedance  
to guarantee high CMRR even in the presence of severe  
electrode impedance mismatch (see Figure 2). The differ-  
ential DC rejection corner frequency is set by an external  
Following the instrumentation amplifier is a 2-pole active  
anti-aliasing filter with a 600Hz -3dB frequency that  
provides57dBofattenuationathalfthemodulatorsampling  
rate (approximately 16kHz) and a PGAwith programmable  
gains of 1, 2, 4, and 8V/V for an overall gain of 20, 40, 80,  
and 160V/V. The instrumentation amplifier and PGA are  
chopped to minimize offset and 1/f noise. Gain settings are  
configured through the CNFG_CH (0x15) register. The  
useable common-mode range is V  
±150mV, internal  
MID  
capacitor (C  
) placed between pins CAPP and CAPN,  
HPF  
lead biasing can be used to meet this requirement. The  
useable DC differential range is ±300mV to allow for  
electrode polarization voltages on each electrode. The  
refer to Table 2 for appropriate value selection. There are  
three recommended options for the cutoff frequency: 5Hz,  
0.5Hz, and 0.05Hz. Setting the cutoff frequency to 5Hz  
input AC differential range is ±32.5mV or ±65mV  
.
P-P  
Maxim Integrated  
16  
www.maximintegrated.com  
MAX30004  
Ultra-Low Power, Single-Channel Integrated  
Biopotential (R-to-R Detection) AFE  
in the MNGR_DYN (0x05) register and accumulates the  
time that the ADC output exceeds either the positive or  
negative threshold. If the saturation counter exceeds  
125ms, it triggers the fast settling mode (if enabled) and  
resets. The saturation counter can also be reset prior to  
triggering the fast settling mode if the ADC output falls  
Table 2. Analog HPF Corner Frequency  
Selection  
C
HPF CORNER FREQUENCY  
HPF  
0.1µ  
1.0µ  
10µ  
≤ 5Hz  
≤ 0.5Hz  
≤ 0.05Hz  
below the threshold continuously for 125ms (t  
). This  
BLW  
feature is designed to avoid false triggers due to the  
QRS complex. Once triggered, fast settling mode will be  
engaged for 500ms, see Figure 5.  
Fast Recovery Mode  
The input instrumentation amplifier has the ability to  
rapidly recover from an excessive overdrive event such  
as a defibrillation pulse, high-voltage external pacing,  
and electro-surgery interference. There are two modes of  
recovery that can be used: automatic or manual recovery.  
The mode is programmed by the FAST[1:0] bits in the  
MNGR_DYN (0x05) register.  
In manual mode, a user algorithm running on the host  
microcontroller or an external stimulus input will generate  
the trigger to enter fast recovery mode. The host  
microcontroller then enables the manual fast recovery  
mode in the MNGR_DYN (0x05) register. The manual fast  
recovery mode can be of a much shorter duration than  
the automatic mode and allows for more rapid recovery.  
One such example is recovery from external high-voltage  
pacing signals in a few milliseconds to allow the observation  
of a subsequent p-wave.  
Automatic mode engages once the saturation counter  
exceeds approximately 125ms (t  
). The counter is  
SAT  
activated the first time the ADC output exceeds the  
symmetrical threshold defined by the FAST_TH[5:0] bits  
Figure 5. Automatic Fast Settling Behavior  
Maxim Integrated  
17  
www.maximintegrated.com  
MAX30004  
Ultra-Low Power, Single-Channel Integrated  
Biopotential (R-to-R Detection) AFE  
WNDW[3:0] bits in the CNFG_RTOR (0x1D) register. The  
R-to-R Detection  
The MAX30004 contains built-in hardware to detect  
R-to-R intervals using an adaptation of the Pan-Tompkins  
detection delay (t  
equation:  
) is described by the following  
R2R_DET  
t
= 5,376 + 256 x WNDW in FMSTR clocks  
1
R2R_DET  
QRS detection algorithm . The timing resolution of the  
where WNDW is an integer from 0 to 15 and the total  
latency (t ) is the sum of the two delays and  
R-R interval is approximately 8ms and depends on the  
setting of FMSTR [1:0] in CNFG_GEN (0x10) register. See  
Table 19 for the timing resolution of each setting.  
R2R_DEL  
summarized in the equation below:  
= t + t = 3,370 + 5,376 +  
R2R_DET  
t
R2R_DEL  
R2R_DEC  
When an R event is identified, the RRINT status bit is  
asserted and the RTOR_REG (0x25) register is updated  
with the count seen since the last R event. Figure 6 illustrates  
the R-R interval on a QRS complex. Refer to registers  
CNFG_RTOR1 (0x1D) and CNFG_RTOR2 (0x1E) for  
configuration details.  
256 x WNDW in FMSTR clocks where WNDW  
is an integer from 0 to 15.  
Reference and Common Mode Buffer  
The MAX30004 features internally generated reference  
voltages. The bandgap output (V ) pin requires an  
BG  
external 1.0µF capacitor to AGND and the reference  
The latency of the R-to-R value written to the RTOR  
Interval Memory Register is the sum of the R-to-R  
decimation delay and the R-to-R detection delay blocks.  
The R-to-R decimation factor is fixed at 256 and the  
output (V  
) pin requires a 10µF external capacitor to  
REF  
AGND for compensation and noise filtering.  
A common-mode buffer is provided to buffer 650mV  
which is used to drive common mode voltages for internal  
decimation delay (t  
) is always 3,370 FMSTR  
R2R_DEC  
blocks. Use a 10µF external capacitor between V  
AGND to provide compensation and noise filtering.  
to  
CM  
clocks, as shown in Table 3.  
The detection circuit consists of several digital filters  
and signal processing delays. These depend on the  
R-R INTERVAL  
Figure 6. R-to-R Interval Illustration  
Table 3. R-to-R Decimation Delay in ms and FMSTR CLK vs. Register Settings,  
FCLK = 32.768Hz  
DELAY IN R-TO-R DECIMATION  
FMSTR  
[1:0]  
FMSTR FREQ  
IN FCLKs  
FMSTR  
FREQ (Hz)  
RTOR TIME  
RESOLUTION (ms)  
DECIMATION  
IN FMSTR CLKs  
IN ms  
102.844  
00  
FCLK  
32,768  
256  
256  
256  
256  
7.8125  
8.0  
3370  
3370  
3370  
3370  
01  
10  
11  
FCLK x 625/640  
FCLK x 625/640  
FCLK x 640/656  
32,000  
105.313  
105.313  
105.415  
32,000  
8.0  
31,968.78  
8.0078  
1
J. Pan and W.J. Tompkins, “A Real-Time QRS Detection Algorithm,” IEEE Trans. Biomed. Eng., vol. 32, pp. 230-236  
Maxim Integrated  
18  
www.maximintegrated.com  
MAX30004  
Ultra-Low Power, Single-Channel Integrated  
Biopotential (R-to-R Detection) AFE  
command word (comprised of a seven bit address and a  
Read/Write mode indicator (i.e., A[6:0] + R/W) followed  
by a three-byte data word. The MAX30004 is compatible  
with the CPOL = 0/CPHA = 0 and CPOL = 1/CPHA = 1  
modes of operation.  
Write mode operations will be executed on the 32nd SCLK  
rising edge using the first four bytes of data available.  
In write mode, any data supplied after the 32nd SCLK  
rising edge will be ignored. Subsequent writes require CSB  
to de-assert high and then assert low for the next write  
command. In order to abort a command sequence, the  
rise of CSB must precede the updating (32nd) rising-edge  
Sample Synchronization Pulse  
The MAX30004 offers a sample synchronization pulse  
that allows the direct observation of the channel sample  
instant for either synchronization between multiple devices  
or as a monitoring feature during debug. When enabled  
(EN_SAMP in either register EN_INT or EN_INT2), the  
MAX30004 generates an interrupt either every sample  
instant, or every second, fourth, or 16th sample instant,  
based on the setting of SAMP_IT[1:0] in register MNGR_  
INT. The sample instants are defined by the channel  
ADC, and are not R-to-R samples. Therefore, the interval  
between individual sample instants is dependent on  
the channel data rate as defined by FMSTR[1:0] and  
RATE[1:0]. The clear behavior of the sample synchroni-  
zation pulse is affected by the CLR_SAMP bit in register  
MNGR_INT. When this feature is used, it is recommended  
to use a dedicated interrupt output for just the sample  
synchronization pulse.  
of SCLK, meeting the t  
requirement.  
CSA  
Read mode operations will access the requested data  
on the 8th SCLK rising edge, and present the MSB of  
the requested data on the following SCLK falling edge,  
allowing the µC to sample the data MSB on the 9th  
SCLK rising edge. Configuration and status data are all  
available via normal mode read back sequences. If more  
than 32 SCLK rising edges are provided in a normal read  
sequence then the excess edges will be ignored and the  
device will read back zeros.  
SPI Interface Description  
32-Bit Read/Write Sequences  
The MAX30004 interface is SPI/QSPI/Micro-wire/DSP  
compatible. The operation of the SPI interface is shown  
in Figure 1. Data is strobed into the MAX30004 on SCLK  
rising edges. The device is programmed and accessed by  
a 32 cycle SPI instruction framed by a CSB low interval.  
The content of the SPI operation consists of a one byte  
If accessing the STATUS register, all interrupt updates  
will be made in response to the 30th SCLK rising edge,  
allowing for internal synchronization operations to occur.  
Figure 7. SPI Normal Mode Transaction Diagrams  
Maxim Integrated  
19  
www.maximintegrated.com  
MAX30004  
Ultra-Low Power, Single-Channel Integrated  
Biopotential (R-to-R Detection) AFE  
Maxim Integrated  
20  
www.maximintegrated.com  
MAX30004  
Ultra-Low Power, Single-Channel Integrated  
Biopotential (R-to-R Detection) AFE  
Maxim Integrated  
21  
www.maximintegrated.com  
MAX30004  
Ultra-Low Power, Single-Channel Integrated  
Biopotential (R-to-R Detection) AFE  
STATUS (0x01) Register  
Register Descriptions  
STATUS is a read-only register that provides a compre-  
hensive overview of the current status of the device. The  
first two bytes indicate the state of all interrupt terms  
(regardless of whether interrupts are enabled in registers  
EN_INT (0x02) or EN_INT2 (0x03)). All interrupt terms  
are active high. The last byte includes detailed status  
information for conditions associated with the interrupt  
terms.  
NO_OP (0x00 and 0x7F) Registers  
No Operation (NO_OP) registers are read-write registers  
that have no internal effect on the device. If these  
registers are read back, DOUT remains zero for the entire  
SPI transaction. Any attempt to write to these registers is  
ignored without impact to internal operation.  
Table 4. STATUS (0x01) Register Map  
REG  
NAME  
R/W  
23 / 15 / 7 22 / 14 / 6 21 / 13 / 5 20 / 12 / 4 19 / 11 / 3 18 / 10 / 2  
17 / 9 / 1  
x
16 / 8 / 0  
x
DCLOFF  
x
x
x
x
x
x
FSTINT  
x
x
INT  
0x01  
STATUS  
R
x
x
x
LONINT  
RRINT  
SAMP  
PLLINT  
LDOFF_  
PH  
LDOFF_  
PL  
LDOFF_  
NH  
LDOFF_  
NL  
x
Table 5. Status (0x01) Register Meaning  
INDEX  
NAME  
MEANING  
Fast Recovery Mode. Issued when the Fast Recovery Mode is engaged  
(either manually or automatically).  
D[21]  
FSTINT  
Status and Interrupt Clear behavior is defined by CLR_FAST, see MNGR_INT for details.  
DC Lead-Off Detection Interrupt. Indicates that the MAX30004 has determined it is in leads off  
condition (as selected in CNFG_GEN) for more than 115ms.  
Remains active as long as the leads-off condition persists, then held until cleared by STATUS  
read back (32nd SCLK).  
D[20]  
DCLOFFINT  
Maxim Integrated  
22  
www.maximintegrated.com  
MAX30004  
Ultra-Low Power, Single-Channel Integrated  
Biopotential (R-to-R Detection) AFE  
Table 5. Status (0x01) Register Meaning (continued)  
INDEX  
NAME  
MEANING  
Ultra-Low Power (ULP) Leads-On Detection Interrupt. Indicates that the MAX30004 has determined  
it is in a leads-on condition (as selected in CNFG_GEN).  
LONINT is asserted whenever EN_ULP_LON[1:0] in register CNFG_GEN is set to either 0b01 or  
0b10 to indicate that the ULP leads on detection mode has been enabled. The STATUS register  
has to be read back once after ULP leads-on detection mode has been activated to clear LONINT  
and enable leads-on detection.  
D[11]  
LONINT  
LONINT remains active while the leads-on condition persists, then held until cleared by STATUS read  
back (32nd SCLK).  
R-to-R Detector R Event Interrupt. Issued when the R-to-R detector has identified a new R event.  
Clear behavior is defined by CLR_RRINT[1:0]; see MNGR_INT for details.  
D[10]  
D[9]  
RRINT  
SAMP  
Sample Synchronization Pulse. Issued on the ADC base-rate sampling instant, for use in assisting  
µC monitoring and synchronizing other peripheral operations and data, generally recommended for use  
as a dedicated interrupt.  
Frequency is selected by SAMP_IT[1:0], see MNGR_INT for details.  
Clear behavior is defined by CLR_SAMP, see MNGR_INT for details.  
PLL Unlocked Interrupt. Indicates that the PLL has not yet achieved or has lost its phase lock.  
PLLINT will only be asserted when the PLL is powered up and active (Channel enabled).  
Remains asserted while the PLL unlocked condition persists, then held until cleared by STATUS read  
back (32nd SCLK).  
D[8]  
PLLINT  
D[3]  
D[2]  
LDOFF_PH  
LDOFF_PL  
DC Lead Off Detection Detailed Status. Indicates that the MAX30004 has determined (as selected by  
CNFG_GEN):  
INP is above the high threshold (V  
INN is above the high threshold (V  
), INP is below the low threshold (V  
),  
THH  
THL  
), INN is below the low threshold (V  
), respectively.  
THH  
THL  
D[1]  
D[0]  
LDOFF_NH  
LDOFF_NL  
Remains active as long as the leads-off detection is active and the leads-off condition persists, then  
held until cleared by STATUS read back (32nd SCLK). LDOFF_PH to LDOFF_NL are detailed status  
bits that are asserted at the same time as DCLOFFINT.  
Maxim Integrated  
23  
www.maximintegrated.com  
MAX30004  
Ultra-Low Power, Single-Channel Integrated  
Biopotential (R-to-R Detection) AFE  
INTB_TYPE[1:0] allows the user to select between a  
CMOS or an open-drain NMOS mode INTB output. If  
using open-drain mode, an option for an internal 125kΩ  
pullup resistor is also offered.  
EN_INT (0x02) and EN_INT2 (0x03) Registers  
EN_INT and EN_INT2 are read/write registers that govern  
the operation of the INTB output and INT2B output,  
respectively. The first two bytes indicate which  
interrupt input terms are included in the interrupt output OR  
term (ex. a one in an EN_INT register indicates that the  
corresponding input term is included in the INTB interrupt  
output OR term). See the STATUS register for detailed  
descriptions of the interrupt terms. The power-on reset  
state of all EN_INT terms is 0 (ignored by INT).  
All INTB and INT2B types are active-low (INTB low  
indicates the device requires servicing by the µC);  
however, the open-drain mode allows the INTB line to be  
shared with other devices in a wired-or configuration.  
In general, it is suggested that INT2B be used to  
support specialized/dedicated interrupts of use in specific  
applications, such as the self-clearing versions of SAMP  
or RRINT.  
EN_INT and EN_INT2 can also be used to mask persistent  
interruptconditionsinordertoperformotherinterrupt-driven  
operations until the persistent conditions are resolved.  
Table 6. EN_INT (0x02) and EN_INT2 (0x03) Register Maps  
REG  
NAME  
R/W  
23 / 15 / 7 22 / 14 / 6 21 / 13 / 5 20 / 12 / 4 19 / 11 / 3 18 / 10 / 2  
17 / 9 / 1  
16 / 8 / 0  
EN_  
FSTINT  
EN_DCL  
OFFINT  
x
x
x
x
x
x
0x02  
0x03  
EN_INT  
EN_INT2  
R/W  
EN_  
LONINT  
EN_  
RRINT  
EN_  
SAMP  
EN_  
PLLINT  
x
x
x
x
x
x
x
x
x
x
INTB_TYPE[1:0]  
Table 7. EN_INT (0x02 and 0x03) Register Meaning  
INDEX  
NAME  
DEFAULT  
FUNCTION  
EN_FSTINT  
EN_DCLOFFINT  
EN_LONINT  
EN_RRINT  
Interrupt Enables for interrupt terms in STATUS[23:8]  
0 = Individual interrupt term is not included in the interrupt OR term  
1 = Individual interrupt term is included in the interrupt OR term  
D[23:20]  
D[11:8]  
0x0000  
EN_SAMP  
EN_PLLINT  
INTB Port Type (EN_INT Selections)  
00 = Disabled (Three-state)  
11  
11  
01 = CMOS Driver  
10 = Open-Drain NMOS Driver  
11 = Open-Drain NMOS Driver with Internal 125kΩ Pullup Resistance  
D[1:0]  
INTB_TYPE[1:0]  
INT2B Port Type (EN_INT2 Selections)  
00 = Disabled (three-state)  
01 = CMOS Driver  
10 = Open-Drain nMOS Driver  
11 = Open-Drain nMOS Driver with Internal 125kΩ Pullup Resistance  
Maxim Integrated  
24  
www.maximintegrated.com  
MAX30004  
Ultra-Low Power, Single-Channel Integrated  
Biopotential (R-to-R Detection) AFE  
registercontainstheconfigurationbitssupportingthesample  
synchronization pulse (SAMP) and RTOR heart rate  
detection interrupt (RRINT).  
MNGR_INT (0x04)  
MNGR_INT is a read/write register that manages the  
operation of the configurable interrupt bits. Finally, this  
Table 8. MNGR_INT (0x04) Register Map  
REG  
NAME  
R/W  
23 / 15 / 7 22 / 14 / 6 21 / 13 / 5 20 / 12 / 4 19 / 11 / 3 18 / 10 / 2  
17 / 9 / 1  
16 / 8 / 0  
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
MNGR_  
INT  
0x04  
R/W  
CLR_  
FAST  
CLR_  
SAMP  
x
CLR_RRINT[1:0]  
x
SAMP_IT[1:0]  
Table 9. MNGR_INT (0x04) Register Functionality  
INDEX  
NAME  
DEFAULT  
FUNCTION  
FAST MODE Interrupt Clear Behavior:  
0 = FSTINT remains active until the FAST mode is disengaged (manually or  
automatically), then held until cleared by STATUS read back (32nd SCLK).  
1 = FSTINT remains active until cleared by STATUS read back (32nd SCLK),  
even if the MAX30004 remains in FAST recovery mode. Once cleared,  
FSTINT will not be re-asserted until FAST mode is exited and re-entered,  
either manually or automatically.  
D[6]  
CLR_FAST  
0
RTOR R Detect Interrupt (RRINT) Clear Behavior:  
00 = Clear RRINT on STATUS Register Read Back  
01 = Clear RRINT on RTOR Register Read Back  
10 = Self-Clear RRINT after one data rate cycle, approximately 2ms to 8ms  
11 = Reserved. Do not use.  
D[5:4]  
D[2]  
CLR_RRINT[1:0]  
CLR_SAMP  
00  
1
Sample Synchronization Pulse (SAMP) Clear Behavior:  
0 = Clear SAMP on STATUS Register Read Back (recommended for debug/  
evaluation only).  
1 = Self-clear SAMP after approximately one-fourth of one data rate cycle.  
Sample Synchronization Pulse (SAMP) Frequency  
00 = issued every sample instant  
D[1:0]  
SAMP_IT[1:0]  
00  
01 = issued every 2nd sample instant  
10 = issued every 4th sample instant  
11 = issued every 16th sample instant  
Maxim Integrated  
25  
www.maximintegrated.com  
MAX30004  
Ultra-Low Power, Single-Channel Integrated  
Biopotential (R-to-R Detection) AFE  
MNGR_DYN (0x05)  
SW_RST (0x08)  
MNGR_DYN is a read/write register that manages  
the settings of any general/dynamic modes within the  
device. The Fast Recovery modes and thresholds are  
managed here. Unlike many CNFG registers, changes  
to dynamic modes do not require a RESTART operation.  
SW_RST (Software Reset) is a write-only register/  
command that resets the MAX30004 to its original default  
conditions at the end of the SPI SW_RST transaction  
(i.e. the 32nd SCLK rising edge). Execution occurs only  
if DIN[23:0] = 0x000000. The effect of a SW_RST is  
identical to power-cycling the device.  
Table 10. MNGR_DYN (0x05) Register Map  
REG  
NAME  
R/W  
23 / 15 / 7 22 / 14 / 6 21 / 13 / 5 20 / 12 / 4 19 / 11 / 3 18 / 10 / 2  
17 / 9 / 1  
16 / 8 / 0  
FAST[1:0] FAST_TH[5:0]  
MNGR_  
DYN  
0x05  
R/W  
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
Table 11. MNGR_DYN (0x05) Register Functionality  
INDEX  
NAME  
DEFAULT  
FUNCTION  
Fast Recovery Mode Selection (High-Pass Filter Bypass):  
00 = Normal Mode (Fast Recovery Mode Disabled)  
01 = Manual Fast Recovery Mode Enable (remains active until disabled)  
10 = Automatic Fast Recovery Mode Enable (Fast Recovery automatically  
activated when/while outputs are saturated, using FAST_TH).  
11 = Reserved. Do not use.  
D[23:22]  
FAST[1:0]  
00  
Automatic Fast Recovery Threshold:  
If FAST[1:0] = 10 and the output of a measurement exceeds the symmetric  
thresholds defined by 2048*FAST_TH for more than 125ms, the Fast Recovery  
mode will be automatically engaged and remain active for 500ms.  
D[21:16]  
FAST_TH[5:0]  
0x3F  
For example, the default value (FAST_TH = 0x3F) corresponds to an output upper  
threshold of 0x1F800, and an output lower threshold of 0x20800.  
Table 12. SW_RST (080x) Register Map  
REG  
NAME  
R/W  
23 / 15 / 7 22 / 14 / 6 21 / 13 / 5 20 / 12 / 4 19 / 11 / 3 18 / 10 / 2  
17 / 9 / 1  
16 / 8 / 0  
D[23:16] = 0x00  
D[15:8] = 0x00  
D[7:0] = 0x00  
0x08  
SW_RST  
R/W  
Maxim Integrated  
26  
www.maximintegrated.com  
MAX30004  
Ultra-Low Power, Single-Channel Integrated  
Biopotential (R-to-R Detection) AFE  
Likewise, anytime a change to CNFG_GEN or CNFG_CH  
registers are made discontinuities in the RTOR record  
may occur. The RESTART command provides a means to  
restart operations cleanly following any such disturbances.  
RESTART (0x09)  
RESTART (Restart) is a write-only register/command that  
begins new RTOR operations and recording, beginning on  
the internal MSTR clock edge following the end of the  
SPI RESTART transaction (i.e., the 32nd SCLK rising  
edge). Execution occurs only if DIN[23:0] = 0x000000. In  
addition to restarting the operations of any active R-to-R  
circuitry, RESTART also resets and clears the DSP filters  
(to midscale), allowing the user to effectively set the “Time  
Zero” for the RTOR data. No configuration settings are  
impacted. For best results, users should wait until the PLL  
has achieved lock before restarting if the CNFG_GEN  
settings have been altered.  
RTOR_RST (0x0A)  
RTOR_RST is a write-only register/command that begins a  
new data recording by resetting the memories and resuming  
the record with the next available data. Execution occurs only  
if DIN[23:0] = 0x000000. Unlike the RESTART command,  
the operations of any active data and R-to-R circuitry are not  
impacted by RTOR_RST, so, therefore, no settling/recovery  
transients apply.  
Once the device is initially powered up, it needs to be  
fully configured prior to launching recording operations.  
Table 13. RESTART (0x09) Register Map  
REG  
NAME  
R/W  
23 / 15 / 7 22 / 14 / 6 21 / 13 / 5 20 / 12 / 4 19 / 11 / 3 18 / 10 / 2  
17 / 9 / 1  
16 / 8 / 0  
D[23:16] = 0x00  
D[15:8] = 0x00  
D[7:0] = 0x00  
0x09 RESTART R/W  
Table 14. RTOR_RST (0x0A) Register Map  
REG  
NAME  
R/W  
23 / 15 / 7 22 / 14 / 6 21 / 13 / 5 20 / 12 / 4 19 / 11 / 3 18 / 10 / 2  
17 / 9 / 1  
16 / 8 / 0  
D[23:16] = 0x00  
D[15:8] = 0x00  
D[7:0] = 0x00  
0x0A RTOR_RST R/W  
Maxim Integrated  
27  
www.maximintegrated.com  
MAX30004  
Ultra-Low Power, Single-Channel Integrated  
Biopotential (R-to-R Detection) AFE  
INFO (0x0F)  
CNFG_GEN (0x10)  
INFO is a read-only register that provides information  
about the MAX30004. The first nibble contains an alternating  
bit pattern to aide in interface verification. The second  
nibble contains the revision ID. The third nibble includes  
part ID information. The final 3 nibbles contain a serial  
number for Maxim internal use—note that individual  
units are not given unique serial numbers, and these bits  
should not be used as serial numbers for end products,  
though they may be useful during initial development  
efforts.  
CNFG_GEN is a read/write register which governs  
general settings, most significantly the master clock rate  
for all internal timing operations. Anytime a change to  
CNFG_GEN is made, there may be discontinuities in  
the data record may occur. The RESTART command  
can be used to restore internal synchronization resulting  
from configuration changes. Note when EN_CH is logic-  
low, the device is in one of two ultra-low power modes  
(determined by EN_ULP_LON).  
Table 19 shows the data rates that can be realized with various  
setting of FMSTR, along with RATE configuration bits available  
in the CNFG_CH register.  
Note: Due to internal initialization procedures, this  
command will not read-back valid data if it is the first  
command executed following either a power-cycle event,  
or a SW_RST event.  
Table 15. INFO (0x0F) Register Map  
REG  
NAME  
R/W  
23 / 15 / 7 22 / 14 / 6 21 / 13 / 5 20 / 12 / 4 19 / 11 / 3 18 / 10 / 2  
17 / 9 / 1  
16 / 8 / 0  
0
x
x
1
X
x
0
0
x
1
0
x
REV_ID[3:0]  
0x0F  
INFO  
R/W  
x
x
x
x
x
x
x
x
Table 16. INFO (0x0F) Register Meaning  
INDEX  
NAME  
MEANING  
D[19:16]  
REV_ID[3:0]  
Revision ID  
Table 17. CNFG_GEN (0x10) Register Map  
REG  
NAME  
R/W  
23 / 15 / 7 22 / 14 / 6 21 / 13 / 5 20 / 12 / 4 19 / 11 / 3 18 / 10 / 2  
17 / 9 / 1  
x
16 / 8 / 0  
EN_ULP_LON[1:0]  
FMSTR[1:0]  
EN_DCLOFF[1:0]  
EN_RBIAS[1:0]  
EN_RTOR  
IPOL  
x
x
CNFG_  
GEN  
0x10  
R/W  
x
x
IMAG[2:0]  
RBIASP  
VTH[1:0]  
RBIASV[1:0]  
RBIASN  
Maxim Integrated  
28  
www.maximintegrated.com  
MAX30004  
Ultra-Low Power, Single-Channel Integrated  
Biopotential (R-to-R Detection) AFE  
Table 18. CNFG_GEN (0x10) Register Functionality  
INDEX  
NAME  
DEFAULT FUNCTION  
Ultra-Low Power Lead-On Detection Enable  
00 = ULP Lead-On Detection disabled  
01 = ULP Lead-On Detection enabled  
10 = Reserved. Do not use.  
D[23:22]  
EN_ULP_LON  
[1:0]  
00  
11 = Reserved. Do not use.  
ULP mode is only active when the RTOR channel is powered down/disabled.  
Master Clock Frequency. Selects the Master Clock Frequency (FMSTR), and Timing  
Resolution (T  
). These are generated from FCLK, which is always 32.768Khz.  
RES  
00 =  
01 =  
10 =  
11 =  
F
F
F
F
= 32768Hz,  
= 32000Hz,  
= 32000Hz,  
T
T
T
= 15.26µs (512Hz data progressions)  
= 15.63µs (500Hz data progressions)  
= 15.63µs (200Hz data progressions)  
= 15.64µs (199.8049Hz data progressions)  
MSTR  
MSTR  
MSTR  
MSTR  
RES  
RES  
RES  
RES  
D[21:20]  
D[19]  
FMSTR[1:0]  
EN_CH  
00  
= 31968.78Hz, T  
Channel Enable  
0 = Channel disabled  
1 = Channel enabled  
0
Note: The channel must be enabled to allow R-to-R operation.  
DC Lead-Off Detection Enable  
00 = DC Lead-Off Detection disabled  
01 = DCLOFF Detection applied to the INP/INN pins  
10 = Reserved. Do not use.  
11 = Reserved. Do not use.  
DC Method, requires active selected channel, enables DCLOFF interrupt  
and status bit behavior.  
Uses current sources and comparator thresholds set below.  
D[13:12]  
D[11]  
EN_DCLOFF  
00  
DC Lead-Off Current Polarity (if current sources are enabled/connected)  
DCLOFF_  
IPOL  
0
0 = INP - Pullup  
INN – Pulldown  
1 = INP - Pulldown INN – Pullup  
DC Lead-Off Current Magnitude Selection  
000 = 0nA (Disable and Disconnect Current Sources)  
001 = 5nA  
010 = 10nA  
011 = 20nA  
100 = 50nA  
DCLOFF_  
IMAG[2:0]  
D[10:8]  
000  
101 = 100nA  
110 = Reserved. Do not use.  
111 = Reserved. Do not use.  
DC Lead-Off Voltage Threshold Selection  
00 = V  
01 = V  
10 = V  
11 = V  
± 300mV  
± 400mV  
± 450mV  
± 500mV  
MID  
MID  
MID  
MID  
DCLOFF_  
VTH[1:0]  
D[7:6]  
D[5:4]  
00  
00  
Enable and Select Resistive Lead Bias Mode  
00 = Resistive Bias disabled  
01 = Resistive Bias enabled if EN_CH is also enabled  
10 = Reserved. Do not use.  
EN_RBIAS[1:0]  
11 = Reserved. Do not use.  
If EN_CH is not asserted at the same time as prior to EN_RBIAS[1:0] being set to  
01, then EN_RBIAS[1:0] will remain set to 00.  
Maxim Integrated  
29  
www.maximintegrated.com  
MAX30004  
Ultra-Low Power, Single-Channel Integrated  
Biopotential (R-to-R Detection) AFE  
Table 18. CNFG_GEN (0x10) Register Functionality (continued)  
INDEX  
NAME  
DEFAULT FUNCTION  
Resistive Bias Mode Value Selection  
00 = R  
01 = R  
10 = R  
= 50MΩ  
= 100MΩ  
= 200MΩ  
BIAS  
BIAS  
BIAS  
D[3:2]  
RBIASV[1:0]  
01  
11 = Reserved. Do not use.  
Enables Resistive Bias on Positive Input  
D[1]  
D[0]  
RBIASP  
RBIASN  
0
0
0 = INP is not resistively connected to V  
MID  
1 = INP is connected to V  
through a resistor (selected by RBIASV).  
MID  
Enables Resistive Bias on Negative Input  
0 = INN is not resistively connected to V  
MID  
1 = INN is connected to V  
through a resistor (selected by RBIASV).  
MID  
Table 19. Master Frequency Summary Table  
DATA RATES & RELATED TIMING (RATE SELECTIONS)  
CALIBRATION  
TIMING  
MASTER  
FREQUENCY  
CHANNEL  
RTOR  
FMSTR  
[1:0]  
RESOLUTION  
(CAL_RES) (µs)  
DATA  
RATE (sps)  
TIMING RESOLUTION  
(RTOR_RES) (ms)  
(f  
) (Hz)  
MSTR  
00 = 512  
01 = 256  
10 = 128  
00  
01  
32768  
7.8125  
8.000  
30.52  
31.25  
00 = 500  
01 = 250  
10 = 125  
32000  
10  
11  
32000  
10 = 200  
8.000  
8.008  
31.25  
31.28  
31968.78  
10 =199.8049  
Maxim Integrated  
30  
www.maximintegrated.com  
MAX30004  
Ultra-Low Power, Single-Channel Integrated  
Biopotential (R-to-R Detection) AFE  
CNFG_MUX (0x14)  
CNFG_CH (0x15)  
CNFG_MUX is a read/write register which configures  
the operation, settings, and functionality of the Input  
Multiplexer.  
CNFG_CH is a read/write register that configures the  
operation, settings, and functionality of the Biopotential  
channel. Anytime a change to CNFG_CH is made, there  
may be discontinuities in the data record.  
Table 20. CNFG_EMUX (0x14) Register Map  
REG  
NAME  
R/W  
23 / 15 / 7 22 / 14 / 6 21 / 13 / 5 20 / 12 / 4 19 / 11 / 3 18 / 10 / 2  
17 / 9 / 1  
16 / 8 / 0  
POL  
x
x
x
OPENP  
OPENN  
x
x
x
x
x
x
x
x
x
x
x
x
CNFG_  
MUX  
0x14  
R/W  
x
x
x
x
x
x
Table 21. CNFG_MUX (0x14) Register Functionality  
INDEX  
NAME  
DEFAULT  
FUNCTION  
Input Polarity Selection  
0 = Non-Inverted  
1 = Inverted  
D[23]  
POL  
0
Open the INP Input Switch (most often used for testing and calibration studies)  
0 = INP is internally connected to the AFE Channel  
1 = INP is internally isolated from the AFE Channel  
D[21]  
D[20]  
OPENP  
OPENN  
1
1
Open the INN Input Switch (most often used for testing and calibration studies)  
0 = INN is internally connected to the AFE Channel  
1 = INN is internally isolated from the AFE Channel  
Table 22. CNFG_CH (0x15) Register Map  
REG  
NAME  
R/W  
23 / 15 / 7 22 / 14 / 6 21 / 13 / 5 20 / 12 / 4 19 / 11 / 3 18 / 10 / 2  
17 / 9 / 1  
16 / 8 / 0  
RATE[1:0]  
DHPF  
x
x
x
x
x
x
x
x
GAIN[1:0]  
CNFG_  
CH  
0x15  
R/W  
x
x
DLPF[1:0]  
x
x
x
x
x
x
x
Maxim Integrated  
31  
www.maximintegrated.com  
MAX30004  
Ultra-Low Power, Single-Channel Integrated  
Biopotential (R-to-R Detection) AFE  
Table 23. CNFG_CH (0x15) Register Functionality  
INDEX  
NAME  
DEFAULT  
FUNCTION  
Sample Data Rate (also dependent on F  
selection, see CNFG_GEN Table 24):  
MSTR  
FMSTR = 00: f  
00 = 512sps  
01 = 256sps  
10 = 128sps  
= 32768Hz, t  
= 15.26µs (512Hz data progressions)  
MSTR  
RES  
RES  
11 = Reserved. Do not use.  
FMSTR = 01: f  
00 = 500sps  
01 = 250sps  
10 = 125sps  
= 32000Hz, t  
= 15.63µs (500Hz data progressions)  
= 15.63µs (200Hz data progressions)  
= 15.64µs (199.8Hz data progressions)  
MSTR  
11 = Reserved. Do not use.  
D[23:22]  
RATE[1:0]  
10  
FMSTR = 10: f = 32000Hz, t  
MSTR  
RES  
RES  
00 = Reserved. Do not use.  
01 = Reserved. Do not use.  
10 = 200sps  
11 = Reserved. Do not use.  
FMSTR = 11: f  
= 31968Hz, t  
MSTR  
00 = Reserved. Do not use.  
01 = Reserved. Do not use.  
10 = 199.8sps  
11 = Reserved. Do not use.  
Gain Setting  
00 = 20V/V  
01 = 40V/V  
10 = 80V/V  
11 = 160V/V  
D[17:16]  
GAIN[1:0]  
00  
Maxim Integrated  
32  
www.maximintegrated.com  
MAX30004  
Ultra-Low Power, Single-Channel Integrated  
Biopotential (R-to-R Detection) AFE  
Table 23. CNFG_CH (0x15) Register Functionality (continued)  
INDEX  
NAME  
DEFAULT  
FUNCTION  
Digital High-Pass Filter Cutoff Frequency  
D[14]  
DHPF  
1
0 = Bypass (DC)  
1 = 0.50Hz  
Digital Low-Pass Filter Cutoff Frequency  
00 = Bypass (Decimation only, no FIR filter applied)  
01 = approximately 40Hz  
10 = approximately 100Hz (Available for 512, 256, 500, and 250sps data Rate  
selections only)  
D[13:12]  
DLPF[1:0]  
01  
11 = approximately 150Hz (Available for 512 and 500sps data rate selections only)  
Note: See Table 24. If an unsupported DLPF setting is specified, the 40Hz setting  
(DLPF[1:0] = 01) will be used internally; the CNFG_CH register will continue to hold  
the value as written, but return the effective internal value when read back.  
Table 24. Supported RATE and DLPF Options  
RATE[1:0]  
CNFG_GEN  
DLPF[1:0]/DIGITAL LPF CUTOFF  
SAMPLE RATE  
FMSTR[1:0]  
00  
01 (Hz)  
10 (Hz)  
11 (Hz)  
(sps)  
00 = 512  
01 = 256  
10 = 128  
00 = 500  
01 = 250  
10 = 125  
10 = 200  
10 = 199.8  
Bypass  
Bypass  
Bypass  
Bypass  
Bypass  
Bypass  
Bypass  
Bypass  
40.96  
40.96  
40.96  
40.00  
40.00  
40.00  
40.00  
39.96  
102.4  
102.4  
40.96  
100.0  
100.0  
40.00  
40.00  
39.96  
153.6  
40.96  
40.96  
150.0  
40.00  
40.00  
40.00  
39.96  
00 = 32768Hz  
01 = 32000Hz  
10 = 32000Hz  
11 = 31968Hz  
Note: Combinations shown in grey are unsupported and will be internally mapped to the default settings shown.  
Maxim Integrated  
33  
www.maximintegrated.com  
MAX30004  
Ultra-Low Power, Single-Channel Integrated  
Biopotential (R-to-R Detection) AFE  
CNFG_RTOR1 and CNFG_RTOR2 (0x1D & 0x1E)  
CNFG_RTOR is a two-part read/write register that configures the operation, settings, and function of the RTOR heart  
rate detection block. The first register contains algorithmic voltage gain and threshold parameters, the second contains  
algorithmic timing parameters.  
RTOR Interval Memory Register (1 Word x 24 Bits)  
The RTOR Interval (RTOR) memory register is a single read-only register consisting of 14 bits of timing interval information,  
left justified (and 8 unused bits, set to zero).  
The RTOR register stores the time interval between the last two R events, as identified by the RTOR detection circuitry, which  
operates on the channel output data. Each LSB in the RTOR register is approximately equal to 8ms (CNFG_GEN for  
exact figures). The resulting 14-bit storage interval can thus be approximately 130 seconds in length, again depending  
on device settings.  
Each time the RTOR detector identifies a new R event, the RTOR register is updated, and the RRINT interrupt term is  
asserted (see STATUS (0x01) Register for details).  
Users wishing to log heart rate based on RTOR register data should set CLR_RRINT equals 01 in the MNGR_INT  
register. This will clear the RRINT interrupt term after the RTOR register has been read back, preparing the device for  
identification of the next RTOR interval.  
Users wishing to log heart rate based on the time elapsed between RRINT assertions using the µC to keep track of the  
time base (and ignoring the RTOR register data) have two choices for interrupt management. If CLR_RRINT equals 00  
in the MNGR_INT register, the RRINT interrupt term will clear after each STATUS register read back, preparing the device  
for identification of the next RTOR interval. If CLR_RRINT equals 10 in the MNGR_INT register, the RRINT interrupt term  
will self-clear after each one full data cycle has passed, preparing the device for identification of the next RTOR interval  
(this mode is recommended only if using the INT2B as a dedicated heart rate indicator).  
If the RTOR detector reaches an overflow state after several minutes without detection of an R event, the counter will  
simply roll over, and the lack of the RRINT activity on the dedicated INT2B line will inform the µC that no RTOR activity  
was detected.  
Table 25. CNFG_RTOR and CNFG_RTOR2 (0x1D and 0x1E) Register Maps  
REG  
NAME  
R/W  
23 / 15 / 7 22 / 14 / 6 21 / 13 / 5 20 / 12 / 4 19 / 11 / 3 18 / 10 / 2  
17 / 9 / 1  
16 / 8 / 0  
WNDW[3:0] GAIN[3:0]  
CNFG_  
RTOR1  
EN_  
RTOR  
0x1D  
R/W  
x
PAVG[1:0]  
RAVG[1:0]  
PTSF[3:0]  
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
HOFF[5:0]  
CNFG_  
RTOR2  
0x1E  
R/W  
x
x
RHSF[2:0]  
x
Maxim Integrated  
34  
www.maximintegrated.com  
MAX30004  
Ultra-Low Power, Single-Channel Integrated  
Biopotential (R-to-R Detection) AFE  
Table 26. CNFG_RTOR and CNFG_RTOR2 (0x1D and 0x1E) Register Functionality  
INDEX  
NAME  
DEFAULT FUNCTION  
CNFG_RTOR1 (0x1D)  
This is the width of the averaging window, which adjusts the algorithm sensitivity to  
the width of the QRS complex.  
R-to-R Window Averaging (Window Width = RTOR_WNDW[3:0]*8ms)  
0000 =  
0001 =  
6
8
0010 = 10  
0011 = 12  
0100 = 14  
0101 = 16  
0110 = 18  
0111 = 20  
1000 = 22  
1001 = 24  
1010 = 26  
1011 = 28  
(default = 96ms)  
D[23:20]  
WNDW[3:0]  
0011  
1100 = Reserved. Do not use.  
1101 = Reserved. Do not use.  
1110 = Reserved. Do not use.  
1111 = Reserved. Do not use.  
R-to-R Gain (where Gain = 2^GAIN[3:0], plus an auto-scale option). This is used to  
maximize the dynamic range of the algorithm.  
0000 =  
0001 =  
0010 =  
0011 =  
1
2
4
8
1000 = 256  
1001 = 512  
1010 = 1024  
1011 = 2048  
D[19:16]  
GAIN[3:0]  
1111  
0100 = 16  
0101 = 32  
0110 = 64  
0111 = 128  
1100 = 4096  
1101 = 8192  
1110 = 16384  
1111 = Auto-Scale (default)  
In Auto-Scale mode, the initial gain is set to 64.  
RTOR Detection Enable  
D[15]  
EN_RTOR  
0
0 = RTOR Detection disabled  
1 = RTOR Detection enabled if EN_CH is also enabled.  
Maxim Integrated  
35  
www.maximintegrated.com  
MAX30004  
Ultra-Low Power, Single-Channel Integrated  
Biopotential (R-to-R Detection) AFE  
Table 26. CNFG_RTOR and CNFG_RTOR2 (0x1D and 0x1E) Register Functionality  
(continued)  
INDEX  
NAME  
DEFAULT  
FUNCTION  
R-to-R Peak Averaging Weight Factor  
This is the weighting factor for the current RTOR peak observation vs. past peak  
observations when determining peak thresholds. Lower numbers weight current  
peaks more heavily.  
00 = 2  
01 = 4  
D[13:12]  
PAVG[1:0]  
10  
10 = 8 (default)  
11 = 16  
Peak_Average(n) =  
[Peak(n) + (RTOR_PAVG-1) x Peak_Average(n-1)]/RTOR_PAVG.  
R-to-R Peak Threshold Scaling Factor  
This is the fraction of the Peak Average value used in the Threshold computation.  
Values of 1/16 to 16/16 are selected directly by (RTOR_PTSF[3:0]+1)/16,  
default is 4/16.  
D[11:8]  
PTSF[3:0]  
HOFF[5:0]  
0011  
R-to-R Minimum Hold Off  
This sets the absolute minimum interval used for the static portion of the Hold Off  
criteria.  
CNFG_  
RTOR2  
(0x1E)D  
[21:16]  
Values of 0 to 63 are supported, default is 32  
10_0000  
t
= HOFF[5:0] * t  
, where t  
is ~8ms, as determined by  
RTOR  
HOLD_OFF_MIN  
RTOR  
FMSTR[1:0] in the CNFG_GEN register.  
(representing approximately ¼ second).  
The R-to-R Hold Off qualification interval is  
t
= MAX(t  
, t  
) (see below).  
Hold_Off  
Hold_Off_Min Hold_Off_Dyn  
R-to-R Interval Averaging Weight Factor  
This is the weighting factor for the current RtoR interval observation vs. the past  
interval observations when determining dynamic holdoff criteria. Lower numbers  
weight current intervals more heavily.  
00 = 2  
01 = 4  
D[13:12]  
RAVG[1:0]  
10  
10 = 8  
(default)  
11 = 16  
Interval_Average(n) = [Interval(n) + (RAVG-1) x  
Interval_Average(n-1)]/RAVG.  
R-to-R Interval Hold Off Scaling Factor  
This is the fraction of the RtoR average interval used for the dynamic portion of the  
holdoff criteria (t  
).  
HOLD_OFFDYN  
D[10:8]  
RHSF[2:0]  
100  
Values of 0/8 to 7/8 are selected directly by RTOR_RHSF[3:0]/8, default is 4/8.  
If 000 (0/8) is selected, then no dynamic factor is used and the holdoff criteria is  
determined by HOFF[5:0] only (see above).  
Maxim Integrated  
36  
www.maximintegrated.com  
MAX30004  
Ultra-Low Power, Single-Channel Integrated  
Biopotential (R-to-R Detection) AFE  
Typical Application Circuit  
1k  
AVDD  
DVDD  
0VDD  
INP  
ENERGY  
RATED  
CSB  
SDI  
CSB  
MOSI  
SCLK  
MISO  
INTb  
1kΩ  
INN  
SCLK  
SDO  
MCU  
MAX30004  
INTb  
CAPP  
INT2b  
FCLK  
CPLL  
INT2b  
FCLK  
10µF  
CAPN  
VCM  
VBG  
100pF  
10µF  
0.1µF  
10µF  
0.1µF  
VREF  
10µF  
1.0µF  
10µF  
Maxim Integrated  
37  
www.maximintegrated.com  
MAX30004  
Ultra-Low Power, Single-Channel Integrated  
Biopotential (R-to-R Detection) AFE  
Application Diagrams  
Two Electrode Heart Rate Fitness  
See Figure 8 for an example of a fitness monitoring configuration.  
PCB  
EXTERNAL EMI FILTERS  
ELECTRODE MODEL  
ZEL  
INP  
1MΩ  
2.2nF  
CAPP  
ELECTRODE  
POLARIZATION  
VOLTAGE  
PHYSICAL  
ELECTRODES  
RBODY  
100-300Ω  
10pF  
100nF  
MAX30004  
1-50nF  
2.2nF  
CAPN  
INN  
50-200Ω  
1MΩ  
±150mV  
10k-20MΩ  
Figure 8. Two Electrode Heart Rate Monitoring for Fitness  
Ordering Information  
Package Information  
For the latest package outline information and land patterns  
(footprints), go to www.maximintegrated.com/packages. Note  
that a “+”, “#”, or “-” in the package code indicates RoHS status  
only. Package drawings may show a different suffix character, but  
the drawing pertains to the package regardless of RoHS status.  
PART  
TEMP RANGE  
0°C to +70°C  
0°C to +70°C  
PIN-PACKAGE  
28 TQFN-EP**  
30 WLP  
MAX30004CTI+T*  
MAX30004CWV+  
+Denotes a lead(Pb)-free/RoHS-compliant package.  
T = Tape and reel.  
*Future product-contact factory for availability.  
**EP = Exposed pad.  
PACKAGE  
TYPE  
PACKAGE  
CODE  
OUTLINE  
LAND  
PATTERN NO.  
NO.  
28 TQFN  
T2855+8  
21-0140  
90-0028  
Refer to  
Application  
Note 1891  
30 WLP  
W302L2+1  
21-100074  
Chip Information  
PROCESS: CMOS  
Maxim Integrated  
38  
www.maximintegrated.com  
MAX30004  
Ultra-Low Power, Single-Channel Integrated  
Biopotential (R-to-R Detection) AFE  
Revision History  
REVISION REVISION  
PAGES  
DESCRIPTION  
CHANGED  
NUMBER  
DATE  
0
12/16  
Initial release  
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim Integrated’s website at www.maximintegrated.com.  
Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses  
are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits)  
shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.  
©
Maxim Integrated and the Maxim Integrated logo are trademarks of Maxim Integrated Products, Inc.  
2016 Maxim Integrated Products, Inc.  
39  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY