MAX38909ATD+ [MAXIM]

2A High-Performance nMOS LDO Linear Regulator;
MAX38909ATD+
型号: MAX38909ATD+
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

2A High-Performance nMOS LDO Linear Regulator

文件: 总20页 (文件大小:1175K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Click here to ask about the production status of specific part numbers.  
MAX38909  
2A High-Performance  
nMOS LDO Linear Regulator  
General Description  
Benefits and Features  
The MAX38909 is a fast transient response, high PSRR  
nMOS linear regulator that delivers up to 2A of load cur-  
rent.  
● Delivers Flexible Operating Range  
• 0.9V to 5.5V Input Voltage Range  
• 2.7V to 20V BIAS Voltage Range  
• 0.6V to 5.0V Programmable Output Voltage  
• 2A Maximum Output Current  
The regulator supports a wide input supply range from  
0.9V to 5.5V, and BIAS voltage range from 2.7V to 20V to  
provide wider supply options in a variety of applications.  
±1% output accuracy is maintained over line, load, and  
temperature variations, requiring only 300mV of input-to-  
output headroom at full load for a good PSRR. The output  
voltage can be adjusted to accommodate customers that  
desire to specify a single LDO in the BOM for multiple volt-  
age rails.  
• 27mV Dropout at 2A Load Current  
• 1.6mA Operating BIAS Supply Current  
● Reduces Noise and Improves Accuracy  
• ±1% DC Accuracy Over Load, Line, and  
Temperature  
• 15mV 2A Load Transient Excursion  
• 52dB IN PSRR at 10kHz at 300mV Input-to-Output  
Headroom  
The output voltage on the MAX38909 is programmed to a  
value in the range of 0.6V to 5.0V by using two external  
feedback resistors.  
● Enables Ease-of-Use and Robust Protection  
• Stable with 10μF (Minimum) Output Capacitance  
• Programmable Soft-Start Rate  
The LDO is fully protected from damage by internal circuit-  
ry that provides programmable inrush current limiting, out-  
put overcurrent limiting, reverse-current limiting, and ther-  
mal overload protection.  
• Overcurrent and Overtemperature Protection  
• Output-to-Input Reverse Current Protection  
• Power-OK Status Pin  
● Reduces Size, Improves Reliability  
• 14-Pin (3mm x 3mm) TDFN and 5 x 3 Bump,  
0.4mm Pitch WLP Packages  
The MAX38909 is offered in 14-pin, 3mm x 3mm TDFN  
and 5 x 3 bump, 0.4mm pitch WLP packages.  
• -40°C to +125°C Operating Temperature  
Applications  
● FPGAs and DSPs  
● Medical, Audio, and Instrumentation  
● Server Microcontrollers  
● Portable Cameras  
● PLCs  
Ordering Information appears at end of data sheet.  
● Base Stations  
19-100950; Rev 1; 11/20  
 
 
MAX38909  
2A High-Performance  
nMOS LDO Linear Regulator  
Typical Application Circuit  
IN  
OUT  
IN  
IN  
IN  
IN  
OUT  
OUT  
OUT  
OUT  
(1.3V TO 5.5V)  
(1.0V/UP TO 2A)  
C3  
22µF  
R3  
C1  
C2  
100kΩ  
MAX38909  
22µF  
47nF  
GND  
EN  
BYP  
POK  
FB  
ENABLE  
POK  
R2  
10kΩ  
BIAS  
(2.7V TO 20V)  
BIAS  
EP  
C4  
R1  
15kΩ  
1µF  
www.maximintegrated.com  
Maxim Integrated | 2  
 
MAX38909  
2A High-Performance  
nMOS LDO Linear Regulator  
TABLE OF CONTENTS  
General Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Benefits and Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Typical Application Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
Absolute Maximum Ratings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Package Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
14 TDFN. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
WLP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Typical Operating Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Pin Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
14 TDFN. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
WLP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Pin Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Functional Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Detailed Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Bypass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Power OK. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Undervoltage Lockout (UVLO) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Active Discharge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Voltage Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Applications Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Input and Output Capacitors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Thermal Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
www.maximintegrated.com  
Maxim Integrated | 3  
MAX38909  
2A High-Performance  
nMOS LDO Linear Regulator  
LIST OF FIGURES  
Figure 1. Typical POK Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Figure 2. Typical IN UVLO Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Figure 3. Startup into Dropout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
www.maximintegrated.com  
Maxim Integrated | 4  
MAX38909  
2A High-Performance  
nMOS LDO Linear Regulator  
LIST OF TABLES  
Table 1. Recommended Feedback Resistor Values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
www.maximintegrated.com  
Maxim Integrated | 5  
MAX38909  
2A High-Performance  
nMOS LDO Linear Regulator  
Absolute Maximum Ratings  
IN, FB, OUT, BYP, POK to GND.............................. -0.3V to +6V  
WLP (derate 16.2mW/°C, T = +70°C).......................1312mW  
A
BIAS to GND .......................................................... -0.3V to +22V  
Operating Junction Temperature Range.............-40°C to +125°C  
Maximum Junction Temperature ......................................+150°C  
Storage Temperature Range ..............................-65°C to +150°C  
Lead Temperature (soldering, 10s)...................................+300°C  
EN to GND..................................................-0.3V to V  
+ 0.3V  
BIAS  
Output Short-Circuit Duration ..................................... Continuous  
Continuous Power Dissipation (T = +70°C)  
A
TDFN (derate 24.4mW/°C, T = +70°C)..................1951.2mW  
A
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the  
device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for  
extended periods may affect device reliability.  
Package Information  
14 TDFN  
Package Code  
T1433+2C  
21-0137  
90-0063  
Outline Number  
Land Pattern Number  
Thermal Resistance, Single-Layer Board:  
Junction to Ambient (θ  
)
54°C/W  
8°C/W  
JA  
Junction to Case (θ  
)
JC  
Thermal Resistance, Four-Layer Board:  
Junction to Ambient (θ  
)
41°C/W  
8°C/W  
JA  
Junction to Case (θ  
)
JC  
WLP  
Package Code  
Outline Number  
N151C2+1  
21-100372  
Land Pattern Number  
Refer to Application Note 1891  
Thermal Resistance, Four-Layer Board:  
Junction to Ambient (θJA)  
61.65°C/W  
N/A  
Junction to Case (θJC)  
For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages.  
Note that a “+”, “#”, or “-” in the package code indicates RoHS status only. Package drawings may show a different  
suffix character, but the drawing pertains to the package regardless of RoHS status.  
Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a  
four-layer board. For detailed information on package thermal considerations, refer to www.maximintegrated.com/  
thermal-tutorial.  
Electrical Characteristics  
(V = 1.5V, V  
IN  
= 1.0V, V  
= 10V, T = -40°C to +125°C, C = 22μF, C  
= 22μF, C  
= 1nF, unless noted otherwise.)  
BYP  
OUT  
BIAS  
J
IN  
OUT  
(Note 1)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Guaranteed by output accuracy,  
Input Voltage Range  
V
IN  
0.9  
5.5  
V
V
OUT  
< V - V  
IN DO  
www.maximintegrated.com  
Maxim Integrated | 6  
 
MAX38909  
2A High-Performance  
nMOS LDO Linear Regulator  
Electrical Characteristics (continued)  
(V = 1.5V, V  
IN  
= 1.0V, V  
= 10V, T = -40°C to +125°C, C = 22μF, C  
= 22μF, C  
= 1nF, unless noted otherwise.)  
BYP  
OUT  
BIAS  
J
IN  
OUT  
(Note 1)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Bias Voltage Range  
V
2.7  
20  
V
BIAS  
Input Undervoltage  
Lockout  
V
V
V
rising, 60mV hysteresis  
0.35  
0.45  
2.55  
0.55  
V
IN_UVLO  
IN  
Bias Undervoltage  
Lockout  
V
rising, 100mV hysteresis  
2.45  
0.6  
10  
2.65  
5.0  
V
V
BIAS_UVLO  
BIAS  
Output Voltage Range  
Output Capacitance  
Input Supply Current  
V
Guaranteed by output accuracy  
OUT  
OUT  
Effective capacitance required for stability  
and proper operation  
C
22  
μF  
μA  
I
V
= 3.6V, V  
= 5.0V, I = 0mA  
OUT  
70.5  
0.001  
1
150  
1
Q
EN  
EN  
BIAS  
T = +25°C  
J
Input Shutdown Current  
I
V
= 0V  
μA  
SD  
T = +125°C  
J
V
V
V
= 3.3V, V  
= 3.3V, V  
= 0V  
= 5.0V, I  
= 0mA  
1.5  
4
4
EN  
BIAS  
BIAS  
OUT  
OUT  
I
mA  
μA  
BIAS  
Bias Supply Current  
= 5.0V, I  
= 2A  
1.6  
EN  
I
0.75  
BIAS_SD  
EN  
I
from 10mA to 2A, V from V  
+
OUT  
OUT  
IN  
Feedback Voltage  
Accuracy  
0.3V to 5.5V, V  
> 2.7V, V  
from 0.6V to  
OUT  
from  
BIAS  
BIAS  
V
FB  
0.594  
0.6  
0.606  
V
V
OUT  
+ 2V to 20V, V  
5.0V  
Load Regulation  
Load Transient  
I
I
from 0.1mA to 2A, C  
= 47nF  
BYP  
0.05  
15  
%
OUT  
= 20mA to 2A and 2A to 20mA, di/dt  
OUT  
mV  
= 1A/μs, C  
= 3 x 10μF, C  
= 47nF  
BYP  
OUT  
V
1A, C  
from V  
+ 0.3V to 5.5V, I  
=
OUT  
IN  
OUT  
Line Regulation  
Line Transient  
0.04  
4.5  
%/V  
mV  
= 47nF  
BYP  
V
IN  
= 1.0V to 1.2V to 1.0V, 10V/ms V  
IN  
slew rate, I  
= 2A, V  
= 0.8V, C  
OUT  
OUT  
BYP  
= 47nF  
V
TDFN  
= 5.0V,  
BIAS  
36  
27  
50  
43  
44  
36  
36  
27  
2.8  
80  
80  
V
V
= 5.0V, WLP  
= 3.3V,  
I
= 2A,  
BIAS  
OUT  
V
= 1.2V  
= 2.5V  
OUT_NOM  
BIAS  
100  
100  
TDFN  
V
= 3.3V, WLP  
= 5.0V,  
Dropout Voltage (Note  
2)  
BIAS  
BIAS  
V
DO  
mV  
V
I
= 2A,  
OUT  
TDFN  
V
OUT_NOM  
V
V
= 5.0V, WLP  
= 12V,  
BIAS  
BIAS  
I
= 2A,  
OUT  
TDFN  
V
= 5.0V  
OUT_NOM  
V
BIAS  
= 12V, WLP  
V
V
= 0.9 x V  
= 300mV  
, V  
-
OUTS/OUT  
OUT_NOM IN  
Current Limit  
I
2.2  
3.4  
A
LIM  
OUT  
www.maximintegrated.com  
Maxim Integrated | 7  
MAX38909  
2A High-Performance  
nMOS LDO Linear Regulator  
Electrical Characteristics (continued)  
(V = 1.5V, V  
IN  
= 1.0V, V  
= 10V, T = -40°C to +125°C, C = 22μF, C  
= 22μF, C  
= 1nF, unless noted otherwise.)  
BYP  
OUT  
BIAS  
J
IN  
OUT  
(Note 1)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
μV  
I
= 0.5A, 10Hz  
OUT  
Output Noise  
to 100kHz, V  
=
C
BYP  
= 47nF  
21.2  
OUT  
RMS  
1.2V  
V
- V  
= 1A, C  
= 0.3V, f = 1kHz  
OUT  
59  
52  
IN  
I
=
OUT  
OUT  
f = 10kHz  
4 x 10μF, C  
=
BYP  
IN Power Supply  
Rejection Ratio  
PSRR  
PSRR  
47nF, V  
>
=
dB  
dB  
BIAS  
2.7V, V  
BIAS  
f = 100kHz  
42  
V
OUT  
+ 2V, T =  
A
+25°C  
V
IN  
- V  
= 0.3V, f = 1kHz  
OUT  
90  
78  
I
= 1A, C  
=
OUT  
OUT  
f = 10kHz  
BIAS Supply Rejection  
Ratio  
4 x 10μF, C  
47nF, V  
=
BYP  
=
BIAS  
f = 100kHz  
69  
V
OUT  
+ 5V, T =  
A
+25°C  
Regulator remains stable; guaranteed by  
design  
BYP Capacitor Range  
BYP Soft-Start Current  
C
0.001  
0.1  
μF  
μA  
BYP  
I
From BYP to GND during startup  
EN rising  
50  
1.0  
BYP  
V
1.6  
+1  
IH  
EN Input Threshold  
V
V
EN falling  
0.4  
-1  
0.9  
IL  
V
EN  
from 0V to  
T
A
= +25°C  
+0.001  
EN Input Leakage  
Current  
I
5.5V, V  
8V to 20V  
from  
μA  
EN_LK  
BIAS  
T = +125°C  
J
0.01  
V
V
rising  
falling  
88  
-1  
91  
88  
94  
V
when POK  
OUT  
OUT  
POK Threshold  
%
mV  
μA  
switches  
OUT  
POK Voltage, Low  
POK Leakage Current  
V
I
= 1mA  
10  
100  
+1  
OL  
POK  
T
A
= +25°C  
+0.001  
0.01  
I
V
POK  
= 5.5V  
POK_LK  
T = +125°C  
J
IN Reverse-Current  
Threshold  
V
= 1.2V, V  
= 10V  
700  
165  
150  
mA  
°C  
OUT  
BIAS  
TJ when output  
turns on/off  
T rising  
J
Thermal Shutdown  
Threshold  
T when output  
J
turns on/off  
T falling  
J
Note 1: Limits over the specified operating temperature and supply voltage range are guaranteed by design and characterization, and  
production tested at room temperature only.  
Note 2: Dropout voltage is defined as (V - V  
) when V  
is 95% of its nominal value.  
OUT  
IN  
OUT  
www.maximintegrated.com  
Maxim Integrated | 8  
 
MAX38909  
2A High-Performance  
nMOS LDO Linear Regulator  
Typical Operating Characteristics  
(V = 1.5V, V  
IN  
= 12V, V  
= 1.0V, C = 22μF, C  
= 22μF, C  
= 47nF, C = 1μF, T = +25°C, unless otherwise noted)  
BIAS A  
BIAS  
OUT  
IN  
OUT  
BYP  
www.maximintegrated.com  
Maxim Integrated | 9  
MAX38909  
2A High-Performance  
nMOS LDO Linear Regulator  
Typical Operating Characteristics (continued)  
(V = 1.5V, V  
IN  
= 12V, V  
= 1.0V, C = 22μF, C  
= 22μF, C  
= 47nF, C = 1μF, T = +25°C, unless otherwise noted)  
BIAS A  
BIAS  
OUT  
IN  
OUT  
BYP  
www.maximintegrated.com  
Maxim Integrated | 10  
MAX38909  
2A High-Performance  
nMOS LDO Linear Regulator  
Typical Operating Characteristics (continued)  
(V = 1.5V, V  
IN  
= 12V, V  
= 1.0V, C = 22μF, C  
= 22μF, C  
= 47nF, C = 1μF, T = +25°C, unless otherwise noted)  
BIAS A  
BIAS  
OUT  
IN  
OUT  
BYP  
www.maximintegrated.com  
Maxim Integrated | 11  
MAX38909  
2A High-Performance  
nMOS LDO Linear Regulator  
Pin Configurations  
14 TDFN  
TOP VIEW  
14 13 12 11 10  
9
8
MAX38909  
EP*  
+
1
2
3
4
5
6
7
TDFN-EP  
3mm x 3mm  
*EP = EXPOSED PAD  
WLP  
TOP VIEW  
MAX38909  
3
1
2
4
5
+
EN  
POK  
FB  
IN  
IN  
IN  
BIAS  
GND  
BYP  
A
B
C
GND  
OUT  
GND  
OUT  
GND  
OUT  
5 x 3, 0.4mm PITCH  
Pin Description  
PIN  
NAME  
FUNCTION  
14 TDFN  
WLP  
Regulator Supply Input. Connect to a voltage between 0.9V and 5.5V and bypass  
with a 22μF ceramic capacitor from IN to GND.  
1–4  
A1–A3  
IN  
Bias Supply Input. Connect to a voltage between 2.7V and 20V and bypass with a  
5
A4  
BIAS  
1μF capacitor from BIAS to GND. BIAS must be 2.0V or more above the V  
target.  
OUT  
Enable. Connect this pin to a logic signal to enable (V  
high) or disable (V  
EN  
EN  
6
7
A5  
EN  
low) the regulator output. Connect to BIAS to keep the output enabled whenever a  
valid supply voltage is present.  
Regulator Ground. Bring IN and OUT bypass capacitor GND connections to this  
pin for best performance.  
B1–B4  
GND  
www.maximintegrated.com  
Maxim Integrated | 12  
MAX38909  
2A High-Performance  
nMOS LDO Linear Regulator  
Pin Description (continued)  
PIN  
NAME  
FUNCTION  
14 TDFN  
WLP  
Power-On Reset Output. Connect a pullup resistor from this pin to a supply to  
create a reset signal that goes high after the regulator output has reached its  
regulation target voltage.  
8
B5  
POK  
Output Voltage Feedback Input. Connect resistor divider across OUT and GND  
with the center connected to this pin to set any output voltage between 0.6V and  
5.0V.  
9
10  
C5  
C4  
FB  
BYP  
OUT  
EP  
Bypass Capacitor Input. Connect a 0.001μF to 0.1μF capacitor between OUT and  
BYP to reduce output noise.  
Regulator Output. Sources up to 2A at the output regulation voltage. Bypass this  
pin with 22μF ceramic capacitor to GND. It is pulled low with a 70Ω resistance  
when the regulator is disabled.  
11–14  
C1–C3  
Exposed Pad (TDFN Only). Connect the exposed pad to a ground plane with low  
thermal resistance to ambient to provide best heat sinking.  
Functional Diagram  
BIAS  
BIAS  
IN  
THERMAL  
PROTECTION  
REVERSE-  
CURRENT  
PROTECTION  
CONTROL  
EN  
CURRENT  
LIMIT  
OUT  
ACTIVE  
DISCHARGE  
BYP  
BYP  
EA  
REF  
0.6V  
POK  
MAX38909  
POK THRESHOLD  
GND  
FB  
www.maximintegrated.com  
Maxim Integrated | 13  
MAX38909  
2A High-Performance  
nMOS LDO Linear Regulator  
Detailed Description  
The MAX38909 is a fast transient, high PSRR linear regulator that delivers up to 2A of load current. The regulator  
supports a wide input supply (0.9V to 5.5V) and BIAS (2.7V to 20V) voltage ranges, making it suitable for variety of  
applications. The output voltage regulation accuracy of ±1% is maintained across load, line, and temperature variations,  
requiring only 300mV of input-to-output headroom at full load for good PSRR. The output voltage can be adjusted to  
accommodate customers that desire to specify a single LDO in the BOM for multiple voltage rails.  
The output voltage is programmed to a value in the range of 0.6V to 5.0V by using two external feedback resistors.  
The LDO is fully protected from damage by internal circuitry that provides programmable inrush current limiting, output  
overcurrent limiting, reverse current-limiting, and thermal overload protection.  
Enable  
The MAX38909 includes an enable pin (EN). The enable signal is an active-high digital signal that enables the device  
when its voltage passes the rising threshold (V ≥ V (EN)) and disables the device when its voltage is below the falling  
EN  
IH  
threshold (V  
≤ V (EN)). While in the shutdown (V  
= 0V), the MAX38909 consumes 1nA of current from the input  
EN  
IL  
EN  
supply. If a separate shutdown signal is not available, connect EN to BIAS. When EN is driven by a host its bias current  
will vary with the BIAS supply level. See the Typical Operating Characteristics for more information.  
Bypass  
The capacitor connected from BYP to OUT filters noise at the reference, feedback resistors and regulator input stage. It  
provides a high-speed feedback path for improved transient response. A 10nF capacitor rolls off noise at around 32Hz.  
The slew rate of the output voltage during startup is also determined by the BYP capacitor. The MAX38909 features  
programmable, monotonic, soft-start set by this capacitor. Its use is highly recommended to minimize inrush current into  
the output capacitor. A 10nF capacitor sets the slew rate to 5V/ms. This startup rate results in a 110mA slew current  
drawn from the input at startup to charge 22μF output capacitance.  
The BYP capacitor value can be adjusted from 1nF to 100nF to change the startup slew rate according to the following  
formula:  
Startup slew rate = 5V/ms x 10nF/C  
BYP  
where C  
is in nF.  
BYP  
This slew rate applies until V  
reaches 75% of the target after which the V  
slew rate is reduced.  
OUT  
OUT  
Also, note that being a low-frequency filter node, BYP is sensitive to leakage. BYP leakage currents above 10nA cause  
measurable inaccuracy at the output and should be avoided.  
Power OK  
The power-OK (POK) function monitors the voltage at the feedback pin to indicate the output voltage is in regulation. Its  
operation versus the output voltage is shown in Figure 1.  
The POK pin is open-drain and requires a pullup resistor to an external supply to properly report the device regulation  
status to other devices so it can be used for sequencing. Check if the external pullup supply voltage results in a valid  
logic levels for the receiving device or devices.  
The range of the pullup resistance is between 10kΩ and 100kΩ. Its lower limit comes from a pulldown strength of the  
POK transistor while the higher limit is determined by maximum leakage current at the POK pin.  
www.maximintegrated.com  
Maxim Integrated | 14  
MAX38909  
2A High-Performance  
nMOS LDO Linear Regulator  
POK RISING THRESHOLD  
POK FALLING THRESHOLD  
V
OUT  
POK  
STARTUP  
A
B
C
D
E
SHUTDOWN  
Figure 1. Typical POK Operation  
The POK operation versus the output voltage is shown in the Figure 1 above. Different operating regions are:  
A: The device is in regulation.  
B: V  
sags, but does not reach the POK falling threshold.  
OUT  
C: The device is in regulation.  
D: V sags low enough to cross the POK falling threshold. The POK is driven low until V  
recovers above the POK  
OUT  
OUT  
rising threshold.  
E: The device is in regulation.  
Protection  
The MAX38909 is fully protected from an output short-circuit by a current-limiting and thermal overload protection circuit.  
If the output is shorted to GND, the output current is limited to 2.8A (typ). Under these conditions, the device quickly  
heats up. When the junction temperature reaches +165°C, a thermal limit circuit shuts the output device off. Once the  
device cools to 150°C, the output turns back on to reestablish regulation. If the fault persists, the output current cycles  
on and off as the junction temperature slews between +150°C and +165°C. Continuously operating in the fault conditions  
or above +125°C junction temperature is not recommended since long-term reliability might be reduced. In dropout, the  
current limit triggers at 4A (typ). Once the limit is triggered, the device limits the current to 2.8A (typ).  
The thermal protection can also be triggered when the device is exposed to excessive heat in the system causing the die  
temperature to reach undesired levels.  
The MAX38909 provides the reverse-current protection when the output voltage is higher than the input. If extra output  
capacitance is used at the output, a power-down transient at the input would normally cause a large reverse-current  
through a conventional regulator. The MAX38909 include a reverse-voltage detector that trips when IN drops 6.5mV  
below OUT shutting off the regulator and opening the body diode connection preventing any reverse current. The reverse  
current is a current that flows through the body diode of the pass element and is undesired due to its impact on power  
www.maximintegrated.com  
Maxim Integrated | 15  
 
MAX38909  
2A High-Performance  
nMOS LDO Linear Regulator  
dissipation and long-term reliability especially at higher current levels. The conditions where the reverse current can be  
flowing back to IN are:  
• If the device has a large C  
and the input supply collapses quickly; OUT has little or no-load current,  
OUT  
• The output is biased when the input supply is not established, or  
• The output is biased above the input supply.  
The MAX38909 blocks reverse currents that exceed about 0.7A by opening a switch in series with the pass device body  
diode.  
Undervoltage Lockout (UVLO)  
The MAX38909 undervoltage lockout (UVLO) circuits respond quickly to glitches on IN or BIAS and attempts to disable  
the output of the device if either of these rails collapse. The local input capacitance prevents transient brownouts in most  
applications.  
UVLO RISING THRESHOLD  
UVLO FALLING THRESHOLD  
V
IN  
V
OUT  
STARTUP  
A
B
C
IN REGULATION  
SHUTDOWN  
Figure 2. Typical IN UVLO Operation  
The Figure 2 above reflects UVLO operation. The different operation regions are:  
STARTUP: The device begins the soft-start once the input voltage crosses its UVLO rising threshold providing the BIAS  
voltage is already above its UVLO rising threshold and the device is enabled (V  
> V ).  
IH  
EN  
A: The device is in regulation.  
B: An input supply brownout condition where V can sag below UVLO rising threshold but not below the falling threshold.  
IN  
The device is enabled. Note the output sags once the device is in dropout.  
C: An input supply brownout condition where V sags below UVLO falling threshold. The device is disabled when V  
IN  
IN  
crosses its UVLO falling threshold. V  
drops due to load current. The regulator gets enabled again once V recovers  
OUT  
IN  
to the UVLO rising threshold. Note the output starts to sag once the device is in dropout.  
SHUTDOWN: The output voltage starts to ramp down once the device gets into dropout. It is disabled when the input  
www.maximintegrated.com  
Maxim Integrated | 16  
 
MAX38909  
2A High-Performance  
nMOS LDO Linear Regulator  
voltage drops below its UVLO falling threshold.  
During V power-up, the MAX38909 begins V  
soft-start after V crosses the V UVLO rising threshold. This  
IN IN  
IN  
OUT  
assures proper V  
ramp up and transition to regulation. V  
soft-start rate should be kept as or slower than the  
OUT  
OUT  
V
V
slew rate to avoid entering the dropout. In some situations, V transients can place the regulator into dropout. As  
starts climbing again and the device comes out of the dropout, the output can overshoot, as shown in Figure 3. This  
IN  
IN  
IN  
condition is avoided by using an enable signal or by increasing the soft-start time with larger C  
.
BYP  
V
V
IN  
V
= V  
+ V  
OUT_NOM DO  
IN  
OUT  
V
IN REGULATION  
OUT  
DROPOUT  
= V - V  
DO  
V
OUT  
IN  
TIME  
Figure 3. Startup into Dropout  
Active Discharge  
When EN is low or BIAS supply is below its falling UVLO threshold, the MAX38909 connects a 70Ω resistor from V  
to GND in order to discharge the output capacitance.  
OUT  
Voltage Selection  
The MAX38909 use external feedback resistors to set the output regulation voltage. The output voltage can be set from  
0.6V to 5.0V. Set the bottom feedback resistor R1 to less than 100kΩ to minimize FB input bias current error. Calculate  
the value of the top feedback resistor R2 as follows:  
R2 = R1 x (V  
/V - 1)  
OUT FB  
where V is the feedback regulation voltage of 0.6V.  
FB  
To set the output to 1.0V, for example, R2 should be:  
R2 = 15kΩ x (1.0V/0.6V - 1) = 10kΩ  
R1 of 15kΩ is recommended to optimize noise performance.  
Values of the resistor divider and its tolerance will have a direct impact to V  
accuracy. 1% resistors or better are  
OUT  
recommended. Table 1 shows recommended values for the feedback resistors.  
www.maximintegrated.com  
Maxim Integrated | 17  
 
MAX38909  
2A High-Performance  
nMOS LDO Linear Regulator  
Table 1. Recommended Feedback Resistor Values  
TARGETED OUTPUT  
VOLTAGE (V)  
TOP FEEDBACK RESISTOR  
VALUES (kΩ)  
BOTTOM FEEDBACK RESISTOR  
CALCULATED OUTPUT  
VOLTAGE (V)  
VALUES (kΩ)  
0.8  
0.9  
1.0  
1.2  
1.5  
1.8  
2.5  
2.7  
3.0  
3.3  
3.6  
4.5  
5.0  
4.99  
7.50  
10.0  
15.0  
22.6  
30.1  
47.5  
52.3  
59.0  
68.1  
75.0  
97.6  
110.0  
15.0  
0.799  
0.900  
1.0  
15.0  
15.0  
15.0  
1.2  
15.0  
1.504  
1.804  
2.5  
15.0  
15.0  
15.0  
2.692  
3.008  
3.324  
3.6  
14.7  
15.0  
15.0  
15.0  
4.504  
5.0  
15.0  
www.maximintegrated.com  
Maxim Integrated | 18  
MAX38909  
2A High-Performance  
nMOS LDO Linear Regulator  
Applications Information  
Input and Output Capacitors  
The MAX38909 is designed to have stable operation using low equivalent series resistance (ESR) ceramic capacitors at  
the input, output, and bypass pin. Multilayer ceramic capacitors (MLCC) with X7R dialectic are commonly used for these  
types of applications and are recommended due to their relatively stable capacitance across temperature. Nevertheless,  
amount of equivalent capacitance depends on operating DC voltage, AC voltage ripple, temperature, etc. Therefore, the  
capacitor data sheet needs to be properly examined.  
The MAX38909 is designed and characterized for operation with X7R ceramic capacitors of 22µF or greater (10μF  
or greater of effective capacitance) both at the input and output. Place these capacitors as close as possible to the  
respective input and output pins to minimize trace parasitics.  
A combination of multiple output capacitors in parallel boosts the high-frequency PSRR.  
Thermal Design  
To optimize the MAX38909 performance, special consideration is given to the device power dissipation and PCB thermal  
design. Power dissipation in the regulator depends on the input-to-output voltage difference and load conditions. It can  
be calculated by following equation:  
Loss (W) = (V – V  
) x I  
LOAD  
IN  
OUT  
The optimal power dissipation can be achieved by carefully choosing input voltage for a given output target rail voltage.  
The main thermal conduction path for the device is through the exposed pad of the package. As a result, the thermal  
pad must be soldered to a copper pad area under the device. Thermal plated vias must be placed inside the thermal  
PCB pad to transfer heat to different GND layers in the system. The vias should be capped to minimize solder voids. The  
maximum power dissipation is determined by using thermal resistance from the device junction to ambient keeping the  
maximum junction temperature below +125°C. Thermal properties of the package are given in the Package Information  
section.  
The first order power dissipation estimate for the 3.3V IN and 2.5V OUT with load current of 500mA condition is:  
Loss (W) = (V – V  
) x I  
= (3.3V – 2.5V) x 0.5A = 0.4W  
LOAD  
IN  
OUT  
Assuming the MAX38909ATD+ is used, this power dissipation raises the junction temperature to:  
T = (PD x θ ) + 25°C = (0.4W x 41°C/W) + 25°C = 41.4°C  
J
JA  
Ordering Information  
TEMPERATURE  
PART NUMBER  
MAX38909ATD+  
MAX38909ANL+  
PIN-PACKAGE  
FEATURE  
RANGE  
2A LDO, enable input, externally adjustable output, low  
noise bypass  
-40°C to +125°C  
14 TDFN, 3mm x 3mm  
15 WLP, 5 x 3, 0.4mm  
pitch  
2A LDO, enable input, externally adjustable output, low  
noise bypass  
-40°C to +125°C  
+Denotes a lead(Pb)-free/RoHS-compliant package.  
www.maximintegrated.com  
Maxim Integrated | 19  
MAX38909  
2A High-Performance  
nMOS LDO Linear Regulator  
Revision History  
REVISION REVISION  
PAGES  
CHANGED  
DESCRIPTION  
NUMBER  
DATE  
11/20  
11/20  
0
1
Release for market intro  
Updated Ordering Information table  
19  
For pricing, delivery, and ordering information, please visit Maxim Integrated’s online storefront at https://www.maximintegrated.com/en/storefront/storefront.html.  
Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent  
licenses are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max  
limits) shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.  
Maxim Integrated and the Maxim Integrated logo are trademarks of Maxim Integrated Products, Inc.  
© 2020 Maxim Integrated Products, Inc.  

相关型号:

MAX3890ECB

+3.3V, 2.5Gbps, SDH/SONET 16:1 Serializer with Clock Synthesis and LVDS Inputs
MAXIM

MAX3890EVKIT

Evaluation Kit for the MAX3890
MAXIM

MAX3891

Serially Controlled Audio/Video Switches[MAX4584/MAX4585/MAX4584EUB/MAX4584EUB-T/MAX4585EUB/MAX4585EUB-T ]
MAXIM

MAX3891ECB

16:1 Serializer, 3.3V, 2.5Gbps, SDH/SONET with Clock Synthesis and LVPECL Inputs
MAXIM

MAX3891ECB+D

ATM/SONET/SDH Serial to Parallel/Parallel to Serial Converter, 1-Func, Bipolar, PQFP64, 10 X 10 MM, 1 MM HEIGHT, ROHS COMPLIANT, MO-136AJ, TQFP-64
MAXIM

MAX3891ECB+TD

暂无描述
MAXIM

MAX3891ECB-D

Serial to Parallel/Parallel to Serial Converter, 1-Func, Bipolar, PQFP64, 10 X 10 MM, 1 MM HEIGHT, MO-136AJ, TQFP-64
MAXIM

MAX3891EVKIT

Evaluation Kit for the MAX3891
MAXIM

MAX3892

+3.3V.2.5Gbps/2.7Gbps.SDH/SONET 4:1 Serializer with Clock Synthesis
MAXIM

MAX3892EGH

Telecommunication IC
MAXIM

MAX3892EGH+T

Serial to Parallel/Parallel to Serial Converter
MAXIM

MAX3892EGH-T

ATM/SONET/SDH Serial to Parallel/Parallel to Serial Converter, 1-Func, Bipolar, QFN-44
MAXIM