MAX3755CCM [MAXIM]

Dual-Rate, 1Gbps/2Gbps Fibre Channel Quad-Port Bypass ICs with Repeater; 双率,在1Gbps / 2Gbps光纤通道四端口旁路集成电路与中继器
MAX3755CCM
型号: MAX3755CCM
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Dual-Rate, 1Gbps/2Gbps Fibre Channel Quad-Port Bypass ICs with Repeater
双率,在1Gbps / 2Gbps光纤通道四端口旁路集成电路与中继器

光纤 中继器
文件: 总13页 (文件大小:282K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-2098; Rev 1; 1/02  
Dual-Rate, 1Gbps/2Gbps Fibre Channel  
Quad-Port Bypass ICs with Repeater  
General Description  
Features  
The MAX3754/MAX3755 quad-port bypass circuits  
(PBCs) are designed for use in Fibre Channel Arbitrated  
Loop applications. Each consists of four serially con-  
nected port bypass circuits and a repeater that provides  
clock and data recovery. The quad-PBC allows connec-  
tion of up to four Fibre Channel L-ports; each can be  
enabled or bypassed by individual logic inputs. To  
reduce the external parts count, all signal inputs and  
outputs have internal termination resistors. The  
MAX3754/MAX3755 comply with Fibre Channel jitter tol-  
erance requirements and can recover data signals with  
up to 0.7 unit intervals (UIs) of high-frequency jitter.  
These devices operate from a single +3.3V supply.  
o Pin Selectable 1.0625Gbps/2.125Gbps Dual-Rate  
Operation  
o Meets Fibre Channel Jitter Tolerance  
o 1400mV Typical Differential Output Swing  
o 3.0V to 3.6V Operation  
o No Reference Clock Required  
o Frequency Lock Indication  
o 1W Power Consumption (MAX3754) at +3.3V  
o 150or 100Differential L-Port Impedance  
Available  
Pin Configuration  
Applications  
1.0625Gbps/2.125Gbps Dual-Rate Fibre Channel  
Fibre Channel Data Storage Systems  
Storage Area Networks  
Fibre Channel Hubs  
GND  
LIN1-  
LIN1+  
GND  
1
2
3
4
5
6
7
8
9
36 GND  
35 LOUT4+  
34 LOUT4-  
33 GND  
32 LIN4+  
31 LIN4-  
30 GND  
29 GND  
28 OUT-  
27 OUT+  
26 GND  
25 LOCK  
LOUT1-  
LOUT1+  
GND  
MAX3754  
MAX3755  
Typical Operating Circuit appears at end of data sheet.  
GND  
IN-  
IN+ 10  
GND 11  
CLKEN 12  
TQFP-EP*  
*EXPOSED PAD MUST BE CONNECTED TO GROUND  
Ordering Information  
DIFFERENTIAL LIN  
DIFFERENTIAL IN  
AND OUT  
AND LOUT  
PART  
TEMP RANGE  
PIN-PACKAGE  
TERMINATION  
TERMINATION  
MAX3754CCM  
MAX3755CCM  
0°C to +70°C  
0°C to +70°C  
48 TQFP-EP  
48 TQFP-EP  
150Ω  
100Ω  
100Ω  
100Ω  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
Dual-Rate, 1Gbps/2Gbps Fibre Channel  
Quad-Port Bypass ICs with Repeater  
ABSOLUTE MAXIMUM RATINGS  
CC  
V
...........................................................................-0.5V to +5V  
Current into LOCK...............................................-1mA to +10mA  
Current into OUT , LOUT1 , LOUT2 ,  
LOUT3 , LOUT4 .......................................................... 22mA  
Voltage at OUT , LOUT1 , LOUT2 ,  
Continuous Power Dissipation (T = +70°C)  
A
48-Pin TQFP-EP (derate 30.0mW/°C above +70°C)...........2W  
Operating Junction Temperature Range...........-55°C to +150°C  
Operating Temperature Range .........................-55°C to +110°C  
Storage Temperature Range.............................-55°C to +150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
LOUT3 , LOUT4 .....................(V  
- 1.65V) to (V  
+ 0.5V)  
+ 0.5V)  
+ 0.5V)  
CC  
CC  
CC  
CC  
Voltage at IN , LIN1 , LIN2 , LIN3 ,  
LIN4 ......................................................-0.5V to (V  
Voltage at CLKEN, CF+, CF-, CDREN, RATESEL,  
SEL_, LOCK............................................-0.5V to (V  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(V  
= +3.0V to +3.6V, CLKEN = GND, 8B/10B data coding, C = 0.047µF, T = 0°C to +70°C, unless otherwise noted.  
CC  
F
A
Typical values are at V  
= +3.3V, T = +25°C.)  
CC  
A
PARAMETER  
CONDITIONS  
MIN  
TYP  
245  
285  
308  
349  
MAX  
285  
UNITS  
MAX3754  
MAX3755  
MAX3754  
MAX3755  
CDREN = GND  
334  
Supply Current (Note 1)  
mA  
362  
CDREN = V  
CC  
411  
1.0625Gbps operation, RATESEL = GND  
2.125Gbps operation, RATESEL = V  
-100  
-100  
200  
+100  
+100  
2200  
Input Data Rate Range  
ppm  
CC  
Differential Input Voltage Swing  
mV  
P-P  
V
0.45  
-
CC  
Input Common-Mode Voltage  
V
Differential Output Voltage  
Swing  
R
= R  
1000  
1400  
1800  
mV  
LOAD  
SOURCE  
P-P  
MAX3754  
MAX3755  
MAX3754  
MAX3755  
118  
78  
150  
100  
150  
100  
182  
122  
182  
122  
Differential L-Port Input  
Resistance  
118  
78  
Differential L-Port Output  
Resistance  
Differential Input Resistance at  
IN  
78  
78  
100  
100  
122  
Differential Output Resistance at  
OUT  
122  
0.8  
TTL Low Input Voltage  
TTL High Input Voltage  
TTL Input Current  
V
V
2
0 TTL input voltages V  
-50  
50  
µA  
V
CC  
LOCK Output Low Voltage  
LOCK Output High Voltage  
Differential Voltage across CF  
I
I
= +1mA (sinking)  
0.4  
OL  
= -100µA (sourcing)  
2.4  
V
OH  
V
V
CC  
3
IN to OUT , SEL_ = GND, CDREN = V  
LIN(n) to LOUT(n+1) , LIN4 to OUT  
CC  
Data Propagation Delay  
ns  
1
2
_______________________________________________________________________________________  
Dual-Rate, 1Gbps/2Gbps Fibre Channel  
Quad-Port Bypass ICs with Repeater  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= +3.0V to +3.6V, CLKEN = GND, 8B/10B data coding, C = 0.047µF, T = 0°C to +70°C, unless otherwise noted.  
CC  
F
A
Typical values are at V  
= +3.3V, T = +25°C.)  
CC  
A
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Channel Select Delay to Data  
Valid  
SEL(n) to LOUT(n+1) , SEL4 to OUT  
9
ns  
Data Transition Time  
20% to 80%  
65  
110  
100  
40  
160  
ps  
10Hz f < 100Hz  
100Hz f < 1MHz  
1MHz f < 2.5GHz  
Supply Noise Tolerance (Note 2)  
mV  
P-P  
10  
CDR Lock Time  
530  
µs  
(Note 3)  
OPERATION AT 2.125Gbps  
Pattern = K28.7, CDREN = GND (Note 4)  
Pattern = K28.7, CDREN = V  
1.6  
4.1  
3
Random Jitter at OUT ,  
L-Port Outputs  
ps  
RMS  
CC  
Pattern = CRPAT, CDREN = V  
(Notes 5, 6)  
CC  
Pattern = K28.5+, CDREN = GND (Note 7)  
29  
60  
Deterministic Jitter at OUT ,  
L-Port Outputs  
Pattern = K28.5+, CDREN = V  
CC  
19  
28  
50  
ps  
P-P  
Pattern = RPAT, CDREN = V  
Pattern = RPAT, CDREN = V  
(Notes 6, 8, 9)  
(Notes 6, 8, 9)  
50  
CC  
CC  
Total Jitter at OUT , LOUT_  
105  
ps  
P-P  
f = 85kHz sine wave  
f = 1.27MHz sine wave  
f = 10MHz sine wave  
1.5  
0.1  
0.1  
0.4  
Sinusoidal Component of Jitter  
-12  
Pattern = CJTPAT  
(Notes 6, 10)  
UI  
Tolerance (BER = 10  
)
Deterministic Jitter Tolerance  
CJTPAT (Note 10)  
UI  
UI  
Total High-Frequency Jitter  
Tolerance  
Pattern = CJTPAT (Notes 6, 10, 11)  
0.7  
Jitter Transfer Bandwidth  
Jitter Transfer Peaking  
6
10  
MHz  
dB  
(Note 12)  
0.05  
(Note 3)  
OPERATION AT 1.0625Gbps  
Pattern = K28.7, CDREN = GND (Note 4)  
1.7  
5.4  
3.8  
27  
Random Jitter at OUT ,  
L-Port Outputs  
ps  
RMS  
Pattern = K28.7, CDREN = V  
CC  
Pattern = CRPAT, CDREN = V  
(Notes 5, 6)  
CC  
Pattern = K28.5+, CDREN = GND (Note 7)  
60  
50  
Deterministic Jitter at OUT ,  
L-Port Outputs  
ps  
P-P  
Pattern = K28.5+, CDREN = V  
CC  
19  
Pattern = RPAT, CDREN = V  
(Notes 6, 8, 9)  
(Notes 6, 8, 9)  
37  
75  
CC  
CC  
Total Jitter at OUT , LOUT_  
Pattern = RPAT, CDREN = V  
135  
ps  
P-P  
f = 42.5kHz sine wave  
f = 635kHz sine wave  
f = 5MHz sine wave  
1.5  
0.1  
0.1  
Sinusoidal Component of Jitter  
-12  
Pattern = CJTPAT  
(Notes 6, 10)  
UI  
Tolerance (BER = 10  
)
_______________________________________________________________________________________  
3
Dual-Rate, 1Gbps/2Gbps Fibre Channel  
Quad-Port Bypass ICs with Repeater  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= +3.0V to +3.6V, CLKEN = GND, 8B/10B data coding, C = 0.047µF, T = 0°C to +70°C, unless otherwise noted.  
CC  
F
A
Typical values are at V  
= +3.3V, T = +25°C.)  
CC  
A
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Deterministic Jitter Tolerance  
CJTPAT (Note 10)  
0.4  
UI  
Total High-Frequency Jitter  
Tolerance  
Pattern = CJTPAT (Notes 6, 10, 11)  
(Note 12)  
0.7  
UI  
Jitter Transfer Bandwidth  
Jitter Transfer Peaking  
3
5
MHz  
dB  
0.05  
Note 1: Includes output currents.  
Note 2: Meets jitter output specifications with noise applied.  
Note 3: AC characteristics are guaranteed by design and characterization.  
Note 4: K28.7 Pattern: 00 1111 1000  
Note 5: Compliant Random Pattern in hex (CRPAT):  
Pattern Sequence:  
Repetitions:  
3E AA 2A AA AA  
3E AA A6 A5 A9  
6
1
86 BA 6C64 75 D0 E8 DC A8 B4 79 49 EA A6 65  
72 31 9A 95 AB  
16  
1
C1 6A AA 9A A6  
1
-12  
Note 6: Parameter measured with 0.40UI deterministic and 0.20UI random jitter (BER = 10  
) applied to the input. All ports are  
bypassed, SEL_ = TTL low. Jitter is in compliance with the inter-enclosure, Fibre Channel jitter tolerance (at compliance  
point α ) and jitter output (at compliance point α ) specifications (FC-PI rev 10.0). Output jitter is specified as an output  
R
T
total given a non-zero jitter input.  
Note 7: K28.5 Pattern: 00 1111 1010 11 0000 0101  
Note 8: Random Pattern in Hex (RPAT): 3EB0 5C67 85D3 172C A856 D84B B6A6 65  
Note 9: Using differential drive over the entire input amplitude range. The input signal bandwidth is limited to 0.75 (bit-rate) by a  
4th-order Bessel-Thompson filter or equivalent. Total jitter (TJ) is the range of the eye pattern where the bit error rate  
-12  
exceeds 10 . TJ can be estimated as TJ = DJ + (14 RJ). DJ is deterministic jitter. RJ is one sigma distribution (RMS) of  
random jitter.  
Note 10:Compliant Jitter Tolerance Pattern in Hex (CJTPAT):  
Pattern Sequence:  
3E AA 2A AA AA  
3E AA A6 A5 A9  
Repetitions:  
6
1
87 1E 38 71 E3  
87 1E 38 70 BC 78 F4 AA AA AA  
AA AA AA AA AA  
AA A1 55 55 E3 87 1E 38 71 E1  
AB 9C 96 86 E6  
41  
1
12  
1
1
C1 6A AA 9A A6  
1
Note 11:Parameter measured with 0.1UI sinusoidal jitter at 10MHz for 2.125Gbps data rate, or 5MHz for 1.0625Gbps.  
Note 12:Simulation shows peaking of 0.01dBm max. Characterization results limited by test equipment.  
4
_______________________________________________________________________________________  
Dual-Rate, 1Gbps/2Gbps Fibre Channel  
Quad-Port Bypass ICs with Repeater  
Typical Operating Characteristics  
(V  
= +3.3V, C = 0.047µF, T = +25°C, unless otherwise noted.)  
F A  
CC  
OUTPUT EYE DIAGRAM AT OUT  
(1.0625Gbps CRPAT, CDR ENABLED)  
OUTPUT EYE DIAGRAM AT OUT  
(2.125Gbps CRPAT, CDR ENABLED)  
SUPPLY CURRENT vs. TEMPERTURE  
(MAX3754)  
340  
320  
300  
280  
260  
240  
220  
200  
CDR ENABLED  
INPUT =  
INPUT =  
200mV/  
div  
400mV  
200mV/  
div  
400mV  
P-P  
DJ = 0.4UI  
RJ = 0.2UI  
P-P  
DJ = 0.4UI  
RJ = 0.2UI  
CDR DISABLED  
100ps/div  
200ps/div  
0
10  
20  
30  
40  
50  
60  
70  
TEMPERATURE (°C)  
OUTPUT JITTER BATHTUB PLOT  
(2.125Gbps)  
OUTPUT JITTER BATHTUB PLOT  
(1.0625Gbps)  
1
1
-1  
-1  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
2.125Gbps CRPAT AT INPUT  
(DJ = 0.4UI, RJ = 0.2UI)  
-2  
-2  
-3  
-4  
-5  
-6  
-7  
-8  
-9  
10  
-3  
10  
-4  
10  
1.0625Gbps CRPAT AT INPUT  
(DJ = 0.4UI, RJ = 0.2UI)  
-5  
10  
-6  
10  
-7  
10  
-8  
10  
-9  
10  
-10  
-10  
-11  
-12  
10  
10  
10  
10  
-11  
10  
-12  
10  
0
0.2  
0.4  
0.6  
0.8  
1.0  
0
0.2  
0.4  
0.6  
0.8  
1.0  
DATA SAMPLING TIME RELATIVE TO  
FIRST ZERO CROSSING (UI)  
DATA SAMPLING TIME RELATIVE TO  
FIRST ZERO CROSSING (UI)  
JITTER TOLERANCE  
1.0625Gbps  
JITTER TOLERANCE  
2.125Gbps  
10  
1
10  
1
CJTPAT  
DJ = 0.4UI  
RJ = 0.2UI  
CJTPAT  
DJ = 0.4UI  
RJ = 0.2UI  
FIBRE CHANNEL  
MASK  
FIBRE CHANNEL  
MASK  
0.1  
0.1  
0.01  
0.01  
10k  
100k  
1M  
10M  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
_______________________________________________________________________________________  
5
Dual-Rate, 1Gbps/2Gbps Fibre Channel  
Quad-Port Bypass ICs with Repeater  
Pin Description  
PIN  
NAME  
DESCRIPTION  
1, 4, 7, 8, 11, 26, 29, 30,  
33, 36, 39, 42, 43, 46  
GND  
Electrical Ground  
2
LIN1-  
LIN1+  
Inverted Data Input for L-Port 1  
Noninverted Data Input for L-Port 1  
Inverted Data Output for L-Port 1  
3
5
LOUT1-  
6
LOUT1+ Noninverted Data Output for L-Port 1  
9
IN-  
IN+  
Inverted Data Input  
10  
Noninverted Data Input  
12  
CLKEN  
Clock Enable. A TTL high level enables clock output at L-Port 1.  
Supply Voltage  
13, 16, 21, 24  
V
CC  
14  
15  
17  
CF+  
CF-  
CDR Filter Capacitor Positive Connection. C = 0.047µF.  
F
CDR Filter Capacitor Negative Connection. C = 0.047µF.  
F
SEL1  
Select 1. A TTL low on SEL1 selects data from IN. TTL high on SEL1 selects data from LIN1.  
Select 2. A TTL low on SEL2 selects data from the previous port bypass circuit. A TTL high  
on SEL2 selects data from LIN2.  
18  
19  
20  
22  
23  
25  
SEL2  
SEL3  
Select 3. A TTL low on SEL3 selects data from the previous port bypass circuit. A TTL high  
on SEL3 selects data from LIN3.  
Select 4. A TTL low on SEL4 selects data from the previous port bypass circuit. A TTL high  
on SEL4 selects data from LIN4.  
SEL4  
CDR Enable Input (TTL). A high input enables the CDR for data recovery. A low input  
disables the CDR (no data recovery).  
CDREN  
RATESEL  
LOCK  
Rate Select Pin. TTL low selects 1.0625Gbps operation. TTL high selects 2.125Gbps  
operation.  
Frequency Lock Indicator. When data is present, a high level indicates the PLL is frequency-  
locked. The output of the LOCK pin may chatter when large jitter is applied to the input.  
27  
28  
31  
32  
34  
35  
37  
38  
40  
41  
44  
45  
47  
48  
OUT+  
OUT-  
Noninverted Data Output  
Inverted Data Output  
LIN4-  
Inverted Data Input for L-Port 4  
Noninverted Data Input for L-Port 4  
Inverted Data Output for L-Port 4  
LIN4+  
LOUT4-  
LOUT4+ Noninverted Data Output for L-Port 4  
LIN3-  
LIN3+  
Inverted Data Input for L-Port 3  
Noninverted Data Input for L-Port 3  
Inverted Data Output for L-Port 3  
LOUT3-  
LOUT3+ Noninverted Data Output for L-Port 3  
LIN2-  
LIN2+  
Inverted Data Input for L-Port 2  
Noninverted Data Input for L-Port 2  
Inverted Data Output for L-Port 2  
LOUT2-  
LOUT2+ Noninverted Data Output for L-Port 2  
Exposed The exposed pad must be soldered to the circuit board ground for proper thermal  
EP  
Pad  
performance.  
6
_______________________________________________________________________________________  
Dual-Rate, 1Gbps/2Gbps Fibre Channel  
Quad-Port Bypass ICs with Repeater  
0.047µF  
CF+  
CF-  
RATESEL  
LOCK  
Q
D
IN+  
IN-  
PHASE/FREQ  
DETECTOR  
LOOP  
FILTER  
100Ω  
VCO  
1
0
CDREN  
CLKEN  
÷2  
1
0
0
1
0
1
0
1
0
1
0
1
OUT+  
OUT-  
100Ω  
OPTIONAL  
100OR 150TERMINATION  
FOR LOUT AND LIN  
Figure 1. MAX3754/MAX3755 Functional Diagram  
The input buffer drives the CDR circuit, as well as one  
input of a 2:1 multiplexer. A TTL high on CDREN  
enables the CDR and connects the CDR data output to  
the port bypass circuits. The recovered clock signal is  
available for test purposes at LOUT1 when CLKEN is  
asserted high. A TTL low on CDREN disables the CDR  
and connects the output of the input buffer directly to  
the port bypass circuits. A RATESEL pin is included to  
switch the CDR between data rates. The VCO output  
has a divide-by-2 block that is switched into the PLL  
when RATESEL is TTL low for 1.0625Gbps operation  
(see Figure 1).  
Detailed Description  
The MAX3754/MAX3755 quad port bypass circuits  
(PBCs) consist of an input buffer, a rate-selectable  
clock and data recovery (CDR) circuit (for optional jitter  
attenuation), four serially connected port bypass cir-  
cuits, and an output buffer (Figure 1). The circuit  
design is optimized for both 1.0625Gbps and  
2.125Gbps operation at 3.3V.  
Input Buffer  
The input buffer provides line termination and level con-  
version. It accepts a differential input voltage of 200mV  
to 2200mV at IN . Internal resistors terminate the inputs  
to 100differentially eliminating the need for external  
resistors.  
Phase and Frequency Detector  
The frequency difference between the VCO clock and  
the received data is derived by sampling the in-phase  
and quadrature VCO outputs on the edges of the input  
data signal. The frequency detector drives the VCO  
until the frequency difference is reduced to zero. Once  
frequency acquisition is complete, the phase detector  
produces a voltage proportional to the phase differ-  
ence between the incoming data and the internal clock.  
The PLL drives this error voltage to zero, aligning the  
recovered clock to the center of the incoming eye.  
Clock and Data Recovery  
The purpose of the CDR is to improve jitter transfer per-  
formance by attenuating jitter that may be present in  
the input data. The CDR can recover 1.0625Gpbs or  
2.125Gbps data signals that are corrupted by up to  
-12  
0.7UI of high-frequency jitter (BER = 10  
). When jitter  
attenuation is not needed, the CDR may be disabled in  
order to save power.  
_______________________________________________________________________________________  
7
Dual-Rate, 1Gbps/2Gbps Fibre Channel  
Quad-Port Bypass ICs with Repeater  
Loop Filter, VCO, and Latch  
Output Buffer  
The output signal of the last PBC drives the differential  
high-power output buffer. The output buffer drives the  
output port (OUT ). Internal resistors terminate each  
The phase detector and frequency detector outputs are  
summed into a loop filter. An external capacitor  
(between CF+ and CF-) is required to set the PLL  
damping factor. The fully integrated VCO contains an  
internal current reference and filter circuitry to minimize  
output with 50to V  
(100differentially), eliminating  
CC  
the need for external termination resistors. The output  
buffer produces a differential peak-to-peak output volt-  
age of 1V to 1.8V when driving a differential load.  
the influence of V  
noise. The VCO creates a clock  
CC  
output with frequency proportional to the control volt-  
age applied by the loop filter. Data recovery is accom-  
plished by using the recovered clock signal to latch the  
incoming data to the CML output buffers, significantly  
reducing output jitter.  
Applications Information  
The MAX3754/MAX3755 quad-PBC is designed for  
hard-disk array applications using the Fibre Channel  
Arbitrated Loop network protocol. In applications where  
data storage reliability is critical, it may be desirable to  
create a disk array where the data is stored redundant-  
ly on more than one physical drive.  
LOCK Output  
An active high LOCK output monitor derived from the  
frequency detector indicates that the PLL is frequency  
locked onto the input data. Without input data, the  
LOCK signal may settle at TTL High or TTL Low. The  
use of a low-pass RC filter is recommended to reduce  
the effects of chatter that could be caused by a high  
input jitter content.  
The Fibre Channel Arbitrated Loop protocol enables  
multiple physical drives to be connected in a loop  
topology. Each physical drive is connected to the Fibre  
Channel loop through an L-port that may be individually  
addressed and controlled to create an array of logical  
drives. Data is transmitted over the loop as an encoded  
serial bit stream. Using the Fibre Channel Arbitrated  
Loop protocol, the configuration of the disk array can  
be rearranged under software control to achieve  
desired objectives (such as data reliability or fast  
access).  
RATESEL Input  
The RATESEL input is used to select between input  
data rates of 2.125Gbps and 1.0625Gbps. This func-  
tion allows the repeater to sample data at the correct  
data rate by selecting an optional a divide-by-2 net-  
work. RATESEL selects between the VCO tuned fre-  
quency and half that frequency, allowing maximum  
jitter tolerance at both data rates. The loop bandwidth  
of the repeater scales with the selected frequency; i.e.,  
the loop-bandwidth at an input rate of 1.0625Gbps is  
half that at the input rate of 2.125Gbps.  
The port bypass circuit allows any L-port to be enabled  
(connected to the loop) or bypassed (disconnected  
from the loop) while the loop is operating. This enables  
hot swapping of physical drives (inserting or removing  
physical drives while the loop is operating) so that dri-  
ves may be replaced with minimal disruption to the disk  
array system. Figure 2 shows a disk array.  
Port Bypass Circuits  
The output of the 2:1 input multiplexer drives a cascad-  
ed series of four PBCs. Each PBC consists of a differ-  
ential output buffer, a differential input buffer, and a 2:1  
multiplexer. The multiplexer select input (SEL_) controls  
whether a port is included in the loop. A TTL low on a  
multiplexer select pin routes the data signal from the  
previous stage to the multiplexer output (port bypass  
mode). A TTL high on the multiplexer select pin routes  
the data signal from the input buffer to the multiplexer  
output (port enable mode). The output of the last PBC  
drives the output buffer.  
Filter Capacitor Requirements  
The MAX3754/MAX3755 phase lock loops (PLL) filter  
capacitor is required to be supplied in a port bypass  
design. This capacitor sets the damping factor of the  
device. It also determines how fast the PLL can acquire  
initial lock. This device is specified and tested with the  
recommended filter capacitor value of 0.047µF that lim-  
its transfer peaking.  
Input/Output Structures  
Figures 3 and 4 show models for the MAX3754/  
MAX3755 inputs and outputs, modeling package para-  
sitics, and ESD diodes.  
The MAX3754 has 150differential termination on the  
inputs and 75single-ended terminations to V  
on  
CC  
the outputs (see Input/Output Structures for specifics)  
of the L-ports to match Fibre Channel Arbitrated Loop  
specifications. The MAX3755 is terminated with 100Ω  
and 50, respectively. Testing a MAX3754 using stan-  
dard 50test equipment requires an impedance  
matching network  
Cascading Port Bypass Circuits  
Two or more MAX3754/MAX3755 quad-PBCs can be  
cascaded by directly connecting the OUT pins of one  
8
_______________________________________________________________________________________  
Dual-Rate, 1Gbps/2Gbps Fibre Channel  
Quad-Port Bypass ICs with Repeater  
MAX377x  
MAX377x  
MAX377x  
MAX377x  
MAX377x  
MAX377x  
MAX377x  
MAX377x  
MAX377x  
MAX377x  
MAX377x  
MAX377x  
MAX377x  
MAX377x  
MAX377x  
MAX377x  
MAX377x  
MAX377x  
MAX377x  
MAX377x  
Figure 2. Disk Array Implemented with Port Bypass Circuits  
_______________________________________________________________________________________  
9
Dual-Rate, 1Gbps/2Gbps Fibre Channel  
Quad-Port Bypass ICs with Repeater  
PACKAGE  
PARASITICS  
V
CC  
DIE  
ESD  
STRUCTURES  
1.2kΩ  
2.2nH  
0.4pF  
0.2pF  
0.2pF  
2.2nH  
0.4pF  
50Ω  
*(75Ω)  
50Ω  
*(75Ω)  
V
- 0.45V  
CC  
*MAX3754 LIN_ INPUTS  
Figure 3. MAX3754/MAX3755 Input Structure  
PACKAGE  
PARASITICS  
DIE  
V
CC  
quad-PBC to the IN pins of the next quad-PBC. See  
Typical Operating Circuit.  
ESD  
STRUCTURES  
50Ω  
*(75Ω)  
50Ω  
*(75Ω)  
Layout Considerations  
For best performance, carefully lay out the PC board  
using high-frequency techniques. Filter voltage sup-  
plies, keep ground connections short with multiple vias  
where possible. Use controlled impedance transmis-  
sion lines to interface with the MAX3754/MAX3755  
high-speed inputs and outputs. Power-supply decou-  
2.2nH  
OUT+  
OUT-  
0.4pF  
2.2nH  
0.4pF  
0.2pF  
0.2pF  
pling capacitors should be placed very close to V  
CC  
pins. Isolate the input signals from the output signals as  
much as possible.  
*MAX3754 LOUT_ OUTPUTS  
Figure 4. MAX3754/MAX3755 Output Structure  
10 ______________________________________________________________________________________  
Dual-Rate, 1Gbps/2Gbps Fibre Channel  
Quad-Port Bypass ICs with Repeater  
Typical Operating Circuit  
DISK  
DRIVE  
DISK  
DRIVE  
DISK  
DRIVE  
DISK  
DRIVE  
L_PORT n  
L_PORT n+1  
L_PORT n+4  
L_PORT n+5  
IN OUT SEL  
IN OUT SEL  
IN OUT SEL  
IN OUT SEL  
V
CC  
V
CC  
V
V
CC  
CC  
V
CDREN  
V
CDREN  
CC  
CC  
GND  
IN+  
LOCK  
OUT+  
GND  
IN+  
LOCK  
OUT+  
Z = 50Ω  
0
MAX3754  
MAX3755  
MAX3754  
MAX3755  
IN-  
OUT-  
IN-  
OUT-  
Z = 50Ω  
0
CF+  
CF-  
CLKEN  
RATESEL  
CF+  
CF-  
CLKEN  
RATESEL  
C
C
F
F
0.047µF  
0.047µF  
IN OUT SEL  
IN OUT SEL  
IN OUT SEL  
IN OUT SEL  
L_PORT n+2  
L_PORT n+3  
L_PORT n+6  
L_PORT n+7  
DISK  
DRIVE  
DISK  
DRIVE  
DISK  
DRIVE  
DISK  
DRIVE  
NOTE: ALL HIGH-SPEED INPUTS AND OUTPUTS (IN , OUT , LIN , AND LOUT ) SHOULD BE CONNECTED USING CONTROLLED-  
IMPEDANCE TRANSMISSION LINES. AC-COUPLING MAY ALSO BE REQUIRED. ALL CAPACITORS ARE 0.1µF UNLESS OTHERWISE INDICATED.  
FIGURE SHOWS 1.0625Gbps OPERATION. FOR 2.125Gbps OPERATION, CONNECT RATESEL TO V  
.
CC  
______________________________________________________________________________________ 11  
Dual-Rate, 1Gbps/2Gbps Fibre Channel  
Quad-Port Bypass ICs with Repeater  
Package Information  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,  
go to www.maxim-ic.com/packages.)  
12 ______________________________________________________________________________________  
Dual-Rate, 1Gbps/2Gbps Fibre Channel  
Quad-Port Bypass ICs with Repeater  
Package Information (continued)  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,  
go to www.maxim-ic.com/packages.)  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ____________________ 13  
© 2002 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

相关型号:

MAX3755CCM-T

Telecom Circuit, 1-Func, PQFP48, 7 X 7 MM, 1 MM HEIGHT, MS-026ABC-HD, TQFP-48
MAXIM

MAX3755EVKIT

Evaluation Kit for the MAX3754/MAX3755
MAXIM

MAX3760

622Mbps, Low-Noise Transimpedance Preamplifier for LAN and WAN Optical Receivers
MAXIM

MAX3760E/D

622Mbps, Low-Noise Transimpedance Preamplifier for LAN and WAN Optical Receivers
MAXIM

MAX3760ESA

622Mbps, Low-Noise Transimpedance Preamplifier for LAN and WAN Optical Receivers
MAXIM

MAX3760ESA+

Support Circuit, 1-Func, PDSO8, 0.150 INCH, SOIC-8
MAXIM

MAX3760ESA+T

Support Circuit, 1-Func, PDSO8, 0.150 INCH, SOIC-8
MAXIM

MAX3760EVKIT

MAX3760 Evaluation Kit
MAXIM

MAX3760EVKIT-SO

MAX3760 Evaluation Kit
MAXIM

MAX3761

Low-Power, 622Mbps Limiting Amplifiers with Chatter-Free Power Detect for LANs
MAXIM

MAX3761/MAX3762

Low-Power 622Mbps Limiting Amplifiers with Chatter-Free Power D
MAXIM

MAX3761C/D

Low-Power, 622Mbps Limiting Amplifiers with Chatter-Free Power Detect for LANs
MAXIM