MAX3228EBV-T [MAXIM]

Line Transceiver, 2 Func, 2 Driver, 2 Rcvr, CMOS, PBGA30, UCSP-30;
MAX3228EBV-T
型号: MAX3228EBV-T
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Line Transceiver, 2 Func, 2 Driver, 2 Rcvr, CMOS, PBGA30, UCSP-30

文件: 总14页 (文件大小:238K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-2140; Rev 0; 8/01  
+2.5V to +5.5V RS-232 Transceivers  
in UCSP  
General Description  
Features  
The MAX3228/MAX3229 are +2.5V to +5.5V powered  
EIA/TIA-232 and V.28/V.24 communications interfaces  
with low power requirements, and high data-rate capa-  
bilities, in a chip-scale package (UCSP™).  
o 6 5 Chip-Scale Packaging (UCSP)  
o 1µA Low-Power AutoShutdown  
o 250kbps Guaranteed Data Rate  
The MAX3228/MAX3229 achieve a 1µA supply current  
with Maxim’s AutoShutdown™ feature. They save  
power without changes to existing BIOS or operating  
systems by entering low-power shutdown mode when  
the RS-232 cable is disconnected, or when the trans-  
mitters of the connected peripherals are off.  
o Meets EIA/TIA-232 Specifications Down to +3.1V  
o RS-232 Compatible to +2.5V Allows Operation  
from Single Li+ Cell  
o Small 0.1µF Capacitors  
o Configurable Logic Levels  
The transceivers have a proprietary low-dropout trans-  
mitter output stage, delivering RS-232 compliant perfor-  
mance from a +3.1V to +5.5V supply, and RS-232  
compatible performance with a supply voltage as low  
as +2.5V. The dual charge pump requires only four  
small 0.1µF capacitors for operation from a +3.0V sup-  
ply. Each device is guaranteed to run at data rates of  
250kbps while maintaining RS-232 output levels.  
Ordering Information  
PIN-  
PACKAGE  
PART  
TEMP. RANGE  
MAX3228EBV  
MAX3229EBV  
-40°C to +85°C  
-40°C to +85°C  
6 5 UCSP*  
6 5 UCSP*  
The MAX3228/MAX3229 offer a separate power-supply  
input for the logic interface, allowing configurable logic  
levels on the receiver outputs and transmitter inputs.  
*Requires solder temperature profile described in the Absolute  
Maximum Ratings section.  
*UCSP reliability is integrally linked to the user’s assembly  
methods, circuit board material, and environment. Refer to the  
UCSP Reliabilitly Notice in the UCSP Reliability section of this  
data sheet for more information.  
Operating over a +1.65V to V  
range, V provides the  
L
CC  
MAX3228/MAX3229 compatibility with multiple logic  
families.  
The MAX3229 contains one receiver and one transmit-  
ter. The MAX3228 contains two receivers and two  
transmitters. The MAX3228/MAX3229 are available in  
tiny chip-scale packaging and are specified across the  
extended industrial temperature range of -40°C to  
+85°C.  
Typical Operating Circuits  
2.5V TO 5.5V 1.65V TO 5.5V  
0.1µF  
C
0.1µF  
BYPASS  
A1  
A5  
V
V
C1  
CC  
B1  
A4  
L
C1+  
V+  
C3  
0.1µF  
C1  
0.1µF  
Applications  
D1  
A2  
C1-  
C2+  
MAX3228  
V-  
Personal Digital Assistants  
Cell Phone Data Lump Cables  
Set-Top Boxes  
C2  
0.1µF  
C4  
0.1µF  
A3  
V
L
C2-  
T1OUT  
A6 T1IN  
E3  
RS-232  
OUTPUTS  
TTL/CMOS  
INPUTS  
V
L
B6  
T2IN  
T2OUT E4  
Hand-Held Devices  
Cell Phones  
V
L
L
R1IN  
D6 R1OUT  
E6  
5kΩ  
TTL/CMOS  
OUTPUTS  
RS-232  
INPUTS  
V
Typical Operating Circuits continued at end of data sheet.  
Pin Configurations appear at end of data sheet.  
C6  
R2OUT  
R2IN E5  
5kΩ  
V
V
L
L
TO POWER-  
MANAGEMENT  
UNIT  
UCSP is a trademark of Maxim Integrated Products, Inc.  
E2  
INVALID  
20µA  
20µA  
FORCEON  
AutoShutdown is a trademark of Maxim Integrated Products, Inc.  
FORCEOFF C5  
B5  
V
L
GND  
E1  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
+2.5V to +5.5V RS-232 Transceivers  
in UCSP  
ABSOLUTE MAXIMUM RATINGS  
CC  
V
to GND...........................................................-0.3V to +6.0V  
INVALID to GND......................................-0.3V to (V  
+ 0.3V)  
CC  
V+ to GND.............................................................-0.3V to +7.0V  
V- to GND ..............................................................+0.3V to -7.0V  
V+ to |V-| (Note 1) ................................................................+13V  
Short-Circuit Duration T OUT to GND........................Continuous  
_
Continuous Power Dissipation (T = +70°C)  
A
6 5 UCSP (derate 10.1mW/°C above T = +70°C)...805mW  
A
V to GND..............................................................-0.3V to +6.0V  
Operating Temperature Range ...........................-40°C to +85°C  
Junction Temperature......................................................+150°C  
Storage Temperature Range.............................-65°C to +150°C  
Bump Temperature (Soldering) (Note ±)  
Infrared (15s) ...............................................................+±00°C  
Vapor Phase (±0s) .......................................................+±15°C  
L
Input Voltages  
T IN, FORCEON, FORCEOFF to GND.......-0.3V to (V + 0.3V)  
L
_
R IN to GND .....................................................................±±5V  
_
Output Voltages  
T OUT to GND...............................................................±13.±V  
_
R OUT to GND...........................................-0.3V to (V + 0.3V)  
L
_
Note 1: V+ and V- can have maximum magnitudes of 7V, but their absolute difference cannot exceed 13V.  
Note 2: This device is constructed using a unique set of packaging techniques that impose a limit on the thermal profile the device  
can be exposed to during board level solder attach and rework. This limit permits only the use of the solder profiles recom-  
mended in the industry-standard specification, JEDEC 0±0A, paragraph 7.6, Table 3 for IR/VPR and convection reflow. Pre-  
heating is required. Hand or wave soldering is not allowed.  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(V  
= +±.5V to +5.5V, V = +1.65V to +5.5V, C1C4 = 0.1µF, tested at +3.3V ±10ꢀ, T = T  
to T  
. Typical values are at T =  
MAX A  
CC  
L
A
MIN  
+±5°C, unless otherwise noted.) (Note 3)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
DC CHARACTERISTICS  
V Input Voltage Range  
V
1.65  
V
CC  
+ 0.3  
10  
V
L
L
FORCEON = GND  
µA  
FORCEOFF = V , all R open  
L
IN  
V
Supply Current,  
CC  
I
CC  
CC  
AutoShutdown  
FORCEOFF = GND  
10  
1
µA  
FORCEON, FORCEOFF floating  
mA  
V
Supply Current,  
FORCEON = FORCEOFF = V  
no load  
CC  
L
I
0.3  
1
mA  
AutoShutdown Disabled  
FORCEON or FORCEOFF = GND, V  
V = +5v  
L
=
CC  
85  
1
V Supply Current  
L
I
µA  
L
FORCEON, FORCEOFF floating  
LOGIC INPUTS  
Pullup Currents  
FORCEON, FORCEOFF to V  
±0  
µA  
V
L
Input Logic Low  
T_IN, FORCEON, FORCEOFF  
T_IN, FORCEON, FORCEOFF  
0.4  
±1  
Input Logic High  
0.66  
V
V
L
Transmitter Input Hysteresis  
Input Leakage Current  
RECEIVER OUTPUTS  
0.5  
V
T_IN  
±0.01  
µA  
R_OUT, receivers disabled, FORCEOFF =  
GND or in AutoShutdown  
Output Leakage Currents  
Output Voltage Low  
±10  
0.4  
µA  
V
I
= 0.8mA  
OUT  
Output Voltage High  
I
= -0.5mA  
V - 0.4 V - 0.1  
V
OUT  
L
L
2
_______________________________________________________________________________________  
+2.5V to +5.5V RS-232 Transceivers  
in UCSP  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= +±.5V to +5.5V, V = +1.65V to +5.5V, C1C4 = 0.1µF, tested at +3.3V ±10ꢀ, T = T  
to T  
. Typical values are at T =  
MAX A  
CC  
L
A
MIN  
+±5°C, unless otherwise noted.) (Note 3)  
PARAMETER  
RECEIVER INPUTS  
Input Voltage Range  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
-±5  
0.6  
0.8  
+±5  
V
V
V
V
V
V
= 3.3V  
= 5.0V  
= 3.3V  
= 5.0V  
1.±  
1.7  
1.3  
1.8  
0.5  
5
CC  
CC  
CC  
CC  
Input Threshold Low  
Input Threshold High  
T
T
= +±5°C  
= +±5°C  
A
A
±.4  
±.4  
V
Input Hysteresis  
Input Resistance  
AUTOSHUTDOWN  
V
3
7
kΩ  
Positive threshold  
Negative threshold  
±.7  
Receiver Input Threshold to  
INVALID Output High  
Figure 3a  
V
-±.7  
-0.3  
Receiver Input Threshold to  
INVALID Output Low  
0.3  
V
Receiver Positive or Negative  
Threshold to INVALID High  
t
V
V
V
= +5.0V, Figure 3b  
= +5.0V, Figure 3b  
= +5.0V, Figure 3b  
1
µs  
µs  
µs  
INVH  
CC  
CC  
CC  
Receiver Positive or Negative  
Threshold to INVALID Low  
t
30  
INVL  
Receiver Edge to Transmitters  
Enabled  
t
100  
WU  
TRANSMITTER OUTPUTS  
V
(V  
Mode Switch Point  
Falling)  
CC  
T_OUT = ±5.0V to ±3.7V  
T_OUT = ±3.7V to ±5.0V  
±.85  
3.3  
3.1  
3.7  
V
CC  
V
(V  
Mode Switch Point  
Rising)  
CC  
V
CC  
V
CC  
Mode Switch Point Hysteresis  
400  
mV  
V
= +3.1V to  
CC  
±5  
±5.4  
All transmitter  
outputs loaded with  
3kto ground.  
+5.5V, V  
falling  
CC  
Output Voltage Swing  
V
V
= +±.5V to  
CC  
±3.7  
300  
+±.9V  
Output Resistance  
V
= V+ = V- = 0, T_OUT = ±±V  
10M  
CC  
Output Short-Circuit Current  
Output Leakage Current  
INVALID OUTPUT  
±60  
±±5  
mA  
µA  
T_OUT = ±1±V, transmitters disabled  
Output Voltage Low  
Output Voltage High  
I
I
= 0.8mA  
= -0.5mA  
0.4  
V
V
OUT  
OUT  
V
CC  
- 0.4 V  
- 0.1  
CC  
_______________________________________________________________________________________  
3
+2.5V to +5.5V RS-232 Transceivers  
in UCSP  
TIMING CHARACTERISTICS  
(V  
= +±.5V to +5.5V, V = +1.65V to +5.5V, C1C4 = 0.1µF, tested at +3.3V ±10ꢀ, T = T  
to T  
. Typical values are at T =  
MAX A  
CC  
L
A
MIN  
+±5°C, unless otherwise noted.) (Note 3)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
R = 3k, C = 1000pF, one transmitter  
switching  
L
L
Maximum Data Rate  
±50  
kbps  
µs  
Receiver input to receiver output,  
C = 150pF  
Receiver Propagation Delay  
0.15  
L
Receiver Output Enable-Time  
Receiver Output Disable-Time  
Transmitter Skew  
V
V
= V = +5V  
±00  
±00  
100  
50  
ns  
ns  
ns  
ns  
CC  
CC  
L
= V = +5V  
L
| t  
| t  
- t  
|
|
PHL PLH  
Receiver Skew  
- t  
PHL PLH  
R = 3kto 7k, C = 150pF to  
L
L
Transition Region Slew Rate  
6
30  
V/µs  
1000pF, T = +±5°C  
A
Note 3: V  
must be greater than V .  
L
CC  
Typical Operating Characteristics  
(V  
= +3.3V, ±50kbps data rate, 0.1µF capacitors, all transmitters loaded with 3kand C , T = +±5°C, unless otherwise noted.)  
CC  
L
A
TRANSMITTER OUTPUT VOLTAGE  
vs. LOAD CAPACITANCE  
OPERATING SUPPLY CURRENT  
vs. LOAD CAPACITANCE (MAX3229)  
SLEW RATE vs. LOAD CAPACITANCE  
20  
18  
16  
14  
12  
10  
8
6
30  
25  
20  
15  
10  
5
V
CC  
RISING  
4
2
V
OH  
250kbps  
V
CC  
= 5.5V  
0
V
OL  
-2  
-4  
-6  
6
4
V
CC  
= 2.5V  
2
20kbps  
0
0
0
500 1000 1500 2000 2500 3000  
LOAD CAPACITANCE (pF)  
0
500 1000 1500 2000 2500 3000  
LOAD CAPACITANCE (pF)  
0
500 1000 1500 2000 2500 3000  
LOAD CAPACITANCE (pF)  
4
_______________________________________________________________________________________  
+2.5V to +5.5V RS-232 Transceivers  
in UCSP  
Typical Operating Characteristics (continued)  
(V  
= +3.3V, ±50kbps data rate, 0.1µF capacitors, all transmitters loaded with 3kand C , T = +±5°C, unless otherwise noted.)  
L A  
CC  
OPERATING SUPPLY CURRENT  
vs. SUPPLY VOLTAGE (MAX3229)  
TRANSMITTER OUTPUT VOLTAGE vs.  
SUPPLY VOLTAGE (V RISING)  
TRANSMITTER OUTPUT VOLTAGE vs.  
SUPPLY VOLTAGE (V FALLING)  
CC  
CC  
20  
18  
16  
14  
12  
10  
8
10  
8
10  
8
6
6
4
4
V
OH  
V
OH  
2
2
0
0
-2  
-4  
-6  
-8  
-2  
-4  
-6  
-8  
V
V
OL  
OL  
6
4
2
0
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
Pin Description  
PIN  
NAME  
FUNCTION  
MAX3228  
MAX3229  
A1  
A±  
A3  
A4  
A1  
A±  
A3  
A4  
V
+±.5V to +5.5V Supply Voltage  
CC  
C±+  
C±-  
V-  
Positive Terminal of Inverting Charge-Pump Capacitor  
Negative Terminal of Inverting Charge-Pump Capacitor  
-5.5V/-4.0V Generated by Charge Pump  
Logic-Level Input for Receiver Outputs and Transmitter Inputs. Connect V to the  
L
A5  
A6, B6  
B1  
A5  
A6  
B1  
V
L
system logic supply voltage or V  
if no logic supply is required.  
CC  
T_IN  
V+  
Transmitter Input(s)  
+5.5V/+4.0V Generated by Charge Pump. If charge pump is generating +4.0V, the part  
has switched from RS-±3± compliant to RS-±3± compatible mode.  
B±, B3, B4, B±, B3, B4,  
C±, C3, C4, C±, C3, C4,  
D±, D3, D4, D±, D3, D4,  
N.C.  
No Connection. These locations are not populated with solder bumps.  
D5  
D5  
FORCEON Input, Active-High. Drive FORCEON high to override automatic circuitry,  
keeping transmitters and charge pumps on. Pulls itself high internally if not connected.  
B5  
B5  
FORCEON  
B6, D6,  
E4, E6  
No Connection. These locations are populated with solder bumps, but are electrically  
isolated.  
N.C.  
C1+  
C1  
C1  
Positive Terminal of Positive Regulated Charge-Pump Capacitor  
_______________________________________________________________________________________  
5
+2.5V to +5.5V RS-232 Transceivers  
in UCSP  
Pin Description (continued)  
PIN  
NAME  
FUNCTION  
MAX3228  
MAX3229  
FORCEOFF Input, Active-Low. Drive FORCEOFF low to shut down transmitters,  
receivers, and on-board charge pump. This overrides all automatic circuitry and  
FORCEON. Pulls itself high internally if not connected.  
C5  
C5  
FORCEOFF  
C6, D6  
D1  
C6  
D1  
E1  
R_OUT  
C1-  
Receiver Output(s)  
Negative Terminal of Positive Regulated Charge-Pump Capacitor.  
Ground  
E1  
GND  
Output of Valid Signal Detector. INVALID is enabled low if no valid RS-±3± level is  
present on any receiver input.  
E±  
E±  
INVALID  
E3, E4  
E5, E6  
E3  
E5  
T_OUT  
R_IN  
RS-±3± Transmitter Output(s)  
RS-±3± Receiver Input(s)  
Table 1. Operating Supply Options  
SYSTEM SUPPLY (V)  
1 Li+ Cell  
V
(V)  
V (V)  
L
RS-232 MODE  
CC  
+±.4 to +4.±  
+±.4 to +3.8  
Regulated System Voltage  
Regulated System Voltage  
Compliant/Compatible  
Compliant/Compatible  
3 NiCad/NiMH Cells  
Regulated Voltage Only  
+3.0 to +5.5  
+±.5 to +3.0  
+3.0 to +5.5  
+±.5 to +3.0  
Compliant  
(V  
CC  
falling)  
Regulated Voltage Only  
(V falling)  
Compatible  
CC  
Voltage Generation in the  
Switchover Region  
Detailed Description  
Dual-Mode Regulated Charge-Pump  
Voltage Converter  
The MAX3±±8/MAX3±±9 include a switchover circuit  
between these two modes that have approximately  
400mV of hysteresis around the switchover point. The  
hysteresis is shown in Figure 1. This large hysteresis  
eliminates mode changes due to power-supply  
bounce.  
The MAX3±±8/MAX3±±9 internal power supply consists  
of a dual-mode regulated charge pump. For supply  
voltages above +3.7V, the charge pump will generate  
+5.5V at V+ and -5.5V at V-. The charge pumps oper-  
ate in a discontinuous mode. If the output voltages are  
less than ±5.5V, the charge pumps are enabled, if the  
output voltages exceed ±5.5V, the charge pumps are  
disabled.  
V
CC  
For supply voltages below +±.85V, the charge pump  
will generate +4.0V at V+ and -4.0V at V-. The charge  
pumps operate in a discontinuous mode. If the output  
voltages are less than ±4.0V, the charge pumps are  
enabled, if the output voltages exceed ±4.0V, the  
charge pumps are disabled.  
4V  
0
V+  
6V  
Each charge pump requires a flying capacitor (C1, C±)  
and a reservoir capacitor (C3, C4) to generate the V+  
and V- supply voltages.  
0
20ms/div  
Figure 1. V+ Switchover for Changing V  
CC  
6
_______________________________________________________________________________________  
+2.5V to +5.5V RS-232 Transceivers  
in UCSP  
+2.7V  
+0.3V  
TO MAX322 _  
TO MAX322 _  
POWER SUPPLY  
R_IN  
POWER SUPPLY  
R_IN  
-0.3V  
30µs  
COUNTER  
R
AND TRANSMITTERS  
30µs  
COUNTER  
R
INVALID  
INVALID  
-2.7V  
*TRANSMITTERS ARE ENABLED IF:  
*TRANSMITTERS ARE DISABLED, REDUCING SUPPLY CURRENT TO 1µA IF  
ALL RECEIVER INPUTS ARE BETWEEN +0.3V AND -0.3V FOR AT LEAST 30µs.  
ANY RECEIVER INPUT IS GREATER THAN +2.7V OR LESS THAN -2.7V.  
ANY RECEIVER INPUT HAS BEEN BETWEEN +0.3V AND -0.3V FOR LESS THAN 30µs.  
Figure 2a. MAX322_ Entering 1µA Supply Mode via  
AutoShutdown  
Figure 2b. MAX322_ with Transmitters Enabled Using  
AutoShutdown  
For example, a three-cell NiMh battery system starts at  
CC  
the power is off, the MAX3±±8/MAX3±±9 permit the  
transmitter outputs to be driven up to ±1±V.  
V
= +3.6V, and the charge pump will generate an  
output voltage of ±5.5V. As the battery discharges, the  
MAX3±±8/MAX3±±9 maintain the outputs in regulation  
until the battery voltage drops below +3.1V. Then the  
output regulation points change to ±4.0V  
The transmitter inputs do not have pullup resistors.  
Connect unused inputs to GND or V .  
L
RS-232 Receivers  
The MAX3±±8/MAX3±±9 receivers convert RS-±3± sig-  
nals to logic output levels. All receivers have inverting  
three-state outputs and can be active or inactive. In  
shutdown (FORCEOFF = low) or in AutoShutdown, the  
MAX3±±8/MAX3±±9 receivers are in a high-impedance  
state (Table 3).  
When V  
is rising, the charge pump will generate an  
CC  
output voltage of ±4.0V, while V  
is between +±.5V  
CC  
and +3.5V. When V  
rises above the switchover volt-  
CC  
age of +3.5V, the charge pump switches modes to  
generate an output of ±5.5V.  
Table 1 shows different supply schemes and their  
operating voltage ranges.  
The MAX3±±8/MAX3±±9 feature an INVALID output that  
is enabled low when no valid RS-±3± signal levels have  
been detected on any receiver inputs. INVALID is func-  
tional in any mode (Figures ± and 3).  
RS-232 Transmitters  
The transmitters are inverting level translators that con-  
vert CMOS-logic levels to RS-±3± levels. The  
MAX3±±8/MAX3±±9 will automatically reduce the RS-  
±3± compliant levels (±5.5V) to RS-±3± compatible lev-  
els (±4.0V) when V  
falls below approximately +3.1V.  
CC  
V
L
The reduced levels also reduce supply current require-  
ments, extending battery life. Built-in hysteresis of  
approximately 400mV for V  
ensures that the RS-±3±  
CC  
FORCEOFF  
output levels do not change if V  
is noisy or has a  
CC  
POWER DOWN  
V
L
sudden current draw causing the supply voltage to  
drop slightly. The outputs will return to RS-±3± compli-  
V
CC  
ant levels (±5.5V) when V  
+3.5V.  
rises above approximately  
CC  
FORCEON  
INVALID  
The MAX3±±8/MAX3±±9 transmitters guarantee a  
±50kbps data rate with worst-case loads of 3kin par-  
allel with 1000pF.  
INVALID IS AN INTERNALLY GENERATED SIGNAL  
THAT IS USED BY THE AUTOSHUTDOWN LOGIC  
AND APPEARS AS AN OUTPUT OF THE DEVICE.  
When FORCEOFF is driven to ground, the transmitters  
and receivers are disabled and the outputs become  
high impedance. When the AutoShutdown circuitry  
senses that all receiver and transmitter inputs are inac-  
tive for more than 30µs, the transmitters are disabled  
and the outputs go to a high-impedance state. When  
POWER DOWN IS ONLY AN INTERNAL SIGNAL.  
IT CONTROLS THE OPERATIONAL STATUS OF  
THE TRANSMITTERS AND THE POWER SUPPLIES.  
Figure 2c. MAX322_ AutoShutdown Logic  
_______________________________________________________________________________________  
7
+2.5V to +5.5V RS-232 Transceivers  
in UCSP  
AutoShutdown  
The MAX3±±8/MAX3±±9 achieve a 1µA supply current  
with Maxims AutoShutdown feature, which operates  
when FORCEON is low and FORCEOFF is high. When  
these devices sense no valid signal levels on all receiv-  
er inputs for 30µs, the on-board charge pump and dri-  
TRANSMITTERS ENABLED, INVALID HIGH  
+2.7V  
INDETERMINATE  
+0.3V  
0
AUTOSHUTDOWN, TRANSMITTERS DISABLED,  
vers are shut off, reducing V  
supply current to 1µA.  
CC  
1µA SUPPLY CURRENT, INVALID LOW  
This occurs if the RS-±3± cable is disconnected or the  
connected peripheral transmitters are turned off. The  
device turns on again when a valid level is applied to  
any RS-±3± receiver input. As a result, the system  
saves power without changes to the existing BIOS or  
operating system.  
-0.3V  
INDETERMINATE  
-2.7V  
TRANSMITTERS ENABLED, INVALID HIGH  
Table 3 and Figure ±c summarize the MAX3±±8/  
MAX3±±9 operating modes. FORCEON and FORCEOFF  
override AutoShutdown. When neither control is assert-  
ed, the IC selects between these states automatically,  
based on receiver input levels. Figures ±a, ±b, and 3a  
depict valid and invalid RS-±3± receiver levels. Figures  
3a and 3b show the input levels and timing diagram for  
AutoShutdown operation.  
a)  
RECEIVER  
INPUT  
VOLTAGE  
(V)  
INVALID  
REGION  
A system with AutoShutdown may need time to wake  
up. Figure 4 shows a circuit that forces the transmitters  
on for 100ms, allowing enough time for the other sys-  
tem to realize that the MAX3±±8/MAX3±±9 are active. If  
the other system transmits valid RS-±3± signals within  
that time, the RS-±3± ports on both systems remain  
enabled.  
V
CC  
INVALID  
OUTPUT  
(V)  
0
t
t
INVH  
INVL  
t
WU  
V+  
V
CC  
0
When shut down, the devicescharge pumps are off,  
V+ is pulled to V , V- is pulled to ground, and the  
CC  
V-  
transmitter outputs are high-impedance. The time  
required to exit shutdown is typically 100µs (Figure 3b).  
b)  
FORCEON and FORCEOFF  
In case FORCEON and FORCEOFF are inaccessible,  
these pins have 60(typ) pullup resistors connected to  
Figure 3. AutoShutdown Trip Levels  
V (Table ±). Therefore, if FORCEON and FORCEOFF  
L
are not connected, the MAX3±±8 and MAX3±±9 will  
always be active. Pulling these pins to ground will draw  
POWER-  
MANAGEMENT  
UNIT  
MASTER SHDN LINE  
current from the V supply. This current can be calcu-  
L
0.1µF  
1MΩ  
lated from the voltage supplied at V and the 60kΩ  
L
(typ) pullup resistor.  
FORCEOFF FORCEON  
V Logic Supply Input  
L
Unlike other RS-±3± interface devices, where the  
MAX3228  
MAX3229  
receiver outputs swing between 0 and V , the  
CC  
Table 2. Power-On Default States  
Figure 4. AutoShutdown with Initial Turn-On to Wake Up a System  
PIN NAME  
FORCEON  
FORCEOFF  
POWER-ON DEFAULT  
MECHANISM  
Internal pullup  
Internal pullup  
High  
High  
8
_______________________________________________________________________________________  
+2.5V to +5.5V RS-232 Transceivers  
in UCSP  
Table 3. Output Control Truth Table  
TRANSCEIVER STATUS  
Shutdown (AutoShutdown)  
Shutdown (Forced Off)  
FORCEON  
Low  
FORCEOFF  
High  
RECEIVER STATUS  
High-Z  
INVALID  
L
X
Low  
High-Z  
Normal Operation (Forced On)  
Normal Operation (AutoShutdown)  
High  
Low  
High  
Active  
High  
Active  
H
X = Don’t care.  
† = INVALID output state is determined by R_IN input levels.  
MAX3±±8/MAX3±±9 feature a separate logic supply  
transmitter outputs and slightly reduces power con-  
sumption. C±, C3, and C4 can be increased without  
changing C1s value. However, do not increase C1  
without also increasing the values of C2, C3, and C4  
to maintain the proper ratios (C1 to the other capac-  
itors).  
input (V ) that sets V  
for the receiver and INVALID  
OH  
L
outputs. The transmitter inputs (T_IN), FORCEON and  
FORCEOFF, are also referred to V . This feature allows  
L
maximum flexibility in interfacing to different systems  
and logic levels. Connect V to the systems logic sup-  
L
ply voltage (+1.65V to +5.5V), and bypass it with a  
0.1µF capacitor to GND. If the logic supply is the same  
When using the minimum required capacitor values,  
make sure the capacitor value does not degrade  
excessively with temperature. If in doubt, use capaci-  
tors with a larger nominal value. The capacitors equiv-  
alent series resistance (ESR) usually rises at low  
temperatures and influences the amount of ripple on  
V+ and V-.  
as V , connect V to V . Always enable V before  
CC  
CC  
L
CC  
CC  
enabling the V supply. V  
equal to the V supply.  
must be greater than or  
L
L
Software-Controlled Shutdown  
If direct software control is desired, connect FORCEOFF  
and FORCEON together to disable AutoShutdown. The  
microcontroller then drives FORCEOFF and FORCEON  
like a SHDN input, INVALID can be used to alert the  
microcontroller to indicate serial data activity.  
Power-Supply Decoupling  
In most circumstances, a 0.1µF V  
bypass capacitor  
CC  
is adequate. In applications that are sensitive to power-  
supply noise, use a capacitor of the same value as the  
charge-pump capacitor C1. Connect bypass capaci-  
tors as close to the IC as possible.  
Applications Information  
Capacitor Selection  
The capacitor type used for C1C4 is not critical for  
proper operation; either polarized or nonpolarized  
capacitors may be used. However, ceramic chip  
capacitors with an X7R or X5R dielectric work best. The  
charge pump requires 0.1µF capacitors for 3.3V opera-  
tion. For other supply voltages, refer to Table 4 for  
required capacitor values. Do not use values smaller  
than those listed in Table 4. Increasing the capacitor  
values (e.g., by a factor of ±) reduces ripple on the  
5V/div  
FORCEON =  
FORCEOFF  
0
2V/div  
Table 4. Required Capacitor Values  
T
OUT  
0
V
(V)  
C1, C  
(µF)  
C2, C3, C4 (µF)  
CC  
BYPASS  
0.±±  
±.5 to 3.0  
3.0 to 3.6  
4.5 to 5.5  
3.0 to 5.5  
0.±±  
0.1  
0.33  
1
4µs/div  
0.1  
Figure 5. Transmitter Outputs Exiting Shutdown or Powering Up  
0.047  
0.±±  
_______________________________________________________________________________________  
9
+2.5V to +5.5V RS-232 Transceivers  
in UCSP  
V
CC  
V
L
5V  
T_IN  
0.1µF  
C1  
0.1µF  
0
5V  
V
CC  
V
L
C1+  
V+  
V-  
T_OUT  
C3  
0
C1-  
C2+  
-5V  
5V  
0
MAX3229  
C2  
C4  
R_OUT  
C2-  
V
L
L
T1IN  
T1OUT  
4µs/div  
1000pF  
V
Figure 7. Loopback Test Result at 120kbps  
R1IN  
R1OUT  
5kΩ  
5V  
TO POWER-  
MANAGEMENT UNIT  
T_IN  
INVALID  
0
FORCEON  
FORCEOFF  
V
L
5V  
GND  
T_OUT  
0
-5V  
5V  
0
Figure 6. Transmitter Loopback Test Circuit  
R_OUT  
Transmitter Outputs when  
Exiting Shutdown  
4µs/div  
Figure 5 shows a transmitter output when exiting shut-  
down mode. The transmitter is loaded with 3kin par-  
allel with 1000pF. The transmitter output displays no  
ringing or undesirable transients as it comes out of  
shutdown, and is enabled only when the magnitude of  
V- exceeds approximately -3V.  
Figure 8. Loopback Test Result at 250kbps  
cuit. Figure 7 shows a loopback test result at 1±0kbps,  
and Figure 8 shows the same test at ±50kbps. For  
Figure 7, the transmitter was driven at 1±0kbps into an  
RS-±3± load in parallel with 1000pF. For Figure 8, a sin-  
gle transmitter was driven at ±50kbps, and loaded with  
an RS-±3± receiver in parallel with 1000pF.  
High Data Rates  
The MAX3±±8/MAX3±±9 maintain the RS-±3± ±5.0V  
minimum transmitter output voltage even at high data  
rates. Figure 6 shows a transmitter loopback test cir-  
10 ______________________________________________________________________________________  
+2.5V to +5.5V RS-232 Transceivers  
in UCSP  
Table 5. Reliability Test Data  
NO. OF FAILURES PER  
SAMPLE SIZE  
TEST  
CONDITIONS  
DURATION  
-35°C to +85°C,  
-40°C to +100°C  
150 cycles,  
900 cycles  
0/10,  
0/±00  
Temperature Cycle  
Operating Life  
T
= +70°C  
±40hr  
±40hr  
±40hr  
0/10  
0/10  
0/10  
A
Moisture Resistance  
Low-Temperature Storage  
+±0°C to +60°C, 90ꢀ RH  
-±0°C  
Low-Temperature Operational  
-10°C  
±4hr  
0/10  
Solderability  
ESD  
8hr steam age  
0/15  
0/5  
±000V, Human Body Model  
High-Temperature Operating  
Life  
T = +150°C  
J
168hr  
0/45  
UCSP Reliability  
Typical Operating Circuits  
(continued)  
The UCSP represents a unique packaging form factor  
that may not perform equally to a packaged product  
through traditional mechanical reliability tests. CSP relia-  
bility is integrally linked to the users assembly methods,  
circuit board material, and usage environment. The user  
should closely review these areas when considering use  
of a CSP package. Performance through Operating Life  
Test and Moisture Resistance remains uncompromised  
as it is primarily determined by the wafer-fabrication  
process.  
2.5V TO 5.5V 1.65V TO 5.5V  
C
0.1µF  
0.1µF  
BYPASS  
A1  
A5  
V
V
C1  
CC  
B1  
A4  
L
C1+  
V+  
C3  
0.1µF  
C1  
0.1µF  
D1  
A2  
C1-  
C2+  
MAX3229  
V-  
C4  
C2  
0.1µF  
Mechanical stress performance is a greater considera-  
tion for a CSP package. CSPs are attached through  
direct solder contact to the users PC board, foregoing  
the inherent stress relief of a packaged product lead  
frame. Solder joint contact integrity must be consid-  
ered. Table 5 shows the testing done to characterize  
the CSP reliability performance. In conclusion, the  
UCSP is capable of performing reliably through envi-  
ronmental stresses as indicated by the results in the  
table. Additional usage data and recommendations are  
detailed in the UCSP application note, which can be  
found on Maxims website at www.maxim-ic.com.  
0.1µF  
A3  
A6  
V
L
C2-  
T1OUT  
T1IN  
E3  
E5  
V
L
RS-232  
TTL/CMOS  
R1IN  
C6 R1OUT  
5kΩ  
V
L
V
L
TO POWER-  
MANAGEMENT  
UNIT  
E2  
INVALID  
20µA  
FORCEON  
20µA  
FORCEOFF C5  
B5  
V
L
Chip Information  
TRANSISTOR COUNT: 698  
GND  
E1  
PROCESS TECHNOLOGY: CMOS  
______________________________________________________________________________________ 11  
+2.5V to +5.5V RS-232 Transceivers  
in UCSP  
Pin Configurations  
TOP VIEW  
C2+  
N.C.  
N.C.  
N.C.  
C2-  
N.C.  
N.C.  
N.C.  
A
V
V-  
V
T1IN  
CC  
L
V+  
B
N.C.  
N.C.  
FON  
T2IN  
C
FOFF  
R2OUT  
C1+  
C1-  
N.C.  
D
E
N.C.  
R1OUT  
INV  
2
R2IN  
5
R1IN  
6
GND  
1
T1OUT  
3
T2OUT  
4
MAX3228  
FON = FORCEON  
FOFF = FORCEOFF  
INV = INVALID  
12 ______________________________________________________________________________________  
+2.5V to +5.5V RS-232 Transceivers  
in UCSP  
Pin Configurations (continued)  
TOP VIEW  
C2+  
N.C.  
N.C.  
N.C.  
C2-  
N.C.  
N.C.  
N.C.  
A
V
V-  
V
T1IN  
CC  
L
V+  
B
N.C.  
N.C.  
FON  
N.C.  
C
FOFF  
R1OUT  
C1+  
C1-  
N.C.  
D
E
N.C.  
N.C.  
INV  
2
R1IN  
5
N.C.  
6
GND  
1
T1OUT  
3
N.C.  
4
MAX3229  
FON = FORCEON  
FOFF = FORCEOFF  
INV = INVALID  
______________________________________________________________________________________ 13  
+2.5V to +5.5V RS-232 Transceivers  
in UCSP  
Package Information  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
14 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
© ±001 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY