MAX3130EAI-T [MAXIM]

Interface Circuit, PDSO28, 5.30 MM, 0.65 MM PITCH, SSOP-28;
MAX3130EAI-T
型号: MAX3130EAI-T
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Interface Circuit, PDSO28, 5.30 MM, 0.65 MM PITCH, SSOP-28

光电二极管 接口集成电路
文件: 总16页 (文件大小:216K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-1402; Rev 0; 11/98  
3 V t o 5 .5 V, IrDA In fra re d Tra n s c e ive r w it h  
In t e g ra t e d RS -2 3 2 In t e rfa c e  
0/MAX31  
Ge n e ra l De s c rip t io n  
Fe a t u re s  
The MAX3130/MAX3131 combine an IrDA 1.2 compati-  
ble infrared transceiver with an RS-232 interfaceall in  
a single 3V-powered hybrid microcircuit. The infrared  
tra ns c e ive r s up p orts IrDA d a ta ra te s of 2.4kb p s to  
115kbps. The infrared receive channel provides a high-  
gain/low-noise PIN-diode amplifier with 100µA of ambi-  
ent photodiode current rejection at a +3V supply. A  
high-power LED driver capable of sinking 200mA is  
included in the infrared transmit path. The on-board  
encoder/decoder (ENDEC) compresses/stretches sig-  
nals to and from the external UART, allowing IrDA com-  
munication even with non-IrDA UARTs.  
Integrated RS-232 and IrDA in Single 28-Pin SSOP  
Package  
370µA Supply Current  
IrDA 1.2 Compatible: 2.4kbps to 115kbps  
Data Rate  
On-Board IR Encoder/Decoder Allows Use of  
Non-IrDA UARTs  
+3.0V to +5.5V Single-Supply Operation  
Meet EIA/TIA-232 Specifications Down to +3V  
200mA, High-Current Infrared LED Drive  
A 2-driver/2-receiver RS-232 transceiver supports data  
rates up to 120kbps. A proprietary, high-efficiency, dual  
charge-pump power supply and a low-dropout trans-  
mitter combine to deliver true RS-232 performance from  
a single +3.0V to +5.5V supply. Selectable shutdown  
for IR and RS-232 circuitry reduces supply current to  
1µA.  
1µA Low-Power Shutdown with RS-232  
Receivers Active  
Ord e rin g In fo rm a t io n  
PART  
TEMP. RANGE  
0°C to +70°C  
-40°C to +85°C  
0°C to +70°C  
-40°C to +85°C  
PIN-PACKAGE  
28 SSOP  
The MAX3130 is optimized for applications using a sin-  
gle UART for both infrared and RS-232 communication.  
The infrared transmitter input and infrared receiver out-  
put are multiplexed with one RS-232 transmitter input  
a nd one RS-232 re c e ive r outp ut, re s p e c tive ly. The  
MAX3131s IrDA transceiver and RS-232 transceivers  
are separate and have their own data inputs and outputs.  
MAX3130CAI  
MAX3130EAI  
MAX3131CAI  
MAX3131EAI  
28 SSOP  
28 SSOP  
28 SSOP  
P in Co n fig u ra t io n  
Both these devices require a minimum of external com-  
ponents: four small 0.1µF capacitors, a photodiode, an  
infrared LED, and a current-setting resistor.  
TOP VIEW  
EDGEDET (RXD)  
1
2
28 R2OUT  
27 R2IN  
26 T2OUT  
25 RSSD  
24 V-  
T1IN  
T2IN  
Ap p lic a t io n s  
3
Personal Digital Assistants (PDAs)  
Palmtop Computers  
Battery-Powered Systems  
Hand-Held Equipment  
Peripherals  
IRMODE (TXD)  
R1OUT  
4
5
MAX3130  
MAX3131  
R1IN  
6
23 C2-  
T1OUT  
7
22 C2+  
21 C1-  
BAUD16  
GND  
8
IrDA Applications  
9
20 C1+  
19 V+  
Cellular Phones  
V
CC  
10  
N.C. 11  
18 N.C.  
17 LEDC  
16 PGND  
15 IRSD  
AV 12  
CC  
AGND 13  
PINC 14  
SSOP  
( ) ARE FOR MAX3131  
________________________________________________________________ Maxim Integrated Products  
1
For free samples & the latest literature: http://www.maxim-ic.com, or phone 1-800-998-8800.  
For small orders, phone 1-800-835-8769.  
3 V t o 5 .5 V, IrDA In fra re d Tra n s c e ive r w it h  
In t e g ra t e d RS -2 3 2 In t e rfa c e  
ABSOLUTE MAXIMUM RATINGS  
V
CC  
to GND..............................................................-0.3V to +6V  
Output Short-Circuit Duration (to V or GND)  
CC  
AV to AGND .........................................................-0.3V to +6V  
T1OUT, T2OUT.....................................................Continuous  
Output Currents  
CC  
V
to AV .......................................................................±0.3V  
CC  
CC  
AGND, PGND to GND ........................................................±0.1V  
V+ to GND................................................................-0.3V to +7V  
V- to GND .................................................................+0.3V to -7V  
V+ to V-................................................................................+13V  
Inputs (referenced to GND)  
LEDC Continuous ........................................................200mA  
LEDC 20% Duty Cycle t  
< 90µs..............................500mA  
ON  
Input Current  
PINC ..............................................................................10mA  
Continuous Power Dissipation (T = +70°C)  
A
T1IN, T2IN, TXD, RSSD, IRMODE, BAUD16,  
SSOP (derate 9.52mW/°C above +70°C)...................762mW  
Operating Temperature Ranges  
MAX3130/MAX3131CAI ....................................0°C to +70°C  
MAX3130/MAX3131EAI..................................-40°C to +85°C  
Storage Temperature Range .............................-65°C to +160°C  
Lead Temperature (soldering, 10sec) .............................+300°C  
IRSD....................................................................-0.3V to +6V  
R1IN, R2IN .....................................................................±25V  
Outputs (referenced to GND)  
T1OUT, T2OUT............................................................±13.2V  
R1OUT, R2OUT, EDGEDET, RXD.........-0.3V to (V + 0.3V)  
CC  
LEDC...................................................................-0.3V to +6V  
Stresses beyond those listed under Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
0/MAX31  
ELECTRICAL CHARACTERISTICS  
(V = AV = 3.0V to 5.5V, GND = AGND = PGND, C1–C4 = 0.1µF (Note 1), T = T  
to T , unless otherwise noted. Typical  
MAX  
CC  
CC  
A
MIN  
values are at T = +25°C and V = AV = 3.3V.)  
A
CC  
CC  
PARAMETER  
DC CHARACTERISTICS  
Power-Supply Current  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
= 3.3V or 5V, T = +25°C (Note 2)  
A
0.25  
120  
1.0  
mA  
µA  
CC  
Analog Power-Supply Current  
T
A
= +25°C (Note 2)  
200  
RSSD = low or IRMODE = low,  
= +25°C (Note 2)  
Shutdown Supply Current  
1.0  
10  
µA  
µA  
T
A
Shutdown Analog Supply Current  
0.01  
1.0  
IRSD = low, T = +25°C (Note 2)  
A
LOGIC INPUTS (T1IN, T2IN, TXD, IRMODE, BAUD16, IRSD, RSSD)  
Input Logic Threshold Low  
0.8  
V
V
V
= AV = 3.3V  
2.0  
2.4  
CC  
CC  
Input Logic Threshold High  
Input Leakage Current  
V
CC  
= AV = 5V  
CC  
V
IN  
= 0 to V  
±0.01  
0.1  
±1.0  
0.4  
µA  
CC  
LOGIC OUTPUTS (R1OUT, R2OUT, RXD, EDGEDET)  
Output Voltage Low  
I
= 1.6mA  
V
V
SINK  
V
-
V
-
CC  
CC  
Output Voltage High  
I
= 1.0mA  
SOURCE  
0.6  
0.05  
IR RECEIVER  
Data Rate  
(Note 3)  
(Note 3)  
2.4  
115.2  
6
kbps  
Equivalent Input Noise Current  
Input Current Sensitivity  
10  
nA  
RMS  
0.0002  
mA  
AV = 3.3V  
100  
375  
CC  
Ambient Photodiode Current  
Rejection  
µA  
AV = 5V  
CC  
2
_______________________________________________________________________________________  
3 V t o 5 .5 V, IrDA In fra re d Tra n s c e ive r w it h  
In t e g ra t e d RS -2 3 2 In t e rfa c e  
0/MAX31  
ELECTRICAL CHARACTERISTICS (continued)  
(V = AV = 3.0V to 5.5V, GND = AGND = PGND, C1–C4 = 0.1µF (Note 1), T = T  
to T , unless otherwise noted. Typical  
MAX  
CC  
CC  
A
MIN  
values are at T = +25°C and V = AV = 3.3V.)  
A
CC  
CC  
PARAMETER  
CONDITIONS  
MIN  
TYP  
10  
MAX  
UNITS  
µs  
IR Receiver Disable Time  
IR Receiver Enable Time  
Delay until I  
< 1µA  
AVCC  
Delay until maximum IR receive data rate is valid  
300  
µs  
Data rate = 2.4kbps  
Data rate = 115kbps  
1
1
90  
8
BAUD16 = static  
(Note 3)  
IR Receiver Output Pulse Width  
µs  
1.6  
IR TRANSMITTER  
Transmitter Rise Time  
Transmitter Fall Time  
10% to 90% of 200mA drive current  
90% to 10% of 200mA drive current  
20  
20  
600  
600  
2
ns  
ns  
AV = 3.3V  
1.15  
0.9  
CC  
Transmitter Output Resistance  
I
= 200mA  
OUT  
AV = 5V  
1.6  
10.0  
CC  
Off-Leakage Current  
V
LEDC  
= 5.5V  
0.01  
µA  
IrDA ENCODER/DECODER (ENDEC)  
Maximum Operating Frequency  
IR Output Pulse Width  
Maximum frequency at BAUD16  
= 1.8432MHz, measured at V  
2
MHz  
µs  
f
1.43  
34.6  
2.23  
2000  
BAUD16  
LEDC  
BAUD16 Operating Frequency Range  
RS-232 RECEIVER  
f
required to enable ENDEC  
kHz  
BAUD16  
Input Voltage Range  
-25  
0.6  
0.8  
25  
V
V
V
= 3.3V  
1.2  
1.5  
1.5  
1.8  
0.3  
5
CC  
Input Threshold Low  
Input Threshold High  
V
CC  
= 5V  
V
CC  
= 3.3V  
= 5V  
2.4  
2.4  
V
V
CC  
Input Hysteresis  
Input Resistance  
V
T
A
= +25°C  
3
7
k  
t
t
300  
300  
300  
PHL  
R_IN to R_OUT,  
Receiver Propagation Delay  
ns  
ns  
C
= 150pF  
L
PLH  
t
- t  
, C = 150pF  
L
Receiver Skew  
PHL PLH  
RS-232 TRANSMITTER OUTPUTS  
Output Voltage Swing  
Output Resistance  
T1OUT, T2OUT, loaded with 3kto GND  
= V+ = V- = 0, T_OUT = ±2V  
±5  
±5.4  
10M  
±35  
V
V
CC  
300  
Output Short-Circuit Current  
V
T_OUT  
= 0  
±60  
±25  
mA  
V
T_OUT  
= ±12V, V = 0 to 5.5V,  
CC  
Output Leakage Current  
µA  
RS-232 transceiver shutdown  
Maximum Data Rate  
Transmitter Skew  
R
= 3k, CL = 1000pF, one transmitter switching  
120  
235  
300  
kbps  
ns  
L
t
- t  
PHL PLH  
_______________________________________________________________________________________  
3
3 V t o 5 .5 V, IrDA In fra re d Tra n s c e ive r w it h  
In t e g ra t e d RS -2 3 2 In t e rfa c e  
ELECTRICAL CHARACTERISTICS (continued)  
(V = AV = 3.0V to 5.5V, GND = AGND = PGND, C1–C4 = 0.1µF (Note 1), T = T  
to T , unless otherwise noted. Typical  
MAX  
CC  
CC  
A
MIN  
values are at T = +25°C and V = AV = 3.3V.)  
A
CC  
CC  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V/µs  
µs  
V
= 3.3V, R = 3kto  
L
7k, measured from  
+3V to -3V or -3V to +3V,  
CC  
C
C
= 150pF to 1000pF  
= 150pF to 2500pF  
6
4
30  
L
L
Transition-Region Slew Rate  
Transmitter Enable Time  
30  
T
A
= +25°C  
Delay until transmitter outputs are valid  
100  
Note 1: C1–C4 = 0.1µF, tested at +3.3V ±10%. C1 = 0.047µF, C2–C4 = 0.33µF, tested at +5.0V ±10%.  
Note 2: All supply current measurements are made under no-load condition on all outputs, and all input voltages are at V or GND.  
CC  
Note 3: For a compliant IrDA input signal where the data rate is within the supported data rate for the IR receive mode: rise/fall  
times are less than 600ns and pulse widths are between 1.41µs and 3/16 of the baud rate.  
Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s  
(V = AV = 3.3V, GND = AGND = PGND, C1–C4 = 0.1µF, R = 3k, T = +25°C, unless otherwise noted.)  
CC  
CC  
L
A
0/MAX31  
ANALOG SUPPLY CURRENT  
vs. TEMPERATURE  
AMBIENT PHOTODIODE CURRENT  
REJECTION vs. SUPPLY VOLTAGE  
SUPPLY CURRENT vs. TEMPERATURE  
150  
140  
130  
120  
110  
100  
90  
500  
400  
300  
200  
100  
0
380  
360  
340  
320  
300  
280  
260  
240  
220  
200  
V
= 3.3V or 5V  
AV = 5V  
CC  
CC  
AV = 3.3V  
CC  
-40 -20  
0
20  
40  
60  
80 100  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
-40 -20  
0
20  
40  
60  
80 100  
TEMPERATURE (°C)  
SUPPLY VOLTAGE (V)  
TEMPERATURE (°C)  
RXD OUTPUT PULSE WIDTH  
vs. DISTANCE (2400bps)  
LED DRIVER ON-RESISTANCE  
vs. TEMPERATURE  
LEDC VOLTAGE vs. LEDC CURRENT  
600  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
100  
80  
60  
40  
20  
0
TRANSMITTER POWER = 200mW/sr  
INPUT PULSE WIDTH = 78µs  
TEMIC BPV22NF  
V
CC  
= 3.3V  
500  
400  
300  
200  
100  
0
V
CC  
= 3.3V  
V
CC  
= 3.3V  
V
CC  
= 5V  
V
CC  
= 5V  
PULSED AT  
20% DUTY CYCLE  
I
= 200mA  
LEDC  
100  
150  
200  
250  
300  
350  
400  
-40  
-20  
0
20  
40  
80  
100  
0
20  
40  
60  
80  
100  
LEDC CURRENT (mA)  
TEMPERATURE (°C)  
DISTANCE (cm)  
4
_______________________________________________________________________________________  
3 V t o 5 .5 V, IrDA In fra re d Tra n s c e ive r w it h  
In t e g ra t e d RS -2 3 2 In t e rfa c e  
0/MAX31  
Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s (c o n t in u e d )  
(V = AV = 3.3V, GND = AGND = PGND, C1–C4 = 0.1µF, R = 3k, T = +25°C, unless otherwise noted.)  
CC  
CC  
L
A
RXD OUTPUT PULSE WIDTH vs. DISTANCE  
(115.2 kbps)  
TRANSMITTER OUTPUT VOLTAGE  
vs. LOAD CAPACITANCE  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
6
5
TRANSMITTER POWER = 200mW/sr  
INPUT PULSE WIDTH = 1.63µs  
TEMIC BPV22NF  
V
+
OUT  
4
1 TRANSMITTER AT 235kbps  
1 TRANSMITTER AT 15kbps  
V
CC  
= 3.3V  
3
2
1
0
-1  
-2  
-3  
-4  
-5  
-6  
V
OUT  
-
0
20  
40  
60  
80  
100  
0
1000  
2000  
3000  
4000  
5000  
DISTANCE (cm)  
LOAD CAPACITANCE (pF)  
RS-232 TRANSMITTER SLEW RATE  
vs. LOAD CAPACITANCE  
SUPPLY CURRENT vs. LOAD CAPACITANCE  
(RS-232 TRANSMITTING)  
18  
16  
14  
12  
10  
8
40  
35  
1 TRANSMITTER DRIVEN ONLY  
235kbps  
30  
25  
-SLEW  
120kbps  
20kbps  
20  
15  
+SLEW  
6
10  
5
4
2
0
0
0
1000  
2000  
3000  
4000  
5000  
0
1000  
2000  
3000  
4000  
5000  
LOAD CAPACITANCE (pF)  
LOAD CAPACITANCE (pF)  
RXD OUTPUT  
vs. INFRARED INPUT  
RXD OUTPUT  
vs. INFRARED INPUT  
MAX3130 toc12  
MAX3130 toc11  
RXD  
OUTPUT  
2V/div  
RXD  
OUTPUT  
2V/div  
2V/div  
INFRARED  
INPUT  
INFRARED  
INPUT  
2V/div  
100µs/div  
V = 3.3V, 2400bps AT 1cm DISTANCE  
CC  
TEMIC BPV22NF  
2µs/div  
V
= 3.3V, 115.2kbps AT 1cm DISTANCE  
CC  
TEMIC BPV22NF  
TRANSMIT POWER 200mW/sr  
TRANSMIT POWER 200mW/sr  
_______________________________________________________________________________________  
5
3 V t o 5 .5 V, IrDA In fra re d Tra n s c e ive r w it h  
In t e g ra t e d RS -2 3 2 In t e rfa c e  
Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s (c o n t in u e d )  
(V = AV = 3.3V, GND = AGND = PGND, C1–C4 = 0.1µF, R = 3k, T = +25°C, unless otherwise noted.)  
CC  
CC  
L
A
RXD OUTPUT  
RXD OUTPUT  
vs. INFRARED INPUT  
vs. INFRARED INPUT  
MAX3130 toc14  
MAX3130 toc13  
RXD  
OUTPUT  
RXD  
OUTPUT  
2V/div  
2V/div  
2V/div  
INFRARED  
INPUT  
INFRARED  
INPUT  
2V/div  
100µs/div  
2µs/div  
0/MAX31  
V
CC  
= 3.3V, 2400bps AT 10cm DISTANCE  
V
CC  
= 3.3V, 115.2kbps AT 10cm DISTANCE  
TEMIC BPV22NF  
TRANSMIT POWER 200mW/sr  
TEMIC BPV22NF  
TRANSMIT POWER 200mW/sr  
RXD OUTPUT  
RXD OUTPUT  
vs. INFRARED INPUT  
vs. INFRARED INPUT  
MAX3130 toc15  
MAX3130 toc16  
RXD  
OUTPUT  
RXD  
OUTPUT  
2V/div  
2V/div  
2V/div  
2V/div  
INFRARED  
INPUT  
INFRARED  
INPUT  
2µs/div  
100µs/div  
V
CC  
= 3.3V, 115.2kbps AT 1m DISTANCE  
V
CC  
= 3.3V, 2400bps AT 1m DISTANCE  
TEMIC BPV22NF  
TEMIC BPV22NF  
TRANSMIT POWER 200mW/sr  
TRANSMIT POWER 200mW/sr  
P in De s c rip t io n  
PIN  
NAME  
FUNCTION  
MAX3130  
MAX3131  
Edge Detector Output. EDGEDET goes low if activity is sensed on either the RS-232  
receiver or the IrDA receiver, depending on the state of IRMODE. See EDGEDET: Edge-  
Detection Circuitry section.  
1
EDGEDET  
2
1
2
RXD  
T1IN  
IR Receiver TTL/CMOS Data Output  
TTL/CMOS RS-232 Transmitter Input  
6
_______________________________________________________________________________________  
3 V t o 5 .5 V, IrDA In fra re d Tra n s c e ive r w it h  
In t e g ra t e d RS -2 3 2 In t e rfa c e  
0/MAX31  
P in De s c rip t io n (c o n t in u e d )  
PIN  
NAME  
FUNCTION  
MAX3130  
MAX3131  
TTL/CMOS RS-232 Transmitter Input. For the MAX3130, drive IRMODE low to connect  
T2IN to the IR transmitter input, and drive IRMODE high to connect T2IN to the RS-232  
transmitter input. For the MAX3131, T2IN is always connected to the RS-232 transmitter  
input.  
3
3
T2IN  
IR Mode Control. Drive IRMODE low to connect R2OUT to the IR receiver output and  
T2IN to the IR transmitter input. Driving IRMODE low also shuts down the RS-232  
charge pump and puts the RS-232 transmitter outputs in a high-impedance state. Drive  
IRMODE high to connect R2OUT to the RS-232 receiver output and connect T2IN to the  
RS-232 transmitter input.  
4
IRMODE  
5
4
5
6
7
TXD  
R1OUT  
R1IN  
IR Transmitter TTL/CMOS Data Input  
TTL/CMOS RS-232 Receiver Output  
RS-232 Receiver Input  
6
7
T1OUT  
RS-232 Transmitter Output  
16-Times Baud-Rate Input. To use the ENDEC, apply a signal that is 16 times the baud  
rate into BAUD16. Connect BAUD16 to GND or V to disable the ENDEC.  
CC  
8
8
BAUD16  
GND  
9
10  
9
10  
Ground  
V
CC  
3.0V to 5.5V Supply Voltage  
11, 18  
12  
11, 18  
12  
N.C.  
AV  
No Connection. Do not make connections to these pins.  
Analog Supply Voltage V for IR Signal Processing. AV range is 3.0V to 5.5V.  
CC  
CC  
CC  
13  
13  
AGND  
Analog Ground for IR Signal Processing. Connect to GND.  
Silicon PIN Photodiode Input. Connect PINC to the cathode of the PIN photodiode.  
Connect the anode of the PIN photodiode to GND.  
14  
14  
PINC  
15  
16  
17  
19  
20  
21  
22  
23  
24  
25  
26  
27  
15  
16  
17  
19  
20  
21  
22  
23  
24  
25  
26  
27  
Shutdown Input for the IrDA Transceiver Circuitry  
Power Ground for IR LED Driver. Connect to GND.  
Open-Drain Output for Driving the IR LED. Connect LEDC to the cathode of the IR LED.  
+5.5V Generated by the Internal Charge Pump  
IRSD  
PGND  
LEDC  
V+  
C1+  
Positive Terminal of the Voltage-Doubling Charge-Pump Capacitor  
Negative Terminal of the Voltage-Doubling Charge-Pump Capacitor  
Positive Terminal of the Inverting Charge-Pump Capacitor  
Negative Terminal of the Inverting Charge-Pump Capacitor  
-5.5V Generated by the Internal Charge Pump  
C1-  
C2+  
C2-  
V-  
Shutdown Input for the RS-232 Transmitters and Charge Pump  
RS-232 Transmitter Output  
RSSD  
T2OUT  
R2IN  
RS-232 Receiver Input  
TTL/CMOS RS-232 Receiver Output. For the MAX3130, drive IRMODE low to connect  
R2OUT to the IR receiver output, and drive IRMODE high to connect R2OUT to the  
RS-232 receiver output. For the MAX3131, R2OUT is always internally connected to the  
RS-232 receiver output.  
28  
28  
R2OUT  
_______________________________________________________________________________________  
7
3 V t o 5 .5 V, IrDA In fra re d Tra n s c e ive r w it h  
In t e g ra t e d RS -2 3 2 In t e rfa c e  
MAX3 1 3 0 Fu n c t io n Ta b le  
MAX3130  
CONTROL INPUTS  
IrDA  
OUTPUT  
IrDA  
INPUT  
LOGIC INPUTS  
RS-232 I/O  
LOGIC OUTPUTS  
T1IN  
T2IN  
T1OUT T2OUT  
R1IN  
RS-232 RS-232 RS-232  
Input Input Output  
RS-232 RS-232 RS-232  
Input Input Output  
RS-232 RS-232 RS-232  
Input Input Output  
RS-232 RS-232 RS-232  
Input Input Output  
R2IN  
R1OUT  
R2OUT  
LEDC  
PINC  
RSSD IRMODE IRSD  
RS-232  
Input  
IrDA  
Input  
IrDA  
Output  
X
X
0
0
0
1
1
1
1
0
1
0
1
0
1
High-Z High-Z  
Enabled  
Disabled  
RS-232  
Input  
IrDA  
Input  
IrDA  
Output  
High-Z High-Z  
High-Z High-Z  
High-Z High-Z  
Enabled  
Disabled  
Disabled  
Disabled  
Disabled  
Enabled  
Disabled  
Enabled  
Disabled  
Enabled  
RS-232 RS-232  
Input Input  
RS-232  
Output  
RS-232 RS-232  
Input Input  
RS-232  
Output  
0
RS-232 RS-232 RS-232 RS-232 RS-232 RS-232 RS-232  
Input Input Output Output Input Input Output  
RS-232  
Output  
1
RS-232 RS-232 RS-232 RS-232 RS-232 RS-232 RS-232  
Input  
RS-232  
Output  
1
Input  
Output Output  
Input  
Input  
Output  
0/MAX31  
X = Dont care  
MAX3 1 3 1 Op e ra t io n a l Mo d e s Ta b le  
T_OUT  
High-Z  
R_IN  
LEDC  
Enabled  
Enabled  
Enabled  
Enabled  
RXD  
RSSD  
IRSD  
0
0
1
1
0
1
0
1
Enabled  
Enabled  
Enabled  
Enabled  
Logic High  
IrDA Output  
Logic High  
IrDA Output  
High-Z  
Enabled  
Enabled  
IR Re c e ive rs  
De t a ile d De s c rip t io n  
The receiver amplifier reverse biases the PIN diode  
with approximately 1.2V, and the PIN diode converts  
pulses of IR light into pulses of current. The input trans-  
impedance (current-to-voltage) amplifier converts and  
amplifies these current pulses into voltage pulses. The  
MAX3130/MAX3131 incorporate filters that remove low-  
frequency ambient light interference and high-frequency  
circuit noise from these voltage pulses. A high-speed  
comparator then translates these voltage pulses into  
CMOS output levels. Figures 1 and 2 show system  
functional diagrams.  
The MAX3130/MAX3131 a re IrDA 1.2 c omp a tib le ,  
infrared transceivers with an integrated RS-232 inter-  
face. By selecting appropriate external optical compo-  
nents, these devices support IrDA 1.2 data rates from  
2.4kbps to 115kbps at distances from 1cm to 1m. A  
low-noise design allows them to achieve a bit-error rate  
-8  
below 10 at maximum data rates. On-chip filtering  
rejects out-of-band ambient light signals that interfere  
with infrared communication. Both devices include a  
high-power LED driver capable of sinking 200mA.  
The MAX3130 and MAX3131 contain two RS-232 drivers  
and two RS-232 receivers that support data rates up to  
120kbps. The RS-232 transceiver is powered by a high-  
efficiency, dual charge-pump power supply that oper-  
ates with input supply voltages from +3.0V to +5.5V.  
The RXD pin is the output of the infrared receiver for  
the MAX3131. The R2OUT p in is the outp ut of the  
infrared receiver for the MAX3130 (IRMODE = low).  
With the ENDEC disabled, the infrared receiver output  
pulses low upon each incoming infrared pulse. The  
pulse width of the receiver output depends on many  
factors, including transmitter distance and power, PIN  
photodiode efficiency and area, and incoming data  
rate. Under all circumstances the output pulse is less  
than one baud period. To communicate with UARTs  
that are not IrDA compatible, enable the ENDEC (see  
the IrDA Encoder/Decoder (ENDEC) section).  
The MAX3130 is optimized for applications using a sin-  
gle UART for both infrared and RS-232 communication.  
The infrared transmitter input and infrared receiver out-  
put are multiplexed with one RS-232 transmitter input  
a nd one RS-232 re c e ive r output, re spe c tive ly. The  
MAX3131 IrDA and RS-232 transceivers are indepen-  
dent of each other for use in simultaneous multiprotocol  
transceiver applications.  
8
_______________________________________________________________________________________  
3 V t o 5 .5 V, IrDA In fra re d Tra n s c e ive r w it h  
In t e g ra t e d RS -2 3 2 In t e rfa c e  
0/MAX31  
ON  
RSSD  
OFF  
C1+  
SHDN  
C1  
C2  
C1-  
V+  
V-  
CHARGE PUMP  
C2+  
C3  
C4  
C2-  
R1OUT  
R1IN  
5k  
5k  
RECEIVE  
LOGIC  
OUTPUTS  
RS-232  
INPUTS  
R2IN  
R2OUT  
T1IN  
EDGE  
T1OUT  
T2OUT  
TRANSMIT  
LOGIC  
INPUTS  
RS-232  
OUTPUTS  
T2IN  
232  
IRMODE  
IR  
Rx  
TxIN  
Tx  
BAUD16  
EDGEDET  
ENDEC  
EDGE  
RxIN  
f
BAUD16  
V
CC  
GND  
1µF  
R
SET  
MAX3130  
LEDC  
PGND  
PINC  
ON  
IRSD  
AV  
CC  
1.2V  
BIAS  
OFF  
AGND  
1µF  
Figure 1. MAX3130 Functional Diagram  
_______________________________________________________________________________________  
9
3 V t o 5 .5 V, IrDA In fra re d Tra n s c e ive r w it h  
In t e g ra t e d RS -2 3 2 In t e rfa c e  
ON  
C1+  
RSSD  
OFF  
SHDN  
C1  
C2  
C1-  
V+  
V-  
CHARGE PUMP  
C2+  
C3  
C4  
C2-  
R1OUT  
R1IN  
RS-232  
RECEIVE  
LOGIC  
RS-232  
INPUTS  
5k  
5k  
R2IN  
R2OUT  
T1IN  
OUTPUTS  
T1OUT  
T2OUT  
RS-232  
TRANSMIT  
LOGIC  
0/MAX31  
RS-232  
OUTPUTS  
T2IN  
TXD  
INPUTS  
IrDA TRANSMIT  
LOGIC INPUT  
RXD  
IrDA RECEIVE  
LOGIC  
MAX3131  
Rx  
TxIN  
ENDEC  
V
CC  
BAUD16  
OUTPUT  
Tx  
RxIN  
GND  
R
SET  
1µF  
f
BAUD16  
LEDC  
PGND  
PINC  
ON  
IRSD  
AV  
CC  
1.2V  
BIAS  
OFF  
AGND  
1µF  
Figure 2. MAX3131 Functional Diagram  
10 ______________________________________________________________________________________  
3 V t o 5 .5 V, IrDA In fra re d Tra n s c e ive r w it h  
In t e g ra t e d RS -2 3 2 In t e rfa c e  
0/MAX31  
IR Tra n s m it t e r  
The infrared transmitter consists of an internal high-  
power, open-drain MOSFET switch. This switch has an  
on-resistance of less than 2and is capable of switch-  
ing 200mA of current. Internal buffering keeps the input  
capacitance of the TXD pin extremely low to ease user  
drive requirements. Connect an IR LED in series with a  
current-setting resistor to select the appropriate IR out-  
put power (see the Powering the IR LED section). The  
transmitter is not current limited so do not exceed the  
power dissipation of the external components during  
high duty-cycle transmit schemes.  
EDGEDET: Ed g e -De t e c t io n Circ u it ry  
(MAX3 1 3 0 )  
The MAX3130 has internal edge-detection circuitry that  
monitors the RS-232 R2OUT line when IRMODE is low  
and monitors the IrDA receive channel when IRMODE  
is high. EDGEDET goes low when a positive or negative  
edge is detected on either the RS-232 R2OUT line or  
the IrDA receive channel (depending on the IRMODE  
pin). This edge-detection feature is useful for initiating  
an interrupt when data is received on the deselected  
line. The EDGEDET signal is cleared when IRMODE is  
toggled. Table 1 shows EDGEDET operation.  
The TXD input controls the IR LED for the MAX3131.  
The T2IN input controls the IR LED for the MAX3130  
(IRMODE = low). With the ENDEC disabled (see IrDA  
Enc od e r/De c od e r (ENDEC) s e c tion), the IR LED is  
turned on by a logic-high signal at the TXD or T2IN  
input, for the MAX3131 and MAX3130 respectively.  
IrDA En c o d e r/De c o d e r (ENDEC)  
The MAX3130 a nd MAX3131 p rovid e a n on-b oa rd  
ENDEC to communicate with UARTs that are not IrDA  
compatible. The ENDEC is enabled by applying a clock  
with a frequency 16 times the baud rate to the BAUD16  
input. This BAUD16 clock is commonly provided on  
UARTs that do not have IrDA ENDEC capability. Figure  
3 illustrates the operation of the ENDEC. The ENDEC  
stretches the incoming infrared pulse (a pulse between  
IRMODE: Mu lt ip le x e d RS -2 3 2 Op e ra t io n  
a n d IrDA Op e ra t io n (MAX3 1 3 0 )  
The MAX3130 has the capability to multiplex R2OUT and  
T2IN between the IrDA infrared interface and the RS-232  
electrical interface. The state of the IRMODE input deter-  
mines which interface (infrared or RS-232) is multiplexed  
to R2OUT and T2IN. When IRMODE is low, R2OUT acts  
as the infrared receiver output and T2IN acts as the  
infrared transmitter input. Also, while IRMODE is low, the  
RS-232 charge pumps are shut down and the RS-232  
transmitters are disabled (see Shutdown section). When  
IRMODE is high, R2OUT and T2IN assume their func-  
tions as the RS-232 data receive output and transmit  
input, respectively. Also, while IRMODE is high, the IR  
transmitter is disabled (turned off).  
Table 1. EDGEDET Operation  
R2IN IrDA RxIN  
IRSD RSSD IRMODE  
EDGEDET*  
X
X
X
X
X
X
X
X
0
0
1
1
X
X
X
X
X = Dont care  
* EDGEDET is cleared by any transition on IRMODE.  
INFRARED  
PHOTODIODE INPUT *  
1.41µs < t < 3CS  
16CS  
R2OUT (RXD)  
WITH ENDEC DISABLED  
R2OUT (RXD)  
WITH ENDEC ENABLED  
16CS  
32CS  
CS = BAUD16 CLOCK CYCLES  
* HIGH = INFRARED LIGHT PULSE  
( ) ARE FOR MAX3131  
Figure 3a. ENDEC Operation, Receiving Infrared  
______________________________________________________________________________________ 11  
3 V t o 5 .5 V, IrDA In fra re d Tra n s c e ive r w it h  
In t e g ra t e d RS -2 3 2 In t e rfa c e  
T2IN (TXD)  
7CS  
INFRARED LED  
OUTPUT *  
3CS  
16CS  
CS = BAUD16 CLOCK CYCLES  
* HIGH = INFRARED LIGHT PULSE  
( ) ARE FOR MAX3131  
Figure 3b. ENDEC Operation, Transmitting Infrared  
1µs and three BAUD16 clock cycles) into a full baud  
period (Figure 3a). Signals applied to TXD are inverted  
and compressed to three BAUD16 clock cycles by the  
ENDEC b e fore b e ing tra ns mitte d (Fig ure 3b ). The  
ENDEC is disabled by connecting the BAUD16 input to  
__________ Ap p lic a t io n s In fo rm a t io n  
S h u t d o w n  
The MAX3130/MAX3131 have split analog and digital  
s up p lie s (V  
a nd AV ) with s e p a ra te s hutd own  
CC  
CC  
0/MAX31  
modes. When IRSD is pulled low, the IR receiver is dis-  
V
CC  
or GND.  
abled and AV current reduces to <1µA. When RSSD  
CC  
Du a l Ch a rg e -P u m p Vo lt a g e Co n ve rt e r  
or IRMODE is pulled low, the RS-232 charge pumps  
The MAX3130/MAX3131s internal power supply con-  
sists of a regulated dual charge pump that provides  
output voltages of +5.5V (doubling charge pump) and  
-5.5V (inverting charge pump) for supply voltages from  
+3.0V to +5.5V. The charge pump operates in a dis-  
continuous mode: if the output voltages are less than  
5.5V, the charge pumps are enabled; if the output volt-  
ages exceed 5.5V, the charge pumps stop switching.  
Each charge pump requires a flying capacitor (C1, C2)  
and a reservoir capacitor (C3, C4) to generate the V+  
and V- supplies (Figures 1 and 2). If RSSD (or IRMODE  
for MAX3130) is low, both charge pumps shut down.  
a re d is a b le d a nd the RS-232 tra ns mitte r outp uts  
become high impedance. In this mode, the V current  
CC  
reduces to <10µA.  
IR LED S e le c t io n  
The IrDA specification calls for an IR transmitter with a  
peak wavelength between 850nm and 900nm. Within a  
±15° half-cone angle, the output intensity of the IR LED  
must be between 40mW/sr and 500mW/sr. Outside a  
±30° half-cone angle, the output intensity of the IR LED  
must fall below 40mW/sr. Within these cases, the opti-  
cal rise and fall times of the IR LED must be less than  
600ns. Based on these system requirements the HP  
HSDL-4220, the Temic TSHF5400, or equivalent IR  
LEDs are appropriate choices.  
RS -2 3 2 Tra n s m it t e rs  
The RS-232 transmitters are inverting level translators  
that convert CMOS-logic levels to ±5.0V EIA/TIA-232  
levels. The MAX3130/MAX3131 transmitters are guar-  
anteed for data rates of 120kbps, providing compatibili-  
ty with PC-to-PC c ommunic a tion softwa re , suc h a s  
LapLink™. These RS-232 transmitters typically operate  
at data rates of 235kbps. The RS-232 transmitter out-  
puts are high impedance when either IRMODE or RSSD  
are low.  
P o w e rin g t h e IR LED  
Set the current in the IR LED with an external resistor.  
Using the IR LED manufacturers data sheet, select a  
forward current that meets the IrDA specifications dis-  
cussed in the IR LED Selection section. Determine the  
forward bias voltage of the IR LED (V  
) and the  
IRLED  
voltage drop across the MAX3130/MAX3131 LED driver  
(s e e LEDC Volta g e vs . LEDC Curre nt g ra p h in the  
Typical Operating Characteristics) and choose the cur-  
rent-setting resistor based on the following equation:  
The MAX3130/MAX3131 RS-232 receivers translate RS-  
232 signa l le ve ls to CMOS-le ve l log ic . The RS-232  
receivers also perform a logic inversion from input to  
output. The receivers are always active and are not  
affected by the RS-232 shutdown input (RSSD).  
R
= (V - V  
- V  
) / I  
SET  
CC  
IRLED  
LEDC  
SET  
Using the HP HSDL-4220 IR LED as an example:  
= 5V, I = 100mA, V = 1.67V  
V
CC  
IRLED  
SET  
V
= 90mV  
LEDC  
LapLink is a trademark of Traveling Software.  
R
SET  
= (5V - 1.67V - 90mV) / 0.1A = 32.4Ω  
12 ______________________________________________________________________________________  
3 V t o 5 .5 V, IrDA In fra re d Tra n s c e ive r w it h  
In t e g ra t e d RS -2 3 2 In t e rfa c e  
0/MAX31  
Power dissipation of the MAX3130/MAX3131, IR LED,  
and R are based on the maximum LED current and  
duty cycle.  
When using the minimum required capacitor values,  
ma ke s ure the c a p a c itor va lue d oe s not d e g ra d e  
excessively with temperature. If in doubt, use capaci-  
tors with a larger nominal value. The capacitors equiv-  
a le nt s e rie s re s is ta nc e (ESR) us ua lly ris e s a t low  
temperatures and increases the amount of ripple on V+  
and V-.  
SET  
Use the following equations to calculate the power dis-  
sipation in each component:  
MAX3130 power dissipation = I  
· V  
· duty cycle  
SET  
DRV  
IR LED power dissipation = I  
· V  
· duty cycle  
SET IRLED  
2
· duty cycle  
SET  
P o w e r-S u p p ly No is e Re je c t io n  
Because of the extremely sensitive nature of photodi-  
ode amplifiers, it is important to maintain a low-noise  
supply voltage. Use a separate analog supply voltage  
where possible. Place a 1µF ceramic bypass capacitor  
R
power dissipation = I  
· R  
SET  
SET  
For reliable operation, do not exceed maximum power  
dissipation of the components.  
as close as possible to the AV  
especially noisy systems, connect a small (10) resis-  
and V  
pins. In  
P IN P h o t o d io d e S e le c t io n  
PIN photodiode selection is extremely important to sys-  
tem performance. The PIN diode must generate at least  
200nA (minimum sensitivity of the MAX3130/MAX3131)  
of current when aimed ±15° off-axis with an incident  
CC  
CC  
tor in series with V , in addition to the normal bypass  
CC  
capacitors.  
IrDA o r RS -2 3 2 Ap p lic a t io n Circ u it  
Figure 4 shows how the MAX3130 is used to multiplex  
between RS-232 and IrDA communication while using  
only one UART. By using the IRMODE input, the type of  
communication (infrared or RS-232) is controlled by the  
I/O of a µP. The internal MAX3130 ENDEC is used to  
tra ns la te b e twe e n UART-typ e a nd IrDA-typ e b it-  
s tre a ms . If the UART ha s this c a p a b ility, c onne c t  
BAUD16 of the MAX3130 to GND.  
2
irradiance of 4µW/cm . The following equation deter-  
mines if the Temic BPV22NF meets these requirements:  
2
2
I
= (4µW/cm ) (0.075cm ) (0.95) (0.95) (1.8) (0.6A/W)  
= 292nA  
PIN  
The first term (4mW/cm2) is the minimum guaranteed  
irradiance in the ±15° angular range. The second term  
(0.075cm2) is the sensitive area of the PIN diode. The  
first 0.95 factor normalizes the sensitivity to the 875nm  
wavelength and the second 0.95 factor adjusts for the  
decreased receiver efficiency at ±15° off-axis. The 1.8  
factor accounts for the round lens which increases the  
effective PIN diode area. The last term (0.6A/W) is the  
sensitivity of the PIN diode. Based on this example, the  
Temic BPV22NF is an appropriate selection.  
Figure 5 shows the MAX3131 used with two UARTs to  
perform simultaneous IrDA and RS-232 communication.  
UART1 is a software UART used to perform infrared  
IrDA c ommunic a tion. The inte rna l ENDEC on the  
MAX3131 translates between UART-type and IrDA-type  
bit-streams. The MAX3100 is implemented as UART2  
a nd c ommunic a te s via the RS-232 inte rfa c e . The  
MAX3100 interfaces to the µP using a SPI interface.  
The final important factor in selecting a PIN diode is the  
effective diode capacitance. It is important to keep this  
capacitance below 70pF at 1.2V reverse bias. Higher  
input capacitance compromises the noise performance  
of the system by increasing the noise gain of the input  
transimpedance amplifier.  
La yo u t Co n s id e ra t io n s  
The MAX3130/MAX3131 require careful layout tech-  
niques to minimize parasitic signals coupling to the  
PINC input. Keep the lead length between the photodi-  
ode and PINC as short as possible. Keep PC board  
traces to the PIN diode away from other noisy traces.  
To minimize coupling, run the AGND trace adjacent to  
the PINC trace on both sides. To prevent oscillation,  
a void routing the RXD tra c e ne a r the PINC tra c e .  
Connect the anode of the PIN diode, GND, and the  
Ca p a c it o r S e le c t io n  
The capacitor type used for C1–C4 is not critical for  
p rop e r op e ra tion; e ithe r p ola rize d or nonp ola rize d  
c a p a c itors a re g ood c hoic e s . The c ha rg e p ump  
requires 0.1µF capacitors for 3.3V operation. For other  
supply voltages, refer to Table 2 for suggested capaci-  
tor values. Do not use values smaller than those listed  
in Table 2. Increasing the capacitor values (e.g., by a  
factor of 2) reduces ripple on the transmitter outputs  
and slightly reduces power consumption. C2, C3, and  
C4 can be increased without changing C1s value.  
However, do not increase C1 without also increas-  
ing the values of C2, C3, and C4.  
ground lead of the AV  
bypass capacitor in a star-  
CC  
connection. Keep the output pins RXD and TXD as  
short as possible to minimize coupling back to the input  
via parasitic capacitance.  
______________________________________________________________________________________ 13  
3 V t o 5 .5 V, IrDA In fra re d Tra n s c e ive r w it h  
In t e g ra t e d RS -2 3 2 In t e rfa c e  
Table 2. Required Capacitor Values  
V
(V)  
C1 (µF)  
0.1  
C2, C3, C4 (µF)  
CC  
3.0 to 3.6  
4.5 to 5.5  
3.0 to 5.5  
0.1  
0.047  
0.1  
0.33  
0.47  
STANDARD  
MAX3130  
NON-IrDA  
UART  
RTS  
CTS  
T1IN  
DB-9  
T1OUT  
R1OUT  
1 2 3 4 5  
6 7 8 9  
R1IN  
RS-232  
IrDA  
µP  
T2OUT  
R2IN  
Tx  
Rx  
T2IN  
0/MAX31  
R2OUT  
LEDC  
PINC  
BAUD16  
BAUD16  
IRMODE  
232  
IrDA  
I/O  
Figure 4. Using the MAX3130 and a Single UART to Perform Both IrDA and RS-232 Communication  
SPI  
MAX3131  
MAX3100  
UART2  
DIN  
RTS  
CTS  
T1IN  
DB-9  
T1OUT  
DOUT  
SCLK  
CS  
µP  
R1OUT  
1 2 3 4 5  
6 7 8 9  
R1IN  
RS-232  
IrDA  
Tx  
Rx  
T2IN  
T2OUT  
R2IN  
R2OUT  
NON-IrDA UART  
LEDC  
PINC  
TX  
TXD  
RX  
RXD  
BAUD16  
BAUD16  
(UART1)  
Figure 5. Using the MAX3131 and Two UARTs to Perform Simultaneous IrDA and RS-232 Communication  
14 ______________________________________________________________________________________  
3 V t o 5 .5 V, IrDA In fra re d Tra n s c e ive r w it h  
In t e g ra t e d RS -2 3 2 In t e rfa c e  
0/MAX31  
Ch ip In fo rm a t io n  
TRANSISTOR COUNT: 1039  
________________________________________________________P a c k a g e In fo rm a t io n  
______________________________________________________________________________________ 15  
3 V t o 5 .5 V, IrDA In fra re d Tra n s c e ive r w it h  
In t e g ra t e d RS -2 3 2 In t e rfa c e  
NOTES  
0/MAX31  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
16 ____________________Ma x im In t e g ra t e d P ro d u c t s , 1 2 0 S a n Ga b rie l Drive , S u n n yva le , CA 9 4 0 8 6 4 0 8 -7 3 7 -7 6 0 0  
© 1998 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

相关型号:

MAX3131

3V to 5.5V, IrDA Infrared Transceiver with Integrated RS-232 Interface
MAXIM

MAX3131CAI

3V to 5.5V, IrDA Infrared Transceiver with Integrated RS-232 Interface
MAXIM

MAX3131CAI+

Interface Circuit, PDSO28, 5.30 MM, 0.65 MM PITCH, SSOP-28
MAXIM

MAX3131CAI-T

Interface Circuit, PDSO28, 5.30 MM, 0.65 MM PITCH, SSOP-28
MAXIM

MAX3131EAI

3V to 5.5V, IrDA Infrared Transceiver with Integrated RS-232 Interface
MAXIM

MAX3131EAI+

Interface Circuit, PDSO28, 5.30 MM, 0.65 MM PITCH, SSOP-28
MAXIM

MAX31329

Low-Current, Real-Time Clock with I2C, Power Management, and Integrated Crystal
MAXIM

MAX31329ELB+

Low-Current, Real-Time Clock with I2C, Power Management, and Integrated Crystal
MAXIM

MAX31329ELB+T

Low-Current, Real-Time Clock with I2C, Power Management, and Integrated Crystal
MAXIM

MAX31341B

Low-Current, Real-Time Clock with I2C Interface and Power Management
MAXIM

MAX31341BEWC+T

Low-Current, Real-Time Clock with I2C Interface and Power Management
MAXIM

MAX31341C

Low-Current, Real-Time Clock with I2C Interface and Power Management
MAXIM