MAX3735ETG [MAXIM]

2.7Gbps, Low-Power SFP Laser Drivers; 2.7Gbps,低功耗SFP激光驱动器
MAX3735ETG
型号: MAX3735ETG
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

2.7Gbps, Low-Power SFP Laser Drivers
2.7Gbps,低功耗SFP激光驱动器

驱动器
文件: 总18页 (文件大小:1732K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-2529; Rev 1; 4/03  
2.7Gbps, Low-Power SFP Laser Drivers  
General Description  
Features  
SFP Reference Design Available  
The MAX3735/MAX3735A are +3.3V laser drivers for  
SFP/SFF applications from 155Mbps up to 2.7Gbps.  
The devices accept differential input data and provide  
bias and modulation currents for driving a laser. DC-  
coupling to the laser allows for multirate applications  
and reduces the number of external components. The  
MAX3735/MAX3735A are fully compliant with the SFP  
MSA timing and the SFF-8472 transmit diagnostic  
requirements.  
Fully Compliant with SFP and SFF-8472 MSAs  
Programmable Modulation Current from 10mA to  
60mA (DC-Coupled)  
Programmable Modulation Current from 10mA to  
85mA (AC-Coupled)  
Programmable Bias Current from 1mA to 100mA  
Edge Transition Times <51ps  
An automatic power-control (APC) feedback loop is incor-  
porated to maintain a constant average optical power  
over temperature and lifetime. The wide modulation cur-  
rent range of 10mA to 60mA (up to 85mA AC-coupled)  
and bias current of 1mA to 100mA make this product  
ideal for driving FP/DFB laser diodes in fiber-optic mod-  
ules. The resistor range for the laser current settings is  
optimized to interface with the DS1858 SFP controller IC.  
27mA (typ) Power-Supply Current  
Multirate 155Mbps to 2.7Gbps Operation  
Automatic Average Power Control  
On-Chip Pullup Resistor for TX_DISABLE  
24-Pin 4mm × 4mm QFN package  
The MAX3735/MAX3735A provide transmit-disable con-  
trol, a single-point latched transmit-failure monitor out-  
put, photocurrent monitoring, and bias-current  
monitoring to indicate when the APC loop is unable to  
maintain the average optical power. The MAX3735A  
also features improved multirate operation.  
Ordering Information  
PART  
TEMP RANGE  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
PIN-PACKAGE  
Dice*  
MAX3735E/D  
MAX3735ETG  
MAX3735EGG  
MAX3735AETG  
The MAX3735/MAX3735A come in package and die  
form, and operate over the extended temperature  
range of -40°C to +85°C.  
24 Thin QFN-EP**  
24 QFN-EP**  
24 Thin QFN-EP**  
Applications  
Gigabit Ethernet SFP/SFF Transceiver Modules  
*Dice are designed to operate from -40°C to +85°C, but are  
tested and guaranteed only at T = +25°C.  
A
1G/2G Fibre Channel SFP/SFF Transceiver  
Modules  
**EP = Exposed pad.  
Pin Configuration appears at end of data sheet.  
Multirate OC3 to OC48-FEC SFP/SFF Transceiver  
Modules  
Typical Application Circuit  
+3.3V  
OPTIONAL SHUTDOWN  
CIRCUITRY  
+3.3V  
+3.3V  
0.01µF  
15Ω  
0.1µF  
OUT-  
10Ω  
OUT+  
IN+  
SERDES  
0.1µF  
OUT+  
MAX3735  
MAX3735A  
IN-  
BIAS  
FERRITE BEAD  
MD  
C
MD  
DS1858/DS1859  
CONTROLLER  
IC  
H0  
H1  
C
APC  
R
R
BC_MON  
PC_MON  
MON1  
M0N2  
M0N3  
+3.3V  
REPRESENTS A CONTROLLED-IMPEDANCE TRANSMISSION LINE  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
2.7Gbps, Low-Power SFP Laser Drivers  
ABSOLUTE MAXIMUM RATINGS  
Supply Voltage, V ..............................................-0.5V to +6.0V  
Continuous Power Dissipation (T = +85°C )  
CC  
A
Current into BIAS, OUT+, OUT-......................-20mA to +150mA  
Current into MD.....................................................-5mA to +5mA  
Voltage at IN+, IN-, TX_DISABLE, TX_FAULT,  
24-Lead Thin QFN (derate 20.8mW/°C  
above +85°C).............................................................1354mW  
24-Lead QFN (derate 20.8mW/°C  
above +85°C).............................................................1354mW  
Operating Ambient Temperature Range (T )......-40°C to +85°C  
SHUTDOWN...........................................-0.5V to (V  
Voltage at BIAS, PC_MON, BC_MON,  
+ 0.5V)  
CC  
A
MODSET, APCSET .................................-0.5V to (V  
Voltage at OUT+, OUT-.............................+0.5V to (V  
Voltage at APCFILT1, APCFILT2..............................-0.5V to +3V  
+ 0.5V)  
+ 1.5V)  
Storage Ambient Temperature Range...............-55°C to +150°C  
Die Attach Temperature...................................................+400°C  
Lead Temperature (soldering, 10s) .................................+300°C  
CC  
CC  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(V  
= +2.97V to +3.63V, T = -40°C to +85°C. Typical values at V  
= +3.3V, I  
= 20mA, I  
= 30mA, T = +25°C, unless  
MOD A  
CC  
A
CC  
BIAS  
otherwise noted.) (Note 1)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
50  
UNITS  
POWER SUPPLY  
Excludes the laser bias and modulation  
currents (Note 2)  
Power-Supply Current  
I
27  
mA  
CC  
I/O SPECIFICATIONS  
Differential Input Voltage  
Common-Mode Input Voltage  
Differential Input Resistance  
V
V
= (V +) - (V -), Figure 1  
200  
2400  
mV  
P-P  
ID  
ID  
IN  
IN  
0.6 ×V  
V
CC  
85  
100  
115  
10.0  
15  
TX_DISABLE Input Pullup  
Resistance  
R
4.7  
7.4  
kΩ  
PULL  
V
V
= V  
HIGH  
LOW  
CC  
TX_DISABLE Input Current  
µA  
= GND, V  
= 3.3V, R  
= 7.4kΩ  
PULL  
-450  
CC  
TX_DISABLE Input High Voltage  
TX_DISABLE Input Low Voltage  
TX_FAULT Output High Voltage  
TX_FAULT Output Low Voltage  
SHUTDOWN Output High Voltage  
SHUTDOWN Output Low Voltage  
BIAS GENERATOR  
V
2
V
V
V
V
V
V
IH  
V
0.8  
0.4  
0.4  
IL  
V
I
I
I
I
= 100µA sourcing (Note 3)  
= 1mA sinking (Note 3)  
= 100µA sourcing  
2.4  
OH  
OH  
OL  
OH  
OL  
V
OL  
V
V
- 0.4  
OH  
CC  
1
V
= 100µA sinking  
OL  
Bias On-Current Range  
I
Current into BIAS pin  
100  
100  
mA  
µA  
BIAS  
Current into BIAS pin during TX_FAULT or  
TX_DISABLE  
Bias Off-Current  
Bias Overshoot  
I
BIASOFF  
During SFP module hot plugging  
(Notes 4, 5, 11)  
10  
%
mA/A  
%
External resistor to GND defines the voltage  
gain, I  
10.0  
12  
13  
13.5  
= 1mA, R  
= 69.28kΩ  
Bias-Current Monitor Gain  
I
BIAS  
BC_MON  
BC_MON  
I
= 100mA, R  
= 693.25Ω  
11.5  
-8  
13.5  
+8  
BIAS  
BC_MON  
MAX3735  
Bias-Current Monitor Gain  
Stability  
1mA I  
(Notes 4, 6)  
100mA  
BIAS  
MAX3735A  
-6  
+6  
2
_______________________________________________________________________________________  
2.7Gbps, Low-Power SFP Laser Drivers  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= +2.97V to +3.63V, T = -40°C to +85°C. Typical values at V  
= +3.3V, I  
= 20mA, I  
= 30mA, T = +25°C, unless  
MOD A  
CC  
A
CC  
BIAS  
otherwise noted.) (Note 1)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
AUTOMATIC POWER-CONTROL LOOP  
MD Reverse Bias Voltage  
18µA I  
1500µA  
1.6  
18  
V
MD  
MD Average Current Range  
I
Average current into MD pin  
1500  
+880  
µA  
MD  
I
= 1mA  
BIAS  
-880  
(MAX3735)  
APC closed loop  
(Notes 4, 7)  
Average Power-Setting Stability  
ppm/°C  
%
I
= 1mA  
BIAS  
-110  
-650  
-16  
+110  
+650  
+16  
(MAX3735A)  
I
= 100mA  
BIAS  
APC Closed Loop  
Average Power Setting Accuracy  
MD-Current Monitor Gain  
1mA I  
100mA (Note 8)  
BIAS  
External resistor to GND  
defines the voltage gain;  
MAX3735  
0.8  
0.9  
1
1
1.23  
1.1  
I
= 18µA, R  
=
MD  
PC_MON  
I
A/A  
%
PC_MON  
MAX3735A  
50kΩ  
I
= 1.5mA, R = 600Ω  
PC_MON  
0.95  
-10  
-4  
1.05  
+10  
+4  
MD  
MAX3735  
18µA I  
1500µA  
MD  
MD-Current Monitor Gain Stability  
(Notes 4, 6)  
MAX3735A  
LASER MODULATOR  
Current into OUT+ pin; R 15, V  
,
L
OUT+  
10  
10  
60  
85  
V
0.6V (DC-coupled)  
OUT-  
Modulation On-Current Range  
I
mA  
MOD  
Current into OUT+ pin; R 15_, V  
,
L
OUT+  
V
2.0V (AC-coupled)  
OUT-  
Current into OUT+ pin during TX_FAULT or  
TX_DISABLE  
Modulation Off-Current  
I
100  
µA  
ppm/°C  
%
MODOFF  
I
I
= 10mA  
= 60mA  
-480  
-255  
+480  
+255  
MOD  
Modulation-Current Stability  
(Note 4)  
MOD  
Modulation-Current Absolute  
Accuracy  
10mA I  
60mA (Note 8)  
-15  
+15  
MOD  
Modulation-Current Rise Time  
Modulation-Current Fall Time  
t
20% to 80%, 10mA I  
20% to 80%, 10mA I  
60mA (Note 4)  
60mA (Note 4)  
42  
50  
65  
80  
ps  
ps  
R
MOD  
t
F
MOD  
10mA I  
(Notes 4, 9, 10)  
60mA at 2.67Gbps  
MOD  
18  
38  
Deterministic Jitter  
Random Jitter  
At 1.25Gbps (K28.5 pattern)  
At 622Mbps (Note 9)  
At 155Mbps (Note 9)  
11.5  
18  
ps  
40  
RJ  
10mA I  
60mA (Note 4)  
0.7  
1.0  
ps  
RMS  
MOD  
_______________________________________________________________________________________  
3
2.7Gbps, Low-Power SFP Laser Drivers  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= +2.97V to +3.63V, T = -40°C to +85°C. Typical values at V  
= +3.3V, I  
= 20mA, I  
= 30mA, T = +25°C, unless  
MOD A  
CC  
A
CC  
BIAS  
otherwise noted.) (Note 1)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
1.30  
1.30  
MAX  
1.39  
1.39  
UNITS  
SAFETY FEATURES  
TX_FAULT always occurs for V  
1.38V, TX_FAULT never occurs for  
1.22V  
BC_MON  
Excessive Bias-Current  
Comparator Threshold Range  
1.22  
V
V
V
BC_MON  
TX_FAULT always occurs for V  
1.38V, TX_FAULT never occurs for  
1.22V  
PC_MON  
Excessive MD-Current  
Comparator Threshold Range  
1.22  
V
PC_MON  
SFP TIMING REQUIREMENTS  
Time from rising edge of TX_DISABLE to  
TX_DISABLE Assert Time  
t_off  
t_on  
I
= I  
and I  
= I  
MODOFF  
0.14  
5
µs  
BIAS  
BIASOFF  
MOD  
(Note 4)  
Time from falling edge  
of TX_DISABLE to  
C
= 2.7nF,  
APC  
1
ms  
µs  
MAX3735 (Note 4)  
I
and I  
at 95%  
BIAS  
MOD  
TX_DISABLE Negate Time  
of steady state when  
TX_FAULT = 0 before  
reset  
MAX3735A  
(Note 11)  
600  
Time from falling edge of TX_DISABLE to  
and I at 95% of steady state when  
TX_FAULT = 1 before reset (Note 4)  
TX_DISABLE Negate Time  
During FAULT Recovery  
I
t_onFAULT  
60  
200  
ms  
BIAS  
MOD  
TX_FAULT Reset Time or Power-  
On Time  
From power-on or negation of TX_FAULT  
using TX_DISABLE (Note 4)  
t_init  
60  
200  
50  
5
ms  
µs  
µs  
Time from fault to TX_FAULT on, C  
FAULT  
TX_FAULT Assert Time  
TX_DISABLE to Reset  
t_fault  
3.3  
20pF, R  
= 4.7k(Note 4)  
FAULT  
Time TX_DISABLE must be held high to  
reset TX_FAULT (Note 4)  
Note 1: Specifications at -40°C are guaranteed by design and characterization. Dice are tested at T = +25°C only.  
A
Note 2: Maximum value is specified at I  
= 60mA, I  
= 100mA.  
MOD  
BIAS  
Note 3: TX_FAULT is an open-collector output and must be pulled up with a 4.7kto 10kresistor.  
Note 4: Guaranteed by design and characterization.  
Note 5:  
V
CC  
turn-on time must be 0.8s, DC-coupled interface.  
Note 6: Gain stability is defined by the digital diagnostic document (SFF-8472, rev. 9.0) over temperature and supply variation.  
Note 7: Assuming that the laser diode to photodiode transfer function does not change with temperature.  
Note 8: Accuracy refers to part-to-part variation.  
23  
Note 9: Deterministic jitter is measured using a 2 - 1 PRBS or equivalent pattern.  
Note 10: Broadband noise is filtered through the network as shown in Figure 3. One capacitor,  
C < 0.47µF, and one 0603 ferrite bead or inductor can be added (optional). This supply voltage filtering reduces the hot-  
plugging inrush current. The supply noise must be < 100mV  
up to 2MHz.  
P-P  
Note 11: C  
values chosen as shown in Table 4 (MAX3735A).  
APC  
4
_______________________________________________________________________________________  
2.7Gbps, Low-Power SFP Laser Drivers  
V
V
CC  
CC  
VOLTAGE  
V
+
OUT  
30  
30Ω  
(100mV min,  
1200mV max)  
V
-
OUT  
MAX3735  
MAX3735A  
OUT-  
(V +) - (V -)  
IN  
IN  
(200mV min,  
P-P  
30Ω  
75Ω  
2400mV max)  
P-P  
0.5pF  
OUT+  
OUT+  
I
+
CURRENT  
OUT  
OSCILLOSCOPE  
I +  
OUT  
I
MOD  
50Ω  
TIME  
Figure 1. Required Input Signal and Output Polarity  
Figure 2. Output Termination for Characterization  
HOST BOARD  
MODULE  
FILTER DEFINED BY SFP MSA  
TO LASER  
L1  
1µH  
SOURCE  
NOISE  
DRIVER V  
CC  
OPTIONAL  
OPTIONAL  
VOLTAGE  
SUPPLY  
C1  
0.1µF  
C2  
10µF  
C3  
0.1µF  
Figure 3. Supply Filter  
_______________________________________________________________________________________  
5
2.7Gbps, Low-Power SFP Laser Drivers  
Typical Operating Characteristics  
(V  
= +3.3V, C  
= 0.01µF, I  
= 20mA, and I  
= 30mA, T = +25°C, unless otherwise noted.)  
CC  
APC  
BIAS  
MOD A  
OPTICAL EYE  
OPTICAL EYE  
MAX3735 toc01  
MAX3735 toc02  
E
= 8.2dB, 2.7Gbps, 2.3GHz FILTER  
E
= 8.2dB, 1.25Gbps, 900MHz FILTER  
R
R
7
2 - 1 PRBS, 1310nm FP LASER  
K28.5 PATTERN, 1310nm FP LASER  
54ps/div  
115ps/div  
OPTICAL EYE  
ELECTRICAL EYE  
MAX3735 toc03  
MAX3735 toc04  
7
2.7Gbps, 2 - 1 PRBS,  
E
= 12dB, 155Mbps, 117MHz FILTER  
R
7
30mA MODULATION  
2 - 1 PRBS, 1310nm FP LASER  
85mV/div  
919ps/div  
58ps/div  
BIAS-CURRENT MONITOR GAIN  
vs. TEMPERATURE  
SUPPLY CURRENT vs. TEMPERATURE  
20  
18  
16  
14  
12  
10  
EXCLUDES I  
BIAS  
AND I  
MOD  
70  
55  
40  
25  
10  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
6
_______________________________________________________________________________________  
2.7Gbps, Low-Power SFP Laser Drivers  
Typical Operating Characteristics (continued)  
(V  
= +3.3V, C  
= 0.01µF, I  
= 20mA, and I  
= 30mA, T = +25°C, unless otherwise noted.)  
CC  
APC  
BIAS  
MOD A  
PHOTOCURRENT MONITOR GAIN  
vs. TEMPERATURE  
MODULATION CURRENT vs. R  
MONITOR DIODE CURRENT vs. R  
MODSET  
APCSET  
3.0  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
2.5  
2.0  
1.5  
1.0  
0.5  
0
-40  
-15  
10  
35  
60  
85  
1
10  
100  
0
1
10  
100  
TEMPERATURE (°C)  
R
(k)  
R
(k)  
MODSET  
APCSET  
DETERMINISTIC JITTER  
vs. MODULATION CURRENT  
RANDOM JITTER  
vs. MODULATION CURRENT  
EDGE TRANSITION TIME  
vs. MODULATION CURRENT  
60  
50  
40  
30  
20  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
80  
70  
60  
50  
40  
30  
20  
FALL TIME  
RISE TIME  
DJ (INCLUDING PWD)  
PWD  
10  
0
10  
20  
30  
40  
(mA)  
50  
60  
10  
20  
30  
40  
(mA)  
50  
60  
10  
20  
30  
40  
(mA)  
50  
60  
I
I
MOD  
I
MOD  
MOD  
HOT PLUG WITH TX_DISABLE LOW  
STARTUP WITH SLOW RAMPING SUPPLY  
TRANSMITTER ENABLE  
MAX3735 toc15  
MAX3735 toc13  
MAX3735 toc14  
3.3V  
LOW  
3.3V  
3.3V  
V
CC  
0V  
V
0V  
CC  
V
CC  
FAULT  
LOW  
LOW  
FAULT  
FAULT  
TX_DISABLE HIGH  
t_on = 44µs  
12µs/div  
LOW  
LOW  
LOW  
TX_DISABLE  
TX_DISABLE  
t_init = 60ms  
20ms/div  
LASER  
OUTPUT  
LASER  
OUTPUT  
LASER  
OUTPUT  
20ms/div  
_______________________________________________________________________________________  
7
2.7Gbps, Low-Power SFP Laser Drivers  
Typical Operating Characteristics (continued)  
(V  
= +3.3V, C  
= 0.01µF, I  
= 20mA, and I  
= 30mA, T = +25°C, unless otherwise noted.)  
CC  
APC  
BIAS  
MOD A  
RESPONSE TO FAULT  
TRANSMITTER DISABLE  
MAX3735 toc17  
MAX3735 toc16  
EXTERNALLY  
FORCED FAULT  
3.3V  
V
CC  
V
PC_MON  
t_fault = 0.9µs  
HIGH  
LOW  
FAULT  
LOW  
LOW  
FAULT  
TX_DISABLE  
LOW  
TX_DISABLE  
HIGH  
t_off = 134ns  
LASER  
OUTPUT  
LASER  
OUTPUT  
1µs/div  
40ns/div  
FAULT RECOVERY TIME  
FREQUENT ASSERTION OF TX_DISABLE  
MAX3735 toc18  
MAX3735 toc19  
V
V
PC_MON  
PC_MON  
EXTERNAL  
FAULT REMOVED  
EXTERNALLY  
FORCED FAULT  
HIGH  
FAULT  
FAULT  
LOW  
LOW  
TX_DISABLE  
HIGH  
TX_DISABLE  
LOW  
t_init = 60ms  
LASER  
OUTPUT  
LASER  
OUTPUT  
100ms/div  
4µs/div  
8
_______________________________________________________________________________________  
2.7Gbps, Low-Power SFP Laser Drivers  
Pin Description  
PIN  
NAME  
FUNCTION  
1, 4, 8, 14, 18  
V
+3.3V Supply Voltage  
Noninverted Data Input  
Inverted Data Input  
CC  
2
3
IN+  
IN-  
Photodiode Current Monitor Output. Current out of this pin develops a ground-referenced voltage  
across an external resistor that is proportional to the monitor diode current.  
5
PC_MON  
Bias Current Monitor Output. Current out of this pin develops a ground-referenced voltage across an  
external resistor that is proportional to the bias current.  
6
7, 12, 22  
9
BC_MON  
GND  
Ground  
Shutdown Driver Output. Voltage output to control an external transistor for optional shutdown  
circuitry.  
SHUTDOWN  
10  
11  
13  
TX_FAULT Open-Collector Transmit Fault Indicator (Table 1).  
MODSET  
BIAS  
A resistor connected from this pad to ground sets the desired modulation current.  
Laser Bias Current Output  
Noninverted Modulation Current Output. Connect pins 15 and 16 externally to minimize parasitic  
15, 16  
17  
OUT+  
OUT-  
MD  
inductance of the package. I  
flows into this pin when input data is high.  
MOD  
Inverted Modulation Current Output. I  
flows into this pin when input data is low.  
MOD  
Monitor Diode Input. Connect this pin to the anode of a monitor photodiode. A capacitor to ground is  
required to filter the high-speed AC monitor photocurrent.  
19  
Connect a capacitor (C  
pole of the APC feedback loop.  
) between pin 20 (APCFILT1) and pin 21 (APCFILT2) to set the dominant  
APC  
20  
APCFILT1  
21  
23  
APCFILT2  
APCSET  
See APCFILT1  
A resistor connected from this pin to ground sets the desired average optical power.  
Transmitter Disable, TTL. Laser output is disabled when TX_DISABLE is asserted high or left  
unconnected. The laser output is enabled when this pin is asserted low.  
24  
EP  
TX_DISABLE  
Exposed  
Pad  
Ground. Must be soldered to the circuit board ground for proper thermal and electrical performance  
(see the Exposed Pad Package section).  
To interface with the laser diode, a damping resistor  
Detailed Description  
(R ) is required for impedance matching. The com-  
D
The MAX3735/MAX3735A laser drivers consist of three  
parts: a high-speed modulation driver, a laser-biasing  
block with automatic power control (APC), and safety  
circuitry (Figure 4). The circuit design is optimized for  
high-speed and low-voltage (+3.3V) operation.  
bined resistance of the series damping resistor and the  
equivalent series resistance of the laser diode should  
equal 15. To reduce optical output aberrations and  
duty-cycle distortion caused by laser diode parasitic  
inductance, an RC shunt network might be necessary.  
Refer to Maxim Application Note HFAN 02.0: Interfacing  
Maxim’s Laser Drivers to Laser Diodes for more informa-  
tion.  
High-Speed Modulation Driver  
The output stage are composed of a high-speed differ-  
ential pair and a programmable modulation current  
source. The MAX3735/MAX3735A are optimized for dri-  
ving a 15load; the minimum instantaneous voltage  
required at OUT+ is 0.6V. Modulation current swings up  
to 60mA are possible when the laser diode is DC-cou-  
pled to the driver and up to 85mA when the laser diode  
is AC-coupled to the driver.  
At data rates of 2.7Gbps, any capacitive load at the  
cathode of a laser diode degrades optical output perfor-  
mance. Because the BIAS output is directly connected  
to the laser cathode, minimize the parasitic capacitance  
associated with the pin by using an inductor to isolate  
the BIAS pin parasitics from the laser cathode.  
_______________________________________________________________________________________  
9
2.7Gbps, Low-Power SFP Laser Drivers  
V
CC  
SHUTDOWN  
V
CC  
MAX3735  
MAX3735A  
INPUT BUFFER  
15  
OUT-  
IN+  
IN-  
DATA  
PATH  
100Ω  
R
D
OUT+  
BIAS  
I
MOD  
V
CC  
V
CC  
I
MD  
1
I
BIAS  
V
CC  
PC_MON  
I
I
BIAS  
MOD  
ENABLE  
V
BG  
APCSET  
MD  
ENABLE  
x38  
I
R
APCSET  
APCSET  
R
PC_MON  
V
CC  
X270  
SAFETY LOGIC  
AND  
I
BIAS  
76  
I
MD  
C
MD  
POWER  
DETECTOR  
V
BG  
V
CC  
BC_MON  
x1  
(4.7kΩ  
TO 10k)  
R
BC_MON  
MODSET  
APCFILT1  
APCFILT2  
R
MODSET  
TX_FAULT  
TX_DISABLE  
SHUTDOWN  
C
APC  
Figure 4. Functional Diagram  
response to various single-point failures. The transmit  
fault condition is latched until reset by a toggle of  
Laser-Biasing and APC  
To maintain constant average optical power, the  
MAX3735/MAX3735A incorporate an APC loop to com-  
pensate for the changes in laser threshold current over  
temperature and lifetime. A back-facet photodiode  
mounted in the laser package is used to convert the  
optical power into a photocurrent. The APC loop  
adjusts the laser bias current so that the monitor cur-  
TX_DISABLE or V . The laser driver offers redundant  
CC  
laser diode shutdown through the optional shutdown  
circuitry (see the Typical Applications Circuit). The  
TX_FAULT pin should be pulled high with a 4.7kto  
10kresistor to V  
as required by the SFP MSA.  
CC  
Safety Circuitry Current Monitors  
The MAX3735/MAX3735A feature monitors (BC_MON,  
rent is matched to a reference current set by R  
.
APCSET  
The time constant of the APC loop is determined by an  
external capacitor (C ). For possible C values,  
PC_MON) for bias current (I  
MD  
) and photo current  
BIAS  
APC  
APC  
(I ). The monitors are realized by mirroring a fraction  
see the Applications Information section.  
of the currents and developing voltages across external  
resistors connected to ground. Voltages greater than  
1.38V at PC_MON or BC_MON result in a fault state.  
For example, connecting a 100resistor to ground on  
each monitor output gives the following relationships:  
Safety Circuitry  
The safety circuitry contains an input disable  
(TX_DISABLE), a latched fault output (TX_FAULT), and  
fault detectors (Figure 5). This circuitry monitors the  
operation of the laser driver and forces a shutdown if a  
fault is detected (Table 1). A single-point fault can be a  
V
V
= (I  
/ 76) x 100Ω  
x 100Ω  
BC_MON  
PC_MON  
BIAS  
= I  
MD  
short to V  
or GND. See Table 2 to view the circuit  
CC  
10 ______________________________________________________________________________________  
2.7Gbps, Low-Power SFP Laser Drivers  
V
CC  
POR AND COUNTER  
FOR t_init  
MAX3735  
MAX3735A  
I
MOD  
ENABLE  
TX_DISABLE  
I
BIAS  
ENABLE  
100ns DELAY  
COUNTER FOR  
t_onfault  
V
V
CC  
CC  
R
S
Q
I
MD  
1
V
V
BG  
PC_MON  
RS  
LATCH  
COMP  
COMP  
R
R
PC_MON  
SHUTDOWN  
TX_FAULT  
BG  
CMOS  
I
BIAS  
76  
BC_MON  
MODSET  
SHORT-  
CIRCUIT  
TTL  
BC_MON  
OPEN COLLECTOR  
DETECTOR  
Figure 5. Safety Circuitry  
section, and select the value of R  
that corre-  
MODSET  
Table 1. Typical Fault Conditions  
sponds to the required current at +25°C.  
If any of the I/O pins is shorted to GND or V (single-  
CC  
point failure, see Table 2), and the bias current or the  
photocurrent exceed the programmed threshold.  
Programming the APC Loop  
1.  
Program the average optical power by adjusting -R  
SET  
APC-  
. To select the resistance, determine the desired moni-  
tor current to be maintained over temperature and  
lifetime. See the Monitor Diode Current vs. R  
End-of-life (EOL) condition of the laser diode. The bias  
current and/or the photocurrent exceed the  
programmed threshold.  
APCSET  
2.  
3.  
4.  
graph in the Typical Operating Characteristics section,  
and select the value of R  
required current.  
that corresponds to the  
APCSET  
Laser cathode is grounded and the photocurrent  
exceeds the programmed thresholds.  
Interfacing with Laser Diodes  
To minimize optical output aberrations caused by sig-  
nal reflections at the electrical interface to the laser  
No feedback for the APC loop (broken interconnection,  
defective monitor photodiode), and the bias current  
exceeds the programmed threshold.  
diode, a series-damping resistor (R ) is required  
D
(Figure 4). Additionally, the MAX3735/MAX3735A out-  
Design Procedure  
puts are optimized for a 15load. Therefore, the series  
combination of R and R , where R represents the  
D
L
L
When designing a laser transmitter, the optical output  
usually is expressed in terms of average power and  
extinction ratio. Table 3 shows relationships helpful in  
converting between the optical average power and the  
modulation current. These relationships are valid if the  
mark density and duty cycle of the optical waveform  
are 50%.  
laser-diode resistance, should equal 15. Typical val-  
ues for R are 8to 13. For best performance, place  
D
a bypass capacitor (0.01µF typ) as close as possible to  
the anode of the laser diode. An RC shunt network  
between the laser cathode and ground minimizes opti-  
cal output aberrations. Starting values for most coaxial  
lasers are R  
= 50in series with C  
= 8pF.  
COMP  
COMP  
Programming the Modulation Current  
Adjust these values experimentally until the optical out-  
put waveform is optimized. Refer to Maxim Application  
Note: HFAN 02.0: Interfacing Maxims Laser Drivers to  
Laser Diodes for more information.  
For a given laser power (P  
), slope efficiency (η), and  
AVG  
extinction ratio (r ), the modulation current can be calcu-  
e
lated using Table 3. See the Modulation Current vs.  
R
graph in the Typical Operating Characteristics  
MODSET  
______________________________________________________________________________________ 11  
2.7Gbps, Low-Power SFP Laser Drivers  
Table 2. Circuit Responses to Various Single-Point Faults  
CIRCUIT RESPONSE TO OVERVOLTAGE  
OR SHORT TO V  
CIRCUIT RESPONSE TO UNDERVOLTAGE  
OR SHORT TO GROUND  
PIN NAME  
CC  
TX_FAULT  
Does not affect laser power.  
Does not affect laser power.  
Normal condition for circuit operation.  
The optical average power increases and a fault occurs The optical average power decreases and the APC  
if V exceeds the threshold. The APC loop loop responds by increasing the bias current. A fault  
state occurs if V exceeds the threshold voltage.  
TX_DISABLE  
Modulation and bias currents are disabled.  
IN+  
IN-  
PC_MON  
responds by decreasing the bias current.  
BC_MON  
The optical average power decreases and the APC  
loop responds by increasing the bias current. A fault  
The optical average power increases and a fault occurs  
if V exceeds the threshold. The APC loop  
PC_MON  
state occurs if V  
exceeds the threshold voltage. responds by decreasing the bias current.  
BC_MON  
The APC circuit responds by increasing bias current  
MD  
SHUTDOWN  
BIAS  
Disables bias current. A fault state occurs.  
until a fault is detected, then a fault state* occurs.  
Does not affect laser power.  
Does not affect laser power. If the shutdown circuitry is  
used, laser current is disabled and a fault state* occurs.  
In this condition, laser forward voltage is 0V and no light Fault state* occurs. If the shutdown circuitry is used, the  
is emitted. laser current is disabled.  
The APC circuit responds by increasing the bias current Fault state* occurs. If the shutdown circuitry is used,  
OUT+  
until a fault is detected, then a fault state* occurs.  
laser current is disabled.  
OUT-  
Does not affect laser power.  
Fault state* occurs.  
Does not affect laser power.  
Does not affect laser power.  
Does not affect laser power.  
PC_MON  
BC_MON  
Fault state* occurs.  
IBIAS increases until V  
voltage.  
exceeds the threshold  
exceeds the threshold  
IBIAS increases until V  
voltage.  
exceeds the threshold  
exceeds the threshold  
BC_MON  
BC_MON  
BC_MON  
APCFILT1  
APCFILT2  
IBIAS increases until V  
voltage.  
IBIAS increases until V  
voltage.  
BC_MON  
MODSET  
APCSET  
Does not affect laser power.  
Does not affect laser power.  
Fault state* occurs.  
Fault state* occurs.  
*A fault state asserts the TX_FAULT pin, disables the modulation and bias currents, and asserts the SHUTDOWN pin.  
Pattern-Dependent Jitter  
Table 3. Optical Power Definitions  
To minimize the pattern-dependent jitter associated  
with the APC loop time constant, and to guarantee loop  
stability, connect a capacitor between APCFILT1 and  
APCFILT2 (see the Applications Information section for  
PARAMETER  
Average Power  
SYMBOL  
RELATION  
= (P + P ) / 2  
P
P
AVG  
AVG  
0
1
more information about choosing C  
values). A  
Extinction Ratio  
r
r = P / P  
APC  
e
e
1
0
AVG  
AVG  
capacitor attached to the photodiode anode (C ) is  
MD  
Optical Power High  
Optical Power Low  
Optical Amplitude  
P
P
P = 2P  
1
x r / (r + 1)  
e e  
1
0
also recommended to filter transient currents that origi-  
nate from the photodiode. To maintain stability and  
proper phase margin associated with the two poles  
P = 2P  
0
/ (r + 1)  
e
P
P
= P - P  
P-P 1 0  
P-P  
created by C  
and C  
, C  
should be 20x  
APC  
APC  
MD  
Laser Slope  
Efficiency  
η
η = P  
/ I  
P-P MOD  
greater than C  
for the MAX3735. C  
should be 4x  
MD  
APC  
to 20x greater than C  
for the MAX3735A.  
MD  
Modulation Current  
I
I
= P  
/ η  
P-P  
MOD  
MOD  
12 ______________________________________________________________________________________  
2.7Gbps, Low-Power SFP Laser Drivers  
Input Termination Requirements  
The MAX3735/MAX3735A data inputs are SFP MSA  
compliant. On-chip 100differential input impedance is  
provided for optimal termination (Figure 6). Because of  
the on-chip biasing network, the MAX3735/MAX3735A  
inputs self-bias to the proper operating point to accom-  
modate AC-coupling.  
Determine R  
APCSET  
The desired monitor diode current is estimated by I  
MD  
= P  
SET  
x ρ  
= 200µA. The Monitor Diode vs. R  
AVG  
MON APC-  
graph in the Typical Operating Characteristics sec-  
should be 3k. The value can  
tion shows that R  
APCSET  
also be estimated using the equation below:  
I
= 1.23 / (2 × R )  
APCSET  
MD  
Optional Shutdown Output Circuitry  
The SHUTDOWN control output features extended eye  
safety when the laser cathode is grounded. An external  
transistor is required to implement this circuit (Figure 4).  
In the event of a fault, SHUTDOWN asserts high, plac-  
ing the optional shutdown transistor in cutoff mode and  
thereby shutting off the laser current.  
Determine R  
MODSET  
To achieve a minimum extinction ratio (r ) of 6.6 over  
e
temperature and lifetime, calculate the required extinc-  
tion ratio at +25°C. Assuming the results of the calcula-  
tion are r = 20 at +25°C, the peak-to-peak optical  
e
P-P  
power P  
= 1.81mW, according to Table 3. The  
required modulation current is 1.81mW / (0.05mW/mA)  
= 36.2mA. The Modulation Current vs. R graph  
MODSET  
Applications Information  
An example of how to set up the MAX3735/MAX3735A  
follows:  
in the Typical Operating Characteristics section shows  
that R should be 9.5k. The value can also be  
estimated using the equation below:  
MODSET  
Select a communications-grade laser for 2.488Gbps.  
I
= 1.23 / (0.0037 × R  
)
MODSET  
MOD  
Assume that the laser output average power is P  
=
AVG  
Determine C  
APC  
0dBm, the operating temperature is -40°C to +85°C,  
minimum extinction ratio is 6.6 (8.2dB), and the laser  
diode has the following characteristics:  
In order to meet SFP timing requirements and minimize  
pattern-dependent jitter, the CAPC capacitor value is  
determined by the laser-to-monitor transfer and other  
variables. The following equations and table can be  
used to choose the CAPC values for the MAX3735 and  
MAX3735A, respectively. The equations and table  
assume a DC-coupled laser. Refer to Maxim  
Application Note HFDN 23.0: Choosing the APC Loop  
Wavelength: λ = 1.3µm  
Threshold current: I = 22mA at +25°C  
TH  
Threshold temperature coefficient: β = 1.3% / °C  
TH  
Laser-to-monitor transfer: ρ  
= 0.2A/W  
MON  
Laser slope efficiency: η = 0.05mW/mA at +25°C  
V
CC  
V
CC  
MAX3735  
MAX3735A  
16kΩ  
PACKAGE  
0.81nH  
0.11pF  
MAX3735  
MAX3735A  
V
CC  
OUT-  
OUT+  
PACKAGE  
0.97nH  
IN+  
0.11pF  
50Ω  
50Ω  
0.99nH  
0.11pF  
V
CC  
0.97nH  
IN-  
OUT+  
0.99nH  
0.11pF  
0.11pF  
24kΩ  
K = 0.3  
Figure 6. Simplified Input Structure  
Figure 7. Simplified Output Structure  
______________________________________________________________________________________ 13  
2.7Gbps, Low-Power SFP Laser Drivers  
Capacitors Used with MAX3735/MAX3735A SFP Module  
isolates laser forward voltage from the output circuitry  
Designs for more information on choosing C  
for DC-  
and allows the output at OUT+ to swing above and  
APC  
and AC-coupled laser interfaces.  
below the supply voltage (V ). When AC-coupled, the  
CC  
MAX3735/MAX3735A modulation current can be pro-  
grammed from 10mA to 85mA. Refer to Maxim  
Application Note HFAN 02.0: Interfacing Maxims Laser  
Drivers to Laser Diodes for more information on AC-  
coupling laser drivers to laser diodes.  
MAX3735  
Use the following equation to find the C  
using the MAX3735:  
value when  
APC  
C
APC  
= 4.04 × 10-9 × t  
× η × ρ  
(29.3 + 20.6 I  
-
_on  
MON  
- 7.78 I  
TH  
0.22 I 2) × (1947 + 833 I  
2 + 0.103  
MOD  
TH  
MOD  
Interface Models  
Figures 6 and 7 show simplified input and output cir-  
cuits for the MAX3735/MAX3735A laser driver. If dice  
are used, replace package parasitic elements with  
bondwire parasitic elements.  
3
I
)
MOD  
where units are:  
C
APC  
in µF, I , and I  
in mA and t  
in µs. C  
MD  
can  
APC  
TH  
MOD  
ON  
then be chosen as approximately 20x smaller than C  
for the MAX3735.  
Wire Bonding Die  
The MAX3735 uses gold metalization with a thickness of  
5µm (typ). Maxim characterized this circuit with gold wire  
ball bonding (1-mil diameter wire). Die-pad size is 94 mil  
(2388µm) square, and die thickness is 15 mil (381µm).  
Refer to Maxim Application Note HFAN-08.0.1:  
Understanding Bonding Coordinates and Physical Die  
Size for additional information.  
MAX3735A  
when using the MAX3735A.  
Use Table 4 to choose C  
APC  
APC  
C
should be chosen according to the highest gain of  
the lasers (generally at cold temperature). C  
selec-  
APC  
tion assumes a 34% reduction in the gain of the lasers at  
+85°C from the cold (-40°C) values.  
Table 4. MAX3735A CAPC Selection  
Layout Considerations  
To minimize inductance, keep the connections between  
the MAX3735 output pins and laser diode as close as  
possible. Optimize the laser diode performance by  
placing a bypass capacitor as close as possible to the  
laser anode. Use good high-frequency layout tech-  
niques and multiple-layer boards with uninterrupted  
ground planes to minimize EMI and crosstalk.  
LASER GAIN (A/A)  
C
(µF)  
APC  
0.005  
0.007  
0.010  
0.020  
0.030  
0.040  
0.039  
0.047  
0.068  
0.100  
0.120  
0.120  
Exposed-Pad Package  
The exposed pad on the 24-pin QFN provides a very  
low thermal resistance path for heat removal from the IC.  
The pad is also electrical ground on the MAX3735/  
MAX3735A and must be soldered to the circuit board  
ground for proper thermal and electrical performance.  
Refer to Maxim Application Note HFAN-08.1: Thermal  
Considerations for QFN and Other Exposed-Pad  
Packages for additional information.  
where Gain = I /(I  
- I + 0.5 x I  
) for DC-cou-  
MD BIAS TH  
MOD  
pled lasers. C  
can then be chosen as approximately  
MD  
4x to 20x smaller than C  
for the MAX3735A  
APC  
Using the MAX3735/MAX3735A  
with Digital Potentiometers  
For more information on using the MAX3735/MAX3735A  
with the Dallas DS1858/DS1859 SFP controller, refer to  
Maxim Application Note HFAN 2.3.3: Optimizing the  
Resolution of Laser Driver Setting Using Linear Digital  
Potentiometers for more information.  
Laser Safety and IEC 825  
Using the MAX3735/MAX3735A laser driver alone does  
not ensure that a transmitter design is compliant with IEC  
825. The entire transmitter circuit and component selec-  
tions must be considered. Each user must determine the  
level of fault tolerance required by the application, recog-  
nizing that Maxim products are neither designed nor  
authorized for use as components in systems intended  
for surgical implant into the body, for applications intend-  
ed to support or sustain life, or for any other application  
in which the failure of a Maxim product could create a  
situation where personal injury or death may occur.  
Modulation Currents Exceeding 60mA  
For applications requiring a modulation current greater  
than 60mA, headroom is insufficient for proper opera-  
tion of the laser driver if the laser is DC-coupled. To  
avoid this problem, the MAX3735/MAX3735As modula-  
tion output can be AC-coupled to the cathode of a laser  
diode. An external pullup inductor is necessary to DC-  
bias the modulation output at V . Such a configuration  
CC  
14 ______________________________________________________________________________________  
2.7Gbps, Low-Power SFP Laser Drivers  
MAX3735 Chip Topography  
0.079"  
(2.007mm)  
GND  
7
TX_DISABLE APCSET  
GND  
10  
APCFILT2 APCFILT1  
MD  
13  
GND  
14  
8
9
11  
12  
V
6
5
4
3
CC  
15  
16  
17  
V
CC  
OUT-  
OUT-  
0.060"  
(1.524mm)  
OUT+  
IN+  
IN-  
18  
19  
20  
V
CC  
OUT+  
V
CC  
PC_MON  
BC_MON  
2
1
21  
BIAS  
29  
28  
27  
26  
25  
24  
23  
22  
INDEX  
PAD  
GND  
GND  
V
CC  
SHUTDOWN TX_FAULT MODSET  
GND  
GND  
______________________________________________________________________________________ 15  
2.7Gbps, Low-Power SFP Laser Drivers  
Bonding Coordinates  
Pin Configuration  
Table 5. MAX3735 Bondpad Locations  
TOP VIEW  
COORDINATES  
PAD  
NAME  
X
Y
1*  
2
BC_MON  
PC_MON  
47  
47  
24  
23  
22  
21  
20  
19  
47  
229  
514  
696  
878  
1063  
1149  
1149  
1149  
1149  
1149  
1149  
1149  
1149  
1032  
888  
742  
579  
433  
289  
93  
V
1
2
3
4
5
6
18  
17  
16  
15  
14  
13  
V
CC  
CC  
3
V
47  
CC  
IN+  
IN-  
OUT-  
OUT+  
OUT+  
4
IN-  
47  
5
IN+  
47  
MAX3735  
MAX3735A  
6
V
47  
CC  
V
CC  
7
GND  
TX_DISABLE  
APCSET  
GND  
242  
452  
636  
819  
1008  
1193  
1383  
1567  
1758  
1758  
1758  
1758  
1758  
1758  
1758  
1578  
1401  
1205  
1016  
818  
623  
435  
245  
PC_MON  
BC_MON  
V
CC  
8
9
BIAS  
10  
11  
12  
13  
14  
15  
16**  
17**  
18**  
19**  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
7
8
9
10  
11  
12  
APCFILT2  
APCFILT1  
MD  
GND  
Thin QFN*  
(4mm x 4mm)  
V
CC  
OUT-  
OUT-  
OUT+  
OUT+  
*THE EXPOSED PAD MUST BE CONNECTED TO CIRCUIT BOARD GROUND FOR PROPER  
THERMAL AND ELECTRICAL PERFORMANCE.  
Chip Information  
TRANSISTOR COUNT: 327  
V
CC  
BIAS  
GND  
SUBSTRATE CONNECTED TO GND  
DIE SIZE: 60 mils x 79 mils  
-64  
GND  
-64  
PROCESS: SiGe Bipolar  
MODSET  
TX_FAULT  
SHUTDOWN  
-64  
-64  
-64  
V
-64  
CC  
GND  
GND  
-64  
-64  
*Index pad. Orient the die with this pad in the lower-left corner.  
**Bond out both pairs of OUT- and OUT+ to minimize series  
inductance.  
16 ______________________________________________________________________________________  
2.7Gbps, Low-Power SFP Laser Drivers  
Package Information  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,  
go to www.maxim-ic.com/packages.)  
PACKAGE OUTLINE  
12,16,20,24L QFN, 4x4x0.90 MM  
1
21-0106  
E
2
PACKAGE OUTLINE  
12,16,20,24L QFN, 4x4x0.90 MM  
2
21-0106  
E
2
______________________________________________________________________________________ 17  
2.7Gbps, Low-Power SFP Laser Drivers  
Package Information  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,  
go to www.maxim-ic.com/packages.)  
PACKAGE OUTLINE  
12,16,20,24L QFN THIN, 4x4x0.8 mm  
21-0139  
A
PACKAGE OUTLINE  
12,16,20,24L QFN THIN, 4x4x0.8 mm  
21-0139  
A
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
18 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
© 2003 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY