MAX33042ESHLD [MAXIM]

Easy Evaluation of the MAX33042E;
MAX33042ESHLD
型号: MAX33042ESHLD
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Easy Evaluation of the MAX33042E

文件: 总15页 (文件大小:474K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Click here for production status of specific part numbers.  
MAX33042E  
+5V, 4Mbps CAN Transceiver with  
±40V Fault Protection, ±25V CMR,  
and ±40kV ESD in 8-Pin SOT23  
General Description  
Benefits and Features  
The MAX33042E is a +5V CAN transceiver with  
integrated protection for industrial applications. This  
device has extended ±40V fault protection for equipment  
where overvoltage protection is required. It also  
incorporates high ±40kV ESD Human Body Model  
(HBM) protection and an input common-mode range  
(CMR) of ±25V, exceeding the ISO 11898-2 CAN  
standard of -2V to +7V. This makes it well suited for  
applications where there is moderate electrical noise  
that can influence the ground levels between two nodes  
or systems.  
Integrated Protection Increases Robustness  
Increased Protection on CANH and CANL  
±40V Fault Tolerant  
±40kV ESD HBM Protection  
±12kV Contact and ±15kV Air-Gap ESD  
(ISO 10605, IEC 61000-4-2) Protection  
±25V Extended Common-Mode Input  
Range (CMR)  
Short-Circuit Protection  
Transmitter-Dominant Timeout Prevents  
Lockup  
Thermal Shutdown  
This device operates at a high-speed CAN data rate,  
allowing up to 4Mbps on short distance networks.  
Maximum speed on large networks may be limited by  
the number of nodes, the type of cabling used, stub  
length, and other factors. The MAX33042E includes a  
dominant timeout to prevent bus lockup caused by  
controller error or by a fault on the TXD input. When the  
TXD remains in the dominant state (low) for longer than  
tDOM, the driver is switched to the recessive state,  
releasing the bus and allowing other nodes to  
communicate.  
Provides Flexible Design Options  
Slow Slew Rate to Minimize EMI  
Low-Current Standby Mode  
Shutdown Pin to Save Power  
Small Package Option to Save PCB Area  
8-Pin SOT23  
High-Speed Operation of up to 4Mbps  
Operating Temperature Range of -40°C to +125°C  
Ordering Information appears at end of data sheet.  
The transceiver features a STBY pin for three modes of  
operation; standby mode for low current consumption,  
normal high-speed mode, or a slow slew rate mode  
when an external 26.1kΩ resistor is connected between  
ground and the STBY pin. A shutdown pin enables the  
device to further save power consumption where the  
transmitter and receiver are turned off.  
The MAX33042E is available in 8-pin SOT23 and  
8-pin SOIC packages. Both packages operate over the  
-40°C to +125°C temperature range.  
Applications  
Industrial Equipment  
Instrumentation  
Motor Control  
Building Automation  
www.maximintegrated.com  
19-100965; Rev 0; 1/21  
MAX33042E  
+5V, 4Mbps CAN Transceiver with  
±40V Fault Protection, ±25V CMR,  
and ±40kV ESD in 8-Pin SOT23  
Simplified Block Diagram  
VDD  
MAX33042E  
THERMAL  
SHUTDOWN  
DOMINANT  
TIMEOUT  
TXD  
PROTECTION  
PROTECTION  
CANH  
CANL  
DRIVER  
SHDN  
WAKE-UP MODE  
CONTROL  
STBY  
WAKE-UP  
FILTER  
RXD  
GND  
www.maximintegrated.com  
Maxim Integrated | 2  
19-100965; Rev 0; 1/21  
MAX33042E  
+5V, 4Mbps CAN Transceiver with  
±40V Fault Protection, ±25V CMR,  
and ±40kV ESD in 8-Pin SOT23  
Absolute Maximum Ratings  
VDD...................................................................... -0.3V to +6.0V  
CANH or CANL (Continuous) .............................. -40V to +40V  
TXD, STBY, SHDN ............................................ -0.3V to +6.0V  
RXD.................................................................... -0.3V to +6.0V  
Short-Circuit Duration.............................................. Continuous  
Continuous Power Dissipation (SOT23)  
Continuous Power Dissipation (SOIC)  
__Multilayer Board (TA = +70°C, derate 7.4mW/°C above  
+70°C)........................................................................ 588.2mW  
__Operating Temperature Range................... -40°C to +125°C  
__Junction Temperature................................................+150°C  
__Storage Temperature Range...................... -60°C to +150°C  
__Soldering Temperature (reflow).................................+260°C  
__Lead Temperature (soldering, 10s)...........................+300°C  
__Multilayer Board (TA = +70°C, derate 9.5mW/°C above  
+70°C)........................................................................761.9mW  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or  
any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect  
device reliability.  
Package Information  
8 SOT23  
Package Code  
K8CN+2C  
21-0078  
90-0176  
Outline Number  
Land Pattern Number  
Thermal Resistance, Four-Layer Board  
Junction to Ambient (θJA)  
Junction to Case (θJC)  
105°C/W  
42.3°C/W  
8 SOIC  
Package Code  
S8+2C  
Outline Number  
21-0041  
90-0096  
Land Pattern Number  
Thermal Resistance, Four-Layer Board  
Junction to Ambient (θJA)  
Junction to Case (θJC)  
136°C/W  
38°C/W  
For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note  
that a “+”, “#”, or “-” in the package code indicates RoHS status only. Package drawings may show a different suffix  
character, but the drawing pertains to the package regardless of RoHS status.  
Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-  
layer board. For detailed information on package thermal considerations, refer to www.maximintegrated.com/thermal-  
tutorial.  
www.maximintegrated.com  
Maxim Integrated | 3  
MAX33042E  
+5V, 4Mbps CAN Transceiver with  
±40V Fault Protection, ±25V CMR,  
and ±40kV ESD in 8-Pin SOT23  
Electrical Characteristics  
(V  
= 4.5V to 5.5V, R = 60Ω, C = 100pF, C = 15pF, T = T  
to T  
, unless otherwise specified. Typical values are at V  
MAX DD  
DD  
LD  
LD  
L
A
MIN  
= 5.0V and T = +25°C, unless otherwise specified.) (Note 1)  
A
PARAMETER  
POWER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Supply Voltage  
V
4.5  
5.5  
9
V
DD  
No load  
= 60Ω  
5
50  
3
Dominant Supply  
Current  
TXD = SHDN =  
STBY = 0V  
I
mA  
DD_DOM  
R
70  
LD  
No load  
V
= TXD = 5.0V,  
DD  
Recessive Supply  
Current  
I
STBY = SHDN =  
0V  
mA  
DD_REC  
CANH shorted to  
CANL  
3
Shutdown Current  
I
SHDN = STBY = TXD = V  
0.03  
45  
3
μA  
μA  
V
SHDN  
DD  
Standby Supply Current  
UVLO Threshold Rising  
UVLO Threshold Falling  
FAULT PROTECTION  
I
STBY = TXD = V  
70  
STBY  
DD  
V
V
V
rising  
falling  
4.25  
UVLO_R  
DD  
DD  
V
3.45  
V
UVLO_F  
HBM, JEDEC JS-001-2017  
±40  
±15  
±12  
ESD Protection (CANH,  
CANL to GND)  
Air-Gap ISO 10605, IEC 61000-4-2  
Contact ISO 10605, IEC 61000-4-2  
kV  
kV  
ESD Protection (All  
Other Pins)  
HBM  
±4  
Fault Protection Range  
Thermal Shutdown  
V
CANH or CANL to GND  
-40  
+40  
V
FP  
T
+160  
+20  
°C  
SHDN  
Thermal Shutdown  
Hysteresis  
T
°C  
HYST  
LOGIC INTERFACE (RXD, TXD, STBY, SHDN)  
0.7 x  
Input High Voltage  
Input Low Voltage  
V
V
V
IH  
V
DD  
V
TXD, SHDN  
0.8  
IL  
PU_TXD  
TXD Input Pullup  
Resistance  
STBY Input Pullup  
Resistance  
Slow Slew Rate  
Resistor  
R
100  
100  
250  
kΩ  
R
250  
kΩ  
kΩ  
PU_STBY  
SLEW_ON  
External resistor size from STBY to  
ground to enable slow slew rate mode  
R
26.1  
SHDN Input Pulldown  
Resistance  
R
1
MΩ  
PD_SHDN  
V
0.4V  
-
DD  
Output High Voltage  
V
Sourcing 4mA, TXD = V  
Sinking 4mA, TXD = 0V  
V
V
OH  
DD  
Output Low Voltage  
V
0.4  
OL  
CAN BUS DRIVER  
CANH  
CANL  
CANH  
2.75  
0.5  
2
4.5  
2.25  
3
Bus Output Voltage  
(Dominant)  
V
t < t , TXD = 0V  
DOM  
V
V
O_DOM  
V
O_REC  
www.maximintegrated.com  
Maxim Integrated | 4  
MAX33042E  
+5V, 4Mbps CAN Transceiver with  
±40V Fault Protection, ±25V CMR,  
and ±40kV ESD in 8-Pin SOT23  
(V  
= 4.5V to 5.5V, R = 60Ω, C = 100pF, C = 15pF, T = T  
to T  
, unless otherwise specified. Typical values are at V  
MAX DD  
DD  
LD  
LD  
L
A
MIN  
= 5.0V and T = +25°C, unless otherwise specified.) (Note 1)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Bus Output Voltage  
(Recessive)  
TXD = V  
no load  
,
DD  
CANL  
2
3
R
= 156Ω,  
CM  
-5V ≤ V  
Figure 1  
≤ +10V,  
1.5  
3
Bus Output Differential  
Voltage (Dominant)  
CM  
V
V
TXD = 0V  
V
OD_DOM  
R
= open  
1.5  
70  
3
160  
+12  
+50  
5
CM  
Output Voltage Standby  
V
TXD = STBY = V , no load  
mV  
mV  
O_STBY  
OD_REC  
SC_CANH  
DD  
R
= 60Ω  
LD  
-120  
-500  
Bus Output Differential  
Voltage (Recessive)  
TXD = V  
DD  
No load  
I
TXD = 0V, CANH = -40V  
TXD = 0V, CANL = +40V  
2
2
Short-Circuit Current  
mA  
I
5
SC_CANL  
RECEIVER  
Common-Mode Input  
Range  
CANH or CANL to GND, RXD output  
valid  
CANH or CANL to GND, RXD output  
valid  
V
-25  
-12  
+25  
+12  
0.9  
V
V
V
V
CM  
Common-Mode Input  
Range Standby Mode  
Input Differential  
Voltage (Dominant)  
Input Differential  
Voltage (Recessive)  
Standby Input  
V
CM_STBY  
V
-25V ≤ V  
-25V ≤ V  
≤ +25V, TXD = V  
≤ +25V, TXD = V  
ID_DOM  
CM  
CM  
DD  
DD  
V
0.5  
ID_REC  
Differential Voltage  
(Dominant)  
Standby Input  
Differential Voltage  
(Recessive)  
Input Differential  
Hysteresis  
V
-12V ≤ V  
≤ +12V, TXD = V  
1.15  
V
V
ID_STBYDOM  
CM  
CM  
DD  
DD  
V
-12V ≤ V  
-25V ≤ V  
≤ +12V, TXD = V  
≤ +25V  
0.45  
ID_STBYREC  
V
90  
mV  
kΩ  
kΩ  
pF  
pF  
μA  
ID_HYS  
CM  
DD  
DD  
DD  
DD  
Input Resistance  
R
TXD = V  
TXD = V  
TXD = V  
TXD = V  
10  
20  
50  
100  
35  
IN  
Differential Input  
Resistance  
R
C
IN_DIFF  
Input Capacitance  
C
(Note 2)  
(Note 2)  
18  
9
IN  
Differential Input  
Capacitance  
18  
IN_DIFF  
Input Leakage Current  
I
V
= 0V, CANH = CANL = 5.0V  
DD  
150  
250  
LKG  
SWITCHING  
V
= 0V  
5
STBY  
R
= open,  
CM  
Driver Rise Time  
Driver Fall Time  
t
ns  
ns  
R
26.1kΩ resistor  
from STBY to GND  
Figure 1  
40  
10  
80  
V
= 0V  
STBY  
R
= open,  
CM  
t
F
26.1kΩ resistor  
from STBY to GND  
Figure 1  
www.maximintegrated.com  
Maxim Integrated | 5  
MAX33042E  
+5V, 4Mbps CAN Transceiver with  
±40V Fault Protection, ±25V CMR,  
and ±40kV ESD in 8-Pin SOT23  
(V  
= 4.5V to 5.5V, R = 60Ω, C = 100pF, C = 15pF, T = T  
to T  
, unless otherwise specified. Typical values are at V  
MAX DD  
DD  
LD  
LD  
L
A
MIN  
= 5.0V and T = +25°C, unless otherwise specified.) (Note 1)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Dominant to  
Recessive,  
60  
100  
Figure 2  
TXD to RXD Loop Delay  
t
STBY = 0V  
ns  
LOOP  
Recessive to  
Dominant, Figure 2  
60  
25  
100  
50  
TXD Propagation Delay  
(Recessive to  
Dominant)  
TXD Propagation Delay  
(Dominant to  
Recessive)  
RXD Propagation Delay  
(Recessive to  
Dominant)  
RXD Propagation Delay  
(Dominant to  
t
V
V
V
V
= 5V, R  
= 5V, R  
is open, Figure 1  
ns  
ns  
ns  
ns  
ONTXD  
DD  
DD  
DD  
DD  
CM  
CM  
t
is open, Figure 1  
25  
40  
30  
50  
70  
OFFTXD  
t
= 5V, Figure 3  
= 5V, Figure 3  
ONRXD  
t
70  
OFFRXD  
Recessive)  
TXD-Dominant Timeout  
Wake-Up Time  
t
Figure 4  
Figure 5  
1.3  
4.3  
ms  
DOM  
t
2
μs  
WAKE  
Standby Propagation  
Delay (Dominant to  
Recessive)  
t
STBY = V , Figure 5  
350  
ns  
PLH_STBY  
DD  
Standby to Normal  
Mode Delay  
Normal to Standby  
Dominant Delay  
Shutdown to Normal  
Delay  
C = 15pF, Figure 6  
L
t
t
20  
35  
25  
μs  
μs  
μs  
D_STBYN  
C = 15pF, Figure 6  
L
D_NSTBY  
t
C = 15pF, Figure 7  
L
D_SHDNN  
All units are 100% production tested at T = +25°C. Specifications over temperature are guaranteed by design.  
A
Note 1:  
Note 2:  
Not production tested. Guaranteed at T = +25°C.  
A
www.maximintegrated.com  
Maxim Integrated | 6  
MAX33042E  
+5V, 4Mbps CAN Transceiver with  
±40V Fault Protection, ±25V CMR,  
and ±40kV ESD in 8-Pin SOT23  
R
R
CM  
CM  
CANH  
R
TXD  
V
DIFF  
C
LD  
LD  
V
CM  
CANL  
V
DD  
50%  
50%  
TXD  
0V  
t
t
OFFTXD  
ONTXD  
90%  
10%  
0.9V  
V
DIFF  
0.5V  
t
t
F
R
Figure 1. Transmitter Test Circuit and Timing Diagram  
CANH  
TXD  
R
LD  
C
LD  
CANL  
RXD  
C
L
V
DD  
50%  
TXD  
RXD  
0V  
t
LOOP2  
V
DD  
50%  
0V  
t
LOOP1  
Figure 2. TXD to RXD Loop Delay  
www.maximintegrated.com  
Maxim Integrated | 7  
MAX33042E  
+5V, 4Mbps CAN Transceiver with  
±40V Fault Protection, ±25V CMR,  
and ±40kV ESD in 8-Pin SOT23  
CANH  
+
RXD  
L
V
ID  
-
C
CANL  
0.9V  
V
ID  
0.5V  
t
t
OFFRXD  
ONRXD  
V
OH  
RXD  
50%  
50%  
V
OL  
Figure 3. RXD Timing Diagram  
TRANSMITTER  
ENABLED  
t
DOM  
V
DD  
TXD  
0V  
TRANSMITTER  
DISABLED  
V
- V  
CANL  
CANH  
Figure 4. Transmitter-Dominant Timeout Timing Diagram  
www.maximintegrated.com  
Maxim Integrated | 8  
MAX33042E  
+5V, 4Mbps CAN Transceiver with  
±40V Fault Protection, ±25V CMR,  
and ±40kV ESD in 8-Pin SOT23  
V
DD  
CANH  
CANL  
STBY  
RXD  
R
LD  
C
LD  
C
L
t
WAKE  
t
PLH_STBY  
V
DD  
RXD  
0V  
V
- V  
CANL  
CANH  
Figure 5. Standby Receiver Propagation Delay  
V
DD  
50%  
50%  
STBY  
t
0V  
t
D_NSTBY  
D_STBYN  
0.9V  
V
OD  
0.5V  
Figure 6. Standby Mode Timing Diagram  
V
DD  
50%  
SHDN  
0V  
t
D_SHDNN  
0.9V  
V
OD  
Figure 7. Shutdown Mode Timing Diagram  
www.maximintegrated.com  
Maxim Integrated | 9  
MAX33042E  
+5V, 4Mbps CAN Transceiver with  
±40V Fault Protection, ±25V CMR,  
and ±40kV ESD in 8-Pin SOT23  
Typical Operating Characteristics  
VDD = 5V, RLD = 60Ω, CLD = 100pF, CL = 15pF, TA = +25°C, unless otherwise noted.  
SUPPLY CURRENT  
vs. DATA RATE  
SUPPLY CURRENT  
vs. TEMPERATURE  
CANH/CANL OUTPUT VOLTAGE  
vs. TEMPERATURE  
toc03  
toc01  
toc02  
60  
50  
40  
30  
20  
10  
0
60  
50  
40  
30  
20  
10  
0
4
3.5  
3
CANH  
TXD = LOW  
60Ω LOAD  
2.5  
2
60Ω LOAD  
CANL  
1.5  
1
TXD = HIGH  
NO LOAD  
TXD = LOW  
NO LOAD  
NO LOAD  
0.5  
0
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
TEMPERATURE (°C)  
1
10  
100  
1000  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
TEMPERATURE (°C)  
DATA RATE (kbps)  
(CANH - CANL) DIFFERENTIAL OUTPUT  
vs. LOAD  
STANDBY CURRENT  
vs. TEMPERATURE  
SHUTDOWN CURRENT  
vs. TEMPERATURE  
toc04  
toc05  
toc06  
3
2.5  
2
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
2
1.8  
1.6  
1.4  
1.2  
1
1.5  
1
0.8  
0.6  
0.4  
0.2  
0
0.5  
0
40  
60  
80  
100  
120  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
TEMPERATURE (°C)  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
TEMPERATURE (°C)  
LOAD RESISTANCE (Ω)  
SLOW RISE/FALL TIME  
vs. DATA RATE  
TXD PROPAGATION DELAY  
vs. TEMPERATURE  
RXD PROPAGATION DELAY  
vs. TEMPERATURE  
toc07  
toc08  
toc09  
300  
250  
200  
150  
100  
50  
80  
70  
60  
50  
40  
30  
20  
10  
0
80  
70  
60  
50  
40  
30  
20  
10  
0
tOFFRXD  
tONTXD  
FALL TIME  
tONRXD  
RISE TIME  
tOFFTXD  
0
1
10  
100  
1000  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
TEMPERATURE (°C)  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
TEMPERATURE (°C)  
DATA RATE (kbps)  
www.maximintegrated.com  
Maxim Integrated | 10  
MAX33042E  
+5V, 4Mbps CAN Transceiver with  
±40V Fault Protection, ±25V CMR,  
and ±40kV ESD in 8-Pin SOT23  
SLEW RATE WITH  
SLEW RATE WITH  
STBY GROUNDED  
26.1kΩ TO GND ON STBY  
toc10  
toc11  
VCANH  
VCANL  
VCANH  
VCANL  
1V/div  
1V/div  
1V/div  
1V/div  
VCANH-  
CANL  
VCANH-  
CANL  
2V/div  
5V/div  
2V/div  
5V/div  
VTXD  
VTXD  
VRXD  
VRXD  
5V/div  
5V/div  
200ns/div  
1µs/div  
Pin Configurations  
TOP VIEW  
+
TXD  
GND  
VDD  
1
2
3
4
8
7
6
5
STBY  
CANH  
CANL  
SHDN  
MAX33042E  
RXD  
Pin Descriptions  
PIN  
NAME  
FUNCTION  
Transmit Data Input. Drive TXD high to set the driver in the recessive state. Drive TXD low to  
set the driver in the dominant state. TXD has an internal pullup to VDD.  
TXD  
1
GND  
VDD  
2
3
Ground  
Supply Voltage. Bypass VDD to GND with a 0.1µF capacitor.  
Receive Data Output. RXD is high when CANH and CANL are in the recessive state. RXD is  
low when CANH and CANL are in the dominant state.  
Shutdown input, CMOS/TTL compatible. Drive SHDN high to put MAX33042E in shutdown.  
SHDN has an internal pulldown resistor to GND.  
RXD  
4
5
SHDN  
CANL  
CANH  
6
7
CAN Bus-Line Low  
CAN Bus-Line High  
Standby Mode. A logic-high on STBY pin selects the standby mode. In standby mode, the  
transceiver is not able to transmit data and the receiver is in low-power mode. A logic-low on  
STBY pin puts the transceiver in normal operating mode. A 26.1kΩ external resistor can be  
used to connect the STBY pin to ground for the slow slew rate.  
STBY  
8
www.maximintegrated.com  
Maxim Integrated | 11  
MAX33042E  
+5V, 4Mbps CAN Transceiver with  
±40V Fault Protection, ±25V CMR,  
and ±40kV ESD in 8-Pin SOT23  
Functional Diagrams  
VDD  
MAX33042E  
THERMAL  
SHUTDOWN  
DOMINANT  
TIMEOUT  
TXD  
PROTECTION  
PROTECTION  
CANH  
CANL  
DRIVER  
SHDN  
STBY  
WAKE-UP MODE  
CONTROL  
WAKE-UP  
FILTER  
RXD  
GND  
Detailed Description  
The MAX33042E is a fault-protected CAN transceiver designed for industrial applications with a number of integrated  
robust protection features. This device provides a link between the CAN protocol controller and the physical wires of the  
bus lines in a control area network (CAN). They can be used for DeviceNet™ applications as well.  
The CAN transceiver is fault-protected on CANH and CANL up to ±40V, making it suitable for applications where  
overvoltage protection is required. This device is rated up to a high ±40kV ESD HBM on CANH and CANL, suitable for  
protection during the manufacturing process, and even in the field where there is human interface for installation and  
maintenance. In addition, a common-mode voltage of ±25V enables communication in noisy environments where there  
are ground plane differences between different systems due to the close proximity of heavy equipment machinery or  
operation from different transformers. This device’s dominant timeout prevents the bus from being blocked by a hung-up  
microcontroller. The CANH and CANL outputs are short-circuit, current-limited, and protected against excessive power  
dissipation by thermal shutdown circuitry that places the driver outputs in a high-impedance state.  
These devices can operate up to 4Mbps with a standby mode where it shuts off the transmitter and reduces the current  
to 45μA, typ.  
±40V Fault Protection  
The MAX33042E features ±40V of fault protection. The CANH and CANL data lines are capable of withstanding a short  
from -40V to +40V. This extended overvoltage range makes The MAX33042E suitable for applications where accidental  
shorts to power supply lines are possible due to human intervention.  
Transmitter  
The transmitter converts a single-ended input signal (TXD) from the local CAN controller to differential outputs for the  
CANH and CANL bus lines. The truth table for the transmitter and receiver is provided in Table 1.  
Transmitter Output Protection  
The MAX33042E protects the transmitter output stage against a short-circuit to a positive or negative voltage by limiting  
the driver current. Thermal shutdown further protects the devices from excessive temperatures that may result from a  
www.maximintegrated.com  
Maxim Integrated | 12  
MAX33042E  
+5V, 4Mbps CAN Transceiver with  
±40V Fault Protection, ±25V CMR,  
and ±40kV ESD in 8-Pin SOT23  
short or high ambient temperature. The transmitter returns to normal operation once the temperature is reduced below  
the threshold.  
Transmitter-Dominant Timeout  
The device features a transmitter-dominant timeout (tDOM) that prevents erroneous CAN controllers from clamping the bus  
to a dominant level by maintaining a continuous low TXD signal. When TXD remains in the dominant state (low) for greater  
than 2.5ms typical tDOM, the transmitter is disabled, releasing the bus to a recessive state (Figure 4). After a dominant  
timeout fault, the transmitter is re-enabled when receiving a rising edge at TXD. The transmitter-dominant timeout limits  
the minimum possible data rate to 9kbps for standard CAN protocol.  
Receiver  
The receiver reads the differential input from the bus line CANH and CANL and transfers this data as a single-ended  
output RXD to the CAN controller. It consists of a comparator that senses the difference, VDIFF = (CANH - CANL), with  
respect to an internal threshold of 0.7V. If VDIFF > 0.9V, a logic-low is present on RXD. If VDIFF < 0.5V, a logic-high is  
present. The CANH and CANL common-mode range is ±25V. RXD is a logic-high when CANH and CANL are shorted or  
terminated and undriven.  
Standby Mode  
Drive the STBY pin high for standby mode, which switches the transmitter off and the receiver to a low current and low-  
speed state. The supply current is reduced during standby mode. The bus line is monitored by a low differential  
comparator to detect and recognize a wakeup event on the bus line. Once the comparator detects a dominant bus level  
greater than 2μs typical tWAKE, RXD pulls low. Drive the STBY pin low for normal operation.  
Slow Slew Rate  
Connect a 26.1kΩ resistor between ground and the STBY pin to reduce the slew rate on the transmitter output. The STBY  
pin voltage should be between 0.1V to 0.6V to remain in slow slew rate. This will change the MAX33042E with a slow  
slew rate of 50V/μs for rising edge compared with normal mode at 200V/μs. For falling edge, the slow slew rate is 30V/μs  
compared with normal mode at 110V/μs.  
Table 1. Transmitter and Receiver Truth Table (When Not Connected to the Bus)  
MODE  
Normal (STBY = low)  
Normal (STBY = low)  
Normal (STBY = low)  
Standby (STBY = high)  
Standby (STBY = high)  
Shutdown (SHDN = STBY = high)  
X = Don't care  
TXD  
Low  
Low  
High  
X
TXD LOW TIME CANH  
CANL  
Low  
BUS STATE  
Dominant  
Recessive  
Recessive  
Dominant  
Recessive  
Recessive  
RXD  
Low  
High  
High  
Low  
High  
High  
< tDOM  
High  
VDD/2  
VDD/2  
High  
> tDOM  
VDD/2  
VDD/2  
Low  
X
X
X
X
X
VDD/2  
VDD/2  
VDD/2  
VDD/2  
X
Shutdown Mode  
Drive the SHDN pin high for shutdown mode, which switches the transmitter and receiver off. The supply current is  
reduced to maximum of 3μA during shutdown mode. Drive the SHDN pin low for normal operation.  
www.maximintegrated.com  
Maxim Integrated | 13  
MAX33042E  
+5V, 4Mbps CAN Transceiver with  
±40V Fault Protection, ±25V CMR,  
and ±40kV ESD in 8-Pin SOT23  
Applications Information  
Reduced EMI and Reflections  
In multidrop CAN applications, it is important to maintain a single linear bus of uniform impedance that is properly  
terminated at each end. A star, ring, or tree configuration should never be used. Any deviation from the end-to-end wiring  
scheme creates a stub. High-speed data edges on a stub can create reflections back down to the bus. These reflections  
can cause data errors by eroding the noise margin of the system.  
Although stubs are unavoidable in a multidrop system, care should be taken to keep these stubs as short as possible,  
especially when operating with high data rates.  
Typical Application Circuits  
Multidrop CAN Bus  
3.3V  
60ꭥ  
60ꭥ  
60ꭥ  
60ꭥ  
0.1µF  
47nF  
0.1µF  
RX  
47nF  
VDD  
RXD  
TXD  
TRANSCEIVER 4  
MICROCONTROLLER  
TXD  
STBY  
SHDN  
GPIO  
GPIO  
MAX33042E  
TRANSCEIVER 2  
TRANSCEIVER 3  
Ordering Information  
PART NUMBER  
MAX33042EASA+*  
TEMP RANGE  
-40°C to +125°C  
-40°C to +125°C  
-40°C to +125°C  
-40°C to +125°C  
PIN-PACKAGE  
8 SO  
MAX33042EASA+T*  
MAX33042EAKA+  
8 SO  
8 SOT23  
8 SOT23  
MAX33042EAKA+T  
+Denotes a lead (Pb)-free/RoHS-compliant package.  
*Future productcontact factory for availability.  
www.maximintegrated.com  
Maxim Integrated | 14  
MAX33042E  
+5V, 4Mbps CAN Transceiver with  
±40V Fault Protection, ±25V CMR,  
and ±40kV ESD in 8-Pin SOT23  
Revision History  
REVISION  
NUMBER  
0
REVISION  
DATE  
PAGES  
CHANGED  
DESCRIPTION  
1/21  
Initial release  
DeviceNet is a trademark of Open DeviceNet Vendor Association.  
For pricing, delivery, and ordering information, please visit Maxim Integrated’s online storefront at https://www.maximintegrated.com/en/storefront/storefront.html.  
Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses  
are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits)  
shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.  
Maxim Integrated and the Maxim Integrated logo are trademarks of Maxim Integrated Products, Inc.  
©2021 Maxim Integrated Products, Inc.  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY