MAX3391EEBC-T [MAXIM]

【15kV ESD-Protected, 1レA, 16Mbps, Dual/Quad Low-Voltage Level Translators in UCSP; ± 15kV ESD保护, 1μA , 16Mbps的,双/四通道,低电压电平转换器,UCSP封装
MAX3391EEBC-T
型号: MAX3391EEBC-T
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

【15kV ESD-Protected, 1レA, 16Mbps, Dual/Quad Low-Voltage Level Translators in UCSP
± 15kV ESD保护, 1μA , 16Mbps的,双/四通道,低电压电平转换器,UCSP封装

转换器 电平转换器 驱动程序和接口 接口集成电路 信息通信管理
文件: 总25页 (文件大小:457K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-2328; Rev 3; 9/03  
±±15k EꢀDꢁ-rotected, ±µA, ±6Mbps, Dual/Quad  
Lowꢁkoltage Level Translators in UCꢀ-  
General Description  
Features  
The MAX3372E–MAX3379E and MAX3390E–MAX3393E  
±±15k EꢀSD-proeꢁoed ꢂeꢃeꢂ opanꢄꢂaorpꢄ -prꢃvde ohe ꢂeꢃeꢂ  
ꢄhvfovng neꢁeꢄꢄapy or aꢂꢂrw daoa opanꢄfep vn a muꢂovꢃrꢂoage  
o Guaranteed Data Rate Options  
230kbps  
8Mbps (+1.2V V V  
+5.5V)  
L
CC  
ꢄyꢄoem. Exoepnaꢂꢂy a--ꢂved ꢃrꢂoageꢄ, k  
and k , ꢄeo ohe  
L
CC  
10Mbps (+1.2V V V  
+3.3V)  
L
CC  
CC  
ꢂrgvꢁ ꢂeꢃeꢂꢄ rn evohep ꢄvde rf ohe deꢃvꢁe. A ꢂrwDꢃrꢂoage  
16Mbps (+1.8V V V  
+2.5V and +2.5V ≤  
L
ꢂrgvꢁ ꢄvgnaꢂ -peꢄeno rn ohe k ꢄvde rf ohe deꢃvꢁe a--eapꢄ  
L
V V  
+3.3V)  
L
CC  
aꢄ a hvghDꢃrꢂoage ꢂrgvꢁ ꢄvgnaꢂ rn ohe k  
ꢄvde rf ohe  
CC  
o Bidirectional Level Translation  
(MAX3372E/MAX3373E and  
MAX3377E/MAX3378E)  
deꢃvꢁe, and ꢃvꢁeDꢃepꢄa. The MAX3374E/MAX3371E/  
MAX3376E/MAX3379E and MAX3390E–MAX3393E unvdvD  
peꢁovrnaꢂ ꢂeꢃeꢂ opanꢄꢂaorpꢄ ꢂeꢃeꢂ ꢄhvfo daoa vn rne dvpeꢁovrn  
(k k  
rp k  
k ) rn any ꢄvngꢂe daoa ꢂvne. The  
L
CC  
CC L  
o Operation Down to +1.2V on V  
L
MAX3372E/MAX3373E and MAX3377E/MAX3378E bvdvD  
peꢁovrnaꢂ ꢂeꢃeꢂ opanꢄꢂaorpꢄ uovꢂvze a opanꢄmvꢄꢄvrnDgaoeD  
baꢄed deꢄvgn (Fvgupe 2) or aꢂꢂrw daoa opanꢄꢂaovrn vn evohep  
o
15kV EꢀD ꢁrotection on ꢂ/O V  
Lines  
CC  
o Ultra-Low 1µA ꢀupply Current in Three-ꢀtate  
Output Mode  
o Low-Quiescent Current (130µA typ)  
o UCꢀꢁ, ꢀOT, and TꢀꢀOꢁ ꢁackages  
o Thermal ꢀhort-Circuit ꢁrotection  
dvpeꢁovrn (k k ) rn any ꢄvngꢂe daoa ꢂvne. The  
L
CC  
MAX3372E–MAX3379E and MAX3390E–MAX3393E  
aꢁꢁe-o k fprm +±.2k or +1.1k and k fprm +±.61k or  
L
CC  
+1.1k, ma5vng ohem vdeaꢂ frp daoa opanꢄfep beoween ꢂrwD  
ꢃrꢂoage AꢀICꢄ/PLSꢄ and hvghep ꢃrꢂoage ꢄyꢄoemꢄ.  
Aꢂꢂ deꢃvꢁeꢄ vn ohe MAX3372E–MAX3379E, MAX3390E–  
MAX3393E famvꢂy feaoupe a ohpeeDꢄoaoe ruo-uo mrde ohao  
peduꢁeꢄ ꢄu--ꢂy ꢁuppeno or ꢂeꢄꢄ ohan ±µA, ohepmaꢂ ꢄhrpoD  
Ordering Information  
ꢁꢂN-  
ꢁACKAGE  
ꢁART NUMBER  
TEMꢁ RANGE  
ꢁvpꢁuvo -proeꢁovrn, and ±±15k EꢀS -proeꢁovrn rn ohe k  
CC  
ꢄvde frp gpeaoep -proeꢁovrn vn a--ꢂvꢁaovrnꢄ ohao pruoe ꢄvgD  
naꢂꢄ exoepnaꢂꢂy. The MAX3372E/MAX3377E r-epaoe ao a  
guapanoeed daoa paoe rf 2305b-ꢄ. ꢀꢂewDpaoe ꢂvmvovng  
peduꢁeꢄ EMI emvꢄꢄvrnꢄ vn aꢂꢂ 2305b-ꢄ deꢃvꢁeꢄ. The  
MAX3373E–MAX3376E/MAX3378E/MAX3379E and  
MAX3390E–MAX3393E r-epaoe ao a guapanoeed daoa paoe  
rf 8Mb-ꢄ rꢃep ohe enovpe ꢄ-eꢁvfved r-epaovng ꢃrꢂoage  
pange. Wvohvn ꢄ-eꢁvfvꢁ ꢃrꢂoage drmavnꢄ, hvghep daoa paoeꢄ  
ape -rꢄꢄvbꢂe. (ꢀee Timing Characteristics.)  
MAX3372EEKA-T  
-40°C to +85°C  
8 SOT23-8  
Ordering Information continued at end of data sheet.  
Selector Guide appears at end of data sheet.  
UCSP is a trademark of Maxim Integrated Products, Inc.  
SPI is a trademark of Motorola, Inc.  
I2C is a trademark of Phillips Corp.  
MICROWIRE is a trademark of National Semiconductor Corp.  
The MAX3372E–MAX3376E ape duaꢂ ꢂeꢃeꢂ ꢄhvfoepꢄ  
aꢃavꢂabꢂe vn 3 x 3 UCꢀP™ and 8D-vn ꢀOT23D8 -aꢁ5D  
ageꢄ. The MAX3377E/MAX3378E/MAX3379E and  
MAX3390E–MAX3393E ape quad ꢂeꢃeꢂ ꢄhvfoepꢄ aꢃavꢂD  
abꢂe vn 3 x 4 UCꢀP and ±4D-vn TꢀꢀOP -aꢁ5ageꢄ.  
-in Configurations  
________________________Applications  
ꢀPI™, MICROWIRE™, and I2C™ Leꢃeꢂ  
Tpanꢄꢂaovrn  
LrwDkrꢂoage AꢀIC Leꢃeꢂ Tpanꢄꢂaovrn  
ꢀmapo Capd Readepꢄ  
I/O V  
2
1
2
3
4
8
7
6
5
I/O V 1  
CC  
CC  
GND  
V
CC  
MAX3372E/  
MAX3373E  
V
L
THREE-STATE  
I/O V 1  
CeꢂꢂDPhrne Cpadꢂeꢄ  
I/O V 2  
L
L
Prpoabꢂe POꢀ ꢀyꢄoemꢄ  
Prpoabꢂe Crmmunvꢁaovrn Seꢃvꢁeꢄ  
LrwDCrꢄo ꢀepvaꢂ Inoepfaꢁeꢄ  
Ceꢂꢂ Phrneꢄ  
ꢀOT23-8  
TOꢁ VꢂEW  
GPꢀ  
Pin Configurations continued at end of data sheet.  
Teꢂeꢁrmmunvꢁaovrnꢄ Equv-meno  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
±±15k EꢀDꢁ-rotected, ±µA, ±6Mbps, Dual/Quad  
Lowꢁkoltage Level Translators in UCꢀ-  
ABꢀOLUTE MAXꢂMUM RATꢂNGꢀ  
All Voltages Referenced to GND  
Continuous Power Dissipation (T = +70°C)  
A
V
I/O V  
...........................................................................-0.3V to +6V  
8-Pin SOT23 (derate 8.9mW/°C above +70°C)...........714mW  
3 x 3 UCSP (derate 4.7mW/°C above +70°C) ............379mW  
3 x 4 UCSP (derate 6.5mW/°C above +70°C) ............579mW  
14-Pin TSSOP (derate 9.1mW/°C above +70°C) ........727mW  
Operating Temperature Range ...........................-40°C to +85°C  
Storage Temperature Range.............................-65°C to +150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
CC  
......................................................-0.3V to (V  
+ 0.3V)  
CC_  
CC  
I/O V ...........................................................-0.3V to (V + 0.3V)  
THREE-STATE...............................................-0.3V to (V + 0.3V)  
Short-Circuit Duration I/O V , I/O V  
Short-Circuit Duration I/O V or I/O V  
L_  
L
L
to GND...........Continuous  
L
CC  
to GND  
L
CC  
Driven from 40mA Source  
(except MAX3372E and MAX3377E) .....................Continuous  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRꢂCAL CHARACTERꢂꢀTꢂCꢀ  
(V  
= +1.65V to +5.5V, V = +1.2V to (V  
+ 0.3V), GND = 0, I/O V and I/O V  
unconnected, T = T  
to T  
, unless other-  
MAX  
CC  
L
CC  
L_  
CC_  
A
MIN  
wise noted. Typical values are at V  
= +3.3V, V = +1.8V, T = +25°C.) (Notes 1, 2)  
A
L
CC  
ꢁARAMETER  
ꢀYMBOL  
CONDꢂTꢂONꢀ  
MꢂN  
TYꢁ  
MAX  
UNꢂTꢀ  
ꢁOWER ꢀUꢁꢁLꢂEꢀ  
V Supply Range  
V
1.2  
5.5  
5.50  
300  
100  
V
L
L
V
Supply Range  
V
1.65  
V
CC  
CC  
Supply Current from V  
I
130  
16  
µA  
µA  
CC  
L
QVCC  
Supply Current from V  
I
QVL  
V
Three-State Output Mode  
CC  
I
I
T
T
= +25°C, THREE-STATE = GND  
= +25°C, THREE-STATE = GND  
0.03  
0.03  
1
1
µA  
µA  
THREE-STATE-VCC  
A
A
Supply Current  
V Three-State Output Mode  
L
Supply Current  
I
THREE-STATE-VL  
Three-State Output Mode  
Leakage Current  
I/O V and I/O V  
T
T
= +25°C, THREE-STATE = GND  
= +25°C  
0.02  
0.02  
1
1
µA  
µA  
THREE-STATE-LKG  
A
A
L_  
CC_  
THREE  - S  TATE Pin Input Leakage  
EꢀD ꢁROTECTꢂON  
IEC 1000-4-2 Air-Gap Discharge  
IEC 1000-4-2 Contact Discharge  
Human Body Model  
8
8
I/O V  
(Note 3)  
kV  
CC  
15  
LOGꢂC-LEVEL THREꢀHOLDꢀ (MAX3372E/MAX3377E)  
I/O V Input Voltage High  
V
V - 0.2  
L
V
V
L_  
IHL  
I/O V Input Voltage Low  
V
0.15  
L_  
ILL  
2
_______________________________________________________________________________________  
±±15k EꢀDꢁ-rotected, ±µA, ±6Mbps, Dual/Quad  
Lowꢁkoltage Level Translators in UCꢀ-  
ELECTRꢂCAL CHARACTERꢂꢀTꢂCꢀ (continued)  
(V  
= +1.65V to +5.5V, V = +1.2V to (V  
+ 0.3V), GND = 0, I/O V and I/O V  
unconnected, T = T  
to T  
, unless other-  
MAX  
CC  
L
CC  
L_  
CC_  
A
MIN  
wise noted. Typical values are at V  
= +3.3V, V = +1.8V, T = +25°C.) (Notes 1, 2)  
CC  
A
L
PARAMETER  
SYMBOL  
CONDITIONS  
MIN TYP  
V - 0.4  
CC  
MAX  
UNITS  
I/O V  
I/O V  
Input Voltage High  
Input Voltage Low  
V
V
V
CC_  
IHC  
V
0.15  
CC_  
ILC  
I/O V source current = 20µA,  
L_  
I/O V Output Voltage High  
V
0.67  
0.67  
V
V
V
V
V
V
V
L_  
OHL  
L
I/O V  
> V  
- 0.4V  
CC  
CC_  
I/O V sink current = 20µA,  
L_  
I/O V Output Voltage Low  
V
0.4  
0.4  
L_  
OLL  
I/O V  
< 0.15V  
CC_  
I/O V  
source current = 20µA,  
CC_  
I/O V  
Output Voltage High  
Output Voltage Low  
V
OHC  
V
CC_  
CC_  
CC  
I/O V > V - 0.2V  
L _  
L
I/O V  
sink current = 20µA,  
CC_  
I/O V  
V
OLC  
I/O V < 0.15V  
L_  
THREE-STATE Input Voltage  
High  
V
V - 0.2  
L
IL-THREE-STATE  
IL-THREE-STATE  
THREE-STATE Input Voltage  
Low  
V
0.15  
LOGIC-LEVEL THRESHOLDS (MAX3373EMAX3376E/MAX3378E/MAX3379E and MAX3390EMAX3393E)  
I/O V Input Voltage High V - 0.2  
V
V
V
V
V
L_  
IHL  
L
I/O V Input Voltage Low  
V
0.15  
0.15  
L_  
ILL  
I/O V  
Input Voltage High  
Input Voltage Low  
V
V - 0.4  
CC  
CC_  
CC_  
IHC  
I/O V  
V
ILC  
I/O V source current = 20µA,  
L_  
I/O V Output Voltage High  
V
0.67  
0.67  
V
V
V
V
V
V
V
L_  
OHL  
L
I/O V  
V  
- 0.4V  
CC  
CC_  
I/O V sink current = 1mA,  
L_  
I/O V Output Voltage Low  
V
0.4  
0.4  
L_  
OLL  
I/O V  
0.15V  
CC_  
I/O V  
source current = 20µA,  
CC_  
I/O V  
Output Voltage High  
Output Voltage Low  
V
OHC  
V
CC_  
CC_  
CC  
I/O V V - 0.2V  
L_  
L
I/O V  
sink current = 1mA,  
CC_  
I/O V  
V
OLC  
I/O V 0.15V  
L_  
THREE-STATE Input Voltage  
High  
V
V - 0.2  
L
IH-THREE-STATE  
THREE-STATE Input Voltage  
Low  
V
0.15  
IL-THREE-STATE  
_______________________________________________________________________________________  
3
±±15k EꢀDꢁ-rotected, ±µA, ±6Mbps, Dual/Quad  
Lowꢁkoltage Level Translators in UCꢀ-  
TIMING CHARACTERISTICS  
(V  
= +1.65V to +5.5V, V = +1.2V to (V  
+ 0.3V), GND = 0, R  
= 1M, I/O test signal of Figure 1, T = T  
to T  
, unless  
MAX  
CC  
L
CC  
LOAD  
A
A
MIN  
otherwise noted. Typical values are at V  
= +3.3V, V = +1.8V, T = +25°C, unless otherwise noted.) (Notes 1, 2)  
CC  
L
PARAMETER  
SYMBOL  
= 50pF)  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
MAX3372E/MAX3377E (C  
LOAD  
I/O V _ Rise Time (Note 4)  
t
1100  
1000  
600  
ns  
ns  
ns  
ns  
CC  
RVCC  
I/O V _ Fall Time (Note 5)  
t
CC  
FVCC  
I/O V _ Rise Time (Note 4)  
t
RVL  
L
I/O V _ Fall Time (Note 5)  
L
t
1100  
FVL  
I/O  
I/O  
Driving I/O V _  
1.6  
1.6  
500  
VL-VCC  
VCC-VL  
SKEW  
L
Propagation Delay  
µs  
Driving I/O V  
_
CC  
Channel-to-Channel Skew  
Maximum Data Rate  
t
Each translator equally loaded  
C = 25pF  
ns  
230  
kbps  
L
MAX3373EMAX3376E/MAX3378E/MAX3379E and MAX3390EMAX3393E (C  
= 15pF, Driver Output Impedance 50)  
LOAD  
+1.2V V V  
+5.5V  
L
CC  
7
170  
6
25  
400  
37  
I/O V _ Rise Time (Note 4)  
t
ns  
ns  
ns  
ns  
CC  
RVCC  
Open-drain driving  
Open-drain driving  
Open-drain driving  
Open-drain driving  
I/O V _ Fall Time (Note 5)  
t
CC  
FVCC  
20  
8
50  
30  
I/O V _ Rise Time (Note 4)  
t
RVL  
L
180  
3
400  
30  
I/O V _ Fall Time (Note 5)  
L
t
LFV  
30  
5
60  
30  
I/O  
I/O  
Driving I/O V _  
L
VL-VCC  
VCC-VL  
SKEW  
Open-drain driving  
Open-drain driving  
Open-drain driving  
210  
4
1000  
30  
Propagation Delay  
ns  
ns  
Driving I/O V _  
CC  
190  
1000  
20  
Each translator  
equally loaded  
Channel-to-Channel Skew  
Maximum Data Rate  
t
50  
8
Mbps  
kbps  
Open-drain driving  
500  
4
_______________________________________________________________________________________  
±±15k EꢀDꢁ-rotected, ±µA, ±6Mbps, Dual/Quad  
Lowꢁkoltage Level Translators in UCꢀ-  
TIMING CHARACTERISTICS (continued)  
(V  
= +1.65V to +5.5V, V = +1.2V to (V  
+ 0.3V), GND = 0, R  
= 1M, I/O test signal of Figure 1, T = T  
to T  
, unless  
MAX  
CC  
L
CC  
LOAD  
A
A
MIN  
otherwise noted. Typical values are at V  
= +3.3V, V = +1.8V, T = +25°C, unless otherwise noted.) (Notes 1, 2)  
CC  
L
PARAMETER  
+1.2V V V +3.3V  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
L
CC  
I/O V _ Rise Time (Note 4)  
t
25  
30  
30  
30  
20  
20  
10  
ns  
ns  
ns  
ns  
CC  
RVCC  
I/O V _ Fall Time (Note 5)  
t
CC  
FVCC  
I/O V _ Rise Time (Note 4)  
t
RVL  
L
I/O V _ Fall Time (Note 5)  
L
t
FVL  
I/O  
I/O  
Driving I/O V _  
L
VL-VCC  
VCC-VL  
SKEW  
Propagation Delay  
ns  
Driving I/O V  
_
CC  
Each translator equally loaded  
Channel-to-Channel Skew  
Maximum Data Rate  
t
ns  
10  
Mbps  
+2.5V V V  
+3.3V  
L
CC  
I/O V _ Rise Time (Note 4)  
t
15  
15  
15  
15  
15  
15  
10  
ns  
ns  
ns  
ns  
CC  
RVCC  
I/O V _ Fall Time (Note 5)  
t
CC  
FVCC  
I/O V _ Rise Time (Note 4)  
t
RVL  
L
I/O V _ Fall Time (Note 5)  
L
t
FVL  
I/O  
I/O  
Driving I/O V _  
L
VL-VCC  
VCC-VL  
SKEW  
Propagation Delay  
ns  
Driving I/O V  
_
CC  
Channel-to-Channel Skew  
Maximum Data Rate  
t
Each translator equally loaded  
ns  
16  
Mbps  
+1.8V V V  
+2.5V  
L
CC  
I/O V _ Rise Time (Note 4)  
t
15  
15  
15  
15  
15  
15  
10  
ns  
ns  
ns  
ns  
CC  
RVCC  
I/O V _ Fall Time (Note 5)  
t
CC  
FVCC  
I/O V _ Rise Time (Note 4)  
t
RVL  
L
I/O V _ Fall Time (Note 5)  
L
t
FVL  
I/O  
I/O  
Driving I/O V _  
L
VL-VCC  
VCC-VL  
SKEW  
Propagation Delay  
ns  
Driving I/O V  
_
CC  
Channel-to-Channel Skew  
Maximum Data Rate  
t
Each translator equally loaded  
ns  
16  
Mbps  
Note 1: All units are 100% production tested at T = +25°C. Limits over the operating temperature range are guaranteed by design  
A
and not production tested.  
Note 2: For normal operation, ensure V < (V  
+ 0.3V). During power-up, V > (V  
+ 0.3V) will not damage the device.  
L
CC  
L
CC  
Note 3: To ensure maximum ESD protection, place a 1µF capacitor between V  
and GND. See Applications Circuits.  
CC  
Note 4: 10% to 90%  
Note 5: 90% to 10%  
_______________________________________________________________________________________  
5
±±15k EꢀDꢁ-rotected, ±µA, ±6Mbps, Dual/Quad  
Lowꢁkoltage Level Translators in UCꢀ-  
Typical Operating Characteristics  
(R = 1M, T = +25°C, unless otherwise noted. All 230kbps TOCs apply to MAX3372E/MAX3377E only. All 8Mbps and 500kbps  
L
A
TOCs apply to MAX3373EMAX3376E/MAX3378E/MAX3379E and MAX3390EMAX3393E only.)  
V
SUPPLY CURRENT vs. SUPPLY VOLTAGE  
V SUPPLY CURRENT vs. SUPPLY VOLTAGE  
L
V SUPPLY CURRENT vs. TEMPERATURE  
L
CC  
(DRIVING I/O V , V = +3.3V, V = +1.8V)  
(DRIVING I/O V , V = +3.3V, V = +1.8V)  
(DRIVING I/O V , V = +3.3V, V = +1.8V)  
L
CC  
L
L
CC  
L
CC CC  
L
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
600  
500  
400  
300  
200  
100  
0
400  
350  
300  
250  
200  
150  
100  
50  
500kbps, OPEN-DRAIN, C = 15pF  
LOAD  
8Mbps, C  
= 15pF  
LOAD  
8Mbps, C  
= 15pF  
LOAD  
500kbps, OPEN-DRAIN, C  
= 15pF  
8Mbps, C  
= 15pF  
LOAD  
LOAD  
500kbps, OPEN-DRAIN, C  
= 15pF  
LOAD  
230kbps, C  
= 50pF  
LOAD  
230kbps, C  
= 50pF  
LOAD  
230kbps, C  
= 50pF  
60  
LOAD  
0
1.65 2.20 2.75 3.30 3.85 4.40 4.95 5.50  
(V)  
1.65 2.20 2.75 3.30 3.85 4.40 4.95 5.50  
(V)  
-40  
-15  
10  
35  
85  
V
V
TEMPERATURE (°C)  
CC  
CC  
V
SUPPLY CURRENT vs. TEMPERATURE  
V SUPPLY CURRENT vs. CAPACITIVE LOAD  
V
SUPPLY CURRENT vs. CAPACITIVE LOAD  
CC  
CC  
L
(DRIVING I/O V , V = +3.3V, V = +1.8V)  
(DRIVING I/O V , V = +3.3V, V = +1.8V)  
(DRIVING I/O V , V = +3.3V, V = +1.8V)  
CC CC  
L
L
CC  
L
L CC L  
1600  
1400  
1200  
1000  
800  
600  
400  
200  
0
350  
300  
250  
200  
150  
100  
50  
2500  
8Mbps  
2000  
1500  
1000  
500  
0
8Mbps, C  
= 15pF  
LOAD  
8Mbps  
500kbps, OPEN-DRAIN, C  
230kbps, C  
= 15pF  
LOAD  
500kbps, OPEN-DRAIN  
500kbps, OPEN-DRAIN  
230kbps  
= 50pF  
LOAD  
230kbps  
85  
0
-40  
-15  
10  
35  
60  
85  
10  
25  
40  
55  
70  
100  
10  
25  
40  
55  
70  
85  
100  
TEMPERATURE (°C)  
CAPACITIVE LOAD (pF)  
CAPACITIVE LOAD (pF)  
RISE/FALL TIME vs. CAPACITIVE LOAD  
RISE/FALL TIME vs. CAPACITIVE LOAD  
(DRIVING I/O V , V = +3.3V, V = +1.8V)  
RISE/FALL TIME vs. CAPACITIVE LOAD  
(DRIVING I/O V , V = +3.3V, V = +1.8V)  
(DRIVING I/O V , V = +3.3V, V = +1.8V)  
L
CC  
L
L
CC  
L
L
CC  
L
2500  
2000  
1500  
1000  
500  
18  
16  
14  
12  
10  
8
250  
t
LH  
200  
150  
100  
50  
t
LH  
t
LH  
DATA RATE = 500kbps,  
OPEN-DRAIN  
t
HL  
6
DATA RATE = 230kbps  
t
HL  
4
DATA RATE = 8Mbps  
2
t
HL  
0
0
0
20 30 40 50 60 70 80 90 100  
CAPACITIVE LOAD (pF)  
10 15 20 25 30 35 40 45 50  
CAPACITIVE LOAD (pF)  
10 15 20 25 30 35 40 45 50  
CAPACITIVE LOAD (pF)  
6
_______________________________________________________________________________________  
±±15k EꢀDꢁ-rotected, ±µA, ±6Mbps, Dual/Quad  
Lowꢁkoltage Level Translators in UCꢀ-  
Typical Operating Characteristics (continued)  
(R = 1M, T = +25°C, unless otherwise noted. All 230kbps TOCs apply to MAX3372E/MAX3377E only. All 8Mbps and 500kbps  
L
A
TOCs apply to MAX3373EMAX3376E/MAX3378E/MAX3379E and MAX3390EMAX3393E only.)  
PROPAGATION DELAY vs. CAPACITIVE LOAD  
(DRIVING I/O V , V = +3.3V, V = +1.8V)  
PROPAGATION DELAY vs. CAPACITIVE LOAD  
(DRIVING I/O V , V = +3.3V, V = +1.8V)  
PROPAGATION DELAY vs. CAPACITIVE LOAD  
(DRIVING I/O V , V = +3.3V, V = +1.8V)  
L
CC  
L
L
CC  
L
L
CC  
L
700  
600  
500  
400  
300  
200  
100  
0
15  
12  
9
300  
250  
200  
150  
100  
50  
DATA RATE = 8Mbps  
t
PLH  
t
PHL  
t
PHL  
DATA RATE = 500kbps,  
OPEN-DRAIN  
t
PLH  
6
DATA RATE = 230kbps  
3
t
PHL  
t
PLH  
0
0
20 30 40 50 60 70 80 90 100  
CAPACITIVE LOAD (pF)  
10 15 20 25 30 35 40 45 50  
CAPACITIVE LOAD (pF)  
10 15 20 25 30 35 40 45 50  
CAPACITIVE LOAD (pF)  
RISE/FALL TIME vs. CAPACITIVE LOAD  
RISE/FALL TIME vs. CAPACITIVE LOAD  
RISE/FALL TIME vs. CAPACITIVE LOAD  
(DRIVING I/O V , V = +2.5V, V = +1.8V)  
(DRIVING I/O V , V = +2.5V, V = +1.8V)  
(DRIVING I/O V , V = +2.5V, V = +1.8V)  
L
CC  
L
L
CC  
L
CC CC L  
2500  
2000  
1500  
1000  
500  
14  
300  
250  
200  
150  
100  
50  
DATA RATE = 8Mbps  
t
LH  
12  
10  
8
t
LH  
t
LH  
DATA RATE = 500kbps,  
OPEN-DRAIN  
6
t
HL  
DATA RATE = 230kbps  
4
t
HL  
2
t
HL  
0
0
0
20 30 40 50 60 70 80 90 100  
CAPACITIVE LOAD (pF)  
10 15 20 25 30 35 40 45 50  
CAPACITIVE LOAD (pF)  
10 15 20 25 30 35 40 45 50  
CAPACITIVE LOAD (pF)  
RISE/FALL TIME vs. CAPACITIVE LOAD  
RISE/FALL TIME vs. CAPACITIVE LOAD  
RISE/FALL TIME vs. CAPACITIVE LOAD  
(DRIVING I/O V , V = +3.3V, V = +1.8V)  
(DRIVING I/O V , V = +3.3V, V = +1.8V)  
(DRIVING I/O V , V = +3.3V, V = +1.8V)  
CC CC  
L
CC CC  
L
CC CC L  
2500  
2000  
1500  
1000  
500  
12  
10  
8
300  
250  
200  
150  
100  
50  
DATA RATE = 8Mbps  
DATA RATE = 230kbps  
t
LH  
t
HL  
t
LH  
DATA RATE = 500kbps,  
OPEN-DRAIN  
6
4
t
HL  
t
2
HL  
t
LH  
0
0
0
20 30 40 50 60 70 80 90 100  
CAPACITIVE LOAD (pF)  
10 15 20 25 30 35 40 45 50  
CAPACITIVE LOAD (pF)  
10 15 20 25 30 35 40 45 50  
CAPACITIVE LOAD (pF)  
_______________________________________________________________________________________  
7
±±15k EꢀDꢁ-rotected, ±µA, ±6Mbps, Dual/Quad  
Lowꢁkoltage Level Translators in UCꢀ-  
Typical Operating Characteristics (continued)  
(R = 1M, T = +25°C, unless otherwise noted. All 230kbps TOCs apply to MAX3372E/MAX3377E only. All 8Mbps and 500kbps  
L
A
TOCs apply to MAX3373EMAX3376E/MAX3378E/MAX3379E and MAX3390EMAX3393E only.)  
PROPAGATION DELAY vs. CAPACITIVE LOAD  
(DRIVING I/O V , V = +3.3V, V = +1.8V)  
PROPAGATION DELAY vs. CAPACITIVE LOAD  
(DRIVING I/O V , V = +3.3V, V = +1.8V)  
PROPAGATION DELAY vs. CAPACITIVE LOAD  
(DRIVING I/O V , V = +3.3V, V = +1.8V)  
CC CC  
L
CC CC  
L
CC CC  
L
6
5
4
3
2
1
0
300  
250  
200  
150  
100  
50  
700  
600  
500  
400  
300  
200  
100  
0
DATA RATE = 8Mbps  
DATA RATE = 230kbps  
t
PLH  
t
PHL  
t
PHL  
DATA RATE = 500kbps,  
OPEN-DRAIN  
t
PLH  
t
PHL  
t
PHL  
0
10 15 20 25 30 35 40 45 50  
CAPACITIVE LOAD (pF)  
10 15 20 25 30 35 40 45 50  
CAPACITIVE LOAD (pF)  
20 30 40 50 60 70 80 90 100  
CAPACITIVE LOAD (pF)  
RISE/FALL TIME vs. CAPACITIVE LOAD  
RISE/FALL TIME vs. CAPACITIVE LOAD  
RISE/FALL TIME vs. CAPACITIVE LOAD  
(DRIVING I/O V , V = +2.5V, V = +1.8V)  
(DRIVING I/O V , V = +2.5V, V = +1.8V)  
(DRIVING I/O V , V = +2.5V, V = +1.8V)  
CC CC  
L
CC CC  
L
CC CC L  
2500  
2000  
1500  
1000  
500  
12  
10  
8
350  
300  
250  
200  
150  
100  
50  
DATA RATE = 8Mbps  
DATA RATE = 230kbps  
t
t
HL  
LH  
DATA RATE = 500kbps,  
OPEN-DRAIN  
6
t
LH  
4
t
t
HL  
HL  
2
t
LH  
0
0
0
20 30 40 50 60 70 80 90 100  
CAPACITIVE LOAD (pF)  
10  
20  
30  
40  
50  
10  
20  
30  
40  
50  
CAPACITIVE LOAD (pF)  
CAPACITIVE LOAD (pF)  
RAIL-TO-RAIL DRIVING  
RAIL-TO-RAIL DRIVING  
(DRIVING I/O V , V = +3.3V, V = +1.8V,  
(DRIVING I/O V , V = +3.3V, V = +1.8V,  
L
CC  
L
L
CC  
L
C = 50pF, DATA RATE = 230kbps)  
L
C = 15pF, DATA RATE = 8Mbps)  
L
I/O V  
1V/div  
2V/div  
I/O V  
1V/div  
2V/div  
L_  
L_  
I/O V  
I/O V  
CC_  
CC_  
200ns/div  
1µs/div  
8
_______________________________________________________________________________________  
±±15k EꢀDꢁ-rotected, ±µA, ±6Mbps, Dual/Quad  
Lowꢁkoltage Level Translators in UCꢀ-  
Typical Operating Characteristics (continued)  
(R = 1M, T = +25°C, unless otherwise noted. All 230kbps TOCs apply to MAX3372E/MAX3377E only. All 8Mbps and 500kbps  
L
A
TOCs apply to MAX3373EMAX3376E/MAX3378E/MAX3379E and MAX3390EMAX3393E only.)  
OPEN-DRAIN DRIVING  
EXITING THREE-STATE OUTPUT MODE  
(DRIVING I/O V , V = +3.3V, V = +1.8V,  
L
CC  
L
(V = +3.3V, V = +1.8V, C = 50pF)  
C = 15pF, DATA RATE = 500kbps)  
CC  
L
L
L
MAX3372E toc28  
2V/div  
1V/div  
I/O V  
CC_  
I/O V  
1V/div  
2V/div  
L_  
I/O V  
L_  
I/O V  
CC_  
1V/div  
THREE-STATE  
2µs/div  
200ns/div  
-in Description  
PIN  
NAME  
I/O V 1  
FUNCTION  
3 x 4  
UCSP  
3 x 3  
UCSP  
TSSOP  
SOT23-8  
A1  
A2  
A3  
A4  
B1  
B2  
2
3
5
4
C2  
C3  
Input/Output 1. Referenced to V . (Note 6)  
L
L
I/O V 2  
Input/Output 2. Referenced to V . (Note 6)  
L
L
4
7
I/O V 3  
Input/Output 3. Referenced to V . (Note 6)  
L
L
5
I/O V 4  
Input/Output 4. Referenced to V . (Note 6)  
L
L
14  
1
A1  
C1  
V
V
Input Voltage +1.65V V  
+5.5V.  
CC  
CC  
CC  
3
V
Logic Input Voltage +1.2V V (V  
+ 0.3V)  
L
L
CC  
Three-State Output Mode Enable. Pull THREE-STATE low  
to place device in three-state output mode. I/O V and  
I/O V are high impedance in three-state output mode.  
L_  
CC_  
THREE-  
STATE  
B3  
8
6
B1  
NOTE: Logic referenced to V (for logic thresholds see  
L
Electrical Characteristics).  
B4  
C1  
C2  
C3  
C4  
7
13  
12  
11  
10  
6, 9  
2
8
B3  
A2  
A3  
GND  
Ground  
I/O V  
I/O V  
I/O V  
I/O V  
1
2
3
4
Input/Output 1. Referenced to V . (Note 6)  
CC  
CC  
CC  
CC  
CC  
1
Input/Output 2. Referenced to V . (Note 6)  
CC  
Input/Output 3. Referenced to V . (Note 6)  
CC  
Input/Output 4. Referenced to V . (Note 6)  
CC  
B2  
N.C.  
No Connection. Not internally connected.  
Note 6: For unidirectional devices (MAX3374E/MAX3375E/MAX3376E/MAX3379E and MAX3390EMAX3393E) see Pin  
Configurations for input/output configurations.  
_______________________________________________________________________________________  
9
±±15k EꢀDꢁ-rotected, ±µA, ±6Mbps, Dual/Quad  
Lowꢁkoltage Level Translators in UCꢀ-  
All devices in the MAX3372EMAX3379E, MAX3390E–  
Detailed Description  
MAX3393E family feature a three-state output mode that  
The MAX3372EMAX3379E and MAX3390EMAX3393E  
reduces supply current to less than 1µA, thermal short-  
ESD-protected level translators provide the level shifting  
circuit protection, and 15kV ESD protection on the V  
CC  
necessary to allow data transfer in a multivoltage system.  
side for greater protection in applications that route sig-  
nals externally. The MAX3372E/MAX3377E operate at a  
guaranteed data rate of 230kbps. Slew-rate limiting  
reduces EMI emissions in all 230kbps devices. The  
MAX3373EMAX3376E/MAX3378E/MAX3379E and  
MAX3390EMAX3393E operate at a guaranteed data rate  
of 8Mbps over the entire specified operating voltage  
range. Within specific voltage domains, higher data rates  
are possible. (See Timing Characteristics.)  
Externally applied voltages, V and V , set the logic lev-  
CC  
L
els on either side of the device. A low-voltage logic signal  
present on the V side of the device appears as a high-  
L
voltage logic signal on the V  
side of the device, and  
CC  
vice-versa. The MAX3374E/MAX3375E/MAX3376E/  
MAX3379E and MAX3390EMAX3393E unidirectional  
level translators level shift data in one direction (V  
L
V
or V  
V ) on any single data line. The  
CC  
CC L  
MAX3372E/MAX3373E and MAX3377E/MAX3378E bidi-  
rectional level translators utilize a transmission-gate-  
based design (see Figure 2) to allow data translation in  
Level Translation  
For proper operation ensure that +1.65V V  
+5.5V,  
CC  
either direction (V V ) on any single data line. The  
L
CC  
+1.2V V +5.5V, and V (V + 0.3V). During  
L
L
CC  
MAX3372EMAX3379E and MAX3390EMAX3393E  
power-up sequencing, V (V + 0.3V) will not damage  
L
CC  
accept V from +1.2V to +5.5V and V from +1.65V to  
L
CC  
the device. During power-supply sequencing, when V  
CC  
+5.5V, making them ideal for data transfer between low-  
is floating and V is powering up, a current may be  
L
voltage ASICs/PLDs and higher voltage systems.  
sourced, yet the device will not latch up. The speed-up  
V
V
V
L
V
CC  
L
CC  
V
V
CC  
V
V
CC  
L
L
MAX3372EMAX3379E  
AND MAX3390EMAX3393E  
MAX3372E–MAX3379E  
AND MAX3390E–MAX3393E  
DATA  
DATA  
I/O V  
_
I/O V  
_
I/O V _  
L
CC  
I/O V _  
L
CC  
C
R
LOAD  
GND  
GND  
LOAD  
R
C
LOAD  
LOAD  
I/O V _  
L
,
I/O V  
_
CC  
,
(t  
RISE  
FALL  
(t  
RISE  
FALL  
t
< 10ns)  
t
< 10ns)  
t
t
PD-VCC-LH  
PD-VCC-HL  
t
t
PD-VL-LH  
PD-VL-HL  
I/O V  
_
CC  
I/O V _  
L
t
t
RVCC  
FVCC  
t
t
RVL  
FVL  
Figure 1b. Rail-to-Rail Driving I/O V  
Figure 1a. Rail-to-Rail Driving I/O V  
CC  
L
Rail-to-Rail is a registered trademark of Nippon Motorola, Ltd.  
10 ______________________________________________________________________________________  
±±15k EꢀDꢁ-rotected, ±µA, ±6Mbps, Dual/Quad  
Lowꢁkoltage Level Translators in UCꢀ-  
circuitry limits the maximum data rate for devices in the  
MAX3372EMAX3379E, MAX3390EMAX3393E family to  
16Mbps. The maximum data rate also depends heavily  
on the load capacitance (see Typical Operating  
Characteristics), output impedance of the driver, and the  
operational voltage range (see Timing Characteristics).  
put mode. Connect THREE-STATE to V (logic high) for  
L
normal operation. Activating the three-state output mode  
disconnects the internal 10kpullup resistors on the I/O  
V
and I/O V lines. This forces the I/O lines to a high-  
L
CC  
impedance state, and decreases the supply current to  
less than 1µA. The high-impedance I/O lines in three-  
state output mode allow for use in a multidrop network.  
When in three-state output mode, do not allow the voltage  
ꢀpeedꢁUp Circuitry  
The MAX3373EMAX3376E/MAX3378E/MAX3379E and  
MAX3390EMAX3393E feature a one-shot generator that  
decreases the rise time of the output. When triggered,  
MOSFETs PU1 and PU2 turn on for a short time to pull up  
at I/O V to exceed (V + 0.3V), or the voltage at I/O  
L_  
L
V
CC_  
to exceed (V + 0.3V).  
CC  
Thermal ꢀhortꢁCircuit -rotection  
I/O V and I/O V  
to their respective supplies (see  
Thermal overload detection protects the MAX3372E–  
MAX3379E and MAX3390EMAX3393E from short-circuit  
fault conditions. In the event of a short-circuit fault, when  
L_  
CC_  
Figure 2b). This greatly reduces the rise time and propa-  
gation delay for the low-to-high transition. The scope  
photo of Rail-to-Rail Driving for 8Mbps Operation in the  
Typical Operating Characteristics shows the speed-up  
circuitry in operation.  
the junction temperature (T ) reaches +152°C, a thermal  
J
sensor signals the three-state output mode logic to force  
the device into three-state output mode. When T has  
J
cooled to +142°C, normal operation resumes.  
Threeꢁꢀtate Output Mode  
Pull THREE-STATE low to place the MAX3372E–  
MAX3379E and MAX3390EMAX3393E in three-state out-  
V
V
L
CC  
V
V
L
CC  
V
V
CC  
L
V
V
CC  
L
MAX3373EMAX3376E,  
MAX3378E/MAX3379E  
MAX3372EMAX3379E  
AND MAX3390EMAX3393E  
AND MAX3390EMAX3393E  
DATA  
DATA  
I/O V  
I/O V  
CC_  
L_  
I/O V  
I/O V  
CC_  
L_  
C
LOAD  
C
LOAD  
GND  
R
LOAD  
GND  
R
LOAD  
I/O V  
CC_  
I/O V  
L_  
t
t
PD-VCC-HL  
PD-VL-HL  
t
t
PD-VL-LH  
PD-VCC-LH  
I/O V  
I/O V  
L_  
CC_  
t
t
t
RVL  
t
FVL  
RVCC  
FVCC  
Figure 1c. Open-Drain Driving I/O V  
Figure 1d. Open-Drain Driving I/O V  
L
CC  
______________________________________________________________________________________ 11  
±±15k EꢀDꢁ-rotected, ±µA, ±6Mbps, Dual/Quad  
Lowꢁkoltage Level Translators in UCꢀ-  
V
V
CC  
L
P
P
GATE  
BIAS  
I/O V  
I/O V  
CC  
L
N
Figure 2a. Functional Diagram, MAX3372E/MAX3377E (1I/O line)  
V
V
L
CC  
ONE-SHOT  
BLOCK  
ONE-SHOT  
BLOCK  
PU1  
PU2  
GATE  
BIAS  
I/O V  
L_  
I/O V  
CC_  
N
Figure 2b. Functional Diagram, MAX3373E/MAX3378E (1I/O line)  
12 ______________________________________________________________________________________  
±±15k EꢀDꢁ-rotected, ±µA, ±6Mbps, Dual/Quad  
Lowꢁkoltage Level Translators in UCꢀ-  
IEC 1000-4-2  
The IEC 1000-4-2 standard covers ESD testing and  
performance of finished equipment; it does not specifi-  
cally refer to integrated circuits. The MAX3372E–  
MAX3379E and MAX3390EMAX3393E help to design  
equipment that meets Level 3 of IEC 1000-4-2, without  
the need for additional ESD-protection components.  
±±15k EꢀD -rotection  
As with all Maxim devices, ESD-protection structures are  
incorporated on all pins to protect against electrostatic  
discharges encountered during handling and assembly.  
The I/O V  
lines have extra protection against static  
CC  
electricity. Maxims engineers have developed state-of-  
the-art structures to protect these pins against ESD of  
15kV without damage. The ESD structures withstand  
high ESD in all states: normal operation, three-state out-  
put mode, and powered down. After an ESD event,  
Maxims E versions keep working without latchup,  
whereas competing products can latch and must be  
powered down to remove latchup.  
The major difference between tests done using the  
Human Body Model and IEC 1000-4-2 is higher peak cur-  
rent in IEC 1000-4-2, because series resistance is lower  
in the IEC 1000-4-2 model. Hence, the ESD withstand  
voltage measured to IEC 1000-4-2 is generally lower than  
that measured using the Human Body Model. Figure 4a  
shows the IEC 1000-4-2 model, and Figure 4b shows the  
current waveform for the 8kV, IEC 1000-4-2, Level 4,  
ESD contact-discharge test.  
ESD protection can be tested in various ways. The I/O  
V
lines of this product family are characterized for  
CC  
protection to the following limits:  
The air-gap test involves approaching the device with a  
charged probe. The contact-discharge method connects  
the probe to the device before the probe is energized.  
1) 15kV using the Human Body Model  
2) 8kV using the Contact Discharge method specified  
in IEC 1000-4-2  
3) 10kV using IEC 1000-4-2s Air-Gap Discharge  
Machine Model  
The Machine Model for ESD tests all pins using a  
200pF storage capacitor and zero discharge resis-  
tance. Its objective is to emulate the stress caused by  
contact that occurs with handling and assembly during  
manufacturing. Of course, all pins require this protec-  
tion during manufacturing, not just inputs and outputs.  
Therefore, after PC board assembly, the Machine  
Model is less relevant to I/O ports.  
method  
ESD Test Conditions  
ESD performance depends on a variety of conditions.  
Contact Maxim for a reliability report that documents  
test setup, test methodology, and test results.  
Human Body Model  
Figure 3a shows the Human Body Model and Figure 3b  
shows the current waveform it generates when dis-  
charged into a low impedance. This model consists of  
a 100pF capacitor charged to the ESD voltage of inter-  
est, which is then discharged into the test device  
through a 1.5kresistor.  
R
1MΩ  
R 1500Ω  
D
C
I 100%  
P
90%  
PEAK-TO-PEAK RINGING  
(NOT DRAWN TO SCALE)  
I
r
DISCHARGE  
RESISTANCE  
CHARGE-CURRENT-  
LIMIT RESISTOR  
AMPERES  
HIGH-  
VOLTAGE  
DC  
DEVICE  
UNDER  
TEST  
C
s
100pF  
STORAGE  
CAPACITOR  
36.8%  
SOURCE  
10%  
0
TIME  
0
t
RL  
t
DL  
CURRENT WAVEFORM  
Figure 3a. Human Body ESD Test Model  
Figure 3b. Human Body Current Waveform  
______________________________________________________________________________________ 13  
±±15k EꢀDꢁ-rotected, ±µA, ±6Mbps, Dual/Quad  
Lowꢁkoltage Level Translators in UCꢀ-  
I
100%  
90%  
R
C
50Mto 100MΩ  
R 330Ω  
D
DISCHARGE  
RESISTANCE  
CHARGE-CURRENT-  
LIMIT RESISTOR  
HIGH-  
VOLTAGE  
DC  
DEVICE  
UNDER  
TEST  
C
s
150pF  
STORAGE  
CAPACITOR  
SOURCE  
10%  
t
t = 0.7ns to 1ns  
r
30ns  
60ns  
Figure 4a. IEC 1000-4-2 ESD Test Model  
Figure 4b. IEC 1000-4-2 ESD Generator Current Waveform  
ASIC and an I2C device. A typical application involves  
interfacing a low-voltage microprocessor to a 3V or 5V  
D/A converter, such as the MAX517.  
Applications Information  
-owerꢁꢀupply Decoupling  
To reduce ripple and the chance of transmitting incor-  
rect data, bypass V and V  
to ground with a 0.1µF  
CC  
-ushꢁ-ull vs. OpenꢁDrain Driving  
All devices in the MAX3372EMAX3379E and  
MAX3390EMAX3393E family may be driven in a push-  
pull configuration. The MAX3373EMAX3376E/  
MAX3378E/MAX3379E and MAX3390EMAX3393E  
L
capacitor. See Typical Operating Circuit. To ensure full  
15kV ESD protection, bypass V to ground with a  
CC  
1µF capacitor. Place all capacitors as close to the  
power-supply inputs as possible.  
include internal 10kresistors that pull up I/O V and  
L_  
2
I C Level Translation  
I/O V  
to their respective power supplies, allowing  
CC_  
The MAX3373EMAX3376E, MAX3378E/MAX3379E  
and MAX3390EMAX3393E level-shift the data present  
on the I/O lines between +1.2V and +5.5V, making  
them ideal for level translation between a low-voltage  
operation of the I/O lines with open-drain devices. See  
Timing Characteristics for maximum data rates when  
using open-drain drivers.  
Typical Operating Circuit  
+1.8V  
+3.3V  
1µF  
0.1µF  
0.1µF  
V
V
CC  
L
THREE-STATE  
+1.8V  
SYSTEM  
+3.3V  
SYSTEM  
CONTROLLER  
MAX3378EMAX3383E  
I/O V I/O V  
DATA  
DATA  
L_  
CC_  
14 ______________________________________________________________________________________  
±±15k EꢀDꢁ-rotected, ±µA, ±6Mbps, Dual/Quad  
Lowꢁkoltage Level Translators in UCꢀ-  
Applications Circuits  
+1.8V  
+3.3V  
0.1µF  
0.1µF  
1µF  
V
V
CC  
L
THREE-STATE  
+1.8V  
SYSTEM  
+3.3V  
SYSTEM  
CONTROLLER  
MAX3372E/MAX3373E  
I/O V  
I/O V  
I/O V  
I/O V  
CC1  
CC2  
L1  
L2  
DATA  
DATA  
+1.8V  
+3.3V  
0.1µF  
0.1µF  
1µF  
V
V
CC  
L
THREE-STATE  
+1.8V  
SYSTEM  
+3.3V  
SYSTEM  
CONTROLLER  
MAX3374E  
O V  
O V  
I V  
I V  
CC1  
L1  
L2  
DATA  
DATA  
CC2  
______________________________________________________________________________________ 15  
±±15k EꢀDꢁ-rotected, ±µA, ±6Mbps, Dual/Quad  
Lowꢁkoltage Level Translators in UCꢀ-  
Applications Circuits (continued)  
+1.8V  
+3.3V  
0.1µF  
0.1µF  
1µF  
V
V
CC  
L
THREE-STATE  
+1.8V  
SYSTEM  
+3.3V  
SYSTEM  
CONTROLLER  
MAX3375E  
O V  
I V  
L1  
CC1  
CC2  
DATA  
DATA  
I V  
O V  
L2  
+1.8V  
+3.3V  
0.1µF  
0.1µF  
1µF  
V
V
CC  
L
THREE-STATE  
+1.8V  
SYSTEM  
+3.3V  
SYSTEM  
CONTROLLER  
MAX3376E  
I V  
O V  
O V  
CC1  
CC2  
L1  
L2  
DATA  
DATA  
I V  
16 ______________________________________________________________________________________  
±±15k EꢀDꢁ-rotected, ±µA, ±6Mbps, Dual/Quad  
Lowꢁkoltage Level Translators in UCꢀ-  
Applications Circuits (continued)  
+1.8V  
+3.3V  
0.1µF  
0.1µF  
1µF  
V
V
CC  
L
THREE-STATE  
+1.8V  
SYSTEM  
+3.3V  
SYSTEM  
CONTROLLER  
MAX3377E/MAX3378E  
I/O V  
I/O V  
CC1  
L1  
I/O V  
I/O V  
I/O V  
I/O V  
I/O V  
I/O V  
L2  
L3  
L4  
CC2  
CC3  
CC4  
DATA  
DATA  
+1.8V  
+3.3V  
0.1µF  
0.1µF  
1µF  
V
V
CC  
L
THREE-STATE  
+1.8V  
SYSTEM  
+3.3V  
SYSTEM  
CONTROLLER  
MAX3379E  
O V  
I V  
I V  
I V  
I V  
CC1  
L1  
L2  
L3  
L4  
O V  
O V  
O V  
CC2  
CC3  
CC4  
DATA  
DATA  
______________________________________________________________________________________ 17  
±±15k EꢀDꢁ-rotected, ±µA, ±6Mbps, Dual/Quad  
Lowꢁkoltage Level Translators in UCꢀ-  
Applications Circuits (continued)  
+1.8V  
+3.3V  
0.1µF  
0.1µF  
1µF  
V
V
CC  
L
THREE-STATE  
+1.8V  
SYSTEM  
+3.3V  
SYSTEM  
CONTROLLER  
MAX3390E  
I V  
O V  
I V  
L1  
L1  
O V  
O V  
O V  
CC2  
CC3  
CC4  
L2  
DATA  
DATA  
I V  
I V  
L3  
L4  
+1.8V  
+3.3V  
0.1µF  
0.1µF  
1µF  
V
V
CC  
L
THREE-STATE  
+1.8V  
SYSTEM  
+3.3V  
SYSTEM  
CONTROLLER  
MAX3391E  
I V  
O V  
O V  
CC1  
CC2  
CC3  
CC4  
L1  
L2  
I V  
O V  
O V  
DATA  
DATA  
I V  
L3  
I V  
L4  
18 ______________________________________________________________________________________  
±±15k EꢀDꢁ-rotected, ±µA, ±6Mbps, Dual/Quad  
Lowꢁkoltage Level Translators in UCꢀ-  
Applications Circuits (continued)  
+1.8V  
+3.3V  
0.1µF  
0.1µF  
1µF  
V
V
CC  
L
THREE-STATE  
+1.8V  
SYSTEM  
+3.3V  
SYSTEM  
CONTROLLER  
MAX3392E  
I V  
O V  
O V  
CC1  
CC2  
L1  
L2  
L3  
I V  
I V  
O V  
DATA  
DATA  
O V  
I V  
CC3  
CC4  
L4  
+1.8V  
+3.3V  
0.1µF  
0.1µF  
1µF  
V
V
CC  
L
THREE-STATE  
+1.8V  
SYSTEM  
+3.3V  
SYSTEM  
CONTROLLER  
MAX3393E  
I V  
CC1  
I V  
CC2  
I V  
CC3  
I V  
CC4  
O V  
O V  
L1  
L2  
DATA  
DATA  
O V  
L3  
I V  
L4  
______________________________________________________________________________________ 19  
±±15k EꢀDꢁ-rotected, ±µA, ±6Mbps, Dual/Quad  
Lowꢁkoltage Level Translators in UCꢀ-  
ꢀelector Guide  
Ordering Information (continued)  
PIN-  
PACKAGE  
LEVEL  
TRANS-  
LATION  
PART NUMBER  
TEMP RANGE  
Tx/  
Rx†  
DATA  
RATE  
TOP  
MARK  
PART NUMBER  
MAX3372EEBL-T  
MAX3373EEKA-T  
MAX3373EEBL-T  
MAX3374EEKA-T  
MAX3374EEBL-T  
MAX3375EEKA-T  
MAX3375EEBL-T  
MAX3376EEKA-T  
MAX3376EEBL-T  
MAX3377EEUD  
MAX3377EEBC-T  
MAX3378EEUD  
MAX3378EEBC-T  
MAX3379EEUD*  
MAX3379EEBC-T*  
MAX3390EEUD*  
MAX3390EEBC-T*  
MAX3391EEUD*  
MAX3391EEBC-T*  
MAX3392EEUD*  
MAX3392EEBC-T*  
MAX3393EEUD*  
MAX3393EEBC-T*  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
3
3 UCSP  
8 SOT23-8  
MAX3372EEKA-T  
MAX3372EEBL-T  
MAX3373EEKA-T  
MAX3373EEBL-T  
MAX3374EEKA-T  
MAX3374EEBL-T  
MAX3375EEKA-T  
MAX3375EEBL-T  
MAX3376EEKA-T  
MAX3376EEBL-T  
MAX3377EEUD  
MAX3377EEBC-T  
MAX3378EEUD  
MAX3378EEBC-T  
MAX3379EEUD  
MAX3379EEBC-T  
MAX3390EEUD  
MAX3390EEBC-T  
MAX3391EEUD  
MAX3391EEBC-T  
MAX3392EEUD  
MAX3392EEBC-T  
MAX3393EEUD  
MAX3393EEBC-T  
Bi  
Bi  
Bi  
Bi  
Uni  
2/2  
2/2  
2/2  
2/2  
2/0  
2/0  
1/1  
1/1  
0/2  
0/2  
4/4  
4/4  
4/4  
4/4  
4/0  
4/0  
3/1  
3/1  
2/2  
2/2  
1/3  
1/3  
0/4  
0/4  
AAKO  
AAR  
AAKS  
AAZ  
AALH  
ABA  
AALI  
ABB  
AALG  
AAV  
230kbps  
8Mbps*  
230kbps  
3
3 UCSP  
8 SOT23-8  
3
3 UCSP  
8 SOT23-8  
3
3 UCSP  
Uni  
8 SOT23-8  
Uni  
3
3 UCSP  
Uni  
14 TSSOP  
Uni  
3
4 UCSP  
Uni  
14 TSSOP  
Bi  
Bi  
Bi  
Bi  
Uni  
3
4 UCSP  
AAX  
14 TSSOP  
3
4 UCSP  
AAY  
14 TSSOP  
3
4 UCSP  
Uni  
AAZ  
14 TSSOP  
Uni  
3
4 UCSP  
Uni  
ABA  
8Mbps*  
14 TSSOP  
Uni  
3
4 UCSP  
Uni  
ABB  
14 TSSOP  
Uni  
3
4 UCSP  
Uni  
ABC  
Uni  
*Future productcontact factory for availability.  
Uni  
ABD  
Tx = V V , Rx = VCC V  
L
CC  
L
*Higher data rates are possible (see Timing Characteristics).  
20 ______________________________________________________________________________________  
±±15k EꢀDꢁ-rotected, ±µA, ±6Mbps, Dual/Quad  
Lowꢁkoltage Level Translators in UCꢀ-  
-in Configurations (continued)  
A
B
C
V
I/O V  
2
1
2
3
4
8
7
6
5
I/O V 1  
CC  
CC  
1
2
3
V
THREE-STATE  
N.C.  
CC  
L
GND  
V
CC  
MAX3372E/  
MAX3373E  
V
L
THREE-STATE  
I/O V 1  
I/O V  
I/O V  
1
2
I/O V 1  
L
CC  
I/O V 2  
L
L
GND  
I/O V 2  
L
CC  
SOT23-8  
TOP VIEW  
3 x 3 UCSP  
A
B
C
O V  
2
1
2
3
4
8
7
6
5
O V 1  
CC  
CC  
1
V
V
L
THREE-STATE  
N.C.  
CC  
GND  
V
CC  
MAX3374E  
2
3
V
L
THREE-STATE  
I V 1  
O V  
O V  
1
I V 1  
L
CC  
I V 2  
L
L
GND  
3 x 3 UCSP  
B
I V 2  
L
2
CC  
SOT23-8  
TOP VIEW  
A
C
O V  
2
1
2
3
4
8
7
6
5
I V 1  
CC  
CC  
1
V
V
L
THREE-STATE  
N.C.  
CC  
GND  
V
CC  
MAX3375E  
2
3
V
L
THREE-STATE  
O V 1  
O V  
1
I V 1  
L
CC  
I V 2  
L
L
GND  
O V 2  
L
I V  
CC  
2
SOT23-8  
TOP VIEW  
3 x 3 UCSP  
A
B
C
I V  
2
1
2
3
4
8
7
6
5
I V 1  
CC  
CC  
1
2
3
V
V
L
THREE-STATE  
N.C.  
CC  
GND  
V
CC  
MAX3376E  
V
L
THREE-STATE  
O V 1  
I V  
I V  
1
O V 1  
L
CC  
O V 2  
L
L
GND  
O V 2  
L
2
CC  
SOT23-8  
TOP VIEW  
3 x 3 UCSP  
______________________________________________________________________________________ 21  
±±15k EꢀDꢁ-rotected, ±µA, ±6Mbps, Dual/Quad  
Lowꢁkoltage Level Translators in UCꢀ-  
-in Configurations (continued)  
A
B
C
V
1
2
3
4
5
6
7
14  
V
CC  
L
1
2
3
4
IO V 1  
13 I/0 V  
12 I/0 V  
11 I/0 V  
10 I/0 V  
1
2
3
4
I/O V 1  
L
V
I/O V  
I/O V  
1
2
L
CC  
CC  
CC  
CC  
CC  
CC  
CC  
MAX3377E/  
MAX3378E  
IO V 2  
L
IO V 3  
L
I/O V 2  
L
V
L
O V 4  
L
I/O V 3  
L
THREE-STATE I/O V  
3
4
N.C.  
GND  
9
8
N.C.  
THREE-STATE  
CC  
CC  
I/O V 4  
L
GND  
I/O V  
TSSOP-14  
3 x 4 UCSP  
A
B
C
V
1
2
3
4
5
6
7
14  
V
CC  
L
1
2
3
4
I V 1  
L
V
O V  
O V  
1
I V 1  
L
13 O V  
12 O V  
11 O V  
10 O V  
1
CC  
CC  
CC  
MAX3379E  
I V 2  
L
2
3
4
CC  
CC  
CC  
I V 2  
L
V
L
2
I V 3  
L
CC  
I V 4  
L
I V 3  
L
THREE-STATE O V  
3
4
CC  
CC  
N.C.  
GND  
9
8
N.C.  
THREE-STATE  
I V 4  
L
GND  
O V  
TSSOP-14  
3 x 4 UCSP  
A
B
C
V
1
2
3
4
5
6
7
14  
V
CC  
L
1
O V 1  
L
V
I V  
1
O V 1  
L
13 I V 1  
CC  
CC  
CC  
MAX3390E  
I V 2  
L
12 O V  
11 O V  
10 O V  
2
CC  
CC  
CC  
2
3
4
I V 3  
L
3
4
I V 2  
L
V
O V  
2
L
CC  
I V 4  
L
I V 3  
L
THREE-STATE O V  
3
4
N.C.  
GND  
9
8
N.C.  
THREE-STATE  
CC  
CC  
I V 4  
L
GND  
O V  
TSSOP-14  
3 x 4 UCSP  
22 ______________________________________________________________________________________  
±±15k EꢀDꢁ-rotected, ±µA, ±6Mbps, Dual/Quad  
Lowꢁkoltage Level Translators in UCꢀ-  
-in Configurations (continued)  
A
B
C
V
1
2
3
4
5
6
7
14 V  
CC  
L
1
2
3
4
O V 1  
L
V
I V  
1
2
O V 1  
L
13 I V  
12 I V  
11 I V  
10 I V  
1
2
3
4
CC  
CC  
CC  
CC  
CC  
CC  
CC  
MAX3391E  
O V 2  
L
I V 3  
L
O V 2  
L
V
I V  
L
I V 4  
L
I V 3  
L
THREE-STATE O V  
3
N.C.  
GND  
9
8
N.C.  
THREE-STATE  
CC  
CC  
I V 4  
L
GND  
O V  
4
TSSOP-14  
3 x 4 UCSP  
A
B
C
V
1
2
3
4
5
6
7
14  
V
CC  
L
1
2
3
4
O V 1  
L
V
I V  
I V  
1
O V 1  
L
13 I V  
12 I V  
11 I V  
1
2
3
CC  
CC  
CC  
CC  
CC  
MAX3392E  
O V 2  
L
O V 2  
L
V
L
2
3
O V 3  
L
CC  
CC  
I V 4  
L
10 O V 4  
CC  
O V 3  
L
THREE-STATE I V  
N.C.  
GND  
9
8
N.C.  
THREE-STATE  
I V 4  
L
GND  
O V 4  
CC  
TSSOP-14  
3 x 4 UCSP  
A
B
C
V
1
2
3
4
5
6
7
14  
V
CC  
L
1
2
3
4
O V 1  
L
13 I V  
12 I V  
11 I V  
10 I V  
1
2
3
4
O V 1  
L
V
I V  
I V  
1
CC  
CC  
CC  
CC  
CC  
CC  
CC  
MAX3393E  
O V 2  
L
O V 3  
L
O V 2  
L
V
L
2
O V 4  
L
O V 3  
L
N.C.  
GND  
9
8
N.C.  
THREE-STATE  
THREE-STATE I V  
3
4
CC  
CC  
O V 4  
L
GND  
I V  
TSSOP-14  
3 x 4 UCSP  
______________________________________________________________________________________ 23  
±±15k EꢀDꢁ-rotected, ±µA, ±6Mbps, Dual/Quad  
Lowꢁkoltage Level Translators in UCꢀ-  
Chip Information  
TRANSISTOR COUNT: MAX3372EMAX3376E: 189  
MAX3377EMAX3379E,  
MAX3390EMAX3393E: 295  
PROCESS: BiCMOS  
-ac5age Information  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information  
go to www.maxim-ic.com/packages.)  
SEE DETAIL "A"  
SYMBOL  
MIN  
MAX  
e
b
A
0.90  
0.00  
0.90  
0.28  
0.09  
2.80  
2.60  
1.50  
0.30  
1.45  
0.15  
1.30  
0.45  
0.20  
3.00  
3.00  
1.75  
0.60  
C
L
A1  
A2  
b
C
D
E
C
C
L
E1  
L
E
E1  
L
0.25 BSC.  
L2  
e
PIN 1  
I.D. DOT  
(SEE NOTE 6)  
0.65 BSC.  
1.95 REF.  
e1  
0
0
8
e1  
D
C
C
L
L2  
A2  
A
GAUGE PLANE  
A1  
SEATING PLANE  
C
0
L
NOTE:  
1. ALL DIMENSIONS ARE IN MILLIMETERS.  
2. FOOT LENGTH MEASURED FROM LEAD TIP TO UPPER RADIUS OF  
HEEL OF THE LEAD PARALLEL TO SEATING PLANE C.  
DETAIL "A"  
3. PACKAGE OUTLINE EXCLUSIVE OF MOLD FLASH & METAL BURR.  
4. PACKAGE OUTLINE INCLUSIVE OF SOLDER PLATING.  
5. COPLANARITY 4 MILS. MAX.  
6. PIN 1 I.D. DOT IS 0.3 MM MIN. LOCATED ABOVE PIN 1.  
PROPRIETARY INFORMATION  
TITLE:  
7. SOLDER THICKNESS MEASURED AT FLAT SECTION OF LEAD  
BETWEEN 0.08mm AND 0.15mm FROM LEAD TIP.  
8. MEETS JEDEC MO178.  
PACKAGE OUTLINE, SOT-23, 8L BODY  
APPROVAL  
DOCUMENT CONTROL NO.  
REV.  
1
21-0078  
D
1
24 ______________________________________________________________________________________  
±±15k EꢀDꢁ-rotected, ±µA, ±6Mbps, Dual/Quad  
Lowꢁkoltage Level Translators in UCꢀ-  
-ac5age Information (continued)  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information  
go to www.maxim-ic.com/packages.)  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
Maxim Integrated -roducts, ±20 ꢀan Gabriel Drive, ꢀunnyvale, CA 94086 408ꢁ737ꢁ7600 ____________________ 25  
© 2003 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY