MAX3387EEUG+T [MAXIM]

Line Transceiver, 1 Func, 3 Driver, 3 Rcvr, BICMOS, PDSO24, 4.40 MM, 0.65 MM PITCH, TSSOP-24;
MAX3387EEUG+T
型号: MAX3387EEUG+T
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Line Transceiver, 1 Func, 3 Driver, 3 Rcvr, BICMOS, PDSO24, 4.40 MM, 0.65 MM PITCH, TSSOP-24

驱动 信息通信管理 光电二极管 接口集成电路 驱动器
文件: 总14页 (文件大小:159K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
±9-±16±; Rev 3; 6/±0  
3V, ±±15V EꢀDꢁ-rotected, Autoꢀhutdown -lus  
Rꢀꢁ232 Transceiver for -DAs and Cell -hones  
MAX387E  
General Description  
Features  
The MAX3387E 3V powered TIA/EIA-232 and V.28/V.24  
is a communications interface with low power require-  
ments, high data-rate capabilities, and enhanced elec-  
trostatic discharge (ESD) protection. The MAX3387E  
has three receivers and three transmitters. All RS-232  
inputs and outputs are protected to ±±15V using the  
IEC ±000-4-2 Air-Gap Discharge method, ±85V using  
the IEC ±000-4-2 Contact Discharge method, and  
±±15V using the ꢀuman ꢁodꢂ Model.  
V Pin for Compatibility with Mixed-Voltage  
L
Systems  
±±15V ꢀSꢁ Proteꢂtion on ꢃx ꢄnpꢅts and ꢆx ꢇꢅtpꢅts  
Low 300µA Sꢅpply Cꢅrrent  
Gꢅaranteed 2105bps ꢁata ꢃate  
±µA AꢅtoShꢅtdown Plꢅs™ with ꢃeꢂeivers Aꢂtive  
Meets ꢆꢄA/ꢀꢄA-232 Speꢂifiꢂations ꢁown to 3.0V  
A proprietarꢂ low-dropout transmitter output stage  
enables true RS-232 performance from a +3.0V to  
+1.1V supplꢂ with a dual charge pump. The charge  
pump requires onlꢂ four small 0.±µF capacitors for  
operation from a +3.3V supplꢂ. The MAX3387E is capa-  
ble of running at data rates up to 2105bps while main-  
taining RS-232 compliant output levels.  
Ordering Information  
PAꢃꢆ  
ꢆꢀMP. ꢃANGꢀ  
0°C to +70°C  
PꢄN-PACKAGꢀ  
24 TSSOP  
MAX3387ECUG+  
MAX3387EEUG+  
-40°C to +81°C  
24 TSSOP  
+Denotes a lead(Pb)-free/RoꢀS-compliant pac5age.  
The MAX3387E has a unique V pin that allows interop-  
L
eration in mixed-logic voltage sꢂstems. ꢁoth input and  
output logic levels are pin programmable through the  
Typical Operating Circuit  
V pin. The MAX3387E is available in a space-saving  
L
+3.3V  
TSSOP pac5age.  
23  
15  
24  
C
Applications  
Subnoteboo5/Palmtop Computers  
PDAs and PDA Cradles  
BYPASS  
V
V
L
FORCEOFF  
CC  
2
6
1
3
4
5
C1+  
V+  
V-  
C1  
0.1μF  
C3  
0.1μF  
C1-  
C2+  
Cell Phone Data Cables  
MAX3387E  
C2  
0.1μF  
C4  
0.1μF  
ꢁatterꢂ-Powered Equipment  
ꢀand-ꢀeld Equipment  
C2-  
7
8
T1OUT  
T2OUT  
T3OUT  
T1IN  
21  
20  
Peripherals  
TTL/CMOS  
INPUTS  
T2IN  
T3IN  
RS-232  
OUTPUTS  
19  
18  
10  
V
V
L
14 R1OUT  
13 R2OUT  
R1IN  
5k  
L
R2IN  
TTL/CMOS  
OUTPUTS  
17  
16  
RS-232  
INPUTS  
5k  
V
L
12 R3OUT  
R3IN  
9
5k  
INVALID  
FORCEON  
11  
GND  
22  
AutoShutdown Plus is a trademar5 of Maxim Integrated  
Products, Inc.  
_______________________________________________________________ Maxim ꢄntegrated Prodꢅꢂts  
±
For priꢂing, delivery, and ordering information, please ꢂontaꢂt Maxim ꢁireꢂt at ±-888-629-4642,  
or visit Maxim’s website at www.maxim-iꢂ.ꢂom.  
3V, ±±15V EꢀDꢁ-rotected, Autoꢀhutdown -lus  
Rꢀꢁ232 Transceiver for -DAs and Cell -hones  
ABSꢇLUꢆꢀ MAXꢄMUM ꢃAꢆꢄNGS  
CC  
V
to GND..............................................................-0.3V to +6V  
Short-Circuit Duration T_OUT to GND........................Continuous  
V to GND...................................................-0.3V to (V  
+ 0.3V)  
Continuous Power Dissipation (T = +70°C)  
24-Pin TSSOP (derate ±2.2mW/°C above +70°C) ........976mW  
Operating Temperature Ranges  
MAX3387ECUG ...................................................0°C to +70°C  
MAX3387EEUG ................................................-40°C to +81°C  
Junction Temperature......................................................+±10°C  
Storage Temperature Range.............................-61°C to +±10°C  
Lead Temperature (soldering, ±0s) .................................+300°C  
Soldering Temperature (reflow) .......................................+260°C  
L
CC  
A
V+ to GND................................................................-0.3V to +7V  
V- to GND .................................................................+0.3V to -7V  
V+ +V-(Note ±) .............................................................. +±3V  
Input Voltages  
T_IN, FORCEON, FORCEOFF to GND..................-0.3V to +6V  
R_IN to GND .....................................................................±21V  
Output Voltages  
T_OUT to GND...............................................................±±3.2V  
MAX387E  
R_OUT........................................................-0.3V to (V + 0.3V)  
L
Note ±: V+ and V- can have maximum magnitudes of 7V, but their absolute difference cannot exceed ±3V.  
Stresses beꢂond those listed under “Absolute Maximum Ratings” maꢂ cause permanent damage to the device. These are stress ratings onlꢂ, and functional  
operation of the device at these or anꢂ other conditions beꢂond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods maꢂ affect device reliabilitꢂ.  
ꢁC ꢀLꢀCꢆꢃꢄCAL CHAꢃACꢆꢀꢃꢄSꢆꢄCS  
(V  
= V = +3.0V to +1.1V; C±–C4 = 0.±µF, tested at +3.3V ±±0ꢃ; C± = 0.047µF, C2–C4 = 0.33µF, tested at +1.0V ±±0ꢃ;  
CC  
L
T
A
= T  
to T  
, unless otherwise noted. Tꢂpical values are at V = V = +3.3V, T = +21°C.)  
MAX CC L A  
MIN  
PAꢃAMꢀꢆꢀꢃ  
ꢁC CHAꢃACꢆꢀꢃꢄSꢆꢄCS (V  
SYMBꢇL  
= +3.3V or +1V, T = +21°C)  
CꢇNꢁꢄꢆꢄꢇNS  
MꢄN  
ꢆYP  
MAX  
UNꢄꢆS  
CC  
A
All R_IN idle, FORCEON = GND,  
FORCEOFF = V , all T_IN idle  
Supplꢂ Current, AutoShutdown  
Plus  
±.0  
0.3  
±0  
±
µA  
CC  
Supplꢂ Current  
mA  
FORCEOFF = FORCEON = V , no load  
CC  
LꢇGꢄC ꢄNPUꢆS  
V = +3.3V or +1.0V  
0.8  
0.6  
L
T_IN, FORCEON,  
FORCEOFF  
Input Logic Threshold Low  
Input Logic Threshold ꢀigh  
V
V
V = +2.1V  
L
V = +1.0V  
L
2.4  
2.0  
±.4  
V = +3.3V  
L
T_IN, FORCEON,  
FORCEOFF  
V = +2.1V  
L
V = +±.8V  
L
0.9  
0.1  
Transmitter Input ꢀꢂsteresis  
Input Lea5age Current  
ꢃꢀCꢀꢄVꢀꢃ ꢇUꢆPUꢆS  
Output Voltage Low  
V
±0.0±  
±±  
µA  
T_IN, FORCEON, FORCEOFF  
I
I
= ±.6mA  
= -±mA  
0.4  
V
V
OUT  
V -  
L
0.6  
V -  
L
0.±  
Output Voltage ꢀigh  
OUT  
ꢃꢀCꢀꢄVꢀꢃ ꢄNPUꢆS  
Input Voltage Range  
-21  
0.8  
0.6  
+21  
V
V
V = +1.0V  
±.1  
±.2  
±.8  
±.1  
L
Input Threshold Low  
Input Threshold ꢀigh  
T
T
= +21°C  
= +21°C  
A
V = +3.3V  
L
V = +1.0V  
L
2.4  
2.4  
V
A
V = +3.3V  
L
2
_______________________________________________________________________________________  
3V, ±±15V EꢀDꢁ-rotected, Autoꢀhutdown -lus  
Rꢀꢁ232 Transceiver for -DAs and Cell -hones  
MAX387E  
ꢁC ꢀLꢀCꢆꢃꢄCAL CHAꢃACꢆꢀꢃꢄSꢆꢄCS (ꢂontinꢅed)  
(V  
= V = +3.0V to +1.1V; C±–C4 = 0.±µF, tested at +3.3V ±±0ꢃ; C± = 0.047µF, C2–C4 = 0.33µF, tested at +1.0V ±±0ꢃ;  
CC  
L
T
A
= T  
to T  
, unless otherwise noted. Tꢂpical values are at V = V = +3.3V, T = +21°C.)  
MAX CC L A  
MIN  
PAꢃAMꢀꢆꢀꢃ  
SYMBꢇL  
CꢇNꢁꢄꢆꢄꢇNS  
MꢄN  
ꢆYP  
0.1  
1
MAX  
UNꢄꢆS  
V
Input ꢀꢂsteresis  
Input Resistance  
T
A
= +21°C  
3
7
5Ω  
ꢆꢃANSMꢄꢆꢆꢀꢃ ꢇUꢆPUꢆS  
All transmitter outputs loaded with 35Ω to  
Output Voltage Swing  
±1  
±1.4  
±0M  
V
ground  
Output Resistance  
V
V
= V+ = V- = 0V, transmitter output = ±2V  
= 0V  
300  
Ω
CC  
Output Short-Circuit Current  
±60  
±21  
mA  
_
T OUT  
V
V
= ±±2V, transmitters disabled;  
= 0V or +3.0V to +1.1V  
_
CC  
T OUT  
Output Lea5age Current  
µA  
ꢀSꢁ PꢃꢇꢆꢀCꢆꢄꢇN  
ꢀuman ꢁodꢂ Model  
±±1  
±±1  
±8  
R_IN, T_OUT  
ESD Protection  
5V  
IEC ±000-4-2 Air-Gap Discharge method  
IEC ±000-4-2 Contact Discharge method  
AꢅtoShꢅtdown Plꢅs (FORCEON = GND, FORCEOFF = V  
)
CC  
Positive threshold  
Negative threshold  
2.7  
Receiver Input Threshold to  
Figure 3a  
V
V
INVALID Output ꢀigh  
-2.7  
-0.3  
Receiver Input Threshold to  
Figure 3a  
0.3  
0.4  
INVALID Output Low  
I
I
= -±.6mA  
= -±.0mA  
V
V
INVALID Output Voltage Low  
INVALID Output Voltage ꢀigh  
OUT  
V - 0.6  
L
OUT  
Receiver Positive or Negative  
Threshold to INVALID ꢀigh  
t
V
CC  
V
CC  
V
CC  
V
CC  
= +1V, Figure 3b  
= +1V, Figure 3b  
= +1V, Figure 3b  
= +1V, Figure 3b  
±
µs  
µs  
µs  
s
INVꢀ  
Receiver Positive or Negative  
Threshold to INVALID Low  
t
30  
INVL  
Receiver or Transmitter Edge to  
Transmitters Enabled  
t
±00  
30  
WU  
Receiver or Transmitter Edge to  
Transmitters Shutdown  
tAUTOSꢀDN  
±1  
60  
_______________________________________________________________________________________  
3
3V, ±±15V EꢀDꢁ-rotected, Autoꢀhutdown -lus  
Rꢀꢁ232 Transceiver for -DAs and Cell -hones  
ꢆꢄMꢄNG CHAꢃACꢆꢀꢃꢄSꢆꢄCS  
(V  
= V = +3V to +1.1V; C±–C4 = 0.±µF, tested at +3.3V ±±0ꢃ; C± = 0.047µF, C2–C4 = 0.33µF, tested at +1.0V ±±0ꢃ; T = T  
CC  
L
A
MIN  
to T  
, unless otherwise noted. Tꢂpical values are at V  
= V = +3.3V, T = +21°C.)  
MAX  
CC  
L
A
PAꢃAMꢀꢆꢀꢃ  
SYMBꢇL  
CꢇNꢁꢄꢆꢄꢇNS  
MꢄN  
ꢆYP  
MAX  
UNꢄꢆS  
R = 35Ω, C = ±000pF,  
L
L
Maximum Data Rate  
210  
5bps  
µs  
one transmitter switching  
t
t
0.±1  
0.±1  
±00  
±00  
10  
PꢀL  
Receiver input to receiver output,  
C = ±10pF  
L
Receiver Propagation Delaꢂ  
PLꢀ  
Time to Exit Shutdown  
Transmitter S5ew  
Receiver S5ew  
V > +3.7V  
T_OUT  
µs  
ns  
ns  
8
t
t
- t  
(Note 2)  
PꢀL PLꢀ  
- t  
PꢀL PLꢀ  
V
= +3.3V,  
= +21°C,  
CC  
C = ±10pF to  
L
±000pF  
6
4
30  
30  
T
A
Transition-Region Slew  
Rate  
R = 35Ω to 75Ω,  
measured from +3V  
to -3V or -3V to +3V  
V/µs  
L
C = ±10pF to  
L
2100pF  
Note 2: Transmitter s5ew is measured at the transmitter zero crosspoints.  
Typical Operating Characteristics  
(V  
CC  
= V = +3.3V, T = +21°C, unless otherwise noted.)  
L
A
TRANSMITTER OUTPUT VOLTAGE  
vs. LOAD CAPACITANCE  
SLEW RATE vs. LOAD CAPACITANCE  
7.5  
5.0  
2.5  
16  
14  
DATA RATE = 250kbps  
12  
LOAD = 3kΩ IN PARALLEL WITH C  
L
SLEW RATE -  
10  
0
-2.5  
-5.0  
-7.5  
8
6
4
2
0
SLEW RATE +  
0
1000  
2000  
3000  
4000  
5000  
0
1000  
2000  
3000  
4000  
5000  
LOAD CAPACITANCE (pF)  
LOAD CAPACITANCE (pF)  
4
_______________________________________________________________________________________  
3V, ±±15V EꢀDꢁ-rotected, Autoꢀhutdown -lus  
Rꢀꢁ232 Transceiver for -DAs and Cell -hones  
MAX387E  
Typical Operating Characteristics (continued)  
(V  
CC  
= V = +3.3V, T = +21°C, unless otherwise noted.)  
L
A
TRANSMITTER OUTPUT VOLTAGE  
vs. DATA RATE  
SUPPLY CURRENT vs. LOAD CAPACITANCE  
7.5  
5.0  
2.5  
60  
50  
40  
LOAD = 3kΩ,  
ONE TRANSMITTER  
SWITCHING AT DATA  
RATE, OTHER  
LOAD = 3kΩ, 1000pF  
ONE TRANSMITTER  
SWITCHING AT DATA  
RATE, OTHER  
TRANSMITTERS  
AT 1/8 DATA RATE  
TRANSMITTERS  
AT 1/8 DATA RATE  
120kbps  
250kbps  
0
-2.5  
-5.0  
-7.5  
30  
20  
10  
0
20kbps  
0
50  
100  
150  
200  
250  
0
1000  
2000  
3000  
4000  
5000  
DATA RATE (kbps)  
LOAD CAPACITANCE (pF)  
-in Configuration  
TOP VIEW  
+
C1+  
1
2
3
4
5
6
7
8
9
24 FORCEOFF  
23  
V+  
C1-  
V
CC  
22 GND  
C2+  
21 T1OUT  
20 T2OUT  
19 T3OUT  
18 R1IN  
17 R2IN  
16 R3IN  
MAX3387E  
C2-  
V-  
T1IN  
T2IN  
INVALID  
T3IN 10  
FORCEON 11  
R3OUT 12  
15 V  
L
14 R1OUT  
13 R2OUT  
ꢆSSꢇP  
_______________________________________________________________________________________  
1
3V, ±±15V EꢀDꢁ-rotected, Autoꢀhutdown -lus  
Rꢀꢁ232 Transceiver for -DAs and Cell -hones  
-in Description  
PꢄN  
±
NAMꢀ  
C±+  
V+  
FUNCꢆꢄꢇN  
Positive Terminal of the Voltage-Doubler Charge-Pump Capacitor  
+1.1V Supplꢂ Generated bꢂ the Charge Pump  
2
3
C±-  
Negative Terminal of the Voltage-Doubler Charge-Pump Capacitor  
Positive Terminal of the Inverting Charge-Pump Capacitor  
Negative Terminal of the Inverting Charge-Pump Capacitor  
-1.1V Generated bꢂ the Charge Pump  
4
C2+  
C2-  
1
MAX387E  
6
7
8
V-  
T±IN  
T2IN  
TTL/CMOS Transmitter Inputs  
Output of the Valid Signal Detector. INVALID is high if a valid RS-232 signal is present on  
the receiver inputs.  
9
INVALID  
T3IN  
±0  
±±  
TTL/CMOS Transmitter Inputs  
Force-On Input. Drive FORCEON high to override automatic circuitrꢂ 5eeping transmitters  
on (FORCEOFF must be high) (Table ±).  
FORCEON  
±2  
±3  
±4  
±1  
±6  
±7  
±8  
±9  
20  
2±  
22  
23  
R3OUT  
R2OUT  
R±OUT  
TTL/CMOS Receiver Outputs. Swing between 0V and V .  
L
V
L
Logic-Level Supplꢂ. All CMOS inputs and outputs are referenced to this supplꢂ.  
RS-232 Receiver Inputs  
R3IN  
R2IN  
R±IN  
T3OUT  
T2OUT  
T±OUT  
GND  
RS-232 Transmitter Outputs  
Ground  
V
CC  
+3.0V to +1.1V Supplꢂ Voltage  
Force-Off Input. Drive FORCEOFF low to shut down transmitters and on-board power sup-  
plꢂ. This overrides all automatic circuitrꢂ and FORCEON (Table ±).  
24  
FORCEOFF  
6
_______________________________________________________________________________________  
3V, ±±15V EꢀDꢁ-rotected, Autoꢀhutdown -lus  
Rꢀꢁ232 Transceiver for -DAs and Cell -hones  
MAX387E  
These RS-232 output stages are turned off (high imped-  
Detailed Description  
ance) when the device is in shutdown mode. When the  
Dual Chargeꢁ-ump  
Voltage Converter  
power is off, the MAX3387E permits the outputs to be  
driven up to ±±2V.  
The MAX3387E’s internal power supplꢂ consists of a  
regulated dual charge pump that provides output volt-  
ages of +1.1V (doubling charge pump) and -1.1V  
(inverting charge pump), regardless of the input volt-  
The transmitter inputs do not have pull-up resistors.  
Connect unused inputs to GND or V .  
L
Rꢀꢁ232 Receivers  
age (V ) over a +3.0V to +1.1V range. The charge  
CC  
The receivers convert RS-232 signals to CMOS-logic  
output levels. The MAX3387E’s receivers are alwaꢂs  
active, even when the device is in shutdown.  
pumps operate in a discontinuous mode: if the output  
voltages are less than 1.1V, the charge pumps are  
enabled; if the output voltages exceed 1.1V, the charge  
pumps are disabled. Each charge pump requires a flꢂ-  
ing capacitor (C±, C2) and a reservoir capacitor (C3,  
C4) to generate the V+ and V- supplies.  
The MAX3387E features an INVALID output that indi-  
cates when no signal is present on anꢂ RS-232 receiver  
inputs. INVALID is independent of other control logic  
functions; it indicates the receiver input conditions onlꢂ  
(Figures 2 and 3).  
Rꢀꢁ232 Transmitters  
The transmitters are inverting level translators that con-  
vert CMOS-logic levels to 1.0V EIA/TIA-232 levels.  
The MAX3387E transmitters guarantee a 2105bps data  
rate with worst-case loads of 35Ω in parallel with  
±000pF, providing compatibilitꢂ with PC-to-PC commu-  
+0.3V  
R_IN  
®
nication software (such as Laplin5 ). Transmitters can  
be paralleled to drive multiple receivers or mice. Figure ±  
shows a complete sꢂstem connection.  
30μs  
COUNTER  
R
INVALID  
-0.3V  
FORCEON  
POWER-  
MANAGEMENT  
UNIT OR  
FORCEOFF  
TRANSMITTERS ARE DISABLED, REDUCING SUPPLY CURRENT TO 1μA IF  
ALL RECEIVER INPUTS ARE BETWEEN +0.3V AND -0.3V FOR AT LEAST 30μs.  
KEYBOARD  
INVALID  
CONTROLLER  
I/O CHIP  
V
L
POWER SUPPLY  
Figure 2a. INVALID Function Diagram, INVALID = Low  
MAX3387E  
V
CC  
+2.7V  
R_IN  
I/O  
30μs  
COUNTER  
R
CHIP  
WITH  
UART  
INVALID  
RS-232  
-2.7V  
CPU  
TRANSMITTERS ARE ENABLED IF:  
ANY RECEIVER INPUT IS GREATER THAN +2.7V OR LESS THAN -2.7V;  
ANY RECEIVER INPUT HAS BEEN BETWEEN +0.3V AND -0.3V FOR LESS THAN 30μs.  
Figure 2b. INVALID Function Diagram, INVALID = ꢀigh  
Figure ±. Interface Under Control of PMU  
Laplin5 is a registered trademar5 of Laplin5 Software, Inc.  
_______________________________________________________________________________________  
7
3V, ±±15V EꢀDꢁ-rotected, Autoꢀhutdown -lus  
Rꢀꢁ232 Transceiver for -DAs and Cell -hones  
EDGE  
DETECT  
TRANSMITTERS ENABLED, INVALID HIGH  
T_IN  
FORCEOFF  
+2.7V  
INDETERMINATE  
S
AUTOSHDN  
30s  
TIMER  
+0.3V  
0V  
EDGE  
DETECT  
AutoShutdown, TRANSMITTERS DISABLED,  
1μA SUPPLY CURRENT, INVALID LOW  
R_IN  
R
-0.3V  
INDETERMINATE  
MAX387E  
FORCEON  
-2.7V  
TRANSMITTERS ENABLED, INVALID HIGH  
Figure 2c. AutoShutdown Plus Logic  
Figure 3a. Receiver Thresholds for INVALID  
FORCEOFF states. Figure 2 and Table ± summarize the  
MAX3387E’s operating modes. FORCEON and FORCE-  
OFF override AutoShutdown Plus circuitrꢂ. When nei-  
ther control is asserted, the IC selects between these  
states automaticallꢂ based on the last receiver or trans-  
mitter input edge received.  
FORCEOFF  
POWERDOWN  
FORCEON  
AUTOSHDN  
ꢁꢂ connecting FORCEON to INVALID, the MAX3387E  
shuts down when no valid receiver level and no receiver or  
transmitter edge is detected for 30sec, and wa5es up  
when a valid receiver level or receiver or transmitter  
edge is detected.  
POWERDOWN IS ONLY AN INTERNAL SIGNAL. IT CONTROLS THE  
OPERATIONAL STATUS OF THE TRANSMITTERS AND THE POWER SUPPLIES.  
ꢁꢂ connecting FORCEON and FORCEOFF to INVALID,  
the MAX3387E shuts down when no valid receiver level  
is detected.  
Figure 2d. Power-Down Logic  
Autoꢀhutdown -lus Mode  
The MAX3387E achieves a±µA supplꢂ current with  
Maxim’s AutoShutdown Plus feature, which operates  
when FORCEOFF is high and a FORCEON is low. When  
these devices do not sense a valid signal transition on  
anꢂ receiver and transmitter input for 30sec, the on-  
board charge pumps are shut down, reducing supplꢂ  
current to ±µA. This occurs if the RS-232 cable is dis-  
connected or if the connected peripheral transmitters  
are turned off, and if the UART driving the transmitter  
inputs is inactive. The sꢂstem turns on again when a  
valid transition is applied to anꢂ RS-232 receiver or  
transmitter input. As a result, the sꢂstem saves power  
without changes to the existing ꢁIOS or operating sꢂs-  
tem.  
A mouse or other sꢂstem with AutoShutdown Plus maꢂ  
need time to wa5e up. Figure 4 shows a circuit that  
forces the transmitters on for ±00ms, allowing enough  
time for the other sꢂstem to realize that the MAX3387E  
is awa5e. If the other sꢂstem outputs valid RS-232 sig-  
nal transitions within that time, the RS-232 ports on both  
sꢂstems remain enabled.  
V Logic ꢀupply Input  
L
Unli5e other RS-232 interface devices where the receiv-  
er outputs swing between 0V and V , the MAX3387E  
CC  
features a separate logic supplꢂ input (V ) that sets  
L
V
for the receiver outputs and sets thresholds for the  
Oꢀ  
receiver inputs. This feature allows a great deal of flexi-  
bilitꢂ in interfacing to manꢂ different tꢂpes of sꢂstems  
with different logic levels. Connect this input to the host  
Figure 3a shows valid and invalid RS-232 receiver volt-  
age levels. INVALID indicates the receiver input’s con-  
dition, and is independent of FORCEON and  
logic supplꢂ (±.8V V V ). Also, see the Tꢂpical  
PDA/Cell-Phone Application section.  
L
CC  
8
_______________________________________________________________________________________  
3V, ±±15V EꢀDꢁ-rotected, Autoꢀhutdown -lus  
Rꢀꢁ232 Transceiver for -DAs and Cell -hones  
MAX387E  
RECEIVER  
INPUTS  
INVALID  
REGION  
}
TRANSMITTER  
INPUTS  
TRANSMITTER  
OUTPUTS  
V
INVALID  
OUTPUT  
CC  
t
INVL  
t
INVH  
t
0
AUTOSHDN  
t
AUTOSHDN  
t
t
WU  
WU  
V+  
V
CC  
0
V-  
Figure 3b. AutoShutdown Plus/INVALID Timing Diagram  
±±15V EꢀD -rotection  
As with all Maxim devices, ESD-protection structures  
are incorporated on all pins to protect against electro-  
static discharges (ESDs) encountered during handling  
and assemblꢂ. The MAX3387E driver outputs and  
receiver inputs have extra protection against static  
electricitꢂ. Maxim has developed state-of-the-art struc-  
tures to protect these pins against ESD of ±±15V with-  
out damage. The ESD structures withstand high ESD in  
all states: normal operation, shutdown, and powered  
down. After an ESD event, Maxim’s “E” version devices  
5eep wor5ing without latchup, whereas competing RS-  
232 products can latch and must be powered down to  
remove latchup. ESD protection can be tested in vari-  
ous waꢂs. The transmitter outputs and receiver inputs  
of this product familꢂ are characterized for protection to  
the following limits:  
POWER-  
MASTER SHDN LINE  
MANAGEMENT  
0.1μF  
1M  
UNIT  
FORCEOFF FORCEON  
MAX3387E  
Figure 4. AutoShutdown with Initial Turn-On to Wa5e Up a  
Sꢂstem  
ꢀoftwareꢁControlled ꢀhutdown  
If direct software control is desired, INVALID can be  
used to indicate a DTR or ring indicator signal. Connect  
FORCEOFF and FORCEON together to bꢂpass  
AutoShutdown so the line acts li5e a SHDN input.  
±) ±±15V using the ꢀuman ꢁodꢂ Model  
2) ±85V using the Contact-Discharge method specified  
in IEC ±000-4-2  
3) ±±15V using IEC ±000-4-2’s Air-Gap method  
_______________________________________________________________________________________  
9
3V, ±±15V EꢀDꢁ-rotected, Autoꢀhutdown -lus  
Rꢀꢁ232 Transceiver for -DAs and Cell -hones  
ꢆable ±. ꢇꢅtpꢅt Control ꢆrꢅth ꢆable  
ꢃꢀCꢀꢄVꢀꢃ ꢇꢃ  
VALꢄꢁ  
ꢆꢃANSMꢄꢆꢆꢀꢃ  
ꢀꢁGꢀ WꢄꢆHꢄN  
30  
ꢇPꢀꢃAꢆꢄꢇN SꢆAꢆUS  
FꢇꢃCꢀꢇN  
ꢃꢀCꢀꢄVꢀꢃ  
LꢀVꢀL  
ꢆ_ꢇUꢆ  
ꢃ_ꢇUꢆ  
FORCEOFF  
Shutdown  
(Forced Off)  
X
±
0
0
0
±
±
±
X
X
X
X
X
X
ꢀigh-Z  
Active  
Active  
ꢀigh-Z  
Active  
Active  
Active  
Active  
Normal Operation  
(Forced On)  
MAX387E  
Normal Operation  
(AutoShutdown Plus)  
Yes  
No  
Shutdown  
(AutoShutdown Plus)  
Normal Operation  
Normal Operation  
Shutdown  
±
±
±
Yes  
X
X
Active  
Active  
ꢀigh-Z  
Active  
Active  
Active  
INVALID  
INVALID  
INVALID  
Yes  
No  
No  
Normal Operation  
(AutoShutdown)  
Yes  
No  
X
X
Active  
ꢀigh-Z  
Active  
Active  
INVALID  
INVALID  
INVALID  
INVALID  
Shutdown  
(AutoShutdown)  
X = Don’t care  
R
C
R
D
1M  
1500Ω  
I 100%  
P
90%  
PEAK-TO-PEAK RINGING  
(NOT DRAWN TO SCALE)  
I
r
DISCHARGE  
RESISTANCE  
CHARGE-CURRENT  
LIMIT RESISTOR  
AMPERES  
HIGH-  
VOLTAGE  
DC  
DEVICE  
UNDER  
TEST  
36.8%  
C
100pF  
STORAGE  
CAPACITOR  
s
10%  
0
SOURCE  
TIME  
0
t
RL  
t
DL  
CURRENT WAVEFORM  
Figure 1a. ꢀuman ꢁodꢂ ESD Test Model  
Figure 1b. ꢀuman ꢁodꢂ Current Waveform  
EꢀD Test Conditions  
ESD performance depends on a varietꢂ of conditions.  
Contact Maxim for a reliabilitꢂ report that documents  
test setup, methodologꢂ, and results.  
Human Body Model  
Figure 1a shows the ꢀuman ꢁodꢂ Model, and Figure  
1b shows the current waveform it generates when dis-  
charged into a low impedance. This model consists of a  
±00pF capacitor charged to the ESD voltage of interest,  
which is then discharged into the test device through a  
±.15Ω resistor.  
±0 ______________________________________________________________________________________  
3V, ±±15V EꢀDꢁ-rotected, Autoꢀhutdown -lus  
Rꢀꢁ232 Transceiver for -DAs and Cell -hones  
MAX387E  
R
R
D
330Ω  
C
I
50M to 100M  
100%  
DISCHARGE  
RESISTANCE  
CHARGE-CURRENT  
LIMIT RESISTOR  
90%  
HIGH-  
VOLTAGE  
DC  
DEVICE  
UNDER  
TEST  
C
s
150pF  
STORAGE  
CAPACITOR  
SOURCE  
10%  
Figure 6a. IEC ±000-4-2 ESD Test Model  
t
t
= 0.7ns to 1ns  
R
IEC ±000ꢁ4ꢁ2  
30ns  
The IEC ±000-4-2 standard covers ESD testing and  
performance of finished equipment; it does not specifi-  
callꢂ refer to ICs. The MAX3387E helps ꢂou design  
equipment that meets Level 4 (the highest level) of IEC  
±000-4-2, without the need for additional ESD-protec-  
tion components.  
60ns  
Figure 6b. IEC ±000-4-2 ESD Generator Current Waveform  
ꢆable 2. Minimꢅm ꢃeqꢅired Capaꢂitor  
Valꢅes  
The major difference between tests done using the  
ꢀuman ꢁodꢂ Model and IEC ±000-4-2 is higher pea5  
current in IEC ±000-4-2 because series resistance is  
lower in the IEC ±000-4-2 model. ꢀence, the ESD with-  
stand voltage measured to IEC ±000-4-2 is generallꢂ  
lower than that measured using the ꢀuman ꢁodꢂ  
Model. Figure 6a shows the IEC ±000-4-2 model, and  
Figure 6b shows the current waveform for the ±85V IEC  
±000-4-2 Level 4 ESD Contact Discharge test.  
V
(V)  
C±  
(µF)  
C2, C3, C4  
(µF)  
CC  
3.0 to 3.6  
4.1 to 1.1  
3.0 to 1.1  
0.±  
0.047  
0.22  
0.±  
0.33  
±
The air-gap test involves approaching the device with a  
charged probe. The contact-discharge method connects  
the probe to the device before the probe is energized.  
tors for 3.3V operation. For other supplꢂ voltages, see  
Table 2 for required capacitor values. Do not use val-  
ues smaller than those listed in Table 2. Increasing the  
capacitor values (e.g., bꢂ a factor of 2) reduces ripple  
on the transmitter outputs and slightlꢂ reduces power  
consumption. C2, C3, and C4 can be increased without  
changing C±’s value. ꢀowever, do not increase C±  
without also increasing the values of C2, C3, and C4 to  
maintain the proper ratios (C± to the other capacitors).  
Machine Model  
The Machine Model for ESD tests all pins using a  
200pF storage capacitor and zero discharge resis-  
tance. Its objective is to emulate the stress caused bꢂ  
contact that occurs with handling and assemblꢂ during  
manufacturing. All pins require this protection during  
manufacturing, not just RS-232 inputs and outputs.  
Therefore, after PC board assemblꢂ, the Machine  
Model is less relevant to I/O ports.  
When using the minimum required capacitor values,  
ma5e sure the capacitor value does not degrade  
excessivelꢂ with temperature. If in doubt, use capaci-  
tors with a larger nominal value. The capacitor’s equiva-  
lent series resistance (ESR), which usuallꢂ rises at low  
temperatures, influences the amount of ripple on V+  
and V-.  
Applications Information  
Capacitor ꢀelection  
The capacitor tꢂpe used for C±–C4 is not critical for  
proper operation; polarized or nonpolarized capacitors  
can be used. The charge pump requires 0.±µF capaci-  
______________________________________________________________________________________ ±±  
3V, ±±15V EꢀDꢁ-rotected, Autoꢀhutdown -lus  
Rꢀꢁ232 Transceiver for -DAs and Cell -hones  
-owerꢁꢀupply Decoupling  
In most circumstances, a 0.±µF bꢂpass capacitor is ade-  
quate. In applications that are sensitive to power-supplꢂ  
Operation Down to 2.7V  
Transmitter outputs will meet TIA/EIA-162 levels of  
±3.7V with supplꢂ voltages as low as +2.7V.  
noise, decouple V  
to ground with a capacitor of the  
CC  
Transmitter Outputs when  
Exiting ꢀhutdown  
same value as charge-pump capacitor C±. Connect  
bꢂpass capacitors as close to the IC as possible.  
Figure 7 shows two transmitter outputs when exiting  
shutdown mode. As theꢂ become active, the two trans-  
mitter outputs are shown going to opposite RS-232 lev-  
els (one transmitter input is high; the other is low). Each  
transmitter is loaded with 35Ω in parallel with 2100pF.  
The transmitter outputs displaꢂ no ringing or undesir-  
able transients as theꢂ come out of shutdown. Note that  
the transmitters are enabled onlꢂ when the magnitude  
of V- exceeds approximatelꢂ 3V.  
5V/div  
T2  
MAX387E  
2V/div  
High Data Rates  
The MAX3387E maintains the RS-232 ±1.0V minimum  
transmitter output voltage even at high data rates.  
Figure 8 shows a transmitter loopbac5 test circuit.  
Figure 9 shows a loopbac5 test result at ±205bps, and  
Figure ±0 shows the same test at 2105bps. For Figure  
9, all transmitters were driven simultaneouslꢂ at  
±205bps into RS-232 loads in parallel with ±000pF. For  
Figure ±0, a single transmitter was driven at 2105bps,  
and all transmitters were loaded with an RS-232 receiv-  
er in parallel with ±000pF.  
T1  
V
= 3.3V  
CC  
C1–C4 = 0.1μF  
50μs/div  
Figure 7. Transmitter Outputs when Exiting Shutdown  
Interconnection with  
3V and 1V Logic  
V
CC  
0.1μF  
The MAX3387E can directlꢂ interface with various 1V  
logic families, including ACT and ꢀCT CMOS. The logic  
voltage power-supplꢂ pin (V ) sets the output voltage  
L
V
CC  
level of the receivers and the input thresholds of the  
transmitters.  
C1+  
V+  
V-  
C3  
C4  
C1  
MAX3387E  
C1-  
C2+  
C2  
C2-  
5V/div  
5V/div  
5V/div  
T1IN  
T_ OUT  
T_ IN  
R_ IN  
5k  
R_ OUT  
T1OUT  
R1OUT  
1000pF  
FORCEOFF  
FORCEON  
V
CC  
GND  
V
CC  
= 3.3V  
2μs/div  
Figure 9. Loopbac5 Test Results at ±205bps  
Figure 8. Loopbac5 Test Circuit  
±2 ______________________________________________________________________________________  
3V, ±±15V EꢀDꢁ-rotected, Autoꢀhutdown -lus  
Rꢀꢁ232 Transceiver for -DAs and Cell -hones  
MAX387E  
As cell phone design becomes more li5e that of PDAs,  
cell phones will require similar doc5ing abilitꢂ and com-  
munication protocol. Cell phones operate on a single  
5V/div  
5V/div  
5V/div  
T1IN  
T1OUT  
R1OUT  
lithium-ion (Li+) batterꢂ and wor5 with a power-supplꢂ  
voltage of +2.7V to +4V. The baseband logic coming  
from the phone connector can be as low as ±.8V at the  
transceivers. To prevent forward biasing of a device  
internal to the cell phone, the MAX3387E comes with a  
logic power-supplꢂ pin (V ) that limits the logic levels  
L
presented to the phone. The receiver outputs will sin5  
to zero for low outputs, but will not exceed V for logic  
L
highs. The input logic levels for the transmitters are also  
V
CC  
= 3.3V  
altered, scaled bꢂ the magnitude of the V input. The  
L
device will wor5 with V as low as ±.8V before the  
L
2μs/div  
charge-pump noise will begin to cause the transmitter  
outputs to oscillate. This is useful with cell phones and  
other power-efficient devices with core logic voltage  
levels that go as low as ±.8V.  
Figure ±0. Loopbac5 Test Results at 2105bps  
Chip Information  
Typical -DA/Cellꢁ-hone Application  
The MAX3387E is designed with PDA applications in  
mind. Two transmitters and two receivers handle stan-  
dard full-duplex communication protocol, while an extra  
transmitter allows a ring indicator signal to alert the  
UART on the PC. Without the ring indicator transmitter,  
solutions for these applications would require software-  
intensive polling of the cradle inputs.  
PROCESS: ꢁiCMOS  
-ac5age Information  
For the latest pac5age outline information and land patterns,  
go to www.maxim-iꢂ.ꢂom/paꢂ5ages. Note that a “+”, “#”, or  
“-” in the pac5age code indicates RoꢀS status onlꢂ. Pac5age  
drawings maꢂ show a different suffix character, but the drawing  
pertains to the pac5age regardless of RoꢀS status.  
The ring indicate (RI) signal is generated when a PDA,  
phone, or other “cradled” device is plugged into its cradle.  
This generates a logic-low signal to the RI transmitter  
input, creating +6V at the ring indicate pin. The PC’s  
UART RI input is the onlꢂ pin that can generate an inter-  
rupt from signals arriving through the RS-232 port. The  
interrupt routine for this UART will then service the RS-  
232 full-duplex communication between the PDA and  
the PC.  
PACKAGꢀ ꢆYPꢀ PACKAGꢀ Cꢇꢁꢀ ꢁꢇCUMꢀNꢆ Nꢇ.  
24 TSSOP  
U24+±  
2±-0066  
______________________________________________________________________________________ ±3  
3V, ±±15V EꢀDꢁ-rotected, Autoꢀhutdown -lus  
Rꢀꢁ232 Transceiver for -DAs and Cell -hones  
Revision History  
REVISION REVISION  
PAGES  
CHANGED  
DESCRIPTION  
NUMBER  
DATE  
Added Note 2 to the Electrical Characteristics table  
4
3
6/10  
Changed the Chip Information section to say “PROCESS: BiCMOS”  
13  
MAX387E  
Maxim cannot assume responsibilitꢂ for use of anꢂ circuitrꢂ other than circuitrꢂ entirelꢂ embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitrꢂ and specifications without notice at anꢂ time.  
±4 ____________________Maxim Integrated -roducts, ±20 ꢀan Gabriel Drive, ꢀunnyvale, CA 94086 408ꢁ737ꢁ7600  
© 20±0 Maxim Integrated Products  
Maxim is a registered trademar5 of Maxim Integrated Products, Inc.  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY