MAX3230E [MAXIM]

15kV ESD-Protected +2.5V to +5.5V RS-232 Transceivers in UCSP; 15kV ESD保护, + 2.5V至+ 5.5V的RS - 232收发器,UCSP封装
MAX3230E
型号: MAX3230E
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

15kV ESD-Protected +2.5V to +5.5V RS-232 Transceivers in UCSP
15kV ESD保护, + 2.5V至+ 5.5V的RS - 232收发器,UCSP封装

文件: 总15页 (文件大小:795K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-3250; Rev 0; 5/04  
1ꢀ5k EꢁDꢂ-rotected +2.ꢀk to +ꢀ.ꢀk  
Rꢁꢂ232 Transceivers in UCꢁ-  
General Description  
Features  
The MAX3230E/MAX3231E are +2.5V to +5.5V pow-  
ered EIA/TIA-232 and V.28/V.24 communications inter-  
faces with low power requirements, high data-rate  
capabilities, and enhanced electrostatic discharge  
(ESD) protection, in a chip-scale package (UCSP™).  
All transmitter outputs and receiver inputs are protect-  
ed to 15kV using IEC 1000-4-2 Air-ꢀap Discharge,  
8kV using IEC 1000-4-2 Contact Discharge, and  
15kV using the ꢁuman ꢂodꢃ Model.  
6 x 5 Chip-Scale Packaging (UCSP)  
ESD Protection for RS-232 I/O Pins  
±15kV—IEC 1000-4-2 Air-Gap Discharge  
±8kV—IEC 1000-4-2 Contact Discharge  
±15kV—Human Body Model  
1µA Low-Power AutoShutdown  
250kbps Guaranteed Data Rate  
The MAX3230E/MAX3231E achieve a 1µA supplꢃ cur-  
rent with Maxim’s AutoShutdown™ feature. Theꢃ save  
power without changing the existing ꢂIOS or operating  
sꢃstems bꢃ entering low-power shutdown mode when  
the RS-232 cable is disconnected, or when the trans-  
mitters of the connected peripherals are off.  
Meet EIA/TIA-232 Specifications Down to +3.1V  
RS-232 Compatible to +2.5V Allows Operation  
from Single Li+ Cell  
Small 0.1µF Capacitors  
Configurable Logic Levels  
The transceivers have a proprietarꢃ low-dropout trans-  
mitter output stage, delivering RS-232-compliant perfor-  
mance from a +3.1V to +5.5V supplꢃ, and RS-232-  
compatible performance with a supplꢃ voltage as low  
as +2.5V. The dual charge pump requires onlꢃ four,  
small 0.1µF capacitors for operation from a +3.0V sup-  
plꢃ. Each device is guaranteed to run at data rates of  
250kbps while maintaining RS-232 output levels.  
Ordering Information  
PART  
TEMP RANGE  
-40°C to +85°C  
-40°C to +85°C  
BUMP-PACKAGE  
MAX3230EEꢂV-T  
MAX3231EEꢂV-T  
6 x 5 UCSP  
6 x 5 UCSP  
Typical Operating Circuits  
The MAX3230E/MAX3231E offer a separate power-sup-  
plꢃ input for the logic interface, allowing configurable  
logic levels on the receiver outputs and transmitter  
2.5V TO 5.5V 1.65V TO 5.5V  
inputs. Operating over a +1.65V to V  
range, V pro-  
L
0.1µF  
CC  
vides the MAX3230E/MAX3231E compatibilitꢃ with mul-  
tiple logic families.  
C
0.1µF  
BYPASS  
A1  
A5  
V
V
C1  
CC  
B1  
A4  
L
C1+  
V+  
The MAX3231E contains one receiver and one transmit-  
ter. The MAX3230E contains two receivers and two trans-  
mitters. The MAX3230E/MAX3231E are available in tinꢃ  
chip-scale packaging and are specified across the  
extended industrial (-40°C to +85°C) temperature range.  
C3  
0.1µF  
C1  
0.1µF  
D1  
A2  
C1-  
C2+  
MAX3230E  
V-  
C2  
0.1µF  
C4  
0.1µF  
A3  
A6  
V
L
C2-  
T1OUT  
T1IN  
E3  
E4  
E6  
RS-232  
OUTPUTS  
TTL/CMOS  
INPUTS  
V
L
Applications  
T2OUT  
R1IN  
B6 T2IN  
Personal Digital Assistants  
Cell-Phone Data Lump Cables  
Set-Top ꢂoxes  
V
L
R1OUT  
D6  
5k  
TTL/CMOS  
OUTPUTS  
RS-232  
INPUTS  
V
L
ꢁand-ꢁeld Devices  
Cell Phones  
R2IN  
C6 R2OUT  
E5  
E2  
5kΩ  
TO POWER-  
MANAGEMENT  
UNIT  
Typical Operating Circuits continued at end of data sheet.  
Pin Configurations appear at end of data sheet.  
INVALID  
FORCEON  
FORCEOFF C5  
B5  
V
L
UCSP is a trademark of Maxim Integrated Products, Inc.  
GND  
E1  
AutoShutdown is a trademark of Maxim Integrated Products, Inc.  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
1ꢀ5k EꢁDꢂ-rotected +2.ꢀk to +ꢀ.ꢀk  
Rꢁꢂ232 Transceivers in UCꢁ-  
ABSOLUTE MAXIMUM RATINGS  
V
to ꢀND...........................................................-0.3V to +6.0V  
Short-Circuit Duration T OUT to ꢀND........................Continuous  
_
CC  
V+ to ꢀND.............................................................-0.3V to +7.0V  
V- to ꢀND ..............................................................+0.3V to -7.0V  
V+ to |V-| (Note 1) ................................................................+13V  
Continuous Power Dissipation (T = +70°C)  
A
6 5 UCSP (derate 10.1mW/°C above +70°C) ...........805mW  
Operating Temperature Range ...........................-40°C to +85°C  
Junction Temperature......................................................+150°C  
Storage Temperature Range.............................-65°C to +150°C  
ꢂump Temperature (soldering)  
V to ꢀND..............................................................-0.3V to +6.0V  
L
Input Voltages  
T_IN_, FORCEON, FORCEOFF to ꢀND.....-0.3V to (V + 0.3V)  
L
R_IN_ to ꢀND ................................................................... 25V  
Output Voltages  
Infrared (15s) ...............................................................+200°C  
Vapor Phase (20s) .......................................................+215°C  
T_OUT to ꢀND............................................................... 13.2V  
R_OUT INVALID to ꢀND ............................-0.3V to (V + 0.3V)  
L
CC  
INVALID to ꢀND.........................................-0.3V to (V  
+ 0.3V)  
Note 1: V+ and V- can have maximum magnitudes of 7V, but their absolute difference cannot exceed 13V.  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(V  
= +2.5V to +5.5V, V = +1.65V to +5.5V, C1–C4 = 0.1µF, tested at +3.3V 10ꢄ, T = T  
to T  
. Tꢃpical values are at T =  
MAX A  
CC  
L
A
MIN  
+25°C, unless otherwise noted.) (Note 2)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
DC CHARACTERISTICS  
V Input Voltage Range  
V
1.65  
V
CC  
+ 0.3  
10  
V
L
L
FORCEON = ꢀND  
FORCEOFF = V , all R open  
µA  
L
IN  
V
Supplꢃ Current,  
CC  
I
CC  
AutoShutdown  
FORCEOFF = ꢀND  
10  
1
FORCEON, FORCEOFF = V  
mA  
mA  
L
V
Supplꢃ Current,  
CC  
I
FORCEON = FORCEOFF = V , no load  
0.3  
1
1
CC  
L
AutoShutdown Disabled  
FORCEON or FORCEOFF = ꢀND or V ,  
L
V Supplꢃ Current  
L
T_IN, I  
µA  
L
V
= V = +5V, no receivers switching  
L
CC  
LOGIC INPUTS  
Input-Logic Low  
T_IN, FORCEON, FORCEOFF  
T_IN, FORCEON, FORCEOFF  
0.4  
1
V
V
Input-Logic ꢁigh  
0.66  
V
L
Transmitter Input ꢁꢃsteresis  
Input Leakage Current  
RECEIVER OUTPUTS  
0.5  
V
T_IN, FORCEON, FORCEOFF  
0.01  
µA  
R_OUT, receivers disabled, FORCEOFF =  
ꢀND or in AutoShutdown  
Output Leakage Currents  
10  
µA  
Output-Voltage Low  
Output-Voltage ꢁigh  
I
I
= 0.8mA  
= -0.5mA  
0.4  
V
V
OUT  
V - 0.4 V - 0.1  
OUT  
L
L
2
_______________________________________________________________________________________  
1ꢀ5k EꢁDꢂ-rotected +2.ꢀk to +ꢀ.ꢀk  
Rꢁꢂ232 Transceivers in UCꢁ-  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= +2.5V to +5.5V, V = +1.65V to +5.5V, C1–C4 = 0.1µF, tested at +3.3V 10ꢄ, T = T  
to T  
. Tꢃpical values are at T =  
MAX A  
CC  
L
A
MIN  
+25°C, unless otherwise noted.) (Note 2)  
PARAMETER  
RECEIVER INPUTS  
Input Voltage Range  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
-25  
0.6  
0.8  
+25  
V
V
V
V
V
V
= +3.3V  
= +5.0V  
= +3.3V  
= +5.0V  
1.2  
1.7  
1.3  
1.8  
0.5  
5
CC  
CC  
CC  
CC  
Input-Threshold Low  
Input-Threshold ꢁigh  
T
T
= +25°C  
= +25°C  
A
2.4  
2.4  
V
A
Input ꢁꢃsteresis  
V
Input Resistance  
3
7
k  
AUTOMATIC SHUTDOWN  
Positive threshold  
Negative threshold  
2.7  
Receiver Input Threshold to  
INVALID Output ꢁigh  
Figure 3a  
V
-2.7  
-0.3  
Receiver Input Threshold to  
INVALID Output Low  
+0.3  
V
Receiver Positive or Negative  
Threshold to INVALID ꢁigh  
t
V
V
V
= +5.0V, Figure 3b  
= +5.0V, Figure 3b  
= +5.0V, Figure 3b  
1
µs  
µs  
µs  
INVꢁ  
CC  
CC  
CC  
Receiver Positive or Negative  
Threshold to INVALID Low  
t
30  
INVL  
Receiver Edge to Transmitters  
Enabled  
t
100  
WU  
INVALID OUTPUT  
Output-Voltage Low  
Output-Voltage ꢁigh  
TRANSMITTER OUTPUTS  
I
I
= 0.8mA  
= -0.5mA  
0.4  
- 0.1  
V
V
OUT  
V
- 0.4  
V
CC  
OUT  
CC  
V
(V  
Mode Switch Point  
Falling)  
CC  
T_OUT = 5.0V to 3.7V  
T_OUT = 3.7V to 5.0V  
2.85  
3.3  
3.10  
V
CC  
V
(V  
Mode Switch Point  
Rising)  
CC  
3.7  
V
CC  
V
Mode Switch-Point ꢁꢃsteresis  
400  
5.4  
mV  
CC  
V
V
= +3.1V to +5.5V,  
falling, T = +25°C  
A
CC  
CC  
All transmitter  
outputs loaded  
with 3kto  
ground  
5
Output Voltage Swing  
V
V
V
= +2.5V to +3.1V,  
rising  
CC  
CC  
3.7  
Output Resistance  
V
= V+ = V- = 0, T_OUT = 2V  
300  
10M  
CC  
Output Short-Circuit Current  
Output Leakage Current  
ESD PROTECTION  
60  
25  
mA  
µA  
T_OUT = 12V, transmitters disabled  
ꢁuman ꢂodꢃ Model  
15  
15  
8
R_IN, T_OUT  
kV  
IEC 1000-4-2 Air-ꢀap Discharge  
IEC 1000-4-2 Contact Discharge  
_______________________________________________________________________________________  
3
1ꢀ5k EꢁDꢂ-rotected +2.ꢀk to +ꢀ.ꢀk  
Rꢁꢂ232 Transceivers in UCꢁ-  
TIMING CHARACTERISTICS  
(V  
= +2.5V to +5.5V, V = +1.65V to +5.5V, C1–C4 = 0.1µF, tested at +3.3V 10ꢄ, T = T  
to T  
. Tꢃpical values are at T =  
MAX A  
CC  
L
A
MIN  
+25°C, unless otherwise noted.) (Note 2)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
R = 3k, C = 1000pF, one transmitter  
switching  
L
L
Maximum Data Rate  
250  
kbps  
µs  
Receiver input to receiver output,  
C = 150pF  
Receiver Propagation Delaꢃ  
0.15  
L
Receiver-Output Enable Time  
Receiver-Output Disable Time  
Transmitter Skew  
V
V
= V = +5V  
200  
200  
100  
50  
ns  
ns  
ns  
ns  
CC  
CC  
L
= V = +5V  
L
| t  
| t  
- t  
|
|
PꢁL PLꢁ  
Receiver Skew  
- t  
PꢁL PLꢁ  
R = 3kto 7k, C = 150pF to  
L
L
Transition-Region Slew Rate  
6
30  
V/µs  
1000pF, T = +25°C  
A
Note 2: V  
must be greater than V .  
L
CC  
Typical Operating Characteristics  
(V  
= +3.3V, 250kbps data rate, 0.1µF capacitors, all transmitters loaded with 3kand C , T = +25°C, unless otherwise noted.)  
L A  
CC  
OPERATING SUPPLY CURRENT  
vs. LOAD CAPACITANCE (MAX3231E)  
TRANSMITTER OUTPUT VOLTAGE  
vs. LOAD CAPACITANCE  
SLEW RATE vs. LOAD CAPACITANCE  
20  
30  
25  
20  
15  
10  
5
6
V
RISING  
CC  
18  
16  
14  
12  
10  
8
4
2
V
OH  
250kbps  
V
= 5.5V  
CC  
0
V
OL  
-2  
-4  
-6  
6
4
V
= 2.5V  
CC  
2
20kbps  
0
0
0
500 1000 1500 2000 2500 3000  
LOAD CAPACITANCE (pF)  
0
500 1000 1500 2000 2500 3000  
LOAD CAPACITANCE (pF)  
0
500 1000 1500 2000 2500 3000  
LOAD CAPACITANCE (pF)  
4
_______________________________________________________________________________________  
1ꢀ5k EꢁDꢂ-rotected +2.ꢀk to +ꢀ.ꢀk  
Rꢁꢂ232 Transceivers in UCꢁ-  
Typical Operating Characteristics (continued)  
(V  
= +3.3V, 250kbps data rate, 0.1µF capacitors, all transmitters loaded with 3kand C , T = +25°C, unless otherwise noted.)  
CC  
L
A
OPERATING SUPPLY CURRENT  
vs. SUPPLY VOLTAGE (MAX3231E)  
TRANSMITTER OUTPUT VOLTAGE  
vs. SUPPLY VOLTAGE (V RISING)  
TRANSMITTER OUTPUT VOLTAGE  
vs. SUPPLY VOLTAGE (V FALLING)  
CC  
CC  
20  
10  
8
10  
8
18  
16  
14  
12  
10  
8
6
6
4
4
V
V
OH  
OH  
2
2
0
0
-2  
-4  
-6  
-8  
-2  
-4  
-6  
-8  
V
V
OL  
OL  
6
4
2
0
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
-in Description  
BUMP  
NAME  
FUNCTION  
MAX3230E MAX3231E  
A1  
A2  
A3  
A4  
A1  
A2  
A3  
A4  
V
+2.5V to +5.5V Supplꢃ Voltage  
Inverting Charge-Pump Capacitor Positive Terminal  
Inverting Charge-Pump Capacitor Negative Terminal  
CC  
C2+  
C2-  
V-  
Negative Supplꢃ Voltage (-5.5V/-4.0V) ꢀenerated bꢃ Charge Pump  
Logic Supplꢃ Input. Logic-level input for receiver outputs and transmitter inputs.  
A5  
A5  
A6  
V
L
Connect V to the sꢃstem-logic supplꢃ voltage or V  
L
if no logic supplꢃ is required.  
CC  
A6, ꢂ6  
T_IN  
V+  
Transmitter Input(s)  
Positive Supplꢃ Voltage (+5.5V/+4.0V) ꢀenerated bꢃ Charge Pump. If charge pump is  
generating +4.0V, the device has switched from RS-232-compliant to RS-232-  
compatible mode.  
ꢂ1  
ꢂ1  
ꢂ2, ꢂ3, ꢂ4, ꢂ2, ꢂ3, ꢂ4,  
C2, C3, C4, C2, C3, C4,  
N.C.  
No Connection. These locations are not populated with solder bumps.  
D2–D5  
D2–D5  
Active-ꢁigh FORCEON Input. Drive FORCEON high to override automatic circuitrꢃ,  
keeping transmitters and charge pumps on.  
ꢂ5  
C1  
ꢂ5  
C1  
FORCEON  
C1+  
Positive Regulated Charge-Pump Capacitor Positive Terminal  
Active-Low FORCEOFF Input. Drive FORCEOFF low to shut down transmitters,  
receivers, and on-board charge pump. This overrides all automatic circuitrꢃ and  
FORCEON.  
C5  
C5  
FORCEOFF  
_______________________________________________________________________________________  
5
1ꢀ5k EꢁDꢂ-rotected +2.ꢀk to +ꢀ.ꢀk  
Rꢁꢂ232 Transceivers in UCꢁ-  
-in Description (continued)  
BUMP  
NAME  
FUNCTION  
MAX3230E MAX3231E  
C6, D6  
D1  
C6  
D1  
E1  
R_OUT  
C1-  
Receiver Output(s)  
Positive Regulated Charge-Pump Capacitor Negative Terminal  
ꢀround  
E1  
ꢀND  
Valid Signal-Detector Output. INVALID is enabled low if no valid RS-232 level is present  
on anꢃ receiver input.  
E2  
E2  
INVALID  
E3, E4  
E5, E6  
E3  
E5  
T_OUT  
R_IN  
RS-232 Transmitter Output(s)  
RS-232 Receiver Input(s)  
ꢂ6, D6,  
E4, E6  
No Connection. These locations are populated with solder bumps, but are electricallꢃ  
isolated.  
N.C.  
tion until the batterꢃ voltage drops below +3.1V. The  
output regulation points then change to 4.0V.  
Detailed Description  
Dual Mode™ Regulated Chargeꢂ-ump  
koltage Converter  
When V  
is rising, the charge pump generates an out-  
CC  
put voltage of 4.0V, while V  
is between +2.5V and  
CC  
The MAX3230E/MAX3231E internal power supplꢃ con-  
sists of a dual-mode regulated charge pump. For sup-  
plꢃ voltages above +3.7V, the charge pump generates  
+5.5V at V+ and -5.5V at V-. The charge pumps oper-  
ate in a discontinuous mode. If the output voltages are  
less than 5.5V, the charge pumps are enabled. If the  
output voltages exceed 5.5V, the charge pumps are  
disabled.  
+3.5V. When V  
+3.5V, the charge pump switches modes to generate  
an output of 5.5V.  
rises above the switchover voltage of  
CC  
Table 1 shows different supplꢃ schemes and their oper-  
ating voltage ranges.  
Rꢁꢂ232 Transmitters  
The transmitters are inverting level translators that  
convert CMOS logic levels to RS-232 levels. The  
MAX3230E/MAX3231E automaticallꢃ reduce the  
RS-232-compliant levels ( 5.5V) to RS-232-compatible  
For supplꢃ voltages below +2.85V, the charge pump  
generates +4.0V at V+ and -4.0V at V-. The charge  
pumps operate in a discontinuous mode. If the output  
voltages are less than 4.0V, the charge pumps are  
enabled. If the output voltages exceed 4.0V, the  
charge pumps are disabled.  
levels ( 4.0V) when V  
falls below approximatelꢃ  
CC  
+3.1V. The reduced levels also reduce supplꢃ-current  
requirements, extending batterꢃ life. ꢂuilt-in hꢃsteresis  
of approximatelꢃ 400mV for V  
ensures that the RS-  
CC  
Each charge pump requires a flꢃing capacitor (C1, C2)  
and a reservoir capacitor (C3, C4) to generate the V+  
and V- supplꢃ voltages.  
koltage Generation in the  
ꢁwitchover Region  
The MAX3230E/MAX3231E include a switchover circuit  
between these two modes that have approximatelꢃ  
400mV of hꢃsteresis around the switchover point. The  
hꢃsteresis is shown in Figure 1. This large hꢃsteresis  
eliminates mode changes due to power-supplꢃ bounce.  
V
CC  
V+  
4V  
0
6V  
For example, a three-cell NiMh batterꢃ sꢃstem starts at  
V
= +3.6V, and the charge pump generates an out-  
CC  
put voltage of 5.5V. As the batterꢃ discharges, the  
MAX3230E/MAX3231E maintain the outputs in regula-  
0
20ms/div  
Figure 1. V+ Switchover for Changing V  
Dual Mode is a trademark of Maxim Integrated Products, Inc.  
CC  
6
_______________________________________________________________________________________  
1ꢀ5k EꢁDꢂ-rotected +2.ꢀk to +ꢀ.ꢀk  
Rꢁꢂ232 Transceivers in UCꢁ-  
Table 1. Operating Supply Options  
SYSTEM SUPPLY (V)  
1 Li+ Cell  
V
(V)  
V (V)  
L
RS-232 MODE  
CC  
+2.4 to +4.2  
+2.4 to +3.8  
Regulated sꢃstem voltage  
Regulated sꢃstem voltage  
Compliant/Compatible  
Compliant/Compatible  
3 NiCad/NiMh Cells  
Regulated Voltage Onlꢃ  
+3.0 to +5.5  
+2.5 to +3.0  
+3.0 to +5.5  
+2.5 to +3.0  
Compliant  
(V  
CC  
falling)  
Regulated Voltage Onlꢃ  
(V falling)  
Compatible  
CC  
Table 2. Output Control Truth Table  
TRANSCEIVER STATUS  
Shutdown (AutoShutdown)  
Shutdown (Forced Off)  
FORCEON  
Low  
FORCEOFF  
ꢁigh  
RECEIVER STATUS  
ꢁigh impedance  
INVALID  
Low  
X
Low  
ꢁigh impedance  
Active  
Normal Operation (Forced On)  
Normal Operation (AutoShutdown)  
ꢁigh  
Low  
ꢁigh  
ꢁigh  
Active  
ꢁigh  
X = Don’t care.  
† = INVALID output state is determined by R_IN input levels.  
232 output levels do not change if V  
is noisꢃ or has a  
have been detected on anꢃ receiver inputs. INVALID is  
CC  
sudden current draw causing the supplꢃ voltage to drop  
slightlꢃ. The outputs return to RS-232-compliant levels  
functional in anꢃ mode (Figures 2 and 3).  
Autoꢁhutdown  
The MAX3230E/MAX3231E achieve a 1µA supplꢃ cur-  
rent with Maxim’s AutoShutdown feature, which oper-  
ates when FORCEON is low and FORCEOFF is high.  
When these devices sense no valid signal levels on all  
receiver inputs for 30µs, the on-board charge pump  
( 5.5V) when V  
rises above approximatelꢃ +3.5V.  
CC  
The MAX3230E/MAX3231E transmitters guarantee a  
250kbps data rate with worst-case loads of 3kin par-  
allel with 1000pF.  
When FORCEOFF is driven to ground, the transmitters  
and receivers are disabled and the outputs become  
high impedance. When the AutoShutdown circuitrꢃ  
senses that all receiver and transmitter inputs are inac-  
tive for more than 30µs, the transmitters are disabled  
and the outputs go to a high-impedance state. When  
the power is off, the MAX3230E/MAX3231E permit the  
transmitter outputs to be driven up to 12V.  
and drivers are shut off, reducing V  
supplꢃ current to  
CC  
1µA. This occurs if the RS-232 cable is disconnected or  
the connected peripheral transmitters are turned off.  
The device turns on again when a valid level is applied  
to anꢃ RS-232 receiver input. As a result, the sꢃstem  
saves power without changes to the existing ꢂIOS or  
operating sꢃstem.  
The transmitter inputs do not have pullup resistors.  
Table 2 and Figure 2c summarize the MAX3230E/  
MAX3231E operating modes. FORCEON and  
FORCEOFF override AutoShutdown. When neither con-  
trol is asserted, the IC selects between these states  
automaticallꢃ, based on receiver input levels. Figures  
2a, 2b, and 3a depict valid and invalid RS-232-receiver  
levels. Figures 3a and 3b show the input levels and tim-  
ing diagram for AutoShutdown operation.  
Connect unused inputs to ꢀND or V .  
L
Rꢁꢂ232 Receivers  
The MAX3230E/MAX3231E receivers convert RS-232  
signals to logic-output levels. All receivers have invert-  
ing tri-state outputs and can be active or inactive. In  
shutdown (FORCEOFF = low) or in AutoShutdown, the  
MAX3230E/MAX3231E receivers are in a high-imped-  
ance state (Table 2).  
A sꢃstem with AutoShutdown can require time to wake  
up. Figure 4 shows a circuit that forces the transmitters  
on for 100ms, allowing enough time for the other sꢃs-  
tem to realize that the MAX3230E/MAX3231E are  
The MAX3230E/MAX3231E feature an INVALID output  
that is enabled low when no valid RS-232 signal levels  
_______________________________________________________________________________________  
7
1ꢀ5k EꢁDꢂ-rotected +2.ꢀk to +ꢀ.ꢀk  
Rꢁꢂ232 Transceivers in UCꢁ-  
FORCEOFF  
+0.3V  
POWER DOWN  
TO MAX323 _E  
POWER SUPPLY  
AND TRANSMITTERS  
V
CC  
R_IN  
-0.3V  
30µs  
COUNTER  
R
INVALID  
FORCEON  
INVALID  
TRANSMITTERS ARE DISABLED, REDUCING SUPPLY CURRENT TO 1µA IF  
ALL RECEIVER INPUTS ARE BETWEEN +0.3V AND -0.3V FOR AT LEAST 30µs.  
INVALID IS AN INTERNALLY GENERATED SIGNAL  
THAT IS USED BY THE AutoShutdown LOGIC  
AND APPEARS AS AN OUTPUT OF THE DEVICE.  
Figure 2a. MAX323_E Entering 1µA Supply Mode with  
AutoShutdown  
POWER DOWN IS ONLY AN INTERNAL SIGNAL.  
IT CONTROLS THE OPERATIONAL STATUS OF  
THE TRANSMITTERS AND THE POWER SUPPLIES.  
+2.7V  
Figure 2c. MAX323_E AutoShutdown Logic  
microcontroller (µC) then drives FORCEOFF and  
FORCEON like a SHDN input. INVALID can be used to  
alert the µC to indicate serial data activitꢃ.  
TO MAX323 _E  
POWER SUPPLY  
R_IN  
30µs  
COUNTER  
R
INVALID  
-2.7V  
1ꢀ5k EꢁD -rotection  
As with all Maxim devices, ESD-protection structures  
are incorporated on all pins to protect against electro-  
static discharges encountered during handling and  
assemblꢃ. The driver outputs and receiver inputs of the  
MAX3230E/MAX3231E have extra protection against  
static electricitꢃ. Maxim’s engineers have developed  
state-of-the-art structures to protect these pins against  
ESD of 15kV without damage. The ESD structures  
withstand high ESD in all states: normal operation, shut-  
down, and power-down. After an ESD event, Maxim’s  
E-versions keep working without latchup, whereas  
competing RS-232 products can latch and must be  
powered down to remove latchup.  
TRANSMITTERS ARE ENABLED IF:  
ANY RECEIVER INPUT IS GREATER THAN +2.7V OR LESS THAN -2.7V.  
ANY RECEIVER INPUT HAS BEEN BETWEEN +0.3V AND -0.3V FOR LESS THAN 30µs.  
Figure 2b. MAX323_E with Transmitters Enabled Using  
AutoShutdown  
active. If the other sꢃstem transmits valid RS-232 sig-  
nals within that time, the RS-232 ports on both sꢃstems  
remain enabled.  
When shut down, the device’s charge pumps are off,  
V+ is pulled to V , V- is pulled to ground, and the  
CC  
transmitter outputs are high impedance. The time  
required to exit shutdown is tꢃpicallꢃ 100µs (Figure 3b).  
ESD protection can be tested in various waꢃs; the trans-  
mitter outputs and receiver inputs of this product familꢃ  
are characterized for protection to the following limits:  
k Logic ꢁupply Input  
L
Unlike other RS-232 interface devices, where the receiv-  
1) 15kV using the ꢁuman ꢂodꢃ Model  
er outputs swing between 0 and V , the MAX3230E/  
CC  
MAX3231E feature a separate logic supplꢃ input (V )  
L
2) 8kV using the Contact Discharge method specified  
in IEC 1000-4-2  
that sets V  
for the receiver outputs. The transmitter  
Oꢁ  
inputs (T_IN), FORCEON, and FORCEOFF, are also  
3) 15kV using the IEC 1000-4-2 Air-ꢀap method  
referred to V . This feature allows maximum flexibilitꢃ in  
L
interfacing to different sꢃstems and logic levels. Connect  
ESD Test Conditions  
ESD performance depends on a varietꢃ of conditions.  
Contact Maxim for a reliabilitꢃ report that documents  
test setup, test methodologꢃ, and test results.  
V
to the sꢃstem’s logic supplꢃ voltage (+1.65V to  
L
+5.5V), and bꢃpass it with a 0.1µF capacitor to ꢀND. If  
the logic supplꢃ is the same as V , connect V to V  
.
CC  
L
CC  
Alwaꢃs enable V  
must be greater than or equal to the V supplꢃ.  
before enabling the V supplꢃ. V  
CC  
L
CC  
Human Body Model  
Figure 5a shows the ꢁuman ꢂodꢃ Model. Figure 5b  
shows the current waveform it generates when dis-  
charged into a low impedance. This model consists of a  
100pF capacitor charged to the ESD voltage of interest,  
L
ꢁoftwareꢂControlled ꢁhutdown  
If direct software control is desired, connect FORCEOFF  
and FORCEON together to disable AutoShutdown. The  
8
_______________________________________________________________________________________  
1ꢀ5k EꢁDꢂ-rotected +2.ꢀk to +ꢀ.ꢀk  
Rꢁꢂ232 Transceivers in UCꢁ-  
which is then discharged into the test device through a  
1.5kresistor.  
TRANSMITTERS ENABLED, INVALID HIGH  
IEC 1000-4-2  
The IEC 1000-4-2 standard covers ESD testing and per-  
formance of finished equipment. It does not specificallꢃ  
refer to ICs. The MAX3230E/MAX3231E aid in designing  
equipment that meets Level 4 (the highest level) of IEC  
1000-4-2, without the need for additional ESD-protection  
components.  
+2.7V  
INDETERMINATE  
+0.3V  
0
AutoShutdown, TRANSMITTERS DISABLED,  
1µA SUPPLY CURRENT, INVALID LOW  
-0.3V  
INDETERMINATE  
-2.7V  
The major difference between tests done using the  
ꢁuman ꢂodꢃ Model and IEC 1000-4-2 is a higher peak  
current in IEC 1000-4-2, because series resistance is  
lower in the IEC 1000-4-2 model. ꢁence, the ESD with-  
stands voltage measured to IEC 1000-4-2 and is gener-  
allꢃ lower than that measured using the ꢁuman ꢂodꢃ  
Model. Figure 6a shows the IEC 1000-4-2 model, and  
Figure 6b shows the current waveform for the 8kV IEC  
1000-4-2 Level 4 ESD Contact Discharge test.  
TRANSMITTERS ENABLED, INVALID HIGH  
a)  
RECEIVER  
INPUT  
INVALID  
REGION  
VOLTAGE  
(V)  
The Air-ꢀap test involves approaching the device with a  
charged probe. The Contact Discharge method connects  
the probe to the device before the probe is energized.  
V
CC  
0
Machine Model  
The Machine Model for ESD tests all pins using a 200pF  
storage capacitor and zero discharge resistance. Its  
objective is to emulate the stress caused bꢃ contact that  
occurs with handling and assemblꢃ during manufactur-  
ing. Of course, all pins require this protection during  
manufacturing, not just RS-232 inputs and outputs.  
Therefore, after PC board assemblꢃ, the Machine Model  
is less relevant to I/O ports.  
INVALID  
OUTPUT  
(V)  
t
t
INVH  
INVL  
t
WU  
V+  
V
CC  
0
V-  
Applications Information  
b)  
Capacitor ꢁelection  
The capacitor tꢃpe used for C1–C4 is not critical for  
proper operation; either polarized or nonpolarized  
capacitors can be used. ꢁowever, ceramic chip capaci-  
tors with an X7R or X5R dielectric work best. The charge  
pump requires 0.1µF capacitors for 3.3V operation. For  
other supplꢃ voltages, see Table 3 for required capaci-  
tor values. Do not use values smaller than those listed in  
Table 3. Increasing the capacitor values (e.g., bꢃ a fac-  
tor of 2) reduces ripple on the transmitter outputs and  
slightlꢃ reduces power consumption. C2, C3, and C4  
can be increased without changing the vaue of C1.  
Figure 3. AutoShutdown Trip Levels  
POWER-  
MANAGEMENT  
UNIT  
MASTER SHDN LINE  
0.1µF  
1M  
FORCEOFF FORCEON  
MAX3230E  
MAX3231E  
Caution: Do not increase C1 without also increasing  
the values of C2, C3, and C4 to maintain the proper  
ratios (C1 to the other capacitors).  
Figure 4. AutoShutdown with Initial Turn-On to Wake Up a  
Mouse or Another System  
When using the minimum required capacitor values,  
make sure the capacitor value does not degrade exces-  
sivelꢃ with temperature. If in doubt, use capacitors with  
_______________________________________________________________________________________  
9
1ꢀ5k EꢁDꢂ-rotected +2.ꢀk to +ꢀ.ꢀk  
Rꢁꢂ232 Transceivers in UCꢁ-  
I
R
C
1M  
R 1500Ω  
D
100%  
DISCHARGE  
RESISTANCE  
CHARGE-CURRENT-  
LIMIT RESISTOR  
90%  
HIGH-  
VOLTAGE  
DC  
DEVICE  
UNDER  
TEST  
C
100pF  
STORAGE  
CAPACITOR  
s
SOURCE  
10%  
Figure 5a. Human Body ESD Test Models  
t
= 0.7ns to 1ns  
r
t
30ns  
60ns  
I
P
100%  
90%  
PEAK-TO-PEAK RINGING  
(NOT DRAWN TO SCALE)  
Figure 6b. IEC 1000-4-2 ESD Generator Current Waveform  
I
r
AMPERES  
Table 3. Required Capacitor Values  
36.8%  
V
(V)  
C1, C  
(µF)  
C2, C3, C4 (µF)  
CC  
BYPASS  
0.22  
2.5 to 3.0  
3.0 to 3.6  
4.5 to 5.5  
3.0 to 5.5  
0.22  
0.1  
0.33  
1
10%  
0
0.1  
TIME  
0
t
RL  
0.047  
0.22  
t
DL  
CURRENT WAVEFORM  
Figure 5b. Human Body Model Current Waveform  
supplꢃ noise, use a capacitor of the same value as the  
charge-pump capacitor C1. Connect bꢃpass capaci-  
tors as close to the IC as possible.  
R
C
50MTO 100MΩ  
R 330Ω  
D
Transmitter Outputs when  
Exiting ꢁhutdown  
DISCHARGE  
RESISTANCE  
CHARGE-CURRENT-  
LIMIT RESISTOR  
Figure 7 shows a transmitter output when exiting shut-  
down mode. The transmitter is loaded with 3kin par-  
allel with 1000pF. The transmitter output displaꢃs no  
ringing or undesirable transients as it comes out of  
shutdown, and is enabled onlꢃ when the magnitude of  
V- exceeds approximatelꢃ -3V.  
HIGH-  
VOLTAGE  
DC  
DEVICE  
UNDER  
TEST  
C
s
150pF  
STORAGE  
CAPACITOR  
SOURCE  
High Data Rates  
The MAX3230E/MAX3231E maintain the RS-232 5.0V  
minimum transmitter output voltage even at high data  
rates. Figure 8 shows a transmitter loopback test cir-  
cuit. Figure 9 shows a loopback test result at 120kbps,  
and Figure 10 shows the same test at 250kbps. For  
Figure 9, the transmitter was driven at 120kbps into an  
RS-232 load in parallel with 1000pF. For Figure 10, a  
single transmitter was driven at 250kbps and loaded  
with an RS-232 receiver in parallel with 1000pF.  
Figure 6a. IEC 1000-4-2 ESD Test Model  
a larger nominal value. The capacitor’s equivalent series  
resistance (ESR) usuallꢃ rises at low temperatures and  
influences the amount of ripple on V+ and V-.  
-owerꢂꢁupply Decoupling  
In most circumstances, a 0.1µF V  
bꢃpass capacitor  
CC  
is adequate. In applications that are sensitive to power-  
10  
_____________________________________________________________________________________  
1ꢀ5k EꢁDꢂ-rotected +2.ꢀk to +ꢀ.ꢀk  
Rꢁꢂ232 Transceivers in UCꢁ-  
5V  
5V/div  
T_IN  
FORCEON =  
FORCEOFF  
0
0
5V  
T_OUT  
R_OUT  
0
-5V  
5V  
0
2V/div  
0
T_OUT  
4µs/div  
4µs/div  
Figure 9. Loopback Test Result at 120kbps  
Figure 7. Transmitter Outputs Exiting Shutdown or Powering Up  
V
V
L
CC  
CC  
5V  
0.1µF  
C3  
0.1µF  
C1  
T_IN  
0
V
V
L
C1+  
V+  
V-  
5V  
C1-  
C2+  
T_OUT  
MAX3231E  
0
C2  
C4  
-5V  
5V  
0
C2-  
V
V
L
L
T1IN  
T1OUT  
R_OUT  
1000pF  
R1IN  
R1OUT  
4µs/div  
5k  
Figure 10. Loopback Test Result at 250kbps  
TO POWER-  
MANAGEMENT UNIT  
INVALID  
FORCEON  
FORCEOFF  
V
L
GND  
Figure 8. Transmitter Loopback Test Circuit  
UCꢁ- Applications Information  
Chip Information  
For the latest application details on UCSP construction,  
dimensions, tape carrier information, PC board tech-  
niques, bump-pad laꢃout, and recommended reflow tem-  
perature profile, as well as the latest information on  
reliabilitꢃ testing results, refer to the Application Note  
UCSP—A Wafer-Level Chip-Scale Package available on  
Maxim’s website at www.maxim-ic.com/ucsp.  
TRANSISTOR COUNT: 698  
PROCESS: CMOS  
______________________________________________________________________________________ 11  
1ꢀ5k EꢁDꢂ-rotected +2.ꢀk to +ꢀ.ꢀk  
Rꢁꢂ232 Transceivers in UCꢁ-  
Typical Operating Circuits  
(continued)  
2.5V TO 5.5V 1.65V TO 5.5V  
C
0.1µF  
BYPASS  
0.1µF  
A1  
A5  
V
CC  
V
C1  
B1  
A4  
L
C1+  
V+  
C3  
C1  
0.1µF  
0.1µF  
D1  
A2  
C1-  
C2+  
MAX3231E  
V-  
C4  
C2  
0.1µF  
0.1µF  
A3  
A6  
V
L
C2-  
T1OUT  
T1IN  
E3  
E5  
V
L
RS-232  
TTL/CMOS  
R1IN  
C6 R1OUT  
5kΩ  
TO POWER-  
MANAGEMENT  
UNIT  
E2  
INVALID  
FORCEON  
FORCEOFF C5  
B5  
V
L
GND  
E1  
12 ______________________________________________________________________________________  
1ꢀ5k EꢁDꢂ-rotected +2.ꢀk to +ꢀ.ꢀk  
Rꢁꢂ232 Transceivers in UCꢁ-  
-in Configurations  
TOP VIEW  
C2+  
N.C.  
N.C.  
N.C.  
C2-  
N.C.  
N.C.  
N.C.  
A
V
V-  
V
T1IN  
CC  
L
V+  
B
N.C.  
N.C.  
FON  
T2IN  
C
FOFF  
R2OUT  
C1+  
C1-  
N.C.  
D
E
N.C.  
R1OUT  
INV  
2
R2IN  
5
R1IN  
6
GND  
1
T1OUT  
3
T2OUT  
4
FON = FORCEON  
FOFF = FORCEOFF  
INV = INVALID  
MAX3230E  
______________________________________________________________________________________ 13  
1ꢀ5k EꢁDꢂ-rotected +2.ꢀk to +ꢀ.ꢀk  
Rꢁꢂ232 Transceivers in UCꢁ-  
-in Configurations (continued)  
TOP VIEW  
C2+  
N.C.  
N.C.  
N.C.  
C2-  
N.C.  
N.C.  
N.C.  
A
V
V-  
V
T1IN  
CC  
L
V+  
B
N.C.  
N.C.  
FON  
N.C.  
C
FOFF  
R1OUT  
C1+  
C1-  
N.C.  
D
E
N.C.  
N.C.  
INV  
2
R1IN  
5
N.C.  
6
GND  
1
T1OUT  
3
N.C.  
4
FON = FORCEON  
FOFF = FORCEOFF  
INV = INVALID  
MAX3231E  
14 ______________________________________________________________________________________  
1ꢀ5k EꢁDꢂ-rotected +2.ꢀk to +ꢀ.ꢀk  
Rꢁꢂ232 Transceivers in UCꢁ-  
-ac5age Information  
(The package drawing(s) in this data sheet maꢃ not reflect the most current specifications. For the latest package outline information  
go to www.maxim-ic.com/packages.)  
PACKAGE OUTLINE, 6x5 UCSP  
1
21-0123  
G
1
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
Maxim Integrated -roducts, 120 ꢁan Gabriel Drive, ꢁunnyvale, CA 94086 408ꢂ737ꢂ7600 ____________________ 15  
© 2004 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

相关型号:

MAX3230EEBV-T

15kV ESD-Protected +2.5V to +5.5V RS-232 Transceivers in UCSP
MAXIM

MAX3230E_08

±15kV ESD-Protected +2.5V to +5.5V RS-232 Transceivers in UCSP and WLP
MAXIM

MAX3231AEEWV+-T

±15kV ESD-Protected +2.5V to +5.5V RS-232 Transceivers in UCSP and WLP
MAXIM

MAX3231E

15kV ESD-Protected +2.5V to +5.5V RS-232 Transceivers in UCSP
MAXIM

MAX3231EEBV

暂无描述
MAXIM

MAX3231EEBV-T

15kV ESD-Protected +2.5V to +5.5V RS-232 Transceivers in UCSP
MAXIM

MAX3232

3-V TO 5.5-V MULTICHANNEL RS-232 LINE DRIVER/RECEIVER
TI

MAX3232

3.0V to 5.5V, Low-Power, up to 1Mbps, True RS-232 Transceivers Using Four 0.1レF External Capacitors
MAXIM

MAX3232-EP

3-V TO 5.5-V MULTICHANNEL RS-232 LINE DRIVER/RECEIVER WITH ±15-kV ESD PROTECTION
TI

MAX3232CAE+

Line Transceiver, 1 Func, 2 Driver, 2 Rcvr, CMOS, PDSO16, 5.30 MM, LEAD FREE, MO-150, SSOP-16
MAXIM

MAX3232CD

3-V TO 5.5-V MULTICHANNEL RS-232 LINE DRIVER/RECEIVER
TI

MAX3232CDB

3-V TO 5.5-V MULTICHANNEL RS-232 LINE DRIVER/RECEIVER
TI