MAX3845UCQ+D [MAXIM]

Consumer Circuit, 14 X 14 MM, 1.00 MM HEIGHT, LEAD FREE, MS-026, TQFP-100;
MAX3845UCQ+D
型号: MAX3845UCQ+D
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Consumer Circuit, 14 X 14 MM, 1.00 MM HEIGHT, LEAD FREE, MS-026, TQFP-100

商用集成电路
文件: 总19页 (文件大小:561K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-0798; Rev 0; 4/07  
DVI/HDMI 2:4 TMDS Fanout Switch and  
Cable Driver  
MAX3845  
General Description  
Features  
®
The MAX3845 is a TMDS 2-to-4 fanout switch and  
cable driver for multimonitor distribution of DVIor  
HDMIsignaling up to 1.65Gbps. Both inputs and out-  
puts are standard TMDS signaling as per DVI and HDMI  
standards. Because TMDS links are “point-to-point,”  
buffering is required for fanout applications.  
o Two DVI/HDMI TMDS-Compatible Inputs and Four  
DVI/HDMI TMDS-Compatible Outputs  
o Save Power by Turning Off Unused Outputs  
o Each Output Independently Selects Input 1 or  
Input 2  
Four DVI/HDMI TMDS outputs are provided for fanout  
distribution. Each TMDS output can be independently  
sourced from either input or can be turned off. Each  
TMDS input or output is composed of four differential  
channels that can be arbitrarily assigned to the three  
data signals and the 1/10th-rate clock. The data rate  
depends on resolution, but it can vary from 250Mbps  
(VGA) to 1.65Gbps (UXGA or 1080p/60).  
o Three Preemphasis Settings Extend Cable Reach  
Up to 7m  
o Operation Up to 1.65Gbps  
o 14mm x 14mm, 100-Pin TQFP Package with  
Exposed Paddle for Heat Sinking  
o 3.3V Power Supply  
Typical applications include multiroom display of the  
same video source or industrial/commercial signage  
applications such as airport monitors or trading room  
floor displays. The MAX3845 includes selectable output  
preemphasis that extends output cable reach up to an  
additional 7m.  
o TMDS Data (x3) and Clock (x1) Can Be Arbitrarily  
Assigned to the Four Identical Switched Paths (A,  
B, C, and D)  
For DDC switching, use the companion MAX4814E 2:4  
low-resistance CMOS crosspoint switch. DDC switching  
is not required for applications that connect DDC to one  
reference monitor only.  
Ordering Information  
PKG  
PART  
TEMP RANGE PIN-PACKAGE  
CODE  
The MAX3845 can be configured to create a 2 x 8 or  
4 x 4 switch (see the Typical Operating Circuit diagrams).  
MAX3845UCQ+ -10°C to +85°C 100 TQFP-EP  
C100E-3  
+Denotes a lead-free package.  
EP = Exposed pad.  
The MAX3845 is available in a 14mm × 14mm, 100-pin  
TQFP-EP package and operates over the -10°C to  
+85°C temperature range.  
Applications  
Typical Operating Circuit  
Digital Signage and Industrial Display  
2:4 FANOUT/SWITCH APPLICATION  
PC Monitor Distribution  
CONTROL  
SIGNALS  
IN_SEL[1:4]  
Home A/V Receivers  
PREEMPH[1:4]  
OUTPUT TO DISPLAY 1  
OUTPUT TO DISPLAY 2  
OUTPUT TO DISPLAY 3  
OUTPUT TO DISPLAY 4  
DVI/HDMI Distribution Amplifiers  
DVI/HDMI Crosspoint Switches  
VIDEO SOURCE 1  
VIDEO SOURCE 2  
MAX3845  
2:4 DVI/HDMI TMDS  
FANOUT SWITCH AND  
CABLE DRIVER  
Pin Configuration appears at end of data sheet.  
HOTPLUG[1:4]  
BUFFER  
TMDS is a registered trademark of Silicon Image, Inc.  
DVI is a trademark of Digital Display Working Group.  
HDMI is a trademark of HDMI Licensing, LLC.  
2:4 CMOS  
SWITCH x5  
DDC DATA, DDC CLK,  
HOTPLUG, 5V, GND, (CEC)  
Typical Operating Circuits continued at end of data sheet.  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642,  
or visit Maxim’s website at www.maxim-ic.com.  
DVI/HDMI 2:4 TMDS Fanout Switch and  
Cable Driver  
ABSOLUTE MAXIMUM RATINGS  
Dupply Voltage Range (V ) ................................-0.3V to +5.5V  
Voltage Between Any Output CꢁL I/O  
CC  
Voltage Range at HOTPLUGx Pins ......................-0.3V to +6.0V  
Voltage Range at LVTTL, LVCꢁOD, I/O Pins .......-0.3V to +5.5V  
Voltage Range at CꢁL Output Pins ......................-0.3V to +5.5V  
Voltage Range at CꢁL Input Pins  
(CꢁL short to GNM duration < 1s)....................-0.3V to +4.0V  
Voltage Between Any Input CꢁL I/O  
Complementary Pair....................................................... 3.6V  
Continuous Power Missipation (T = +70°C)  
A
100-Pin TQFP-EP (derate 45.5mW/°C  
above +70°C) ............................................................3636mW  
Operating Junction Temperature .....................-55°C to +150°C  
Dtorage Temperature Range ............................-55°C to +150°C  
Mie Attach Temperature ..................................................+400°C  
Lead Temperature (soldering, 10s) .................................+300°C  
Complementary Pair ...................................................... 3.3V  
Voltage Range at LODꢁUTE_EN ..........................-0.3V to +5.5V  
MAX3845  
Dtresses beyond those listed under “Absolute ꢁaximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(V  
= 3.0V to +3.6V, T = -10°C to +85°C. Typical values are at V  
= +3.3V, external terminations = 50Ω 1ꢀ, TꢁMD rate =  
CC  
CC  
A
250ꢁbps to 1.65Gbps, T = +25°C, unless otherwise noted.) (Note 1)  
A
PARAMETER  
Power-Supply Current  
Supply-Noise Tolerance  
SYMBOL  
CONDITIONS  
MIN  
TYP  
454  
50  
MAX  
UNITS  
PREEMPH[1:4] = high, OUT_LEVEL = high,  
current into V pins, 1200mV  
CC  
I
626  
mA  
CC  
= V  
IN  
P-P  
DC to 500kHz  
mV  
P-P  
SKIN-EFFECT EQUALIZER PEAKING  
Fixed Rx Equalizer  
Compensation  
Gain at 825MHz  
1
dB  
PREEMPHx pin = low  
PREEMPHx pin = open  
PREEMPHx pin = high  
0
3
6
Settable Tx Preemphasis  
JITTER PERFORMANCE  
0dB cable loss, no  
preemphasis  
0.04  
0.05  
0.07  
0.07  
0.08  
0.12  
0.12  
0.12  
0.2  
200back  
3dB cable loss, +3dB  
preemphasis  
termination  
Residual Deterministic Jitter  
(Measured at end of cable  
having ideal skin-effect loss  
and connectors, e.g., Gore Twin  
Coax, Amphenol Skewclear  
Twinax, with SMA connectors)  
(Note 2)  
6dB cable loss, +6dB  
preemphasis  
UI  
0dB cable loss, no  
preemphasis  
No back  
3dB cable loss, +3dB  
preemphasis  
0.2  
termination  
6dB cable loss, +6dB  
preemphasis  
0.10  
1.5  
0.2  
2
Residual Random Jitter (Note 3)  
Measured with source T /T = 250ps  
ps  
RMS  
r
f
CML INPUTS (SOURCE SIDE)  
Differential-Input Voltage Swing  
Common-Mode Input Voltage  
Input Voltage When Disconnected  
V
At cable input  
400  
2000  
mV  
P-P  
ID  
V
CM  
V
- 1000  
V
CC  
CC  
mV  
V
- 10  
V
+ 10  
CC  
CC  
2
_______________________________________________________________________________________  
DVI/HDMI 2:4 TMDS Fanout Switch and  
Cable Driver  
MAX3845  
ELECTRICAL CHARACTERISTICS (continued)  
CC  
(V  
= 3.0V to +3.6V, T = -10°C to +85°C. Typical values are at V  
250ꢁbps to 1.65Gbps, T = +25°C, unless otherwise noted.) (Note 1)  
= +3.3V, external terminations = 50Ω 1ꢀ, TꢁMD rate =  
CC  
A
A
PARAMETER  
Input Resistance  
SYMBOL  
CONDITIONS  
MIN  
TYP  
50  
MAX  
UNITS  
R
Single-ended  
45  
55  
IN  
Input LOS/Mute Threshold  
Differential peak-peak  
Deassert mute  
150  
1.2  
0.6  
19  
mV  
Input LOS/Mute Response Time  
μs  
Assert mute  
Input Return Loss  
Differential, 1.6GHz  
dB  
CML OUTPUTS (CABLE SIDE)  
No preemphasis, no back termination,  
OUT_LEVEL = low  
900  
825  
1050  
925  
1200  
1050  
Differential-Output Voltage Swing  
V
V
mV  
P-P  
OD  
No preemphasis, 200back termination,  
OUT_LEVEL = high  
Output-Voltage High  
Single-ended, no back termination  
V
V
- 10  
V
V
+ 10  
OH  
CC  
CC  
CC  
CC  
mV  
Output Voltage During Power-  
Down  
Single-ended, PWRDWN_x = low or  
V
- 10  
+ 10  
OFF  
V
CC  
= 0V  
Rise/Fall Time  
Intrapair Skew  
20% to 80% (T = 0°C to +85°C)  
75  
90  
12  
140  
A
40  
ps  
V
Worst case among A, B, C, and D of an  
output  
Interpair Skew  
35  
60  
CONTROL INTERFACE  
LVTTL Input High Voltage  
V
2.0  
IH  
All except IN_SELx pins  
IN_SELx pins  
1.0  
0.8  
100  
LVTTL Input Low Voltage  
LVTTL Input High Current  
V
IL  
V
< V < V  
IN  
IH(MIN)  
IH(MAX)  
All except  
OUT_LEVEL pin  
μA  
V
150  
LVTTL Input Low Current  
V
< V < V  
IN  
IL(MIN)  
IL(MAX)  
OUT_LEVEL pin  
500  
5.5  
1.5  
HOTPLUGx Input High Voltage  
HOTPLUGx Input Low Voltage  
Typical input 30kto GND  
V
CC  
- 0.2  
Note 1: AC specifications are guaranteed by design and characterization.  
10  
10  
Note 2: Test pattern is a 2 - 1 PRBD + 20 ones + 2 - 1 PRBD (inverted) + 20 zeros.  
Note 3: Test pattern is a 1111 0000 pattern at 1.65Gbps.  
_______________________________________________________________________________________  
3
DVI/HDMI 2:4 TMDS Fanout Switch and  
Cable Driver  
Typical Operating Characteristics  
10  
10  
(Typical values are at V  
otherwise noted.)  
= +3.3V, T = +25°C, data pattern = 2 - 1 PRBD + 20 ones + 2 - 1 PRBD (inverted) + 20 zeros, unless  
A
CC  
OUTPUT EYE DIAGRAM AT 1.65Gbps  
SUPPLY CURRENT  
vs. AMBIENT TEMPERATURE  
SUPPLY CURRENT  
vs. AMBIENT TEMPERATURE  
SHORT LOW-LOSS SMA CABLE  
MAX3845 toc03  
500  
480  
460  
440  
420  
400  
380  
360  
340  
500  
480  
460  
440  
420  
400  
380  
360  
340  
0dB PREEMPHASIS  
200Ω BACK TERMINATION  
OUT_LEVEL = LOW,  
OUT_LEVEL = HIGH,  
ALL INPUTS/OUTPUTS ACTIVE,  
PREEMPHASIS SAME ON ALL  
OUTPUT CHANNELS  
ALL INPUTS/OUTPUTS ACTIVE,  
PREEMPHASIS SAME ON ALL  
OUTPUT CHANNELS  
MAX3845  
6dB PREEMPHASIS  
3dB PREEMPHASIS  
0dB PREEMPHASIS  
6dB PREEMPHASIS  
3dB PREEMPHASIS  
0dB PREEMPHASIS  
-10  
5
20  
35  
50  
65  
80  
-10  
5
20  
35  
50  
65  
80  
100ps/div  
AMBIENT TEMPERATURE (°C)  
AMBIENT TEMPERATURE (°C)  
OUTPUT EYE DIAGRAM AT 2.25Gbps  
OUTPUT EYE DIAGRAM AT 1.65Gbps  
OUTPUT EYE DIAGRAM AT 2.25Gbps  
SHORT LOW-LOSS SMA CABLE  
6dB LOSS, 24AWG, 25ft TWIN-AX CABLE  
6dB LOSS, 24AWG, 25ft TWIN-AX CABLE  
MAX3845 toc04  
MAX3845 toc05  
MAX3845 toc06  
0dB PREEMPHASIS  
6dB PREEMPHASIS  
6dB PREEMPHASIS  
200Ω BACK TERMINATION  
200Ω BACK TERMINATION  
200Ω BACK TERMINATION  
80ps/div  
100ps/div  
80ps/div  
OUTPUT EYE DIAGRAM AT 1.65Gbps  
JITTER vs. INPUT-SIDE CABLE LOSS  
AT 825 MHz  
JITTER vs. OUTPUT-SIDE CABLE LOSS  
AT 825 MHz  
THROUGH 2m DVI TO HDMI CABLE  
MAX3845 toc07  
160  
140  
120  
100  
80  
120  
100  
80  
60  
40  
20  
0
6dB PREEMPHASIS  
200Ω BACK TERMINATION  
DATA RATE = 1.65Gbps  
200Ω BACK TERMINATION  
DATA RATE = 1.65Gbps  
200Ω BACK TERMINATION  
3dB PREEMPHASIS  
0dB PREEMPHASIS  
60  
40  
6dB PREEMPHASIS  
20  
0
0
2
4
6
8
0
2
4
6
8
100ps/div  
CABLE LOSS (dB)  
CABLE LOSS (dB)  
4
_______________________________________________________________________________________  
DVI/HDMI 2:4 TMDS Fanout Switch and  
Cable Driver  
MAX3845  
Typical Operating Characteristics (continued)  
10  
10  
(Typical values are at V  
otherwise noted.)  
= +3.3V, T = +25°C, data pattern = 2 - 1 PRBD + 20 ones + 2 - 1 PRBD (inverted) + 20 zeros, unless  
A
CC  
DIFFERENTIAL-INPUT RETURN LOSS  
vs. FREQUENCY  
TEMP VOLTAGE  
vs. JUNCTION TEMPERATURE  
POWER DISSIPATION  
vs. AMBIENT TEMPERATURE  
0
-5  
1.6  
1.5  
1.4  
1.3  
1.2  
1.1  
1.0  
0.9  
0.8  
3000  
2500  
2000  
1500  
1000  
500  
ALL INPUTS/OUTPUTS ACTIVE,  
PREEMPHASIS SAME ON ALL  
OUTPUT CHANNELS  
-10  
-15  
-20  
-25  
-30  
-35  
-40  
6dB PREEMPHASIS  
OUT_LEVEL = HIGH  
0dB PREEMPHASIS  
OUT_LEVEL = LOW  
0
0
500 1000 1500 2000 2500 3000  
FREQUENCY (MHz)  
-10 10 30 50 70 90 110 130 150  
-10  
5
20  
35  
50  
65  
80  
JUNCTION TEMPERATURE (°C)  
AMBIENT TEMPERATURE (°C)  
Pin Description  
PIN  
NAME  
FUNCTION  
1, 4, 7, 10,  
97, 100  
V
Positive Power-Supply Connection. Powers input channel 1 and output channels 1 and 2.  
Noninverting TMDS CML Input, Channel 1  
CC1  
IN1_B+,  
IN1_C+,  
IN1_D+,  
IN1_A+  
2, 5, 8, 98  
IN1_B-,  
IN1_C-,  
IN1_D-,  
IN1_A-  
3, 6, 9, 99  
Inverting TMDS CML Input, Channel 1  
Power-Down, LVTTL/LVCMOS Input. Force high or leave open to power down input channel 1. Force  
low to enable input channel 1. The MAX3845 powers down if both PWRDWN_1 and PWRDWN_2 are  
forced high or left open.  
11  
PWRDWN_1  
12  
13  
V
Positive Power-Supply Connection. Powers the temp-sense circuitry.  
CC3  
LOS MUTE Enable Input. Connect to V for typical operation. Connect to GND to disable the LOS  
CC  
MUTE function.  
LOSMUTE_EN  
TEMP  
Junction Temperature Sensor. Attach a ground-referenced voltage DMM to this pin to measure the  
14  
15  
die’s junction temperature (see the V  
pin description). Leave open if not used.  
CC3  
Power-Down, LVTTL/LVCMOS Input. Force high or leave open to power down input channel 2. Force  
low to enable input channel 2. The MAX3845 powers down if both PWRDWN_1 and PWRDWN_2 are  
forced high or left open.  
PWRDWN_2  
16, 19, 22,  
25, 26, 29  
V
CC2  
Positive Power-Supply Connection. Powers input channel 2 and output channels 3 and 4.  
_______________________________________________________________________________________  
5
DVI/HDMI 2:4 TMDS Fanout Switch and  
Cable Driver  
Pin Description (continued)  
PIN  
NAME  
FUNCTION  
IN2_A+,  
IN2_B+,  
IN2_C+,  
IN2_D+  
17, 20, 23,  
27  
Noninverting TMDS, CML Input, Channel 2  
Inverting TMDS, CML Input, Channel 2  
IN2_A-,  
IN2_B-,  
IN2_C-,  
IN2_D-  
MAX3845  
18, 21, 24,  
28  
IN_SEL4,  
IN_SEL3,  
IN_SEL2,  
IN_SEL1  
30, 61, 65,  
96  
Input Select, LVTTL Input. Force high to select input channel 1. Force low to select input channel 2.  
Leave open to disable the output channel.  
PREEMPH4,  
PREEMPH3,  
31, 62, 64,  
95  
Preemphasis Select, LVTTL/LVCMOS Input. Force high for 6dB of output preemphasis. Leave open  
PREEMPH2, for 3dB of output preemphasis. Force low for 0dB of output preemphasis (normal).  
PREEMPH1  
HOTPLUG4, Hotplug Sense Input. Connect this pin to the display’s HOTPLUGx signal (buffered) to allow  
HOTPLUG3, automatic power-down of the associated output when the display is disconnected. A low-cost quad  
HOTPLUG2, 5V, noninverting CMOS gate (74ACT32 series) is recommended to buffer the MAX3845 from the  
32, 46, 80,  
94  
HOTPLUG1 HOTPLUGx pin to match HOTPLUG level specifications. If this feature is not used, connect to V  
.
CC  
33, 36, 39,  
42, 45, 47,  
50, 51, 54,  
57, 60  
GND2  
Supply Ground. Ground connection for input channel 2 and output channels 3 and 4.  
Inverting TMDS, CML Output, Channel 4  
OUT4_D-,  
OUT4_C-,  
OUT4_B-,  
OUT4_A-  
34, 37, 40,  
43  
OUT4_D+,  
OUT4_C+,  
OUT4_B+,  
OUT4_A+  
35, 38, 41,  
44  
Noninverting TMDS, CML Output, Channel 4  
OUT3_D-,  
OUT3_C-,  
OUT3_B-,  
OUT3_A-,  
48, 52, 55,  
58  
Inverting TMDS, CML Output, Channel 3  
OUT3_D+,  
OUT3_C+,  
OUT3_B+,  
OUT3_A+,  
49, 53, 56,  
59  
Noninverting TMDS, CML Output, Channel 3  
6
_______________________________________________________________________________________  
DVI/HDMI 2:4 TMDS Fanout Switch and  
Cable Driver  
MAX3845  
Pin Description (continued)  
PIN  
NAME  
FUNCTION  
Output Level Select, LVTTL/LVCMOS Input. Force pin low when no back termination is used (11mA  
63  
OUT_LEVEL of tail current). Force pin high when 200back termination resistors are used (14mA of tail  
current).  
66, 69, 72,  
75, 76, 79,  
81, 84, 87,  
90, 93  
GND1  
Supply Ground. Ground connection for input channel 1 and output channels 1 and 2.  
Inverting TMDS, CML Output, Channel 2  
OUT2_D-,  
OUT2_C-,  
OUT2_B-,  
OUT2_A-  
67, 70, 73,  
77  
OUT2_D+,  
OUT2_C+,  
OUT2_B+,  
OUT2_A+  
68, 71, 74,  
78  
Noninverting TMDS, CML Output, Channel 2  
OUT1_D-,  
OUT1_C-,  
OUT1_B-,  
OUT1_A-  
82, 85, 88,  
91  
Inverting TMDS, CML Output, Channel 1  
OUT1_D+,  
OUT1_C+,  
OUT1_B+,  
OUT1_A+  
83, 86, 89,  
92  
Noninverting TMDS, CML Output, Channel 1  
Ground. The exposed pad must be soldered to the circuit board ground for proper thermal and  
electrical operation.  
EP  
_______________________________________________________________________________________  
7
DVI/HDMI 2:4 TMDS Fanout Switch and  
Cable Driver  
Detailed Description  
Applications Information  
The ꢁAX3845 2:4 MVI/HMꢁI fanout switch and cable  
driver accept differential CꢁL input data at rates of  
250ꢁbps up to 1.65Gbps (individual channel data  
rate). The input portion of the device consists of two  
independent TꢁMD inputs, each having four fixed-level  
equalizers, four limiting amplifiers, a loss-of-signal  
(LOD) detector, and power-down control. The output  
portion of the device consists of four independent  
TꢁMD outputs, each having four multiplexers, four out-  
put buffers with selectable preemphasis, HOTPLUG  
detection, and channel selection control (Figure 1).  
MAX3845 in HDMI 1.3 Systems  
The ꢁAX3845 is designed and characterized to oper-  
ate from 250ꢁbps to 1.65Gbps. HMꢁI 1.3 specifies up  
to 2.25Gbps for 1080p “deep color” and allows a maxi-  
mum data rate of 3.4Gbps on each of the three data  
pairs. The ꢁAX3845 operates normally in an HMꢁI 1.3  
system up to 1.65Gbps. The ꢁAX3845 operates at data  
rates above 1.65Gbps with reduced jitter performance.  
Dee the Typical Operating Characteristics section for  
more information.  
MAX3845  
MAX3845 in HDCP Systems  
High-bandwidth digital content protection (HMCP) is a  
copy protection system employed in some MVI and  
most HMꢁI interfaces. Video data is encrypted at the  
transmitter and decrypted at the receiver. The data  
scrambling is dependent upon shared keys established  
during the authentication protocol that occurs over the  
MMC channel (between the video source and the dis-  
play). The ꢁAX3845 does not decrypt or reencrypt  
data. Therefore, HMCP-encrypted video routed through  
the ꢁAX3845 is only viewable on the display to which  
the MMC channel is connected. For applications that  
employ HMCP, the ꢁAX3845 acts as a dual 1:4 switch  
and not as a fanout device. This means that one video  
source can be selected to drive any one of four dis-  
plays, but the video source cannot be replicated on  
more than one display at the time. Fanout is possible in  
non-HMCP applications, allowing one video source to  
simultaneously drive up to four displays.  
Fixed Input Equalization  
All four differential pairs on the ꢁAX3845’s TꢁMD  
inputs have fixed-level equalizers to compensate for 0in  
to 6in of FR4 PCB losses. The signal boost is approxi-  
mately 1dB at 825ꢁHz. If more equalization is desired,  
use the ꢁAX3814 or ꢁAX3815 in front of the ꢁAX3845  
to accommodate long cable lengths.  
Limiting Amplifiers  
Limiting amplifiers follow the equalizer block to ensure  
proper signal levels are achieved for the multiplexers.  
Loss-of-Signal (LOS) Detectors  
Input channel 1 has an LOD detector attached to the  
IN1_B pair. For input channel 2 the LOD detector is  
attached to the IN2_C pair. If the received-signal ampli-  
tude is smaller than 150mV  
(typical) at IN1_B, all  
P-P  
output channels selected to input 1 are muted.  
Likewise, if a signal smaller than 150mV (typical) is  
P-P  
at IN2_C, all output channels selected to input 2 are  
muted.  
Output Level Control, Back Termination,  
and AC-Coupling  
The OUT_LEVEL pin is an LVTTL input that allows the  
user to select between standard output drive current  
(11mA) or increased output drive current (14mA). The  
increased output current setting allows back termina-  
tion resistors to be used on the outputs. The use of  
back terminations is highly recommended for best sig-  
nal integrity (see Figures 2 and 3).  
Multiplexers  
Each ꢁAX3845 output has four multiplexers, one for  
each signal pair contained in the TꢁMD channel. These  
connect the output to either input 1 or input 2. The  
IN_DELx pins control the multiplexers.  
Preemphasis Drivers  
The preemphasis drivers have three selectable levels  
of preemphasis: 0dB, 3dB, and 6dB. The preemphasis  
drivers provide a precompensated signal that allows for  
extended length cables to be used at the output.  
If OUT_LEVEL is set low, the standard output drive cur-  
rent (11mA) is consistent with MVI/HMꢁI architecture  
and common-mode levels. As per standard, no back  
termination is used so no reflected energy can be  
absorbed.  
If OUT_LEVEL is set high, the output drive current is  
increased to 14mA and allows the use of back termina-  
tion resistors. Two options are available: a differential  
back termination resistor or two single-ended pullup  
resistors (see Figures 2 and 3).  
8
_______________________________________________________________________________________  
DVI/HDMI 2:4 TMDS Fanout Switch and  
Cable Driver  
MAX3845  
OUT_LEVEL  
2:4 DVI FANOUT  
SWITCH AND CABLE DRIVER  
OUTPUT MACRO 1  
DVI OR  
HDMI  
CONNECTOR  
PE  
OUT1_[A-D]  
HOTPLUG1  
PREEMPH1  
IN_SEL1  
EXAMPLE:  
MAX3815  
OUTPUT MACRO 2  
EQ  
EQ  
LOS 1  
LA  
IN1_[A-D]  
DVI OR  
HDMI  
CONNECTOR  
PE  
OUTPUT MACRO 3  
PE  
OUT2_[A-D]  
HOTPLUG2  
PREEMPH2  
IN_SEL2  
>MUTE  
-
PWRDWN_1  
PD  
INPUT MACRO 1  
CLKLOS  
LOSMUTE_EN  
EXAMPLE:  
MAX3815  
DVI OR  
HDMI  
CONNECTOR  
OUT3_[A-D]  
HOTPLUG3  
PREEMPH3  
IN_SEL3  
EQ  
EQ  
LOS 2  
LA  
IN2_[A-D]  
>MUTE  
-
PWRDWN_2  
PD  
INPUT MACRO 2  
CLKLOS  
OUTPUT MACRO 4  
DVI OR  
HDMI  
CONNECTOR  
PE  
OUT4_[A-D]  
HOTPLUG4  
PREEMPH4  
IN_SEL4  
ANALOG TEMP  
SENSE  
TEMP (DIE TEMP SENSE)  
POWER-DOWN LOGIC FOR EACH OF 4 OUTPUT MACROS  
PWRDWN_ [OUTPUT MACRO x], WHERE x = 1, 2, 3, OR 4, IF:  
[PWRDWN_1 = LOW] OR [LOS 1 = HIGH]  
DECODER  
HIGH  
AND  
[IN_SELx = HIGH]  
OR  
[PWRDWN_2 = HIGH] OR [LOS 2 = HIGH]  
ON-CHIP SIGNAL:  
POWER-DOWN  
OUTPUT MACRO x  
IN_SELx  
AND  
[IN_SELx = LOW]  
OR  
LOW  
OPEN  
[IN_SELx = OPEN]  
R
2 x R  
[HOTPLUGx = LOW OR OPEN]  
Figure 1. Functional Miagram  
_______________________________________________________________________________________  
9
DVI/HDMI 2:4 TMDS Fanout Switch and  
Cable Driver  
+3.3V  
MAX3845  
50Ω  
50Ω  
TMDS 200Ω*  
Z = 100  
0(DIFF)  
Rx  
OUTPUT  
OR  
PAIR 300Ω*  
MAX3845  
TMDS  
RECEIVER  
*BACK TERMINATION RESISTOR IS LOCATED AS CLOSE AS POSSIBLE TO THE MAX3845.  
Figure 2. MC-Coupled Mifferential Back Termination  
+3.3V  
+3.3V  
MAX3845  
100Ω* 100Ω*  
50Ω  
50Ω  
0.1μF  
0.1μF  
TMDS  
OUTPUT  
PAIR  
Z
= 100  
Rx  
0(DIFF)  
TMDS  
RECEIVER  
*BACK TERMINATION RESISTORS ARE LOCATED AS CLOSE AS POSSIBLE TO THE MAX3845.  
Figure 3. AC-Coupled Dingle-Ended Back Termination  
Back termination greatly reduces signal degradation  
The differential back termination options reduce the  
common-mode output voltage seen by the TꢁMD  
caused by reflections coming off MVI/HMꢁI connectors  
and any other transmission line discontinuities. ꢁuch of  
the reflected energy off a MVI connector, for example,  
is absorbed by the back termination resistance rather  
than reflected forward, causing eye closure. For the  
cases shown in Figures 2 and 3, the return loss is  
approximately 9.5dB. In other words, about 90ꢀ of the  
reflected energy is absorbed by the back termination  
resistors. ꢁaxim strongly recommends using back ter-  
mination to maximize the ꢁAX3845’s performance.  
receiver to approximately V  
- 350mV (Table 1).  
CC  
The single-ended back termination option allows for  
AC-coupling between the ꢁAX3845 and a TꢁMD  
receiver, so long as the TꢁMD receiver is tolerant of an  
input common-mode voltage equal to V  
later).  
(HMꢁI 1.2 or  
CC  
10 ______________________________________________________________________________________  
DVI/HDMI 2:4 TMDS Fanout Switch and  
Cable Driver  
MAX3845  
Table 1. Output Levels With and Without Back Termination  
VOLTAGES AT THE INPUT OF THE TMDS RECEIVER (TYPICAL)  
CONDITIONS  
V
V
V
V
L
DIFF  
CM  
H
PREEMPHx = LOW, OUT_LEVEL = LOW (Output Drive Current = 11mA)  
No back termination 1100mV  
PREEMPHx = LOW, OUT_LEVEL = HIGH (Output Drive Current = 14mA)  
V
CC  
- 275mV  
V
CC  
V
CC  
- 550mV  
P-P  
Differential 200back terminations (DC-coupled)  
Differential 300back terminations (DC-coupled)  
Single-ended, 2x 100back terminations (AC-coupled)  
950mV  
V
V
- 350mV  
- 350mV  
V
- 120mV  
V
CC  
V
CC  
V
CC  
- 585mV  
- 615mV  
- 240mV  
P-P  
CC  
CC  
1050mV  
V
- 90mV  
P-P  
P-P  
CC  
CC  
950mV  
V
CC  
V
CC  
+ 240mV  
Temperature Sense  
Pin 14, TEꢁP, allows the on-die temperature to be  
sensed as an analog voltage output. To sense the die  
temperature, measure the MC voltage at TEꢁP. The  
approximate die temperature can be determined using  
the following equation:  
Hotplug Detect  
Each output channel has a HOTPLUGx detection pin  
associated with it. This pin is designed to detect  
whether a monitor’s hotplug connection is attached. If  
HOTPLUGx is low (less than 1.5V), the associated out-  
put is powered down. If HOTPLUGx is higher than  
V
- 0.2V, up to 5.5V, the associated output is pow-  
CC  
ered up.  
T = (V  
- 0.93) x 297  
J
TEꢁP  
Also see the Typical Operating Characteristics section  
for more information.  
Activating an Output  
Deveral things must occur for an output to be active.  
Table 2 lists the required inputs to enable an output.  
Power-Down  
The power-down inputs (PWRMWN_1 and PWRMWN_2)  
reduce power consumption by powering down the cho-  
sen input and all outputs that are selected to that input.  
For example, when output channels 1 and 4 are select-  
ed to transmit input channel 2, and channel 2 is pow-  
ered down, both outputs 1 and 4 are also powered  
down.  
Cable Selection  
Good quality cable is recommended for good perfor-  
mance. Meterministic jitter (MJ) can be caused by dif-  
ferential-to-common-mode conversion (or vice versa)  
within a twisted pair (DTP or UTP), usually a result of  
cable twist or dielectric imbalance. Refer to Application  
Note HFAN-4.5.4: ‘Jitter Happens’ when a Twisted Pair  
is Unbalanced for more information.  
Table 2. Output Enable Requirements  
OUTPUT x  
STATE  
IN_SELx  
CONDITION  
HOTPLUGx  
CONDITION  
PWRDWN_1  
CONDITION  
PWRDWN_2  
CONDITION  
LOS 1  
CONDITION  
LOS 2  
CONDITION  
INPUT 1  
INPUT 2  
HIGH  
LOW  
HIGH  
HIGH  
LOW  
Don’t care  
LOW  
LOW  
Don’t care  
LOW  
Don’t care  
Don’t care  
______________________________________________________________________________________ 11  
DVI/HDMI 2:4 TMDS Fanout Switch and  
Cable Driver  
Layout Considerations  
Interface Models  
The data inputs and outputs are the ꢁAX3845’s most  
critical paths, and great care should be taken to mini-  
mize discontinuities on these transmission lines  
between the connector and the IC. Here are some sug-  
gestions for maximizing the performance of the  
ꢁAX3845:  
V
V
CC  
CC  
MAX3845  
50Ω  
50Ω  
• ꢁaintain 100Ω differential transmission line imped-  
ance into and out of the ꢁAX3845.  
TMDS  
INPUT+  
MAX3845  
EQUALIZATION  
NETWORK  
• The data and clock inputs should be wired directly  
between the cable connector and IC without stubs.  
TMDS  
INPUT-  
• An uninterrupted ground plane should be posi-  
tioned beneath the high-speed I/Os.  
• Ground path vias should be placed close to the IC  
and the input/output interfaces to allow a return cur-  
rent path to the IC and the MVI/HMꢁI cable.  
Figure 4. Dimplified Input Circuit Dchematic  
• Use good high-frequency layout techniques and  
multilayer boards with an uninterrupted ground  
plane to minimize EꢁI and crosstalk.  
For more information, refer to the schematic and board  
layers of the ꢁaxim evaluation kit, ꢁAX3845EVKIT.  
MAX3845  
TMDS  
Exposed-Pad Package and Thermal  
Considerations  
OUTPUT+  
TMDS  
OUTPUT-  
The exposed pad on the 100-pin TQFP-EP provides a  
very low thermal resistance path for heat removal from  
the IC. The pad is also electrical ground on the  
ꢁAX3845 and must be soldered to the circuit board  
ground for proper thermal and electrical performance.  
Refer to ꢁaxim Application Note HFAN-08.1: Thermal  
Considerations of QFN and Other Exposed-Paddle  
Packages for additional information.  
TVS*  
TVS*  
*TVS IS A "TRANSIENT VOLTAGE  
SUPPRESSOR" CLAMP-CIRCUIT.  
Because the ꢁAX3845 is a high-power device, it is  
important to ensure that good heat dissipation is incor-  
porated into the PCB design. The device’s temperature-  
sense pin (TEꢁP) allows estimation of the junction  
temperature to be made while the ꢁAX3845 is operat-  
ing. This information can be used to determine if the  
PCB layout is dissipating heat properly.  
Figure 5. Dimplified Output Circuit Dchematic  
12 ______________________________________________________________________________________  
DVI/HDMI 2:4 TMDS Fanout Switch and  
Cable Driver  
MAX3845  
Pin Configuration  
TOP VIEW  
99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76  
+
V
CC1  
1
75 GND1  
INT1_B+  
INT1_B-  
2
74 OUT2_B+  
73 OUT2_B-  
72 GND1  
3
V
CC1  
4
IN1_C+  
IN1_C-  
5
71 OUT2_C+  
70 OUT2_C-  
69 GND1  
6
V
CC1  
7
IN1_D+  
IN1_D-  
8
68 OUT2_D+  
67 OUT2_D-  
9
V
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
GND1  
CC1  
PWRDWN_1  
IN_SEL2  
PREEMPH2  
OUT_LEVEL  
PREEMPH3  
IN_SEL3  
GND2  
V
CC3  
LOSMUTE_EN  
TEMP  
MAX3845  
PWRDWN_2  
V
CC2  
IN2_A+  
IN2_A-  
OUT3_A+  
OUT3_A-  
GND2  
V
CC2  
IN2_B+  
IN2_B-  
OUT3_B+  
OUT3_B-  
GND2  
V
CC2  
IN2_C+  
IN2_C-  
OUT3_C+  
OUT3_C-  
GND2  
V
CC2  
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50  
TQFP-EP*  
*EXPOSED PAD MUST BE CONNECTED TO GROUND.  
______________________________________________________________________________________ 13  
DVI/HDMI 2:4 TMDS Fanout Switch and  
Cable Driver  
Typical Operating Circuits (continued)  
HDCP* APPLICATION  
HDMI/DVI  
CABLE  
MAX3845  
MOVIE  
WITH HDCP  
DVI/HDMI  
DUAL 1:4 SWITCH  
CONFIGURATION  
MAX3845  
HDMI/DVI  
CABLE  
OFF  
MOVIE  
WITH HDCP  
HDMI/DVI  
CABLE  
Blu-ray™,  
HD-DVD,  
CABLE STB,  
SATELLITE STB  
HDMI/DVI  
CABLE  
SPORTS  
SPORTS  
WITH HDCP  
WITH HDCP  
HDMI/DVI  
CABLE  
Blu-ray,  
HD-DVD,  
CABLE STB,  
SATELLITE STB  
HDMI/DVI  
CABLE  
OFF  
DRIVER SELECTS (8)  
IN_SELx: HIGH = INPUT 1, OPEN = OFF, LOW = INPUT 2  
PREEMPHx: HIGH = 6dB, OPEN = 3dB, LOW = 0dB  
* BECAUSE THE MAX3845 IS A TRANSPARENT SWITCH, HDCP SOURCES CAN ONLY BE CONNECTED TO ONE HDCP-COMPLIANT  
DISPLAY AT A TIME AND CANNOT BE FANNED OUT THROUGH THE MAX3845.  
Blu-ray is a trademark of Blu-ray Disc Association.  
14 ______________________________________________________________________________________  
DVI/HDMI 2:4 TMDS Fanout Switch and  
Cable Driver  
MAX3845  
Typical Operating Circuits (continued)  
NON-HDCP APPLICATION  
HDMI/DVI  
MAX3845  
CABLE  
VIDEO FOOTAGE  
VIDEO DISPLAY  
DVI/HDMI  
2:4 FANOUT BUFFER  
HDMI/DVI  
CABLE  
VIDEO FOOTAGE  
VIDEO CAPTURE CARD  
ON PC/MAC  
PCB  
TRACES  
GRAPHICS ASIC  
SCALING AND PICTURE  
PROCESSING ENGINE  
WITH TDMS OUTPUT  
HDMI/DVI  
CABLE  
COMPUTER GRAPHICS  
PCB  
TRACES  
VIDEO DISPLAY  
EQ  
COMPUTER GRAPHICS  
VIDEO CARD ON PC/MAC  
LONG HDMI  
CABLE  
MAX3815  
HDMI/DVI  
CABLE  
DVI/HDMI  
EQUALIZER  
COMPUTER GRAPHICS  
VIDEO DISPLAY  
DRIVER SELECTS (8)  
IN_SELx: HIGH = INPUT 1, OPEN = OFF, LOW = INPUT 2  
PREEMPHx: HIGH = 6dB, OPEN = 3dB, LOW = 0dB  
FOR APPLICATIONS THAT ARE NOT HDCP ENCODED, THE MAX3845 CAN BE USED TO FAN OUT DVI AND HDMI SIGNALS.  
______________________________________________________________________________________ 15  
DVI/HDMI 2:4 TMDS Fanout Switch and  
Cable Driver  
Typical Operating Circuits (continued)  
MAX3845  
4 x 4 MATRIX APPLICATION  
MAX3845  
MAX3845  
DVI/HDMI  
2:4 FANOUT BUFFER  
OUTPUT 1  
OUTPUT 2  
OUTPUT 3  
OUTPUT 4  
INPUT 1  
INPUT 2  
INPUT 3  
26  
50  
TOP VIEW  
1
1
INPUT 4  
26  
26  
50  
50  
PART B  
SIDE VIEW  
PART A  
100  
76  
DRIVER SELECTS 2x(8)  
IN_SELx (PART A): HIGH = INPUT 2, OPEN = OFF, LOW = INPUT 4  
IN_SELx (PART B): HIGH = INPUT 1, OPEN = OFF, LOW = INPUT 3  
PREEMPHx: HIGH = 6dB, OPEN = 3dB, LOW = 0dB  
FOR 4 x 4 MATRIX OPERATION, TWO MAX3845 PARTS ARE LOCATED ON EITHER SIDE OF THE BOARD WITH THE AXIS OF ROTATION ABOUT PINS 13 AND 63.  
16 ______________________________________________________________________________________  
DVI/HDMI 2:4 TMDS Fanout Switch and  
Cable Driver  
MAX3845  
Typical Operating Circuits (continued)  
MAX3845  
DVI/HDMI 2:4  
FANOUT SWITCH  
AND  
CABLE DRIVER  
2:8 FANOUT/SWITCH  
APPLICATION  
OUTPUT 1  
OUTPUT 2  
OUTPUT 3  
OUTPUT 4  
MAX3814  
(8) MINIMUM  
LOSS POWER  
SPLITTERS  
INPUT 1  
DVI/HDMI CABLE  
EQUALIZER AND DRIVER  
(USE 200Ω BACK TERM)  
MAX3845  
DVI/HDMI 2:4  
FANOUT SWITCH  
AND  
OUTPUT 5  
OUTPUT 6  
OUTPUT 7  
OUTPUT 8  
MAX3814  
(8) MINIMUM  
LOSS POWER  
SPLITTERS  
CABLE DRIVER  
INPUT 2  
DVI/HDMI CABLE  
EQUALIZER AND DRIVER  
(USE 200Ω BACK TERM)  
50Ω MATCHED MINIMUM LOSS POWER SPLITTER:  
THROUGH LOSS (ANY PORT TO ANY PORT) IS 6dB.  
16Ω  
16Ω  
SIGNAL 1  
Z = 50  
SIGNAL 3  
Z = 50  
0
0
16Ω  
SIGNAL 2  
Z = 50  
0
______________________________________________________________________________________ 17  
DVI/HDMI 2:4 TMDS Fanout Switch and  
Cable Driver  
Package Information  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information  
go to www.maxim-ic.com/packages.)  
MAX3845  
PACKAGE OUTLINE, 100L TQFP  
14x14x1.00mm WITH EXPOSED PAD OPTION  
1
21-0116  
D
2
18 ______________________________________________________________________________________  
DVI/HDMI 2:4 TMDS Fanout Switch and  
Cable Driver  
MAX3845  
Package Information (continued)  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information  
go to www.maxim-ic.com/packages.)  
PACKAGE OUTLINE, 100L TQFP  
14x14x1.00mm WITH EXPOSED PAD OPTION  
2
21-0116  
D
2
ꢁaxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a ꢁaxim product. No circuit patent licenses are  
implied. ꢁaxim reserves the right to change the circuitry and specifications without notice at any time.  
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ____________________ 19  
© 2007 ꢁaxim Integrated Products  
is a registered trademark of ꢁaxim Integrated Products, Inc.  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY