MAX3780 [MAXIM]

Quad 2.5Gbps Cable Transceiver ; 四2.5Gbps的电缆收发器
MAX3780
型号: MAX3780
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Quad 2.5Gbps Cable Transceiver
四2.5Gbps的电缆收发器

文件: 总19页 (文件大小:575K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-2247; Rev 0; 10/01  
Quad 2.5Gbps Cable Transceiver  
General Description  
Features  
The MAX3780 cable transceiver provides a bidirectional  
interface of four 2.5Gbps channels over low-cost copper  
cable or external fiber-optic interface. The transmitter  
section accepts eight channels of input at 1.25Gbps. An  
integrated 4-bit FIFO allows retiming of the transmit data  
to a clean local reference clock. The channels are multi-  
plexed (2:1) into four outputs operating at 2.5Gbps. Pre-  
emphasis and equalization provide compensation for  
losses in low-cost cables up to 3m. The receiver recov-  
ers the clock and demultiplexes (1:2) the 2.5Gbps chan-  
nels into eight 1.25Gbps outputs. Fully integrated  
phase-locked loops and delay-locked loops recover  
clock and data from the serial data inputs.  
o Quad 2:1 Channel Serialization  
o Quad 1:2 Channel Deserialization  
o 3m Link Distance with Low-Cost Copper Cable  
o Better than 10-16 BER Performance  
o 10Gbps Aggregate Parallel Interface  
o System Loopback  
o 1.25Gbps LVDS Synchronous Interface  
o 2.5Gbps CML Serial Cable Interface  
o PLL Lock Detect Signal  
The transceiver IC is available in a compact 100-pin  
TQFP package with exposed-ground pad and con-  
sumes 2.2W.  
o Selectable Cable Pre-Emphasis  
o Fixed Receive Equalization  
Applications  
Ordering Information  
Gigabit Ethernet Cable Backplane Concentration  
PART  
TEMP. RANGE  
PIN-PACKAGE  
System Interconnects Using Low-Cost Copper  
Cable  
MAX3780CCQ  
0°C to +70°C  
100 TQFP-EP*  
*Exposed pad  
System Interconnects Using Parallel Optics  
Typical Operating Circuit  
0.1µF  
CMOS ASIC  
625MHz  
TCLK  
8B/10B  
CODING  
TDAT[1:8]  
8
1.25Gbps  
LVDS  
8B/10B  
TX[1:4]  
DECODING  
MAX3780  
CABLE TRANSCEIVER  
625MHz  
8
RCLK  
RECEIVER  
DESKEW  
RDAT[1:8]  
CHANNEL  
IDENTITY  
+3.3V  
2.5Gbps CML  
10kΩ  
LOCK  
RESET  
LOOPEN  
TRIEN  
EQ1  
RX[1:4]  
EQ2  
GND  
VCC6 VCC5 TXFIL  
REFCLK  
RXFIL VCC1 VCC2  
VCC3  
VCC4  
125MHz  
REFERENCE  
CLOCK  
0.1µF  
50Ω  
0.1µF  
PECL  
BUFFER  
50Ω  
+3.3V  
SUPPLY FILTER NETWORK  
VCC6 - 2V  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
Quad 2.5Gbps Cable Transceiver  
ABSOLUTE MAXIMUM RATINGS  
Supply Voltage (V 1, V 2, V 3, V 4,  
TTL Input or Output Voltage.......................-0.5V to (V  
PECL Input Voltage ....................................-0.5V to (V  
TMPSENS, TXFIL, RXFIL Voltage ...............-0.5V to (V  
+ 0.5V)  
+ 0.5V)  
+ 0.5V)  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
V
CC  
5, V 6, VCCTEMP) ....................................-0.5V to +4.0V  
CC  
Continuous CML Output Current ......................-10mA to +25mA  
Momentary CML Output Voltage  
Operating Ambient Temperature Range ................0°C to +70°C  
Operating Junction Temperature Range..............0°C to +150°C  
Storage Ambient Temperature Range...............-55C° to +100°C  
(duration < 1 minute, +25°C).......................0V to (V  
CML Input Voltage......................................-0.5V to (V  
LVDS Input and Output Voltage.................-0.5V to (V  
+ 0.5V)  
+ 0.5V)  
+ 0.5V)  
CC  
CC  
CC  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
DC ELECTRICAL CHARACTERISTICS  
(V  
= +3.0V to +3.6V, LVDS differential load = 1001ꢀ, CML differential load = 1001ꢀ, T = 0°C to +70°C, unless otherwise  
CC  
A
noted. Typical values are at V  
= +3.3V and T = +25°C.)  
A
CC  
PARAMETER  
SYMBOL  
CONDITIONS  
Referenced to GND  
MIN  
3.0  
0
TYP  
3.3  
25  
MAX  
3.6  
UNITS  
V
Supply Voltage  
V
CC  
Operating Ambient Temperature  
Power Dissipation  
T
70  
°C  
A
1.6  
533  
2.2  
665  
3.3  
W
Supply Current  
I
916  
mA  
CC  
TTL INPUTS AND OUTPUTS  
TTL Input High Voltage  
TTL Input Low Voltage  
TTL Input High Current  
TTL Input Low Current  
TTL Output High Voltage  
TTL Output Low Voltage  
PECL INPUTS  
V
2.0  
2.4  
V
V
IH  
V
0.8  
IL  
I
V
V
= 2.0V  
= 0V  
-250  
-500  
µA  
µA  
V
IH  
IH  
IL  
I
IL  
V
Open collector, R  
= 10kΩ  
OH  
LOAD  
V
R
= 10kΩ  
LOAD  
0.4  
V
OL  
PECL Input High Voltage  
PECL Input Low Voltage  
PECL Input Current  
Referenced to V  
Referenced to V  
6
6
-1165  
-1810  
-10  
-880  
-1475  
+10  
mV  
mV  
µA  
CC  
CC  
CML INPUTS (Note 1, Figure 5)  
Total differential signal required to achieve  
error rate  
Differential Input Voltage Range  
200  
800  
mVp-p  
V
Single-Ended Input Voltage  
Range  
Single-ended range of a differential input  
signal  
V
-
V
+
CC  
CC  
0.5  
0.2  
Common-Mode Voltage  
Input Impedance  
Inputs open or AC-coupled  
Differential  
V
V
CC  
R
85  
100  
115  
800  
IN  
CML OUTPUTS (Note 1, Figure 4)  
0m channel, EQ1 = 1, EQ2 = 1  
0.5m channel, EQ1 = 1, EQ2 = 1  
1m channel, EQ1 = 1, EQ2 = 0  
3m channel, EQ1 = 0, EQ2 = 1  
400  
600  
540  
500  
400  
Differential Output Voltage  
(Measured at the End of the  
Channel)  
mVp-p  
(Note 3)  
2
_______________________________________________________________________________________  
Quad 2.5Gbps Cable Transceiver  
DC ELECTRICAL CHARACTERISTICS (continued)  
(V  
= +3.0V to +3.6V, LVDS differential load = 1001ꢀ, CML differential load = 1001ꢀ, T = 0°C to +70°C, unless otherwise  
CC  
A
noted. Typical values are at V  
= +3.3V and T = +25°C.)  
CC  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
0.3  
-
CC  
Output Common-Mode Voltage  
V
Differential Output Impedance  
LVDS INPUTS  
R
85  
100  
115  
OUT  
Input Voltage Range  
V
|V  
|V  
| < 925mV  
| < 925mV  
0
2000  
500  
mV  
mV  
I
GPD  
Differential Input Voltage  
Differential Input Impedance  
Input Common-Mode Current  
LVDS OUTPUTS (Note 2)  
Output High Voltage  
|V  
ID  
|
150  
85  
GPD  
R
100  
-80  
115  
IN  
V
= 1.2V, inputs tied together  
-200  
µA  
OS  
V
1.475  
400  
25  
V
V
OH  
Output Low Voltage  
V
0.925  
250  
OL  
Differential Output Voltage  
|V  
OD  
|
mV  
Change in Magnitude of  
Differential Output Voltage for  
Complementary States  
|V  
|
mV  
V
OD  
Output Offset Voltage  
V
1.125  
1.275  
25  
OS  
Change in Magnitude of Output  
Offset Voltage for  
|V  
|
mV  
OS  
Complementary States  
Differential Output Impedance  
Short-Circuit Current  
R
80  
5
100  
10  
120  
40  
OD  
Short to supply or ground  
mA  
kΩ  
Impedance When Disabled  
TRIEN = 0  
Note 1: CML differential signal amplitudes are specified as the total signal across the load (V+ - V-).  
Note 2: LVDS output signal amplitudes are specified according to IEEE 1596.3-1996.  
Note 3: Differential output voltage is production tested for all EQ1 and EQ2 settings. Typical values are the differential peak-to-peak  
eye opening at the end of the cable.  
AC ELECTRICAL CHARACTERISTICS  
(V  
= +3.0V to +3.6V, LVDS differential load = 1001ꢀ, CML differential load = 1001ꢀ, T = 0°C to +70°C, REFCLK =  
CC  
A
125MHz, unless otherwise noted. Typical values are at V  
= +3.3V and T = +25°C.) (Note 4)  
CC  
A
PARAMETER  
TRANSMITTER PARAMETERS  
TCLK Frequency  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
625  
4.5  
MHz  
ns  
Transmitter Latency  
LVDS INPUTS  
From TDAT to TX  
Accumulated Phase Error at  
TCLK  
Relative to REFCLK  
±±.ꢀ  
ns  
_______________________________________________________________________________________  
3
Quad 2.5Gbps Cable Transceiver  
AC ELECTRICAL CHARACTERISTICS (continued)  
(V  
= +3.0V to +3.6V, LVDS differential load = 1001ꢀ, CML differential load = 1001ꢀ, T = 0°C to +70°C, REFCLK =  
CC  
A
125MHz, unless otherwise noted. Typical values are at V  
= +3.3V and T = +25°C.) (Note 4)  
CC  
A
PARAMETER  
Setup Time  
SYMBOL  
CONDITIONS  
MIN  
1±±  
1±±  
TYP  
MAX  
UNITS  
ps  
t
Figure 1  
SU  
Hold Time  
t
Figure 1  
ps  
H
CML OUTPUTS  
Deterministic Jitter  
(Note 5)  
15  
22  
25  
66  
ps  
ps  
p-p  
Wideband jitter with ±1 pattern  
(Note 7)  
Random Jitter  
Edge Speed  
p-p  
2±% to ꢀ±%, measured at transmitter output,  
(EQ1 = 1, EQ2 = 1)  
t , t  
r
14±  
ps  
f
RECEIVER PARAMETERS  
Clock Frequency  
625  
525  
4.3  
25  
MHz  
µs  
PLL Lock Time  
After valid data applied  
From RX to RDAT  
(Note 7)  
Receiver Latency  
ns  
Jitter Generation  
66  
ps  
p-p  
LVDS OUTPUTS  
Clock Duty-Cycle Distortion  
T
Variation of 5±% crossing from ideal time  
-32  
+32  
5±  
ps  
PW  
Measured with K2ꢀ.5 pattern at RDAT_  
outputs  
Deterministic Jitter  
15  
ps  
p-p  
Edge Speed  
t , t  
2±% to ꢀ±%  
Figure 2  
16±  
4±±  
25±  
532  
ps  
ps  
r
f
Clock-to-Data Delay  
CML INPUTS  
τ
26ꢀ  
22±  
CLK-Q  
High-Frequency Jitter Tolerance  
(Note 6)  
3±±  
ps  
p-p  
Note 4: AC characteristics are guaranteed by design and characterization.  
Note 5: Deterministic jitter (DJ) and differential output signal measured with K28.5 at TX_ pins.  
Note 6: High-frequency jitter comprised of 164ps  
of deterministic jitter, 1.6ps  
random jitter, and the remaining as 5MHz sinu-  
p-p  
RMS  
soidal jitter.  
Note 7: Peak-to-peak random jitter is 16.4 RMS jitter for a jitter probability of 10-16  
.
RCLK  
τ
CLK-Q  
τ
CLK-Q  
RDAT_  
t
= 100ps  
H
300mV  
MINIMUM INPUT  
1000mVp-p  
MAXIMUM  
INPUT  
Figure 2. Definition of Clock-to-Q Delay  
t
= 100ps  
SU  
CENTER OF RISING OR  
FALLING CLOCK EDGE  
Figure 1. LVDS Receiver Input Eye Mask  
4
_______________________________________________________________________________________  
Quad 2.5Gbps Cable Transceiver  
Typical Operating Characteristics  
(V  
= +3.3V, T = +25°C, unless otherwise noted.)  
CC  
A
TRANSMITTER JITTER TRANSFER  
(REFCLK TO TX_)  
RECEIVER JITTER TRANSFER  
(RX4 TO RCLK)  
TMPSENS VOLTAGE VS. TEMPERATURE  
450  
5
0
10  
0
430  
410  
390  
370  
350  
330  
310  
290  
270  
250  
-5  
-10  
-15  
-20  
-10  
-20  
-30  
-25  
-30  
-40  
-50  
-35  
-40  
10  
1
10  
100  
1000  
10,000  
0
25  
50  
75  
100  
125  
150  
1
1000  
FREQUENCY (kHz)  
10,000  
100  
FREQUENCY (kHz)  
JUNCTION TEMPERATURE (°C)  
R TO T VCO PULLING  
TRANSMITTER POWER-SUPPLY REJECTION  
X
X
RECEIVER POWER-SUPPLY REJECTION  
2.0  
1.5  
40  
35  
30  
25  
20  
15  
10  
5
0.5  
0.4  
0.3  
1.0  
0.5  
0.2  
0.1  
0
0
0
0
50  
100  
150  
200  
250  
1
10  
100  
1000  
1
10  
100  
1000  
10,000  
VCO FREQUENCY DIFFERENCE (ppm)  
POWER-SUPPLY NOISE FREQUENCY (kHz)  
FREQUENCY (kHz)  
CML INPUT RETURN LOSS  
CML OUTPUT RETURN LOSS  
T TO R VCO PULLING  
X
X
0
-5  
3.5  
0
-5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
-10  
-15  
-20  
-25  
-30  
-10  
-15  
-20  
-25  
5000  
0
1000  
2000  
3000  
4000  
5000  
0
1000  
2000  
3000  
4000  
0
50  
100  
150  
200  
250  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
VCO FREQUENCY DIFFERENCE (ppm)  
_______________________________________________________________________________________  
5
Quad 2.5Gbps Cable Transceiver  
Typical Operating Characteristics (continued)  
(V  
= +3.3V, T = +25°C, unless otherwise noted.)  
CC  
A
EYE DIAGRAM AFTER 3m CABLE  
RX4 JITTER TOLERANCE VS.  
INPUT AMPLITUDE  
RX4 JITTER TOLERANCE  
UNCOMPENSATED (EQ1 = 1, EQ2 = 1)  
MAX3780 toc12  
100  
0.45  
INPUT = 80mVp-p 210 - 1  
PRBS WITH 0.4UI OF  
DETERMINISTIC JITTER  
PATTERN = 27 - 1 PRBS  
0.40  
0.35  
10  
INPUT = 2 - 1 PRBS WITH  
10  
1
0.30  
0.25  
ADDITIONAL 0.4UI OF  
DETERMINISTIC JITTER  
64mV/  
div  
0.20  
0.15  
0.10  
0.05  
0
0.1  
10  
100  
1000  
10,000  
10  
100  
1000  
70ps/div  
JITTER FREQUENCY (kHz)  
DIFFERENTIAL INPUT AMPLITUDE (mVp-p)  
EYE DIAGRAM AFTER 3m CABLE  
COMPENSATED (EQ1 = 0, EQ2 = 1)  
EYE DIAGRAM AFTER 0.5m CABLE  
EYE DIAGRAM AFTER 1.0m CABLE  
(EQ1 = 1, EQ2 = 0)  
(EQ1 = 1, EQ2 = 1)  
MAX3780 toc13  
MAX3780 toc15  
MAX3780 toc14  
PATTERN = 27 - 1 PRBS  
PATTERN = 27 - 1 PRBS  
PATTERN = 27 - 1 PRBS  
64mV/  
div  
64mV/  
div  
64mV/  
div  
70ps/div  
70ps/div  
70ps/div  
6
_______________________________________________________________________________________  
Quad 2.5Gbps Cable Transceiver  
Pin Description  
PIN  
NAME  
GND  
FUNCTION  
1, 12, 25, 26, 2ꢀ, 31,  
45, 5±, 51, 55, 63, 71,  
75, 76, ꢀ±, 1±±  
Supply Ground  
2, 11, 24  
VCC1  
+3.3V Supply for Receiver, LVDS Data and Clock Outputs, and Digital Receiver Functions  
Positive Parallel-Data Outputs, LVDS  
3, 5, 7, 9, 13, 15, 17,  
19  
RDAT1+ to  
RDATꢀ+  
4, 6, ꢀ, 1±, 14, 16, 1ꢀ,  
2±  
RDAT1- to  
RDATꢀ-  
Negative Parallel-Data Outputs, LVDS  
Positive 625MHz Recovered Clock, LVDS. Parallel-data outputs are clocked on both the  
rising and falling edge of the clock.  
21  
22  
RCLK+  
RCLK-  
Negative 625MHz Recovered Clock, LVDS. Parallel-data outputs are clocked on both the  
rising and falling edge of the clock.  
Three-State Enable, TTL Input. Setting TRIEN low forces the LVDS outputs into a high-  
impedance state and the LOCK pin to a logical ‘1’. CML outputs are not affected by  
TRIEN. Internally pulled high through 15k.  
23  
27  
TRIEN  
Lock Status Indicator, TTL Output. This output goes high when the transmit PLL, receiver  
PLL, and receiver DLLs are in lock. Because this output is open-collector TTL, it requires  
LOCK  
an external 1±kpullup resistor to V . The LOCK pins from multiple MAX37ꢀ±s can be  
CC  
connected in parallel to form a single LOCK signal.  
29  
3±  
RXFIL  
VCC2  
VCC3  
Receiver Loop Filter Connection. Connect a ±.1µF capacitor between RXFIL and VCC2.  
+3.3V Supply for Receiver VCO, Analog Receiver Functions, and External Loop Filter  
Connection  
32, 35, 3ꢀ, 41, 44  
33, 36, 39, 42  
+3.3V Supply for CML Inputs  
RX4- to  
RX1-  
Negative Serial Input, CML  
RX4+ to  
RX1+  
34, 37, 4±, 43  
46, 79, 99  
Positive Serial Input, CML  
VCC6  
+3.3V Supply for LVDS Inputs, FIFO, Multiplexer, and PECL REFCLK Input  
Loopback Enable, TTL input. Force low to enable system loopback. Internally pulled high  
through 15k.  
47  
4ꢀ  
LOOPEN  
+3.3V Supply for TMPSENS. Connect to ground to disable the temperature-sensing  
circuit.  
VCCTEMP  
Junction Temperature Sensor. Analog output corresponding to the junction temperature  
of the die. Leave open for normal use.  
49  
52  
53  
TMPSENS  
PTPIN  
Reserved for Maxim Use. Connect to ground for normal operation.  
Transmit Equalizer Control Input #2, TTL. Refer to Table 1 for setting transmitter  
precompensation. Internally pulled high.  
EQ2  
Transmit Equalizer Control Input #1, TTL. Refer to Table 1 for setting transmitter  
precompensation. Internally pulled high.  
54  
EQ1  
56, 59, 62, 64, 67, 7±  
VCC4  
+3.3V Supply for CML Outputs  
_______________________________________________________________________________________  
7
Quad 2.5Gbps Cable Transceiver  
Pin Description (continued)  
PIN  
NAME  
FUNCTION  
TX4- to  
TX1-  
57, 60, 65, 68  
Negative Serial Output, CML  
Positive Serial Output, CML  
TX4+ to  
TX1+  
58, 61, 66, 69  
Reset Input, TTL. Connect low for >80ns to reset FIFO and receiver components.  
Internally pulled high through 15k.  
72  
73  
74  
RESET  
TXFIL  
VCC5  
Transmitter Loop Filter Connection. Connect a 0.1µF capacitor between TXFIL and VCC5.  
+3.3V Supply for Transmitter VCO, Analog Transmitter Functions, and External Loop  
Filter Connection  
77  
78  
81  
82  
REFCLK+  
REFCLK-  
TCLK+  
Positive Reference Clock Input, PECL  
Negative Reference Clock Input, PECL  
Positive Clock Input for Transmitter Input Data, LVDS  
Negative Clock Input for Transmitter Input Data, LVDS  
TCLK-  
83, 85, 87, 89, 91, 93,  
95, 97  
TDAT1+ to  
TDAT8+  
Positive Parallel Data Inputs, LVDS  
Negative Parallel Data Inputs, LVDS  
84, 86, 88, 90, 92, 94,  
96, 98  
TDAT1- to  
TDAT8-  
go into a high-impedance state when TRIEN is forced  
Detailed Description  
low. This simplifies system checks by allowing vectors  
to be forced on the LVDS outputs. The LVDS outputs  
also have short-circuit protection in case of shorts to  
VCC or GND.  
The MAX3780 cable transceiver uses four 2:1 muxes  
and four 1:2 demuxes to simplify backplane routing.  
The serial transceiver interface can either be a fiber  
module or up to 3m of low-cost, twisted-pair copper  
cable. This bidirectional interface provides low-voltage  
differential signaling (LVDS) interfaces at the 1.25Gbps  
parallel inputs and outputs. The serial data inputs and  
outputs utilize current-mode logic (CML) structures. An  
integrated PLL recovers the clock from the incoming  
serial data, as well as retimes the received data.  
PLL Clock Multiplier  
The PLL clock multiplier uses the 125MHz reference  
clock to synthesize 1.25GHz and 2.5GHz clocks used to  
synchronize the transmitter functions. The reference clock  
is also used to aid frequency acquisition in the receiver.  
The 125MHz input signal at REFCLK requires a duty  
cycle between 40ꢀ and 60ꢀ. To achieve proper jitter  
performance and BER benchmarks, it is critical to use a  
high-quality, low-jitter reference clock. See the Reference  
Clock Requirements table for more information.  
The serial interface uses both precompensation as well  
as equalization to allow high-speed transmission  
through up to 3m of copper cable while maintaining a  
BER < 10-16. The compensation/equalization circuits  
are optimized for short cables, 0.5m cables, 1m cables,  
or 3m cables. TTL inputs are provided to select the  
amount of precompensation.  
Bit-Interleaved Multiplexer/Demultiplexer  
The MAX3780 uses bit interleaving to multiplex the par-  
allel data and bit deinterleaving to demultiplex the seri-  
al data. After serial transmission, the channel  
assignment of the parallel outputs is random for each  
serial channel. In other words, there is a 50ꢀ chance  
that RDAT1 = TDAT1 and RDAT2 = TDAT2 and a 50ꢀ  
chance that RDAT1 = TDAT2 and RDAT2 = TDAT1.  
Because the MAX3780 does not perform channel  
assignment, other circuitry must handle this task.  
LVDS Inputs and Outputs  
The MAX3780 parallel interface includes eight differen-  
tial data inputs at 1.25Gbps, one half-rate differential  
clock input at 625MHz, eight differential data outputs at  
1.25Gbps, and one half-rate differential clock output at  
625MHz. All parallel inputs and outputs are LVDS com-  
patible to minimize power dissipation, speed transition  
time, and improve noise immunity. The LVDS outputs  
8
_______________________________________________________________________________________  
Quad 2.5Gbps Cable Transceiver  
TXFIL  
REFCLK+  
REFCLK-  
TX_LOCK  
(INTERNAL)  
625MHz DDR  
CLOCK  
REFCLK  
(INTERNAL)  
PLL CLOCK  
MULTIPLIER  
TCLK+  
TCLK-  
MAX3780  
CABLE TRANSCEIVER  
2.5GHz  
1.25GHz  
FIFO  
TDAT1+  
TDAT1-  
D
D
D
D
D
D
D
D
Q
Q
Q
Q
Q
Q
Q
Q
TX1+  
TX1-  
D
D
D
D
Q
Q
Q
Q
PRECOMP  
TDAT2+  
TDAT2-  
FIFO  
FIFO  
FIFO  
FIFO  
FIFO  
FIFO  
FIFO  
TDAT3+  
TDAT3-  
TX2+  
TX2-  
LVDS  
INPUTS  
PRECOMP  
PRECOMP  
PRECOMP  
TDAT4+  
TDAT4-  
CML  
OUTPUTS  
TDAT5+  
TDAT5-  
TX3+  
TX3-  
TDAT6+  
TDAT6-  
TDAT7+  
TDAT7-  
TX4+  
TX4-  
TDAT8+  
TDAT8-  
EQ2  
EQ1  
RESET  
TRIEN  
LOOPEN  
RDAT1+  
RDAT1-  
Q
Q
D
D
0
1
DLL  
PHASE  
Q
Q
Q
Q
D
D
D
D
RX1+  
RX1-  
RECOVERY  
EQ  
EQ  
EQ  
RDAT2+  
RDAT2-  
RDAT3+  
RDAT3-  
Q
Q
D
D
0
1
DLL  
PHASE  
RECOVERY  
RX2+  
RX2-  
RDAT4+  
RDAT4-  
CML  
INPUTS  
RDAT5+  
RDAT5-  
LVDS  
Q
Q
D
D
0
1
OUTPUTS  
DLL  
PHASE  
RECOVERY  
RX3+  
RX3-  
RDAT6+  
RDAT6-  
RDAT7+  
RDAT7-  
Q
Q
D
D
0
1
RX4+  
RX4-  
EQ  
K
RDAT8+  
RDAT8-  
2.5GHz  
RCLK+  
RCLK-  
RXFIL  
DIVIDE  
BY 2  
PLL CLOCK RECOVERY  
REFCLK  
1.25GHz  
TMPSENS  
VCCTEMP  
TX_LOCK  
1
0
RX_LOCK  
LOCK  
1
Figure 3. Functional Diagram  
_______________________________________________________________________________________  
9
Quad 2.5Gbps Cable Transceiver  
ment, and the DLLs only serve as adjustable delay  
lines to allow for different channels to have different  
(static) phase relationships.  
Table 1. Setting the CML Output  
Precompensation  
RECOMMENDED PRECOMPENSATION  
CML Outputs with Precompensation  
The serial outputs of the MAX3780 (TX1TX4) are CML  
compatible. These outputs offer the best combination  
of low power dissipation, performance, and external  
component count. AC-coupling capacitors should  
always be used to provide immunity to common-mode  
voltage mismatches. The CML output structure is  
shown in Figure 4. For more information, refer to the  
applications note HFAN 01.0 Introduction to LVDS,  
PECL, and CML. Table 1 gives the amount of compen-  
sation for different EQ1 and EQ2 settings.  
EQ1  
EQ2  
CHANNEL  
VALUE  
Extended Range  
3m Cable  
30ꢀ  
20ꢀ  
10ꢀ  
0
0
1
0
1
0
1m Cable  
0.5m Cable or  
Fiber Module  
Off  
1
1
VCC  
The CML data outputs have adjustable precompensa-  
tion to compensate for cable and PC board trace loss-  
es. The cable and PC board traces have skin-effect  
and dielectric losses that attenuate high frequencies  
more than low frequencies. The precompensation FIR  
filter does the inverse. It attenuates low frequencies  
and boosts high frequencies. If precompensation is  
chosen to match the channel attenuation, the data at  
the end of the cable will be equalized.  
50Ω  
50Ω  
TX_+  
TX_-  
CML Inputs with Equalization  
The CML input structure, shown in Figure 5, provides  
low power dissipation and excellent performance. The  
CML inputs have integrated 50termination resistors,  
reducing the external component count required for  
interfacing.  
The CML inputs of the MAX3780 (RX1RX4) provide  
equalization to further compensate for cable losses.  
The equalization circuit will typically add about 2dB of  
boost at 2GHz.  
GND  
Figure 4. Simplified CML Output Structure  
Lock Detection  
The LOCK output indicates the state of both the trans-  
mitter and receiver PLLs. For lock detect to be asserted  
high, both the transmitter and receiver internal-lock  
indicators must be high for 394µs. The internal lock sig-  
nals go high once frequency lock has been achieved.  
For LOCK to be asserted low, either the transmitter or  
receiver internal-lock indicators must be low for a mini-  
mum of 1053µs. LOCK is also asserted low when  
RESET is forced low. LOCK will stay low for a minimum  
of 394µs. For the lock detector to function properly,  
there must be data transitions at the RX4 input and a  
valid reference clock input. Note: The LOCK output is  
not an accurate indicator of signal presence at the  
receiver inputs. With no data input, the LOCK output  
can be high, low, or toggling.  
PLL Clock Recovery  
The phase-locked loop recovers a synchronous clock  
signal from the incoming serial data on RX4. This  
recovered clock is then used to retime all four channels  
of incoming serial data before demultiplexing. Phase  
alignment on channels RX1, RX2, and RX3 is achieved  
by using delay-locked loops. The typical loop band-  
width of the PLL clock recovery circuit is 1.5MHz.  
Delay-Locked Loop (DLL) Phase Recovery  
The delay-locked loops in the RX1, RX2, and RX3  
receive path are used to phase align the incoming data  
to the clock generated by the PLL. Because all serial  
channels originate from the same source and travel  
down the same cable, it is assumed that the low-fre-  
quency jitter on channel 4 is common to all channels.  
This allows the PLL to maintain frequency/phase align-  
10 ______________________________________________________________________________________  
Quad 2.5Gbps Cable Transceiver  
Temperature Sensor  
To aid in evaluation of thermal performance, a tempera-  
ture sensor is incorporated into the MAX3780. The tem-  
VCC  
perature sensor may be powered on or off regardless  
of the state of the rest of the chip. The VCCTEMP pin  
2kΩ  
provides supply voltage for the temperature sensor cir-  
cuit. The TMPSENS output is designed to output a volt-  
age proportional to the die junction temperature (1mV  
per Kelvin). The temperature of the die can be estimat-  
ed as:  
MAX3780  
50Ω  
50Ω  
RX_+  
RX_-  
1°C  
T(°C) V  
(mV)×  
273°C  
TEMPSENS  
mV  
Applications Information  
BER Calculation  
Digital transmission systems will always, given enough  
time, have errors. This is due to the random nature of  
both voltage noise and timing noise, or jitter. In todays  
high performance digital transmission systems, we  
often try to measure bit error ratios (BERs) of fewer than  
1 error every 10,000,000,000 bits (BER<10-10).  
Measuring such low error rates can prove to be prob-  
lematic, since even at high data rates, the testing time  
required to obtain statistically significant results  
becomes impractical. (For more information, refer to  
HFTA-05.0 Statistical Confidence Levels for Calculating  
Error Probability.)  
GND  
Figure 5. CML Input Structure  
VCC  
The MAX3780 serial interface operates at 2.5Gbps and  
is designed to operate with a BER better than 10-16 (1  
error every 10,000,000,000,000,000 bits). This will give,  
on average, one error every 46 days on each 2.5Gbps  
channel. It is practically impossible to directly test such  
a low BER. For this reason, we turn to mathematics to  
ensure that this incredible BER is met.  
R
=
LOAD  
10kΩ  
MAX3780  
100Ω  
LOCK  
The thermal noise in the MAX3780 serial channel is low  
(<1mV  
in the CML receiver). The dominant voltage  
RMS  
noise in the serial channel is due to crosstalk. The  
remaining impairments are various types of timing jitter  
due to clock nonidealities and data-dependant jitter. In  
this section, all calculations will be done in the time  
domain (similar to the draft technical report by ANSI  
T11.2, Project 1230, Fibre Channel—Methodologies for  
Jitter Specification) where timing jitter is applied direct-  
ly and voltage noise is converted into an equivalent tim-  
ing jitter. The equation relating timing jitter to error rate  
is below:  
Figure 6. LOCK Output Structure  
RESET Input  
Approximately 10ms or longer after power-up, the  
RESET input should be asserted low. RESET must be  
held low for a minimum of four reference clock cycles  
for it to be properly asserted. RESET is used to reset  
the lock state, FIFO clock logic, and delay-lock loops.  
2
1UI= ΣDJ  
+ α × ΣRJ  
RMS  
pp  
______________________________________________________________________________________ 11  
Quad 2.5Gbps Cable Transceiver  
Table 2. Summary of Jitter Parameters Contributing to the BER Calculation  
DETERMINISTIC COMPONENTS  
RANDOM COMPONENTS  
TYPICAL WORST-CASE  
(mUI (mUI  
PARAMETER  
TYPICAL  
(mUIp-p)  
WORST-CASE  
(mUIp-p)  
)
)
RMS  
RMS  
Reference ClockRandom  
0.19  
0.38  
Reference ClockDeterministic  
TransmitterRandom  
5
10  
3.25  
10  
TransmitterOscillator Pulling  
TransmitterSupply Noise  
TransmitterOutput Stage  
ChannelCable Losses  
8.75  
2.5  
23.75  
7.5  
37.5  
50  
62.5  
112.5  
56  
ChannelCrosstalk  
28  
ChannelMismatched Load  
ReceiverVCO Phase Noise  
ReceiverInput-Referred Noise  
ReceiverSampling Offset  
ReceiverOscillator Pulling  
ReceiverSupply Noise  
12.5  
25  
3.75  
1.25  
10  
2.5  
187.5  
7.5  
387.5  
15  
6.25  
345.5  
18.75  
718.5  
TOTALS =  
5.12  
14.37  
TYPICAL  
127.8  
~0  
WORST-CASE  
19.6  
ALPHA =  
BER =  
-23  
5.7 10  
Deterministic jitter and receiver sampling offset effec-  
tively reduce the amount of time that the receiver can  
sample without error. Errors occur at a rate determined  
by α:  
6-sigma margin. Many of the worst-case components  
are uncorrelated variables that are taken to their indi-  
vidual 6-sigma limits.  
In summary, the predicted worst-case BER = 10-20. A  
typical channel will operate error free.  
1− ΣDJ  
pp  
α =  
All transmitter and channel jitter components are com-  
pared to the jitter tolerance of the receiver by translat-  
ing the components to equivalent phase error in the  
receiver. Low-frequency jitter components are tracked  
by the receive PLL, and therefore contribute little to the  
phase error. High-frequency jitter components (beyond  
the loop bandwidth of the receiver) are not tracked by  
the receiver PLL and therefore directly translate to  
phase error. The phase error transfer function is essen-  
tially equivalent to the inverse of the jitter tolerance ver-  
sus frequency with the high-frequency portion  
normalized to unity.  
2
ΣRJ  
RMS  
An α >16.4 corresponds to a BER < 10-16. Refer to  
Maxim applications note HFAN-4.0.2 Converting  
Between RMS and Peak-to-Peak Jitter at a Specified  
BER.  
For a discussion of deterministic jitter and random jitter  
and the characteristics of each, refer to Maxim applica-  
tions note HFAN-4.0.3 Jitter in Digital Communication  
Systems, Part 1.  
Table 2 shows the deterministic and random compo-  
nents used in the BER calculation for the MAX3780.  
Typical and worst-case numbers are presented. The  
worst-case estimate represents a BER with greater than  
12 ______________________________________________________________________________________  
Quad 2.5Gbps Cable Transceiver  
Reference Clock—Random  
A maximum random jitter of 15ps for frequencies  
less than 5kHz is stated as a requirement for the refer-  
ence clock in the Reference Clock Requirements sec-  
tion. Translating this to the phase error of the receiver  
3) Output Stage  
RMS  
Finite bandwidth and pulse-width distortion in the  
serial transmitter can cause deterministic jitter in the  
serial data stream. Characterization and simulation  
results tell us the deterministic jitter is typically  
gives 75fs  
(0.19mUI  
) typical and 150fs  
RMS RMS  
RMS  
) worst-case.  
15ps  
(37.5mUIp-p) and 25ps  
(62.5mUIp-p)  
p-p  
p-p  
worst-case.  
(0.38mUI  
RMS  
Reference Clock—Deterministic  
A maximum deterministic jitter of 20ps for frequen-  
Channel—Deterministic  
p-p  
1) Cable Losses  
cies greater than 5kHz is stated as a requirement for the  
reference clock in the Reference Clock Requirements  
section. Combining the low-pass jitter transfer of the  
transmitter and the high-pass phase error transfer of the  
receiver results in a bandpass transfer function. For  
design margin, it is assumed that this deterministic jitter  
is within the bandpass frequency range. The typical  
The frequency-dependent skin-effect and dielectric  
losses in the cable (and PC board traces) will cause  
data-dependent jitter (also known as intersymbol  
interference). Adjustable transmit precompensation  
and fixed receiver boost is used to reduce the  
cable-induced jitter. However, there will always be  
some uncompensated jitter due to the cable and PC  
board trace losses. Characterization and simulation  
results tell us the deterministic jitter is typically  
deterministic component is 2ps  
(5mUIp-p) and the  
p-p  
(10mUIp-p).  
worst-case entry is 4ps  
p-p  
20ps  
(50mUIp-p) and 45ps  
(112.5mUIp-p)  
p-p  
Transmitter—Random  
p-p  
worst-case.  
This is the random jitter that results from the transmitter  
VCO phase noise and is an AC parameter guaranteed  
in the AC Electrical Characteristics table. Typical mea-  
2) Crosstalk  
The MAX3780 channel requirements allow for  
crosstalk of up to 5ꢀ to be present at the RX inputs.  
This is a peak-to-peak voltage measurement which  
refers to 5ꢀ of the transmitter amplitude.  
Characterization and simulation results tell us the  
deterministic jitter due to crosstalk is typically  
sured numbers are 1.3ps  
(3.3mUI  
RMS  
) and the  
RMS  
RMS  
worst-case specification is 4.0ps  
(10mUI  
).  
RMS  
Transmitter—Deterministic  
1) Oscillator Pulling  
The transmitter and receiver integrated LC oscilla-  
tors when running at small frequency differences will  
beat with each other at a rate equivalent to the fre-  
quency difference between the oscillators. Typical  
Operating Characteristic plot RX to TX VCO  
PULLING shows the typical transmitter jitter versus  
frequency difference. When referred to the phase  
error transfer, the deterministic jitter is typically  
11.2ps  
(28mUIp-p) and 22.4ps  
(56mUIp-p)  
p-p  
p-p  
worst-case.  
3) Mismatched Load Jitter  
Incorrect impedances in PC board traces, connec-  
tors, cables, and terminations can cause reflections  
that can, in turn, cause deterministic jitter. These  
effects are more pronounced on short cables (less  
attenuation of the reflection) where timing margins  
are highest. While measurements already account  
for mistermination effects, we have allocated an  
additional fixed budget for jitter induced by reflec-  
tions. Characterization and simulation results tell us  
the deterministic jitter due to load mismatch is typi-  
3.5ps  
(8.75mUIp-p) and 9.5ps  
(23.75mUIp-p)  
p-p  
p-p  
worst-case.  
2) Supply Noise  
Noise on the power supply will modulate the transmit  
PLL output according to the typical transfer curve  
shown in the Typical Operating Characteristic plot  
TRANSMITTER POWER-SUPPLY REJECTION.  
Combining this transfer function with the phase error  
transfer of the receiver results in a band-pass char-  
acteristic. At the peak of this band pass, the typical  
transfer is 100fs/mV and the worst-case transfer is  
300fs/mV. Making the worst-case assumption that all  
the supply noise is at this peak with a value of 10mV  
cally 5ps  
(12.5mUIp-p) and 10ps  
(25mUIp-p)  
p-p  
worst-case.  
p-p  
Receiver—Random  
1) VCO Phase Noise  
This is the random jitter that results from the receiver  
VCO phase noise and is an AC parameter guaran-  
teed in the AC Electrical Characteristics table. Typical  
results in typically 1ps  
(2.5mUIp-p) and worst-  
p-p  
measured numbers are 1.5ps  
(3.75mUI  
RMS  
) and  
RMS  
RMS  
RMS  
(10mUI  
case 3ps  
(7.5mUIp-p).  
p-p  
the worst-case specification is 4ps  
).  
______________________________________________________________________________________ 13  
Quad 2.5Gbps Cable Transceiver  
2) Input-Referred Noise  
terminate these outputs to ground. The parallel data  
LVDS inputs (TCLK+, TCLK-, TDAT_+, TDAT_-) are  
internally terminated with 100differential input resis-  
tance and therefore do not require external termination.  
All electronic circuits generate random noise. The  
input-referred noise voltage of the CML RX inputs is  
< 0.5mV  
. This will contribute <1ps  
jitter. In  
RMS  
RMS  
the BER calculation, it is assumed the jitter is typical-  
ly 0.5ps (1.25mUI and 1ps  
The LVDS inputs must be biased for proper operation.  
DC-coupling LVDS outputs and inputs together pro-  
vides sufficient biasing. When interfacing to laboratory  
test equipment, AC-coupling cannot be used. A signal  
source with DC offset must be used.  
)
RMS  
) worst-case.  
RMS  
RMS  
(2.5mUI  
RMS  
Receiver—Deterministic  
1) Sampling Offset  
Layout Techniques  
For best performance, use good high-frequency layout  
techniques. Filter voltage supplies, keep ground connec-  
tions short, and use multiple vias where possible. Use  
controlled-impedance 50transmission lines to interface  
with the MAX3780 high-speed inputs and outputs.  
The peak-to-peak sampling offset in the receiver is  
equal to 1UI minus the jitter tolerance minus the ran-  
dom jitter of the receiver. Removal of the random jit-  
ter is necessary since receiver VCO Phase Noise in  
Table 2 accounts for this. For simplicity, the random  
jitter portion will be assumed to be the typical mea-  
sured value of 25ps  
(62.5mUIp-p). Using the  
Place power-supply decoupling as close to V  
as  
CC  
p-p  
numbers from the AC parameter electrical table, the  
typical sampling offset is calculated to be  
187.5mUIp-p and the worst-case is 387.5mUIp-p.  
possible. To reduce feedthrough, take care to isolate  
the input signals from the output signals.  
Exposed-Pad (EP) Package  
The exposed-pad 100-pin TQFP-EP incorporates fea-  
tures that provide a very low thermal resistance path for  
heat removal from the IC. The pad is electrical ground  
on the MAX3780 and must be soldered to the circuit  
board for proper thermal and electrical performance.  
2) Oscillator Pulling  
The transmitter and receiver integrated LC oscilla-  
tors, when running at small frequency differences,  
will beat with each other at a rate equivalent to the  
frequency difference between the oscillators.  
Typical Operating Characteristic plot TX to RX VCO  
PULLING shows the typical receiver jitter versus fre-  
quency difference. Typically the receiver oscillator  
pulling jitter is 3ps  
(7.5mUIp-p) and worst-case is  
p-p  
6ps  
(15.0mUIp-p).  
p-p  
3) Supply Noise  
Noise on the power supply will modulate the receive  
PLL sampling point according to the typical transfer  
curve shown in Typical Operating Characteristic plot  
RECEIVER POWER-SUPPLY REJECTION. Using a  
typical transfer of 250fs/mV and a worst-case trans-  
fer of 750fs/mV with 10mV of supply noise results in  
2.5ps  
(6.25mUIp-p) and 7.5ps  
(18.75mUIp-p)  
p-p  
p-p  
respectively.  
Low-Voltage Differential Signal (LVDS)  
Inputs/Outputs  
The MAX3780 has LVDS inputs and outputs for inter-  
facing with high-speed digital circuitry. All LVDS inputs  
and outputs are compatible with the IEEE-1596.3 LVDS  
specification. This technology uses 250mV to 400mV  
differential low-voltage amplitudes to achieve fast tran-  
sition times, minimize power dissipation, and improve  
noise immunity. For proper operation, the parallel clock  
and data LVDS outputs (RCLK+, RCLK-, RDAT_+,  
RDAT_-) require 100differential DC terminations  
between the inverting and noninverting outputs. Do not  
14 ______________________________________________________________________________________  
Quad 2.5Gbps Cable Transceiver  
Channel Requirements  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
100  
5.0  
MAX  
UNITS  
Impedance  
Differential  
f = 1GHz, 3m channel  
4.0  
1.5  
1.0  
6.0  
3.2  
2.6  
Through Loss at 1GHz  
(S12, S21) f = 1GHz, 1m channel  
f = 1GHz, 0.5m channel  
(S12, S21)  
2.4  
dB  
dB  
1.7  
Wideband Through Loss  
Return Loss at 1GHz  
Wideband Return Loss  
See Figures 79  
-12  
(S11, S22)  
(S11, S22)  
See Figure 10  
ꢀ of signal at aggressor. Near-end and far-end  
aggressors driven with 100ps (20ꢀ to 80ꢀ)  
Channel Crosstalk  
5
edges. End of channel terminated with 100.  
Reference Clock Requirements  
PARAMETER  
REFCLK Frequency  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
MHz  
ppm  
%
125  
REFCLK Frequency Tolerance  
REFCLK Duty Cycle  
-100  
40  
+100  
60  
240  
15  
ps  
p-p  
f < 5kHz (jitter assumed Gaussian)  
ps  
RMS  
REFCLK Jitter  
f > 5kHz (jitter is assumed deterministic,  
caused by power-supply noise and buffer  
jitter)  
20  
ps  
p-p  
Parallel Fiber Module Requirements  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
120  
UNITS  
Differential Input Impedance  
Transmitter Input Sensitivity  
R
80  
100  
IN  
300  
mVp-p  
Deterministic and random jitter, peak-to-  
Total Jitter Generation  
80  
ps  
p-p  
peak, (DJ + 16.4 × RJ  
)
RMS  
Receiver Data Output Amplitude  
Differential Output Impedance  
Channel-to-Channel Crosstalk  
Differential  
300  
80  
800  
120  
5
mVp-p  
R
100  
OUT  
______________________________________________________________________________________ 15  
Quad 2.5Gbps Cable Transceiver  
0.5m CHANNEL LOSS  
1m CHANNEL LOSS  
0
-1.00  
-2.00  
-3.00  
-4.00  
-5.00  
-6.00  
-7.00  
-8.00  
-9.00  
-10.00  
0
-1.00  
-2.00  
UPPER MASK  
NOMINAL  
UPPER MASK  
-3.00  
-4.00  
NOMINAL  
-5.00  
-6.00  
-7.00  
LOWER MASK  
LOWER MASK  
0
500 1000 1500 2000 2500 3000 3500 4000  
FREQUENCY (MHz)  
0
500 1000 1500 2000 2500 3000 3500 4000  
FREQUENCY (MHz)  
Figure 7. 0.5m Channel Loss Mask  
Figure 8. 1.0m Channel Loss Mask  
3m CHANNEL LOSS  
RETURN LOSS MASK  
0
-2.00  
0
-1  
-2  
-3  
-4  
-5  
-6  
-7  
-8  
-9  
-10  
-11  
-12  
-13  
-14  
-4.00  
-6.00  
UPPER MASK  
NOMINAL  
-8.00  
-10.00  
-12.00  
-14.00  
-16.00  
-18.00  
LOWER MASK  
0
500 1000 1500 2000 2500 3000 3500 4000  
FREQUENCY (MHz)  
0
500 1000 1500 2000 2500 3000 3500 4000  
FREQUENCY (MHz)  
Figure 9. 3.0m Channel Loss Mask  
Figure 10. Channel Input Return Loss Mask  
16 ______________________________________________________________________________________  
Quad 2.5Gbps Cable Transceiver  
Pin Configuration  
TOP VIEW  
1
2
3
4
5
6
7
8
9
75  
74  
73  
72  
71  
70  
69  
GND  
GND  
VCC1  
VCC5  
TXFIL  
RESET  
GND  
RDAT1+  
RDAT1-  
RDAT2+  
RDAT2-  
RDAT3+  
RDAT3-  
RDAT4+  
VCC4  
TX1+  
TX1-  
68  
67  
66  
65  
64  
63  
62  
VCC4  
TX2+  
TX2-  
10  
11  
RDAT4-  
VCC1  
MAX3780  
CABLE TRANSCEIVER  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
VCC4  
GND  
GND  
RDAT5+  
RDAT5-  
RDAT6+  
RDAT6-  
RDAT7+  
RDAT7-  
RDAT8+  
RDAT8-  
RCLK+  
RCLK-  
TRIEN  
VCC4  
61 TX3+  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
TX3-  
VCC4  
TX4+  
TX4-  
VCC4  
GND  
EQ1  
EQ2  
PTPIN  
GND  
VCC1  
GND  
TQFP - EP*  
*EXPOSED PAD MUST BE CONNECTED TO GROUND  
Chip Information  
TRANSISTOR COUNT: 15,270  
PROCESS: Bipolar  
______________________________________________________________________________________ 17  
Quad 2.5Gbps Cable Transceiver  
Package Information  
18 ______________________________________________________________________________________  
Quad 2.5Gbps Cable Transceiver  
Package Information (continued)  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ____________________ 19  
© 2001 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

相关型号:

MAX3780CCQ

Line Transceiver, 4 Func, 4 Driver, 4 Rcvr, BIPolar, PQFP100, 14 X 14 MM, 1 MM HEIGHT, EXPOSED PAD, TQFP-100
MAXIM

MAX3780CCQ-T

Line Transceiver, 4 Func, 4 Driver, 4 Rcvr, BIPolar, PQFP100, 14 X 14 MM, 1 MM HEIGHT, EXPOSED PAD, TQFP-100
MAXIM

MAX3780EVKIT

Evaluation Kit for the MAX3780
MAXIM

MAX3781

MAX3781 Evaluation Kit
MAXIM

MAX3781EVKIT

MAX3781 Evaluation Kit
MAXIM

MAX3781UCM

Interface Circuit, BIPolar, PQFP48, 7 X 7 MM, 1 MM HEIGHT, EXPOSED PAD, TQFP-48
MAXIM

MAX3782

Dual 1.25Gbps Transceiver
MAXIM

MAX3782EVKIT

Evaluation Kit for the MAX3782
MAXIM

MAX3782UGK

Interface Circuit, Bipolar, 10 X 10 MM, 0.90 MM HEIGHT, QFN-68
MAXIM

MAX3782UGK-T

Interface Circuit, Bipolar, 10 X 10 MM, 0.90 MM HEIGHT, QFN-68
MAXIM

MAX3783

2.7Gbps Dual Mux/Buffer with Loopback
MAXIM

MAX3783EVKIT

Evaluation Kit for the MAX3783
MAXIM