MAX31855SASA+T [MAXIM]

Cold-Junction Compensated Thermocouple-to-Digital Converter; 冷端补偿热电偶至数字转换器
MAX31855SASA+T
型号: MAX31855SASA+T
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Cold-Junction Compensated Thermocouple-to-Digital Converter
冷端补偿热电偶至数字转换器

转换器
文件: 总13页 (文件大小:1215K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-5793; Rev 2; 2/12  
General Description  
Features  
The MAX31855 performs cold-junction compensation  
and digitizes the signal from a K-, J-, N-, T-, S-, R-, or  
E-type thermocouple. The data is output in a signed  
14-bit, SPI-compatible, read-only format. This converter  
resolves temperatures to 0.25NC, allows readings as high  
as +1800NC and as low as -270NC, and exhibits thermo-  
couple accuracy of 2NC for temperatures ranging from  
-200NC to +700NC for K-type thermocouples. For full  
range accuracies and other thermocouple types, see the  
Thermal Characteristics specifications.  
S Cold-Junction Compensation  
S 14-Bit, 0.25NC Resolution  
S Versions Available for K-, J-, N-, T-, S-, R-, and  
E-Type Thermocouples (see Table 1)  
S Simple SPI-Compatible Interface (Read-Only)  
S Detects Thermocouple Shorts to GND or V  
CC  
S Detects Open Thermocouple  
Ordering Information appears at end of data sheet.  
Applications  
Industrial  
Appliances  
HVAC  
For related parts and recommended products to use with this part,  
refer to: www.maxim-ic.com/MAX31855.related  
Automotive  
Typical Application Circuit  
V
CC  
0.1µF  
MAX31855  
GND  
MICROCONTROLLER  
SO  
MISO  
SCK  
SS  
SCK  
CS  
T+  
T-  
����������������������������������������������������������������� Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642,  
or visit Maxim’s website at www.maxim-ic.com.  
MAX31855  
Cold-Junction Compensated  
Thermocouple-to-Digital Converter  
ABSOLUTE MAXIMUM RATINGS  
Supply Voltage Range (V  
to GND)..................-0.3V to +4.0V  
Operating Temperature Range........................ -40NC to +125NC  
Junction Temperature .....................................................+150NC  
Storage Temperature Range .......................... -65NC to +150NC  
Lead Temperature (soldering, 10s) ................................+300NC  
Soldering Temperature (reflow) .....................................+260NC  
CC  
All Other Pins............................................ -0.3V to (V  
+ 0.3V)  
CC  
Continuous Power Dissipation (T = +70NC)  
A
SO (derate 5.9mW/NC above +70NC).......................470.6mW  
ESD Protection (All Pins, Human Body Model)................... 2ꢀV  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional opera-  
tion of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect device reliability.  
PACKAGE THERMAL CHARACTERISTICS (Note 1)  
SO  
Junction-to-Ambient Thermal Resistance (B ) ........170NC/W  
JA  
Junction-to-Case Thermal Resistance (B )...............40NC/W  
JC  
Note 1: Pacꢀage thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-  
layer board. For detailed information on pacꢀage thermal considerations, refer to www.maxim-ic.com/thermal-tutorial.  
RECOMMENDED OPERATING CONDITIONS  
(T = -40NC to +125NC, unless otherwise noted.)  
A
PARAMETER  
Power-Supply Voltage  
Input Logic 0  
SYMBOL  
CONDITIONS  
MIN  
3.0  
TYP  
MAX  
3.6  
UNITS  
V
(Note 2)  
3.3  
V
V
CC  
V
-0.3  
+0.8  
IL  
V
CC  
0.3  
+
Input Logic 1  
V
2.1  
V
IH  
DC ELECTRICAL CHARACTERISTICS  
(3.0V P V  
P 3.6V, T = -40NC to +125NC, unless otherwise noted.)  
A
CC  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Power-Supply Current  
I
900  
1500  
FA  
CC  
T
= -40NC to +125NC, 100mV across the  
A
Thermocouple Input Bias Current  
Power-Supply Rejection  
-100  
+100  
2.5  
nA  
NC/V  
V
thermocouple inputs  
-0.3  
2
Power-On Reset Voltage  
Threshold  
V
(Note 3)  
POR  
Power-On Reset Voltage  
Hysteresis  
0.2  
V
V
CC  
0.4  
-
Output High Voltage  
Output Low Voltage  
V
I
I
= -1.6mA  
= 1.6mA  
V
V
OH  
OUT  
V
0.4  
OL  
OUT  
����������������������������������������������������������������� Maxim Integrated Products  
2
MAX31855  
Cold-Junction Compensated  
Thermocouple-to-Digital Converter  
THERMAL CHARACTERISTICS  
(3.0V P V  
P 3.6V, T = -40NC to +125NC, unless otherwise noted.) (Note 4)  
A
CC  
PARAMETER  
SYMBOL  
CONDITIONS  
= -200NC to +700NC,  
= -20NC to +85NC (Note 3)  
MIN  
TYP  
MAX  
UNITS  
T
T
THERMOCOUPLE  
-2  
+2  
A
MAX31855K Thermocouple  
Temperature Gain and Offset  
Error (41.276FV/NC nominal  
sensitivity) (Note 4)  
T
T
= +700NC to +1350NC,  
THERMOCOUPLE  
-4  
-6  
-2  
-4  
-2  
-4  
-6  
-2  
-4  
-2  
-3  
-5  
-2  
-4  
-6  
-2  
-4  
-6  
+4  
+6  
+2  
+4  
+2  
+4  
+6  
+2  
+4  
+2  
+3  
+5  
+2  
+4  
+6  
+2  
+4  
+6  
NC  
= -20NC to +85NC (Note 3)  
A
T
T
= -270NC to +1372NC,  
THERMOCOUPLE  
= -40NC to +125NC (Note 3)  
A
T
T
= -210NC to +750NC,  
THERMOCOUPLE  
= -20NC to +85NC (Note 3)  
MAX31855J Thermocouple  
Temperature Gain and Offset  
Error (57.953FV/NC nominal  
sensitivity) (Note 4)  
A
NC  
NC  
NC  
NC  
T
T
= -210NC to +1200NC,  
THERMOCOUPLE  
= -40NC to +125NC (Note 3)  
A
T
T
= -200NC to +700NC,  
THERMOCOUPLE  
= -20NC to +85NC (Note 3)  
A
MAX31855N Thermocouple  
Temperature Gain and Offset  
Error (36.256FV/NC nominal  
sensitivity) (Note 4)  
T
T
= +700NC to +1300NC,  
THERMOCOUPLE  
= -20NC to +85NC (Note 3)  
A
T
T
= -270NC to +1300NC,  
THERMOCOUPLE  
= -40NC to +125NC (Note 3)  
A
T
T
= -270NC to +400NC,  
THERMOCOUPLE  
= -20NC to +85NC (Note 3)  
MAX31855T Thermocouple  
Temperature Gain and Offset  
Error (52.18FV/NC nominal  
sensitivity) (Note 4)  
A
T
T
= -270NC to +400NC,  
THERMOCOUPLE  
= -40NC to +125NC (Note 3)  
A
T
T
= -200NC to +700NC,  
THERMOCOUPLE  
= -20NC to +85NC (Note 3)  
A
MAX31855E Thermocouple  
Temperature Gain and Offset  
Error (76.373FV/NC nominal  
sensitivity) (Note 4)  
T
T
= +700NC to +1000NC,  
THERMOCOUPLE  
= -20NC to +85NC (Note 3)  
A
T
T
= -270NC to +1000NC,  
THERMOCOUPLE  
= -40NC to +125NC (Note 3)  
A
T
T
= -50NC to +700NC,  
THERMOCOUPLE  
= -20NC to +85NC (Note 3)  
A
MAX31855R Thermocouple  
Temperature Gain and Offset  
Error (10.506FV/NC nominal  
sensitivity) (Note 4)  
T
T
= +700NC to +1768NC,  
THERMOCOUPLE  
NC  
NC  
= -20NC to +85NC (Note 3)  
A
T
T
= -50NC to +1768NC,  
THERMOCOUPLE  
= -40NC to +125NC (Note 3)  
A
T
T
= -50NC to +700NC,  
THERMOCOUPLE  
= -20NC to +85NC (Note 3)  
A
MAX31855S Thermocouple  
Temperature Gain and Offset  
Error (9.587FV/NC nominal  
sensitivity) (Note 4)  
T
T
= +700NC to +1768NC,  
THERMOCOUPLE  
= -20NC to +85NC (Note 3)  
A
T
T
= -50NC to +1768NC,  
THERMOCOUPLE  
= -40NC to +125NC (Note 3)  
A
����������������������������������������������������������������� Maxim Integrated Products  
3
MAX31855  
Cold-Junction Compensated  
Thermocouple-to-Digital Converter  
THERMAL CHARACTERISTICS (continued)  
(3.0V P V  
P 3.6V, T = -40NC to +125NC, unless otherwise noted.) (Note 4)  
A
CC  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Thermocouple Temperature Data  
Resolution  
0.25  
NC  
T
T
= -20NC to +85NC (Note 3)  
= -40NC to +125NC (Note 3)  
-2  
-3  
+2  
+3  
Internal Cold-Junction  
Temperature Error  
A
A
NC  
NC  
Cold-Junction Temperature Data  
Resolution  
T
= -40NC to +125NC  
0.0625  
70  
A
Temperature Conversion Time  
(Thermocouple, Cold Junction,  
Fault Detection)  
t
(Note 5)  
(Note 6)  
100  
ms  
ms  
CONV  
Thermocouple Conversion  
Power-Up Time  
t
200  
CONV_PU  
SERIAL-INTERFACE TIMING CHARACTERISTICS  
(See Figure 1 and Figure 2.)  
PARAMETER  
Input Leaꢀage Current  
Input Capacitance  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
µA  
pF  
I
(Note 7)  
-1  
+1  
LEAK  
C
8
IN  
Serial-Clocꢀ Frequency  
SCK Pulse-High Width  
SCK Pulse-Low Width  
SCK Rise and Fall Time  
f
5
MHz  
ns  
SCL  
t
100  
100  
CH  
t
ns  
CL  
200  
ns  
t
100  
100  
ns  
CS Fall to SCK Rise  
CSS  
ns  
SCK to CS Hold  
t
100  
40  
ns  
CS Fall to Output Enable  
CS Rise to Output Disable  
SCK Fall to Output Data Valid  
DV  
t
ns  
TR  
t
40  
ns  
DO  
(Note 3)  
200  
ns  
CS Inactive Time  
Note 2: All voltages are referenced to GND. Currents entering the IC are specified positive, and currents exiting the IC are negative.  
Note 3: Guaranteed by design; not production tested.  
Note 4: Not including cold-junction temperature error or thermocouple nonlinearity.  
Note 5: Specification is 100% tested at T = +25NC. Specification limits over temperature (T = T  
to T ) are guaranteed by  
MAX  
A
A
MIN  
design and characterization; not production tested.  
Note 6: Because the thermocouple temperature conversions begin at V  
, depending on V  
slew rates, the first thermocouple  
POR  
CC  
temperature conversion may not produce an accurate result. Therefore, the t  
specification is required after V  
is  
CONV_PU  
CC  
greater than V  
to guarantee a valid thermocouple temperature conversion result.  
CCMIN  
Note 7: For all pins except T+ and T- (see the Thermocouple Input Bias Current parameter in the DC Electrical Characteristics  
table).  
����������������������������������������������������������������� Maxim Integrated Products  
4
MAX31855  
Cold-Junction Compensated  
Thermocouple-to-Digital Converter  
Serial-Interface Diagrams  
CS  
SCK  
SO  
D0  
D31  
D7  
D6  
D4  
D2  
D8  
D5  
D3  
D1  
Figure 1. Serial-Interface Protocol  
t
CSS  
CS  
t
t
CL  
CH  
SCK  
SO  
t
DV  
t
DO  
t
TR  
D31  
D3  
D2  
D1  
D0  
Figure 2. Serial-Interface Timing  
����������������������������������������������������������������� Maxim Integrated Products  
5
MAX31855  
Cold-Junction Compensated  
Thermocouple-to-Digital Converter  
Typical Operating Characteristics  
(V  
CC  
= +3.3V, T = +25NC, unless otherwise noted.)  
A
INTERNAL TEMPERATURE SENSOR  
ACCURACY  
SUPPLY CURRENT vs. TEMPERATURE  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
V
= 3.3V  
CC  
V
= 3.6V  
CC  
NOTE: THIS DATA WAS TAKEN  
IN PRECISION BATH SO HIGH  
TEMPERATURE LIMIT IS 90°C  
V
= 3.3V  
CC  
V
= 3.0V  
CC  
-0.1  
-0.2  
-40 -20  
0
20 40 60 80 100 120  
TEMPERATURE (°C)  
-40 -20  
0
20  
40  
60  
80 100  
TEMPERATURE (°C)  
ADC ACCURACY vs. ADC INPUT VOLTAGE  
ACROSS TEMPERATURE  
ADC ACCURACY vs. ADC INPUT VOLTAGE  
ACROSS V  
CC  
0.3  
0.2  
0
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-0.6  
-0.7  
-0.8  
-0.9  
-1.0  
AT -40°C  
V
= 3.0V  
CC  
0.1  
0
V
= 3.3V  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-0.6  
-0.7  
AT +85°C  
CC  
V
= 3.6V  
CC  
AT +25°C  
V
= 3.3V  
INTERNAL TEMPERATURE = +25°C  
20 40  
ADC INPUT VOLTAGE (mV)  
CC  
0
20  
40  
60  
0
60  
ADC INPUT VOLTAGE (mV)  
����������������������������������������������������������������� Maxim Integrated Products  
6
MAX31855  
Cold-Junction Compensated  
Thermocouple-to-Digital Converter  
Pin Description  
Pin Configuration  
PIN  
NAME  
FUNCTION  
1
GND  
Ground  
TOP VIEW  
Thermocouple Input. See Table 1. Do  
not connect to GND.  
2
T-  
+
GND  
T-  
1
2
3
4
8
7
6
5
DNC  
SO  
3
4
5
T+  
Thermocouple Input. See Table 1.  
Power-Supply Voltage  
V
CC  
MAX31855  
SCK  
Serial-Clocꢀ Input  
T+  
CS  
Active-Low Chip Select. Set CS low to  
enable the serial interface.  
6
CS  
V
CC  
SCK  
7
8
SO  
Serial-Data Output  
Do Not Connect  
SO  
DNC  
Block Diagram  
V
CC  
V
CC  
S5  
S4  
SCK  
SO  
COLD-JUNCTION  
COMPENSATION  
DIGITAL  
CONTROL  
MAX31855  
CS  
T+  
ADC  
T-  
S1  
S2  
FAULT  
DETECTION  
GND  
REFERENCE  
VOLTAGE  
S3  
����������������������������������������������������������������� Maxim Integrated Products  
7
MAX31855  
Cold-Junction Compensated  
Thermocouple-to-Digital Converter  
for the difference between the thermocouple cold-  
Detailed Description  
junction side (device ambient temperature) and a 0NC  
virtual reference. For a K-type thermocouple, the volt-  
age changes by about 41FV/NC, which approximates  
the thermocouple characteristic with the following linear  
equation:  
The MAX31855 is a sophisticated thermocouple-to-  
digital converter with a built-in 14-bit analog-to-digital  
converter (ADC). The device also contains cold-junction  
compensation sensing and correction, a digital control-  
ler, an SPI-compatible interface, and associated control  
logic. The device is designed to worꢀ in conjunction  
with an external microcontroller (FC) in thermostatic,  
process-control, or monitoring applications. The device  
is available in several versions, each optimized and  
trimmed for a specific thermocouple type (K, J, N, T, S,  
R, or E.). The thermocouple type is indicated in the suffix  
of the part number (e.g., MAX31855K). See the Ordering  
Information table for all options.  
V
= (41.276FV/NC) x (T - T  
)
OUT  
R
AMB  
where V  
is the thermocouple output voltage (FV), T  
R
OUT  
is the temperature of the remote thermocouple junction  
(NC), and T is the temperature of the device (NC).  
AMB  
Other thermocouple types use a similar straight-line  
approximation but with different gain terms. Note that the  
MAX31855 assumes a linear relationship between tem-  
perature and voltage. Because all thermocouples exhibit  
some level of nonlinearity, apply appropriate correction  
to the device’s output data.  
Temperature Conversion  
The device includes signal-conditioning hardware to  
convert the thermocouple’s signal into a voltage com-  
patible with the input channels of the ADC. The T+ and  
T- inputs connect to internal circuitry that reduces the  
introduction of noise errors from the thermocouple wires.  
Cold-Junction Compensation  
The function of the thermocouple is to sense a difference  
in temperature between two ends of the thermocouple  
wires. The thermocouple’s “hot” junction can be read  
across the operating temperature range (Table 1). The  
reference junction, or “cold” end (which should be at  
Before converting the thermoelectric voltages into equiv-  
alent temperature values, it is necessary to compensate  
Table 1. Thermocouple Wire Connections and Nominal Sensitivities  
COLD-JUNCTION  
SENSITIVITY (µV/°C)  
(0NC TO +70NC)  
TYPE  
T- WIRE  
T+ WIRE  
TEMP RANGE (°C)  
SENSITIVITY (µV/°C)  
41.276  
(0NC to +1000NC)  
K
J
Alumel  
Constantan  
Nisil  
Chromel  
Iron  
-270 to +1372  
-210 to +1200  
-270 to + 1300  
+50 to +1768  
-270 to +400  
-270 to +1000  
-50 to +1768  
40.73  
52.136  
27.171  
6.181  
57.953  
(0NC to +750NC)  
36.256  
(0NC to +1000NC)  
N
S
T
E
R
Nicrosil  
9.587  
(0NC to +1000NC)  
Platinum  
Constantan  
Constantan  
Platinum  
Platinum/Rhodium  
Copper  
52.18  
(0NC to +400NC)  
41.56  
76.373  
(0NC to +1000NC)  
Chromel  
44.123  
6.158  
10.506  
(0NC to +1000NC)  
Platinum/Rhodium  
����������������������������������������������������������������� Maxim Integrated Products  
8
MAX31855  
Cold-Junction Compensated  
Thermocouple-to-Digital Converter  
the same temperature as the board on which the device  
During fault detection, the connections from the exter-  
nal thermocouple and cold-junction compensation cir-  
cuit to the ADC are opened (switches S4 and S5). The  
internal ground reference on T- is also opened (switch  
S3). The connections to the internal fault-detection cir-  
cuit are closed (switch S1 and S2). The fault-detection  
is mounted) can range from -55NC to +125NC. While the  
temperature at the cold end fluctuates, the device con-  
tinues to accurately sense the temperature difference at  
the opposite end.  
The device senses and corrects for the changes in  
the reference junction temperature with cold-junction  
compensation. It does this by first measuring its internal  
die temperature, which should be held at the same tem-  
perature as the reference junction. It then measures the  
voltage from the thermocouple’s output at the reference  
junction and converts this to the noncompensated ther-  
mocouple temperature value. This value is then added  
to the device’s die temperature to calculate the thermo-  
couple’s “hot junction” temperature. Note that the “hot  
junction” temperature can be lower than the cold junction  
(or reference junction) temperature.  
circuit tests for shorted connections to V  
or GND on  
CC  
the T+ and T- inputs, as well as looꢀing for an open  
thermocouple condition. Bits D0, D1, and D2 of the  
output data are normally low. Bit D2 goes high to indi-  
cate a thermocouple short to V , bit D1 goes high to  
CC  
indicate a thermocouple short to GND, and bit D0 goes  
high to indicate a thermocouple open circuit. If any of  
these conditions exists, bit D16 of the SO output data,  
which is normally low, also goes high to indicate that a  
fault has occurred.  
Serial Interface  
Optimal performance from the device is achieved when  
the thermocouple cold junction and the device are at  
the same temperature. Avoid placing heat-generating  
devices or components near the MAX31855 because this  
could produce cold-junction-related errors.  
The Typical Application Circuit shows the device inter-  
faced with a microcontroller. In this example, the device  
processes the reading from the thermocouple and  
transmits the data through a serial interface. Drive CS  
low and apply a clocꢀ signal at SCK to read the results  
at SO. Conversions are always being performed in the  
bacꢀground. The fault and temperature data are only be  
updated when CS is high.  
Conversion Functions  
CONV  
During the conversion time, t  
, three functions are  
performed: the temperature conversion of the internal  
cold-junction temperature, the temperature conversion of  
the external thermocouple, and the detection of thermo-  
couple faults.  
Drive CS low to output the first bit on the SO pin. A  
complete serial-interface read of the cold-junction com-  
pensated thermocouple temperature requires 14 clocꢀ  
cycles. Thirty-two clocꢀ cycles are required to read both  
the thermocouple and reference junction temperatures  
(Table 2 and Table 3.) The first bit, D31, is the thermo-  
couple temperature sign bit, and is presented to the SO  
When executing the temperature conversion for the inter-  
nal cold-junction compensation circuit, the connection to  
signal from the external thermocouple is opened (switch  
S4) and the connection to the cold-junction compensa-  
tion circuit is closed (switch S5). The internal T- reference  
to ground is still maintained (switch S3 is closed) and  
the connections to the fault-detection circuit are open  
(switches S1 and S2).  
pin within t  
of the falling edge of CS. Bits D[30:18]  
DV  
contain the converted temperature in the order of MSB  
to LSB, and are presented to the SO pin within t of the  
D0  
falling edge of SCK. Bit D16 is normally low and goes  
high when the thermocouple input is open or shorted to  
When executing the temperature conversion of the  
external thermocouple, the connections to the internal  
fault-detection circuit are opened (switches S1 and S2 in  
the Block Diagram) and the switch connecting the cold-  
junction compensation circuit is opened (switch S5). The  
internal ground reference connection (switch S3) and  
the connection to the ADC (switch S4) are closed. This  
allows the ADC to process the voltage detected across  
the T+ and T- terminals.  
GND or V . The reference junction temperature data  
CC  
begins with D15. CS can be taꢀen high at any point while  
clocꢀing out conversion data. If T+ and T- are uncon-  
nected, the thermocouple temperature sign bit (D31) is  
0, and the remainder of the thermocouple temperature  
value (D[30:18]) is 1.  
Figure 1 and Figure 2 show the serial-interface timing  
and order. Table 2 and Table 3 show the SO output bit  
weights and functions.  
����������������������������������������������������������������� Maxim Integrated Products  
9
MAX31855  
Cold-Junction Compensated  
Thermocouple-to-Digital Converter  
Table 2. Memory Map—Bit Weights and Functions  
14-BIT THERMOCOUPLE  
TEMPERATURE DATA  
FAULT  
BIT  
12-BIT INTERNAL TEMPERATURE  
DATA  
SCV  
BIT  
SCG  
BIT  
OC  
BIT  
RES  
RES  
BIT  
D31  
Sign  
D30  
D18  
D17  
D16  
D15  
Sign  
D14  
D4  
D3  
D2  
D1  
D0  
1 =  
Short  
to  
1 =  
Short  
to  
MSB  
1 =  
10  
-2  
-4  
MSB 2  
LSB 2  
1 =  
LSB 2  
6
VALUE  
Reserved  
2
Reserved  
Open  
Circuit  
(1024NC)  
(0.25NC)  
Fault  
(0.0625NC)  
(64NC)  
V
GND  
CC  
Table 3. Memory Map—Descriptions  
BIT  
D[31:18]  
D17  
NAME  
DESCRIPTION  
14-Bit Thermocouple  
Temperature Data  
These bits contain the signed 14-bit thermocouple temperature value. See Table 4.  
This bit always reads 0.  
Reserved  
This bit reads at 1 when any of the SCV, SCG, or OC faults are active. Default value  
is 0.  
D16  
Fault  
12-Bit Internal Temperature  
Data  
These bits contain the signed 12-bit value of the reference junction temperature.  
See Table 5.  
D[15:4]  
D3  
D2  
D1  
D0  
Reserved  
SCV Fault  
SCG Fault  
OC Fault  
This bit always reads 0.  
This bit is a 1 when the thermocouple is short-circuited to V . Default value is 0.  
CC  
This bit is a 1 when the thermocouple is short-circuited to GND. Default value is 0.  
This bit is a 1 when the thermocouple is open (no connections). Default value is 0.  
Table 4. Thermocouple Temperature Data  
Format  
Table 5. Reference Junction Temperature  
Data Format  
TEMPERATURE  
DIGITAL OUTPUT  
(D[31:18])  
TEMPERATURE  
DIGITAL OUTPUT  
(D[15:4])  
(NC)  
(NC)  
+1600.00  
+1000.00  
+100.75  
+25.00  
0.00  
0110 0100 0000 00  
0011 1110 1000 00  
0000 0110 0100 11  
0000 0001 1001 00  
0000 0000 0000 00  
1111 1111 1111 11  
1111 1111 1111 00  
1111 0000 0110 00  
+127.0000  
+100.5625  
+25.0000  
0.0000  
0111 1111 0000  
0110 0100 1001  
0001 1001 0000  
0000 0000 0000  
1111 1111 1111  
1111 1111 0000  
1110 1100 0000  
1100 1001 0000  
-0.0625  
-0.25  
-1.0000  
-1.00  
-20.0000  
-55.0000  
-250.00  
Note: The practical temperature ranges vary with the  
thermocouple type.  
���������������������������������������������������������������� Maxim Integrated Products 10  
MAX31855  
Cold-Junction Compensated  
Thermocouple-to-Digital Converter  
The thermocouple system’s accuracy can also be  
Applications Information  
improved by following these precautions:  
Noise Considerations  
Because of the small signal levels involved, thermocou-  
ple temperature measurement is susceptible to power-  
supply coupled noise. The effects of power-supply noise  
can be minimized by placing a 0.1FF ceramic bypass  
•ꢀ Useꢀtheꢀlargestꢀwireꢀpossibleꢀthatꢀdoesꢀnotꢀshuntꢀheatꢀ  
away from the measurement area.  
•ꢀ Ifꢀ aꢀ smallꢀ wireꢀ isꢀ required,ꢀ useꢀ itꢀ onlyꢀ inꢀ theꢀ regionꢀ  
of the measurement, and use extension wire for the  
region with no temperature gradient.  
capacitor close to the V  
pin of the device and to GND.  
CC  
•ꢀ Avoidꢀ mechanicalꢀ stressꢀ andꢀ vibration,ꢀ whichꢀ couldꢀ  
The input amplifier is a low-noise amplifier designed to  
enable high-precision input sensing. Keep the thermo-  
couple and connecting wires away from electrical noise  
sources. It is strongly recommended to add a 10nF  
ceramic surface-mount differential capacitor, placed  
across the T+ and T- pins, in order to filter noise on the  
thermocouple lines.  
strain the wires.  
•ꢀ Whenusinglongthermocouplewires,useatwistedꢀ  
pair extension wire.  
•ꢀ Avoidꢀsteepꢀtemperatureꢀgradients.  
•ꢀ Trytousethethermocouplewirewellwithinitstem-  
perature rating.  
Thermal Considerations  
Self-heating degrades the device’s temperature measure-  
ment accuracy in some applications. The magnitude of the  
temperature errors depends on the thermal conductivity  
of the device pacꢀage, the mounting technique, and the  
effects of airflow. Use a large ground plane to improve the  
device’s temperature measurement accuracy.  
•ꢀ Usethepropersheathingmaterialinhostileenviron-  
ments to protect the thermocouple wire.  
•ꢀ Useꢀextensionꢀwireꢀonlyꢀatꢀlowꢀtemperaturesꢀandꢀonlyꢀ  
in regions of small gradients.  
•ꢀ Keepꢀanꢀeventꢀlogꢀandꢀaꢀcontinuousꢀrecordꢀofꢀthermo-  
couple resistance.  
���������������������������������������������������������������� Maxim Integrated Products 11  
MAX31855  
Cold-Junction Compensated  
Thermocouple-to-Digital Converter  
Ordering Information  
PART  
MAX31855KASA+  
MAX31855KASA+T  
MAX31855JASA+  
MAX31855JASA+T  
MAX31855NASA+  
MAX31855NASA+T  
MAX31855SASA+  
MAX31855SASA+T  
MAX31855TASA+  
MAX31855TASA+T  
MAX31855EASA+  
MAX31855EASA+T  
MAX31855RASA+  
MAX31855RASA+T  
THERMOCOUPLE TYPE  
MEASURED TEMP RANGE  
-200NC to +1350NC  
-200NC to +1350NC  
-40NC to +750NC  
PIN-PACKAGE  
8 SO  
K
K
J
8 SO  
8 SO  
J
-40NC to +750NC  
8 SO  
N
N
S
S
T
-200NC to + 1300NC  
-200NC to + 1300NC  
+50NC to +1600NC  
+50NC to +1600NC  
-250NC to +400NC  
-250NC to +400NC  
-40NC to +900NC  
8 SO  
8 SO  
8 SO  
8 SO  
8 SO  
T
8 SO  
E
E
R
R
8 SO  
-40NC to +900NC  
8 SO  
-50NC to +1770NC  
-50NC to +1770NC  
8 SO  
8 SO  
Note: All devices are specified over the -40°C to +125°C operating temperature range.  
+Denotes a lead(Pb)-free/RoHS-compliant package.  
T = Tape and reel.  
Package Information  
For the latest pacꢀage outline information and land patterns (footprints), go to www.maxim-ic.com/packages. Note that a “+”, “#”, or  
“-” in the pacꢀage code indicates RoHS status only. Pacꢀage drawings may show a different suffix character, but the drawing pertains  
to the pacꢀage regardless of RoHS status.  
PACKAGE TYPE  
PACKAGE CODE  
OUTLINE NO.  
21-0041  
LAND PATTERN NO.  
90-0096  
8 SO  
S8+4  
���������������������������������������������������������������� Maxim Integrated Products 12  
MAX31855  
Cold-Junction Compensated  
Thermocouple-to-Digital Converter  
Revision History  
REVISION REVISION  
PAGES  
DESCRIPTION  
CHANGED  
NUMBER  
DATE  
0
1
3/11  
Initial release  
Corrected ESD protection value; added “S” and “R” type specifications  
11/11  
1, 2, 3, 8, 12  
Corrected the thermocouple temperature conditions in the Thermal Characteristics  
table and Table 1; added clarification to the Serial Interface section to help users  
better understand how to communicate with the device; added a recommendation to  
add a 10nF differential capacitor to the T+/T- pins in the Noise Considerations section  
2
2/12  
3, 8, 9, 11  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied.  
Maxim reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits) shown in the Electrical  
Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.  
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
13  
©
2012 Maxim Integrated Products  
Maxim is a registered trademarꢀ of Maxim Integrated Products, Inc.  

相关型号:

MAX31855TASA

Cold-Junction Compensated Thermocouple-to-Digital Converter
MAXIM

MAX31855TASA+

Cold-Junction Compensated Thermocouple-to-Digital Converter
MAXIM

MAX31855TASA+T

Cold-Junction Compensated Thermocouple-to-Digital Converter
MAXIM

MAX31855_1111

Cold-Junction Compensated Thermocouple-to-Digital Converter
MAXIM

MAX31855_12

Cold-Junction Compensated Thermocouple-to-Digital Converter
MAXIM

MAX31855_V01

Cold-Junction Compensated Thermocouple-to-Digital Converter
MAXIM

MAX31856MUD+

Analog Circuit, 1 Func, PDSO14, ROHS COMPLIANT, TSSOP-14
MAXIM

MAX3185CAP

【15kV ESD-Protected, EMC-Compliant, 230kbps RS-232 Serial Port for Motherboards/Desktop PCs
MAXIM

MAX3185CAP+

Line Transceiver, 1 Func, 3 Driver, 5 Rcvr, BICMOS, PDSO20, 0.200 INCH, 0.65 MM PITCH, SSOP-20
MAXIM

MAX3185CAP+T

Line Transceiver, 1 Func, 3 Driver, 5 Rcvr, BICMOS, PDSO20, 0.200 INCH, 0.65 MM PITCH, SSOP-20
MAXIM

MAX3185CAPT

Line Transceiver, 1 Func, 3 Driver, 5 Rcvr, BICMOS, PDSO20, 0.200 INCH, 0.65 MM PITCH, SSOP-20
MAXIM

MAX3185CWP

【15kV ESD-Protected, EMC-Compliant, 230kbps RS-232 Serial Port for Motherboards/Desktop PCs
MAXIM